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Application of hard sphere perturbation theory for thermodynamics of model liquid metals
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Hard sphere perturbation theory~HSPT! has contributed toward the fundamental understanding of dense
fluids for over 30 years. In recent decades, other techniques have been more popular. In this paper, we argue
for the revival of hard sphere perturbation theory for the study of thermodynamics of dense liquid in general,
and in liquid metal in particular. The weakness of HSPT is now well understood, and can be easily overcome
by using a simple convenient Monte Carlo method to calculate the intrinsic error of HSPT free energy density.
To demonstrate this approach, we consider models of liquid aluminum and sodium. We obtain the intrinsic
error of HSPT with the Monte Carlo method. HSPT is shown to provide a lower free energy upper bound than
one-component plasma~OCP! for alkali metals and polyvalent metals. We are thus able to provide insight into
the long standing observation that a OCP is a better reference system than a HS for alkali metals.
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I. INTRODUCTION

The configurations of dense simple fluids with strong
repulsive interactions at small separations are known to
well described by the packing of hard spheres@1–4#. This
provided the basis for the extensive application of h
sphere perturbation theory~HSPT! over many decades for
wide range of liquids@1–4#. In particular, HSPT has playe
an important pioneering role in the study of liquid metals@5#.
Since then, advances in numerical simulation methods
the availability of inexpensive computers have somewhat
minished the use of HSPT. Molecular dynamics or Mon
Carlo simulations allow one to obtain numerically exact
sults for equilibrium and nonequilibrium properties of mod
liquids, and is limited only by the speed and memory of t
computer @6#. In recent decades, the integral-equati
method has also been popular, and demonstrated app
mate results which are very accurate~when compared to
computer simulations! for many liquid metals@7#.

In spite of these significant developments, one is still
able to find a replacement for HSPT in the important role
quickly and efficiently calculating the thermodynamic fr
energy for liquid metals@5#. This goal remains elusive, in
part because a calculation of the free energy for dense fl
by computer simulation or integral equation methods is n
trivial and tedious@1–7#. In contrast, the two factors whic
have made it very convenient to apply first-order HSPT
main valid today. First, the structure factor of hard sph
fluids has been evaluated analytically in the Percus-Yev
approximation@8–11#. Second, the free energy of the ha
sphere reference system is available analytically as fits
accurate machine calculation@12#. By using the hard spher
diameter as a variational parameter, first order HSPT
principle, becomes a rigorous upper bound to the true
energy@13#.

The deficiencies of HSPT for liquid metals are we
known @14–16#. Initial applications indicate that hard sphe
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fluids do not provide an adequate description of the exp
mental liquid alkali metal structure factor@14–16#. Later cal-
culations were able to overcome this difficulty@17,7#. The
free energy bound from variational HSPT was also infer
when compared to the bound using a one-component pla
~OCP! reference system@14,15# These difficulties were at-
tributed to the relatively softer core of the effective ion-io
potentials of the alkali metals@16#. In contrast, the HS ref-
erence system was argued to be the preferred reference
tem for polyvalent metals with stiffer core potentials. Im
plicit in these arguments is that although first-ord
variational perturbation theory is not exact, the magnitude
the error is small if the structure of the reference HS fluids
able to provide an adequate description of the model liq
metals. The assumption is that the error is rooted in the tr
cation of HSPT to first order; if the perturbation is carrie
out to all orders, then the result will be exact.

The possibility that HSPT, when applied to a continuo
model potential, actually represents an application with s
gular perturbation was not fully appreciated until recent
This is important, because singular perturbation may prod
a free energy density with an intrinsic error. In a recent pa
@18#, the application of HSPT to dense fluids with a singu
perturbation was rigorously shown not to be exact, ev
when perturbation to all orders is included. A region of pha
space was systematically neglected, and produced erro
the thermodynamic estimates. In this paper, we propose
a simple Monte Carlo method can be use to study this int
sic error of the HSPT free energy density, and we apply t
technique to model liquid aluminum and sodium. We fi
that the intrinsic error is strongly dependent on the h
sphere diametershs of the reference system, and appears
increase rapidly for largershs. The magnitude of the erro
also depends on the stiffness of the repulsive part of
effective ion-ion potential. The error is smaller for mod
liquid aluminum and larger for liquid sodium, correspondin
to the potential for aluminum being stiffer than that for s
dium. Since the intrinsic error of HSPT does not have
analog for the OCP reference system, our results provide
explanation for the long standing observation that an OCP
©2001 The American Physical Society03-1
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a better reference system than a HS for the alkali metals
softer core potentials.

We argue for a revival of HSPT by combining HSPT wi
a simple convenient Monte Carlo method to calculate
intrinsic error. The corrected HSPT is shown to provide
lower free energy bound than an OCP for both alkali me
and polyvalent metals. In Sec. II, we recall the origin of t
intrinsic error. In Sec. III, the Monte Carlo method and r
sults for model liquid aluminum and sodium will be consi
ered. The paper concludes with discussions in Sec. IV.

