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Application of hard sphere perturbation theory for thermodynamics of model liquid metals
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Hard sphere perturbation theofiiSPT) has contributed toward the fundamental understanding of dense
fluids for over 30 years. In recent decades, other techniques have been more popular. In this paper, we argue
for the revival of hard sphere perturbation theory for the study of thermodynamics of dense liquid in general,
and in liquid metal in particular. The weakness of HSPT is now well understood, and can be easily overcome
by using a simple convenient Monte Carlo method to calculate the intrinsic error of HSPT free energy density.
To demonstrate this approach, we consider models of liquid aluminum and sodium. We obtain the intrinsic
error of HSPT with the Monte Carlo method. HSPT is shown to provide a lower free energy upper bound than
one-component plasm@®CP for alkali metals and polyvalent metals. We are thus able to provide insight into
the long standing observation that a OCP is a better reference system than a HS for alkali metals.
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[. INTRODUCTION fluids do not provide an adequate description of the experi-
mental liquid alkali metal structure factfit4—16. Later cal-

The configurations of dense simple fluids with strongly culations were able to overcome this difficulty7,7]. The
repulsive interactions at small separations are known to b&ee energy bound from variational HSPT was also inferior
well described by the packing of hard sphefés-4]. This  when compared to the bound using a one-component plasma
provided the basis for the extensive application of hardOCP reference systerfil4,15 These difficulties were at-
sphere perturbation theof}iSPT) over many decades for a tributed to the relatively softer core of the effective ion-ion
wide range of liquid§1-4]. In particular, HSPT has played potentials of the alkali metalsl6]. In contrast, the HS ref-
an important pioneering role in the study of liquid me{f&@l§  erence system was argued to be the preferred reference sys-
Since then, advances in numerical simulation methods antém for polyvalent metals with stiffer core potentials. Im-
the availability of inexpensive computers have somewhat diplicit in these arguments is that although first-order
minished the use of HSPT. Molecular dynamics or Montevariational perturbation theory is not exact, the magnitude of
Carlo simulations allow one to obtain numerically exact re-the error is small if the structure of the reference HS fluids is
sults for equilibrium and nonequilibrium properties of model able to provide an adequate description of the model liquid
liquids, and is limited only by the speed and memory of themetals. The assumption is that the error is rooted in the trun-
computer [6]. In recent decades, the integral-equationcation of HSPT to first order; if the perturbation is carried
method has also been popular, and demonstrated approxiut to all orders, then the result will be exact.
mate results which are very accurai®hen compared to The possibility that HSPT, when applied to a continuous
computer simulationsfor many liquid metalg7]. model potential, actually represents an application with sin-

In spite of these significant developments, one is still notgular perturbation was not fully appreciated until recently.
able to find a replacement for HSPT in the important role ofThis is important, because singular perturbation may produce
quickly and efficiently calculating the thermodynamic free a free energy density with an intrinsic error. In a recent paper
energy for liquid metalg§5]. This goal remains elusive, in [18], the application of HSPT to dense fluids with a singular
part because a calculation of the free energy for dense fluidserturbation was rigorously shown not to be exact, even
by computer simulation or integral equation methods is nonwhen perturbation to all orders is included. A region of phase
trivial and tediou§ 1-7]. In contrast, the two factors which space was systematically neglected, and produced error in
have made it very convenient to apply first-order HSPT rethe thermodynamic estimates. In this paper, we propose that
main valid today. First, the structure factor of hard spherea simple Monte Carlo method can be use to study this intrin-
fluids has been evaluated analytically in the Percus-Yeviclsic error of the HSPT free energy density, and we apply this
approximation[8—11]. Second, the free energy of the hard technique to model liquid aluminum and sodium. We find
sphere reference system is available analytically as fits tthat the intrinsic error is strongly dependent on the hard
accurate machine calculati¢h2]. By using the hard sphere sphere diametes, of the reference system, and appears to
diameter as a variational parameter, first order HSPT, irincrease rapidly for larges,s. The magnitude of the error
principle, becomes a rigorous upper bound to the true frealso depends on the stiffness of the repulsive part of the
energy[13]. effective ion-ion potential. The error is smaller for model

The deficiencies of HSPT for liquid metals are well liquid aluminum and larger for liquid sodium, corresponding
known[14-14. Initial applications indicate that hard sphere to the potential for aluminum being stiffer than that for so-

dium. Since the intrinsic error of HSPT does not have an
analog for the OCP reference system, our results provide an
*Electronic address: kkmon@hal.physast.uga.edu explanation for the long standing observation that an OCP is
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a better reference system than a HS for the alkali metals witithe two parts have no overlafg3,is defined to be the total
softer core potentials. phase space sampled by the hard sphere reference ensemble
We argue for a revival of HSPT by combining HSPT with { )5, and thus contains no configuration with hard sphere
a simple convenient Monte Carlo method to calculate theoverlap.A is the remainder of the phase space, with at least
intrinsic error. The corrected HSPT is shown to provide aone pair of hard sphere overlaps. With these definitions, Eq.

lower free energy bound than an OCP for both alkali metalg3) can be rewritten within HSPT as,

and polyvalent metals. In Sec. II, we recall the origin of the
intrinsic error. In Sec. lll, the Monte Carlo method and re- (f —po / (J’ _gd )
e e hs
Qps Qps
=—(1UN)In{e” AP Pndy (6)

sults for model liquid aluminum and sodium will be consid- {(B8F)ns=—(1N)In

ered. The paper concludes with discussions in Sec. IV.

