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Markov models of non-Gaussian exponentially correlated processes and their applications
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We consider three different methods of generating non-Gaussian Markov processes with given probability
density functions and exponential correlation functions. All models are based on stochastic differential equa-
tions. A number of analytically treatable examples are considered. The results obtained can be used in different
areas such as telecommunications and neurobiology.
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I. INTRODUCTION

Modeling of signals and interference in the fields of co
munications, radar, sonar, and speech processing is us
based on the assumptions that the processes may be co
ered as stationary~or at least locally stationary! and that
experimental estimations of their simplest statistical char
teristics the autocovariance function~ACF! and marginal
probability density function~PDF!, are available. While the
generation of stationary random processes~sequences! with a
specified PDF or ACF does not present any major difficu
the solution of the joint problem requires much more effo
This was considered in@1# where some sequential combin
tions of linear filtering and zero-memory nonlinear transf
mations of white Gaussian noise~WGN! were used. A dif-
ferent approach is based on treatment of a process with
prescribed characteristics as a stationary solution of the
propriate system of stochastic differential equations~SDE’s!
with the WGN on the right-hand side@2,3#. Such an inter-
pretation seems attractive as it takes advantage of Ma
processes theory and appears to be efficient in the mode
of correlated non-Gaussian processes.

Markov chains with exponential correlation function a
effective models for video conference traffic, as used,
example, in@4,5#. While it is mentioned there that any dis
crete distribution can be represented, and the continuous
limit of the Markov chain is considered, the continuum lim
was not considered. In particular, as we will show in th
paper, it was not clarified whether the Markov chain is a
proaching a continuous Markov process or rather one w
jumps. It will be shown here that this limit is a process w
zero drift and jumps and is thus a good model for impuls
noise @6#. Continuous exponentially correlated process
were extensively studied in@1# and have been used to ge
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erate continuous non-Gaussian processes with more com
cated correlation structure. Other possible applications
be found in the literature and include radar@7–9#, biology
@10#, statistical electromagnetics@11#, etc. However, there is
little work reported on generation of processes that
mixed, i.e., have a continuous~nonzero drift! and a jump
part. Such processes can be used as models for bursty i
net traffic, Middleton classB noise, intersymbol interferenc
combined with additive noise@12#, speech@13#, and stochas-
tic ratchets@14,15#. In this paper we provide a unifying ap
proach for modeling non-Gaussian Markov random proc
with exponential correlation functions.

In the general case a nonlinear system can be driven
mixture of white Gaussian noisej(t) and a Poisson flow ofd
pulsesh(t),

dx

dt
5 f ~x!1g~x!j~ t !1h~ t !. ~1!

The statistical properties of the solutionx(t) can be com-
pletely described by its transitional probability dens
p(x,t;x0 ,t0), which must obey the differential Chapman
Kolmogorov equation@16#

]

]t
p~xux0 ;t!52

]

]x
@K1~x!p~x;x0 ,t0!#

1
1

2

]2

]x2 @K2~x!p~x,t;x0 ,t0!#

1lE
2`

`

@W~xuz,t !p~z,t;x0 ,t0!

2W~zux,t !p~z,t;x0 ,t0!#dz, ~2!

where the driftK1(x), diffusion K2(x), and probability of
jumpsW(xuz,t) can be obtained from the corresponding p
rameters of Eq.~1! as

K1~x!5 f ~x!, ~3!
©2001 The American Physical Society03-1
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K2~x!5g2~x!, ~4!

lim
t2t0→0

p~z,t;x0 ,t0!5lW~xuz,t !, ~5!

E
2`

`

W~xuz,t !dx51. ~6!

~in the Ito form of stochastic integrals!. In the stationary
case, if it exists, Eq.~2! becomes

lE
2`

`

@W~xuz,t !p~zux0 ;t!2W~zux,t !p~xux0 ;t!#dz

5
]

]x
@K1~x!p~xux0 ;t!#2

1

2

]2

]x2 @K2~x!p~xux0 ;t!#.

~7!

Different particular cases of the SDE~1! have been consid
ered in a number of publications@2,3,17–24#. The main goal
here is to show how different Markov processes with
same non-Gaussian probability density and exponential
relation function can be obtained. A method of numeri
simulation of such processes is also considered and s
examples are given.

II. EXPONENTIALLY CORRELATED MARKOV CHAIN

In this section we consider the discrete time scheme
generates a non-Gaussian Markov chain with an expone
correlation function and a given arbitrary PDF. Followin
@25#, let us assume that the stationary distribution of the M
kov chainyn with N states

g1,g2,¯,gN ~8!

is described by the following probabilities of an individu
state:

qk5Prob$yn5gk%. ~9!