II. HARD SPHERE PERTURBATION THEORY
WITH SINGULAR PERTURBATION

Thermodynamic perturbation theory provides a syste
atic approach to calculating all thermodynamic properties
a model system of particles interacting with a potentialv in
terms of ensemble averages over configurations in ph
space, distributed according to the Boltzmann distribution
the reference system@1#. Consider a system ofN classical
particles interacting with a potentialv in a volume V at
temperatureT in the canonical ensemble. The Helmholtz fr
energy per particle for the system with potentialv is

b f v52~1/N!lnS E
V

e2bFD , ~1!

where the partition integral over all configuration phas
space~V! is denoted by*V andF is equal to the total energ
of interactions from summation ofv(r ) over all possible
pairs of particles.b51/kBT. The Helmholtz free energy pe
particle for the hard sphere reference system, with the s
N andV, is

b f hs52~1/N!lnS E
V

e2bFhsD . ~2!

The difference in free energy density follows:

db f [b~ f v2 f hs!

52~1/N!lnF S E
V

e2bFD Y S E
V

e2bFhsD G . ~3!

This difference can be evaluated in two different ensemb
The first is the ensemble sampled by the continuous mo
potentialv and denoted bŷ &v ,

^db f &v51~1/N!lnF S E
V

e2bFhsD Y S E
V

e2bFD G
5~1/N!ln^e2b~Fhs2F!&v . ~4!

The second is given by HSPT as an ensemble average
configurations sampled by the hard sphere reference sys
For this, we need to divide the total configuration pha
spaceV into two parts:

V5Vhs% D. ~5!
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The two parts have no overlaps.Vhs is defined to be the tota
phase space sampled by the hard sphere reference ens
^ &hs, and thus contains no configuration with hard sph
overlap.D is the remainder of the phase space, with at le
one pair of hard sphere overlaps. With these definitions,
~3! can be rewritten within HSPT as,

^bd f &hs52~1/N!lnF S E
Vhs

e2bFD Y S E
Vhs

e2bFhsD G
52~1/N!ln^e2b~F2Fhs!&hs. ~6!

We stress that Eq.~6! represents the HSPT prediction to a
orders in the perturbationb(F2Fhs), and thus should be
considered as an exact HSPT.

The difference of the two ensembles is the intrinsic er
of HSPT,

^bd f &hs2^bd f &v

52~1/N!lnF S E
Vhs

e2bFD Y S E
V

e2bFD G
52~1/N!ln eh , ~7!

with eh5@(*Vhs
e2bF)/(*Ve2bF)#. Observe that the error is

a simple consequence of the exclusion of phase space
overlaps of hard spheres in the hard sphere reference
semble. One needs the fraction of configurations sampled
the Boltzmann distribution for a model liquid interactin
with a potentialv which has no hard sphere overlaps. This
denoted byeh for hard sphere reference fluids with packin
fractions ofh. Although, in general,eh cannot be evaluated
analytically for an arbitrary potentialv, it can be estimated
by the numerical Monte Carlo method@6#. In Sec. III, we
will consider our Monte Carlo methods and results for mo
liquid aluminum and sodium.

III. MONTE CARLO STUDY OF MODEL LIQUID
ALUMINUM AND SODIUM

Using the Monte Carlo method, we study the intrins
error of HSPT for typical models of liquid aluminum an
sodium at densities near freezing. The particles of the mo
liquid metals interact with standard pseudopotentials, ca
lated using the empty core pseudopotential@19# and
Lindhard dielectric function@20# with exchange and correla
tion corrections@21#. Such effective ion-ion potentials hav
been used for many years, and are well documented in
literatures@5#. The potential is given in Figs. 1 and 2 fo
sodium and aluminum at densities~r! of 0.02435 and
0.05315 ions/Å3, respectively. We consider standard const
volume Monte Carlo sampling@6# in the canonical ensemble
A fixed number of particles in a cubic box is used at te
peratures of 379 K for sodium and 933 K for aluminum.
periodic boundary condition is implemented. A range of p
ticle sizes is used to probe empirically for systematic err
using only a finite-size system. Since we are far away fr
any critical point with an infinite correlation length@22#, we
do not expect, and indeed find no, significant evidence
3-2
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APPLICATION OF HARD SPHERE PERTURBATION . . . PHYSICAL REVIEW E63 061203
finite-size effects within our sampling error. Statistical erro
are estimated by considering different runs and stand
block averaging~see Ref.@6#!.

The fraction of configurations sampled by the Boltzma
distribution for the model liquid interacting withv, which
have no hard sphere overlaps, is denoted in Eq.~7! by eh .
This is a function of the hard sphere diameter@shs
5(6h/pr)1/3#. For smallh andshs, the fraction of configu-
rations with no overlaps is large, and approaches 1 in
small h limits. The HSPT intrinsic error, given by ln of the
fraction, will approach zero rapidly in the smallh limits. As
h increases, the fraction with no overlaps decreases rap
producing an increasing intrinsic error for HSPT~see Figs. 3
and 4!. It is useful to note that the simulation depends on
on v, and the minimum pair separation of the configuratio
from the Monte Carlo is stored and analyzed for a range
values ofh. This approach is very fast and efficient.

