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General pseudoadditivity of composable entropy prescribed by the existence of equilibrium
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The concept of composability states that entropy of the total system composed of independent subsystems is
a function of entropies of the subsystems. Here, the most general pseudoadditivity rule for composable entropy
is derived based only on the existence of equilibrium.
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[. INTRODUCTION the total entropy in Eq(1) with the fixed total amount,
X(A,B)=X(A)+X(B), vyields
Consider a thermodynamic system composed of two in-

dependent subsystem&,andB, in contact with each other. df(S(A),S(B)) dS(A)  df(S(A),S(B)) dS(B)

The concept of “composability’[1] states that total entropy IS(A) dX(A) - 9S(B) dX(B)" ®

of any kind,S(A,B), is given in terms of the entropies of the

subsystems$(A) and S(B), To establish the zeroth law of thermodynamics, by which a
physical variabldsuch as temperature, pressure, or chemical

S(A,B)=1(S(A),S(B)), @) potentia) common to the subsystems in equilibrium can be
identified, it is essential to be able to realize factorization of
Eq. (5) in the form

wheref is a certain bivariate function of th@é? class and is
assumed to be symmetric

f(S(A),S(B))=f(S(B),S(A)). 2) F(A)=F(B). (6)

This concept may be regarded as a generalized compositiorhis means that the following set of equations should hold:
rule for the total entropy. The celebrated Boltzmann-

Shannon entropy possesses the additivity progé&ity w —Kk(S(A),S(B)g(S(ADh(S(B)), (7)
f(S(A),S(B))=S(A)+S(B). 3) IS(A) ' ;
Another example may be supplied by the r[@g af(S(A),S(B)) -
—5B) ~KE(A).SEIhSAISE). ©)

f(S4(A),S4(B))=Sq(A) +S4(B) +Q(a) Sy(A) Sy(B),
Here g and h are some functions ankl is a differentiable
whereQ(q) is a function of the “entropic index’q, satis- bivariate function. In particularh has to be differentiable.
; _ _1_ o ' The functionk does not have the factorized form, in general.
in 1)=0. =1 and =qg—1 correspond ’
fying Q(1) Q(a) d Q@) =d P The symmetry off shown in Eq.(2) tells us thatk is also

to the Tsallis entropy1,4] and the modified Tsallis entropy :
symmetric

[3,5], respectively. In both cases, the deviationpfrom
unity measures the degree of nonextensivity of the entropies.

Clearly, additivity in Eq.(3) is recovered in the limig— 1. K(S(A),S(B))=k(S(B),S(A)). )
The property in Eq(4) is referred to here as Tsallis-type . ) ) ) - »
pseudoadditivity. Sincef is of the C~ class, the integrability condition holds,

To construct thermodynamics based on entropy, it is necading to
essary to define the equilibrium state, first. This is essentially

relevant to the zeroth law of thermodynamics. In this paper Jk(S(A),S(B)) h(S(A)g(S(B))
we derive the most general form of pseudoadditivity of com- IS(A)
posable entropy based only on the existence of equilibrium.
We shall see how the structure in E4), that is, the sum and +K(S(A),S(B)) dh(S(A)) 9(S(B))
the product of two entropies, is universal. ' dS(A)
Jk(S(A),S(B))
Il. EQUILIBRIUM CONDITION AND GENERAL =—————"g(S(A))h(S(B))
PSEUDOADDITIVITY OF ENTROPY dS(B)

Let X(A) and X(B) be certain extensive variables of the 4 dh(S(B))

subsystem# andB, respectivelyX may be, for example, an K(S(A), S(B)GS(A) dS(B) (10

internal energy, system volume, or particle number. Then,
the equilibrium statd6] characterized by the maximum of Using Eqgs.(7) and(8), we rewrite this equation as follows:
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1 IK(S(A),S(B)) 9t(S(A),S(B))

k*(S(A),S(B)) dS(A) dS(B)
dh(S(A))
+—dS(A) g(S(B))
_ 1 dk(S(A),S(B)) df(S(A),S(B))
k*(S(A),S(B)) dS(B) IS(A)
dh(S(B
+g(S(A))$. (11

This is an identity and therefore leads to the following equa

tions for the factorized and nonfactorized parts:

dh(S(A)) dh(s(B))

WG(S(B)):Q(S(A))W, (12
dk(S(A),S(B)) df(S(A),S(B))
IS(A) JS(B)
_ dK(S(A),S(B)) 9f(S(A),S(B)) 13
B IS(B) IS(A) ’ (13

respectively. The general solution of H4.3) is given by

k(S(A),S(B))=G(f(S(A),S(B))),

whereG is an arbitrary differentiable function.