Any Markov chain can be completely described by its tra
sitional probability matrixT5@Tk,l # where

Tk,l5Prob$ym5gkuym215g l%, k,l 51,2, . . . ,N.
~10!

which is the probability of the eventym5gk when ym21
5g l and satisfies the conditions

Tk,l>0, (
k51

N

Tk,l51, k51,2, . . . ,N. ~11!

It is well known that the stationary probabilitiesqk are ob-
tained as the eigenvectors of the transition probability ma
T corresponding to the eigenvaluel51:

(
i 51

N

Tk,iqi5qk , k51,2, . . . ,N. ~12!

The same matrix defines the power spectrum in the stat
ary case. However, we consider the inverse problem, ha
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defined only the stationary probabilities of the states. For
case where the correlation function is exponential the so
tion was obtained in@25#. We follow this procedure here to
obtain the chain approximation with infinite number of sta
as the limit of a finite state Markov chain.

To achieve the first goal, we define the following matr
Q in terms of the probabilities of the states:

~13!

It is easy to check that

Q25Q, ~14!

and @25#

det@Q2lI #5~12l!~2l!N21. ~15!

In terms of the matrixQ, the transition matrixT can be
defined as@25#

T5Q1d~ I2Q!, ~16!

where 0<d,1 will define the correlation properties~de-
scribed below! andI is the identity matrix. At the same time
T satisfies the condition~12!.

For any integerm one can obtain the following expressio
from Eqs.~16! and ~14!:

Tm5Q1dm~ I2Q!. ~17!

Sinced is a positive number less than 1, one has

lim
m→`

Tm5Q, ~18!

which means that the Markov chain described by Eq.~16!
becomes ergodic@26# and has a stationary probability give
by qk .

The next step is to consider the correlation functionRm of
the Markov chainym . The average value and the average
the squared value can be obtained in terms of the statio
probability qk as

^ym&5(
i 51

N

gkqk , ~19!

^ym
2 &5(

i 51

N

gk
2qk , ~20!

To calculate the correlation function, one has to consi
the two-dimensional probability, which may be obtain
from Eq. ~17! as

Q~m!~k,l !5Prob$ym5gk ,y05g l%5$qk1dm~dk,l2qk!%ql ,

~21!
3-2
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wherem.0 andQ(m)(k,l ) stands for them-step transitional
probability. It is easy to show that Eq.~21! fits the consis-
tency relation

(
k51

N

Q~m!~k,l !5 (
k51

N

Q~m!~ l ,k!5ql . ~22!

The correlation functionRm is an even function ofm de-
fined as

Rm5R2m5^ymy0&2^ym&2. ~23!

Substitution of Eqs.~19!–~22! into Eq. ~23! produces

Rm5R2m5^ymy0&2^ym&2

5 (
k,l 51

N

gkg l Prob$ym5gk ,y05g l%2^ym&2

5 (
k,l 51

N

gkg l$qk1dm~dk,l2qk!%ql2^ym&2

5 (
k,l 51

N

gkg lqkql1dm (
k,l 51

N

gkg l~dk,l2qk!ql2^ym&2

5^ym&21dumu~^ym
2 &2^ym&2!2^ym&2

5dumu~^ym
2 &2^ym&2!, ~24!

which is an exponential function with correlation length d
fined as

Ncorr5~21!/ ln d. ~25!

Formula~17! can be extended to the finite state contin
ous time Markov chainym(t) as in @25#:

T~ t !5Q1exp~2mt !~ I2Q!. ~26!

The expression for the correlation function can be given
this case as

Ryy~t!5exp~2mt!~^ym
2 &2^ym&2!. ~27!

Before turning to the continuous time infinite state Ma
kov chain~a Markov process with a continuum of states! let
us point out an important property of the exponentially c
related Markov chain. It follows from the definition of th
matricesT andT(t) as in Eqs.~17! and~26! that the transi-
tion probability density does not depend on the current st
If N tends to infinity,N→`, then the Markov continuous
time chain tends to a Markov process, which can be a n
diffusion one. In this case Eq.~26! can be written as

p~xux0 ;t!5exp~2mt!d~x2x0!1@12exp~2mt!#ps~x!.

~28!

Hereps(x) is the stationary distribution of the limit proces
It is important to validate that the expression indeed

fines a proper PDF of the Markov process. Positivity is o
vious, since both summands are positive numbers; thus

p~xux0 ;t!>0. ~29!
06110
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Whent approaches infinity the transitional PDF must cor
spond to the stationary PDF of the process since the va
of the process far away from the observation points are
dependent of this observation:

lim
t→`

p~xux0 ;t!5 lim
t→`

$exp~2lt!d~x2x0!

1@12exp~2lt!#ps~x!%

5ps~x!. ~30!