Il. HARD SPHERE PERTURBATION THEORY

WITH SINGULAR PERTURBATION We stress that Eq6) represents the HSPT prediction to all

orders in the perturbatiog(® — ®,g, and thus should be
Thermodynamic perturbation theory provides a systemconsidered as an exact HSPT.
atic approach to calculating all thermodynamic properties of The difference of the two ensembles is the intrinsic error
a model system of particles interacting with a potengiah ~ of HSPT,
terms of ensemble averages over configurations in phase

space, distributed according to the Boltzmann distribution of (B8t )ns—(BoF),
the reference systefrl]. Consider a system dfl classical
particles interacting with a potential in a volumeV at =—(1/N)In (f eﬁ‘b)/ f eB‘I’)
temperaturd in the canonical ensemble. The Helmholtz free Ohs e
energy per particle for the system with potentials =—(1N)Ine,), @
B, = —(1/N)In< J e—ﬁd))’ (1)  With e,=[(Jo, & "")(Joe~#®)]. Observe that the error is
Q a simple consequence of the exclusion of phase space with

o ] ] overlaps of hard spheres in the hard sphere reference en-
where the partition integral over all configuration phase-semple. One needs the fraction of configurations sampled by
space({)) is denoted by and® is equal to the total energy the Boltzmann distribution for a model liquid interacting
of interactions from summation af(r) over all possible \ith a potentiab which has no hard sphere overlaps. This is
pairs of particlesg=1/kgT. The Helmholtz free energy per genoted bye,, for hard sphere reference fluids with packing
particle fqr the hard sphere reference system, with the samgsctions of . Although, in generalg, cannot be evaluated
NandV, is analytically for an arbitrary potential, it can be estimated

by the numerical Monte Carlo methdé]. In Sec. Ill, we
Bf = — (1/N)In( f e—,ecbhs) _ 2) will consider our Monte Carlo methods and results for model
0 liquid aluminum and sodium.

Using the Monte Carlo method, we study the intrinsic

=—(1N)In e error of HSPT for typical models of liquid aluminum and

(8B%),=+(1N)In

The difference in free energy density follows: Ill. MONTE CARLO STUDY OF MODEL LIQUID
ALUMINUM AND SODIUM
opt=p(f,—fn
L)/ e
0 Q sodium at densities near freezing. The particles of the model
liquid metals interact with standard pseudopotentials, calcu-
This difference can be evaluated in two different ensembledated using the empty core pseudopotentfdld] and
The first is the ensemble sampled by the continuous modelindhard dielectric functiof20] with exchange and correla-
potentialv and denoted by ), , tion correctiong21]. Such effective ion-ion potentials have
been used for many years, and are well documented in the
By g literatures[5]. The potential is given in Figs. 1 and 2 for
oF oF sodium and aluminum at densitiep) of 0.02435 and
0.05315 ions/A respectively. We consider standard constant
=(1N)In(e A Pns~®)) ", (4)  volume Monte Carlo samplini@] in the canonical ensemble.
A fixed number of particles in a cubic box is used at tem-
The second is given by HSPT as an ensemble average ovperatures of 379 K for sodium and 933 K for aluminum. A
configurations sampled by the hard sphere reference systeeriodic boundary condition is implemented. A range of par-
For this, we need to divide the total configuration phasdicle sizes is used to probe empirically for systematic errors
space() into two parts: using only a finite-size system. Since we are far away from
any critical point with an infinite correlation lengf22], we
Q=0,PA. (5) do not expect, and indeed find no, significant evidence of
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FIG. 1. Pseudopotential pair interaction in units toffor Na FIG. 3. Intrinsic error of the HSPT free energy density for liquid

with an empty core radius of 0.89 A at an ion density of 0.02435/A sodium at 379 K vs the packing fraction of the hard sphere refer-
vs separations in units of A. See the text ence system for different system sizes. The inverted triangles and

triangles are results of thep§)N approximate estimate. The dotted
and solid lines are guides for the eye for 64 and 200 particles,

finite-size effects within our sampling error. Statistical errors'€SPectively. The other symbols are resuits of the exact numerical
stimate. The estimated errors are about the same as or smaller than

Ellre estlmate_d by considering different runs and standarﬁ1e size of the symbols, See the text,
ock averagingsee Ref[6]).