We have considered two different ways of samplingeh .
First, eh is calculated as the fraction of configurations ge

FIG. 2. Pseudopotential pair interaction in units ofK for Al with
an empty core radius of 0.591 Å at an ion density of 0.05315/Å3 vs
separations in units of Å. See the text.

FIG. 1. Pseudopotential pair interaction in units ofK for Na
with an empty core radius of 0.89 Å at an ion density of 0.02435/3

vs separations in units of Å. See the text.
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erated by a Boltzmann distribution with no hard sphere ov
laps. This method is numerically exact, but is limited to
small number of particles and/or smallh. The limitation is a
consequence ofeh;e2N(^bd f &hs2^bd f &v), andeh will decrease
rapidly toward zero for largeN. The number of total configu-
rations needed to be sampled for an accurate estimate g
exponentially with the number of particles, which can
much larger than 1. We have used up to 2.5 million Mon
Carlo steps per particle to sampleeh directly for up to h
;0.40 with 64 particles andh;0.37 with 200 particles.

FIG. 4. Intrinsic error of the HSPT free energy density for liqu
aluminum at 933 K vs the packing fraction of the hard sphere
erence system for different system sizes. The inverted triangles
triangles are results of the (po)N approximate estimate. The dotte
and solid lines are guides for the eye for 64 and 100 partic
respectively. The other symbols are results of the exact nume
estimate. The estimated errors are about the same as or smalle
the size of the symbols. See the text.

FIG. 3. Intrinsic error of the HSPT free energy density for liqu
sodium at 379 K vs the packing fraction of the hard sphere re
ence system for different system sizes. The inverted triangles
triangles are results of the (po)N approximate estimate. The dotte
and solid lines are guides for the eye for 64 and 200 partic
respectively. The other symbols are results of the exact nume
estimate. The estimated errors are about the same as or smalle
the size of the symbols. See the text.
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K. K. MON PHYSICAL REVIEW E 63 061203
To explore larger values of the packing fractionh, we
observe that the fraction of configurations generated by
Boltzmann distribution with no hard sphere overlaps can
approximated by (po)N. po is the square root of the norma
ized probability that any given particle has no hard sph
overlap with another particle. This is the single pair appro
mation, and ignores a possible correlation between two
more particles having no simultaneous hard sphere ove
with their neighbors. The (po)N approximation allow us to
study larger systems and largeh. We can estimate the erro
introduced by the (po)N approximation by comparing them
to the exact estimate forh<0.38. This is;0.0001 for liquid
aluminum. For liquid sodium, the (po)N approximation is
statistically indistinguishable from the numerically exa
sampling results,~see Figs. 3 and 4!.

IV. REMARKS

Our Monte Carlo results provide, for the first time to o
knowledge, an estimate for the error introduced by HSPT
a calculation of the free energy density. This can be as la
as;1.0kBT for liquid sodium forh;0.45 and;0.1kBT for
liquid aluminum. Such differences between the two met
can be traced topo . po is the square root of the normalize
probability that a particle has no hard sphere overlap w
another particle. This is related to the smallr dependence o
the pair correlation function@g(r )#, and depends on th
stiffness of the potential.

Observe that the presence of the intrinsic error in HS
does not invalidate the rigorous upper bound characte
first order variational HSPT. Sinceeh<1.0 in Eq. ~7!,
^bd f &hs>^bd f &v . We also have

^bd f &vhs>^bd f &hs>^bd f &v , ~8!
ys

D.
,

ne
.
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where^ &vhs denotes the first order variational HSPT resul
By correcting^bd f &vhs with the Monte Carlo calculated cor
rection, one obtains an improved first order HSPT up
bound without an intrinsic error.

Since the intrinsic error can be conveniently calcula
with Monte Carlo technique, we propose that future HS
applications be corrected using our simple algorithm. T
two examples of liquid sodium and aluminum used he
were studied with variational perturbation theories ma
years ago with the OCP and uncorrected HSPT refere
systems@15#. It was shown that the OCP has a lower fr
energy bound than HSPT for sodium ath;0.44 by 0.17kBT.
Our Monte Carlo estimate for the correction is;0.3kBT ~see
Fig. 3!. Thus the bound of the corrected HSPT is lower th
that if the OCP by;0.13kBT. For the model liquid alumi-
num, the correction for HSPT ath;0.48 is ;0.3kBT ~see
Fig. 4!. This implies that the corrected HSPT is lower th
the OCP by;0.7kBT. These results demonstrate that t
corrected HSPT provides a lower free energy bound than
OCP for both alkali and polyvalent metals. Since the co
putational effort for calculating the correction for HSPT wi
our Monte Carlo method is very small~a few hours of CPU
on fast work stations or a few days on a very inexpens
PC!, the corrected HSPT should again be a useful tool
study the thermodynamic properties of liquid metals.
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