(14

First, we consider the simplest case wheis a constant
function. Without loss of generality, such a constant can be

set equal to unity. Then, Eqél) and(8) become

9f(S(A),S(B))

GSA)  ~9SADESE)). (15)
af(S(A),S(B))
W=h(S(A))g(S(B)), (16)

respectively. From Eq12), it follows that
1 dh(SA) 1 dh(S(B))E)\’ -

g(S(A)) dS(A) ~ g(S(B)) dS(B)

where\ is a separation constant. Using Ed7), we rewrite
Egs.(15) and(16) as

9f\(S(A),S(B)) 1 dh,(S(A))

IS(A) X dsA) hy(S(B)), (18
df\(S(A),S(B)) _ 1 dh, (S(B))
e amGA)TgE (19

Here, the case.=0 has to be interpreted as the limit
— 0. Integrating these equations, we find

1
FA(S(A),S(B))= -y (S(A)h,(S(B)) + const. (20)
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To have the convergent result in the limit-0, without loss
of generality, we can set the constant term in &%) equal
to —1/\ and simultaneously impose the condition

limh,(S)=1, (21
A—0
for VS. Thus, we obtain
h A))h B)—1
(S, 5(B)) - A ;(S( 22 e

This is the form of the function of composability prescribed

by the existence of equilibrium.
If both of the subsystems are at the completely ordered
states, thers(A,B)=0. This means that
hy(0)=1 (23
for VA. On the other hand, if only the subsystéhis at the
completely ordered state, then we have

S(A,B)=S(A). (24)
Therefore, from Eq(22), we conclude
h A)—1
—”(S(A)) =S(A), (25
or equivalently,
h,(S)=1+\S. (26)

With this form, Eqs(21) and(23) are clearly fulfilled. Thus,
we find that Eq.22) is equivalent to Eq(4) with the iden-
tification, A = Q. In other words, Tsallis-type pseudoadditiv-
ity corresponds to the simplest case wheim Egs.(7) and
(8) is a constant function.

In connection with the above result, we wish to mention
that in Ref. [7] a nonextensive generalization of the
Shannon-Khinchin set of axiomg3] for the Boltzmann-
Shannon entropy is given. The axioms presented there are as
follows.

(i) S4(P1,P2,---,.Pw) is continuous with respect to all its
arguments and takes its maximum for the equiprobability
distributionp;=1/W (i=1,2,...W).

(i) S4(A,B)=S4(A) +S4(B|A) +(1—0)S4(A)Sy(B|A).

(iit) Sy(P1,P2,--- Pw:Pw+1=0)=S4(P1,P2,---.Pw)-
Here,p;(i=1,2,...W) is the probability of finding the total
system in itsith state.Sq(B|A) is the conditional nonexten-
sive entropy[ 7] of the subsystenB given the subsysterA.
Comparing this set with the Shannon-Khinchin one, the only
difference between the two is {ii). (The Shannon-Khinchin
axioms are recovered froi)—(iii) in the limitq—1.) In a
particular case wheA andB are independent of each other,
Sy(B|A)=S,(B) holds, and accordinglyii) becomes the
Tsallis-type pseudoadditivity rule in Eg4) with Q(q)=1
—q. The uniqueness theorem proved in R&}.states that a
quantity S, satisfying(i)—(iii ) is equal to the Tsallis entropy
[1.4]
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1 w
So(P1:P2.- Pw) = ¢ ;l(pi)q—l (27)
with g>0.
Next, let us discuss the general case in @4) and set
1
&)= gamy (28)
df

whereH is a certain differentiable function. Then, Eg2) is
now replaced by

h\(S(A)h\(S(B)) -1
N :

H\(S(A,B))= (29)

Here, we are using the same notation as in @28), which
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H\(S(A,B))=H,(S(A))+H,(S(B))
+MH, (S(A)H,(S(B)). (39

Equation(33) is the most general pseudoadditivity rule for
entropy prescribed by the existence of equilibrium. Tsallis-
type pseudoadditivity is recovered wheéh, is the identity
function.

As an example, let us consider the choitg;(f )=+f
and A—0. In this case, EQq.34) gives S(A,B)=S(A)
+S(B)+2yS(A)S(B). This rule might be relevant to the
black hole entropy, which is proportional to the area of a
black hole[9—-11]. It would be of interest to reexamine black
hole thermodynamics along the lines discussed above.

Ill. CONCLUDING REMARKS

may not cause any confusions. For the completely ordered We have derived the most general pseudoadditivity rule

subsystems, we have
h2(0)—1

HA(0)= =

(30

Also, if only the subsystenB is at the completely ordered

state, then we have

h\(S(A)h,(0)—1

H\(S(A))= 3 , (3D
or equivalently,
3 1+AH,(S(A))
h\(S(A))= W (32
Therefore, from Eqs(29) and(32), we find
H\(S(A,B))
~ Hy\(S(A))+H,\(S(B))+AH, (S(A))H,\(S(B)) —H,(0)
B 1+\H,(0) '
(33

In a particular case whe, (0) can be taken to be zero, this

equation becomes

for composite entropy based only on the existence of equi-
librium. We have shown how Tsallis-type pseudoadditivity
can be obtained as the simplest case.

In the present work, composability of entropy has been
taken as a basic premise. This concept puts a stringent con-
straint on possible forms of entropies. For example, it is
known[12] that the entropy arising from the idea of quantum
groups is not composable. Recalling the discussion in Sec. I,
it does not seem to be possible to define the equilibrium
states in the standard manner in thermodynamics if entropy
does not satisfy composability. However, it is worth noting
that composability assumes divisibility of the total system
into independent subsystems. Actually realizability of this
independence actually puts stringent constraints on physical
nature of the systems. For example, if the total system con-
tains a long-range interaction between its microscopic com-
ponents, the independence of the subsystems may hardly be
realized in general. In such a situation, thorough generaliza-
tion of the standard thermodynamic formalism may be re-
quired.
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