The fraction of configurations sampled by the Boltzmann
distribution for the model liquid interacting with, which  erated by a Boltzmann distribution with no hard sphere over-
have no hard sphere overlaps, is denoted in(#pby €, . laps. This method is numerically exact, but is limited to a
This is a function of the hard sphere diametpr,; Small number of particles and/or smajl The limitation is a
= (67/mp)*3]. For smallp andos, the fraction of configu- ~ consequence af,~e ™ N(F9ns™(B90) ande, will decrease
rations with no overlaps is large, and approaches 1 in th&apidly toward zero for larg®l. The number of total configu-
small % limits. The HSPT intrinsic error, given by In of the rations needed to be sampled for an accurate estimate grows
fraction, will approach zero rapidly in the smajllimits. As  exponentially with the number of particles, which can be
n increases, the fraction with no overlaps decreases rapidlynuch larger than 1. We have used up to 2.5 million Monte
producing an increasing intrinsic error for HSPee Figs. 3 Carlo steps per particle to sampég directly for up to »
and 4. It is useful to note that the simulation depends only~0.40 with 64 particles ang~0.37 with 200 particles.
onv, and the minimum pair separation of the configurations
from the Monte Carlo is stored and analyzed for a range of — T T T T T T

values of%. This approach is very fast and efficient. g N =264,4:100
We have considered two different ways of sampling - F
First, €, is calculated as the fraction of configurations gen- &/_\L i N
73 3
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r “ ] FIG. 4. Intrinsic error of the HSPT free energy density for liquid
qopolttr e b Lo b L aluminum at 933 K vs the packing fraction of the hard sphere ref-
0 25 50 78 100 123 180 erence system for different system sizes. The inverted triangles and
r triangles are results of thep§)N approximate estimate. The dotted

and solid lines are guides for the eye for 64 and 100 particles,
FIG. 2. Pseudopotential pair interaction in unitkofor Al with respectively. The other symbols are results of the exact numerical
an empty core radius of 0.591 A at an ion density of 0.053i58\  estimate. The estimated errors are about the same as or smaller than
separations in units of A. See the text. the size of the symbols. See the text.
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To explore larger values of the packing fractien we  where(),,s denotes the first order variational HSPT results.
observe that the fraction of configurations generated by th8y correcting(85f),ns With the Monte Carlo calculated cor-
Boltzmann distribution with no hard sphere overlaps can beection, one obtains an improved first order HSPT upper
approximated by §,)". p, is the square root of the normal- pound without an intrinsic error.
ized probability that any given particle has no hard sphere Since the intrinsic error can be conveniently calculated
overlap with another particle. This is the single pair approxi-yith Monte Carlo technique, we propose that future HSPT
mation, and ignores a possible correlation between two Opppjications be corrected using our simple algorithm. The
more particles having no sm:lultaneogs hard sphere overlag,, examples of liquid sodium and aluminum used here
with their neighbors. The(,)” approximation allow us 0 \ere studied with variational perturbation theories many
study larger systems and large We can estimate the ermor v, 246 with the OCP and uncorrected HSPT reference
introduced by the fto)" approximat?or? by comparing th_em systemg15]. It was shown that the OCP has a lower free
to the exact eSt'mat.e foyg.o'?’g' This |,s\‘~0.0001_ for !|qU|q energy bound than HSPT for sodiumzat-0.44 by 0.1KgT.
aluminum. For liquid sodium, thepe)® approximation is Our Monte Carlo estimate for the correctiomi®.3gT (see
statistically indistinguishable from the numerically exact . B
sampling results(see Figs. 3 and)4 Fig. 3). Thus the bound of the corrected HSPT is lower t_han

that if the OCP by~0.1XgT. For the model liquid alumi-
num, the correction for HSPT aj~0.48 is~0.3kgT (see
Fig. 4. This implies that the corrected HSPT is lower than

Our Monte Carlo results provide, for the first time to our the OCP by~0.7kgT. These results demonstrate that the
knowledge, an estimate for the error introduced by HSPT ircorrected HSPT provides a lower free energy bound than the
a calculation of the free energy density. This can be as larg®CP for both alkali and polyvalent metals. Since the com-
as~1.0kgT for liquid sodium for»~0.45 and~0.1kgT for  putational effort for calculating the correction for HSPT with
liquid aluminum. Such differences between the two metalour Monte Carlo method is very smdl few hours of CPU
can be traced tp, . p, is the square root of the normalized on fast work stations or a few days on a very inexpensive
probability that a particle has no hard sphere overlap withPC), the corrected HSPT should again be a useful tool to
another particle. This is related to the snratiependence of study the thermodynamic properties of liquid metals.
the pair correlation functiorig(r)], and depends on the
stiffness of the potential.

IV. REMARKS

Observe that the presence of the intrinsic error in HSPT ACKNOWLEDGMENTS
does not invalidate the rigorous upper bound character of . o )
first order variational HSPT. Since,<1.0 in Eq. (7), K.K.M. is on leave from the University of Georgia, and
(B5F)=(B5t), . We also have thanks Professor J. K. Percus and the Courant Institute for
the hospitality.
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