At the same time the limit of the PDF whent approaches
zero must be the delta functiond(x2x0), since the process
cannot assume two different values at the same mom
Taking the limit of Eq.~28! one finds that this condition is
indeed satisfied:

lim
t→0

p~xux0 ;t!5 lim
t→0

$exp~2lt!d~x2x0!

1@12exp~2lt!#ps~x!%

5d~x2x0!. ~31!

Finally, in order to represent a Markov process, the P
p(xux0 ;t) must obey the Smoluchovski equation@1#

p~xux0 ;t!5E
2`

`

p~xux1 ;t2!p~x1ux0 ;t1!dx1 ~32!

with t5t11t2 . It is easy to check that this is the case f
the PDF given by Eq.~28!. Indeed,

E
2`

`

p~xux1 ;t2!p~x1ux0 ;t1!dx1

5E
2`

`

$exp~2lt2!d~x2x1!1@12exp~2lt2!#ps~x!%

3$exp~2lt1!d~x12x0!

1@12exp~2lt1!#ps~x1!%dx1

5exp@2l~t11t2!#d~x2x0!

1$12exp@2l~t11t2!#%ps~x!

5p~xux0 ;t11t2!. ~33!

Thus, in fact, the PDF~28! defines a Markov process. Th
correlation function of this process is, indeed, exponentia

Bxx~t!5E
2`

` E
2`

`

xx1p~xux1 ;t!ps~x1!dx dx1

5E
2`

` E
2`

`

xx1@exp~2lt!d~x12x!#ps~x1!dx dx1

1E
2`

` E
2`

`

xx1$@12exp~2lt!#ps~x!%

3ps~x1!dx dx1

5exp~2lt!@sx
21mx

2#1@12exp~2lt!#mx
2

3-3
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5sx
2 exp~2lt!1mx

2. ~34!

The next step is to understand if the Markov process
fined by the PDF~28! represents a diffusion Markov proce
or if it is a process with jumps. In order to do this one mu
calculate the following limit, which describe the nondiffu
sion part of any general Markov process@Eq. ~3.4.1! in 1#:

W~xux0 ;t!5 lim
t→0

ux2x0u.«

p~xux0 ;t!

t

5 lim
t→0

ux2x0u.«

@12exp~2lt!#ps~x!

t
5lps~x!.

~35!

The last equation implies that the Markov process defined
the PDF~30! is a process with jumps sinceW(xux0 ;t)Þ0.
However, it is important to note that the probability of jum
W(xux0 ;t) does not depend on the current statex0 . This
property is inherited from the fact that the prelimit Marko
chain$y(t)% has the same property.

It is interesting to determine which SDE generates suc
process. In order to accomplish that one has to calculate
drift K1(x) and the diffusionK2(x) coefficients, which are
defined as@1#

K1~x!1O~«!5 lim
t→0

1

t E
ux2zu,«

~z2x!p~zux;t!dz

5 lim
t→0

1

t E
ux2zu,«

~z2x!$exp~2lt!d~x2z!

1@12exp~2lt!#ps~z!%dz

5 lim
t→0

exp~2lt!

t E
ux2zu,«

~z2x!d~x2z!dz

1 lim
t→0

@12exp~2lt!#

t

3E
ux2zu,«

~z2x!ps~z!dz

501O~«! ~36!

and

K2~x!1O~«!5 lim
t→0

1

t E
ux2zu,«

~z2x!2p~zux;t!dz

5 lim
t→0

1

t E
ux2zu,«

~z2x!2$exp~2lt!d~x2z!

1@12exp~2lt!#ps~z!%dz

5 lim
t→0

exp~2lt!

t E
ux2zu,«

~z2x!2d~x2z!dz
06110
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1 lim
t→0

@12exp~2lt!#

t

3E
ux2zu,«

~z2x!2ps~z!dz

501O~«!. ~37!

The last two equations show that the SDE generating
continuous Markov process with transitional PDF given
Eq. ~28! is

dx

dt
5h~ t !, ~38!

whereh(t) is a stream ofd pulses

h~ t !5l(
tk

Akd~ t2kDt ! ~39!

with amplitudesAk distributed according to the stationar
PDF ps(x) and time between two sequential arrivalsDt. In
order to obtain the continuous time chainDt must approach
zero.

III. EXPONENTIALLY CORRELATED
DIFFUSION PROCESS

In order to make this paper self-explanatory, some ba
equations obtained earlier in@2# are represented here. The
equations allow one to generate an exponentially correla
diffusion Markov random process with an arbitrary probab
ity density function. It is well known that the solution of
SDE ~Ito form @20#!

ẋ5 f ~x!1g~x!j~ t ! ~40!

is a diffusion Markov random process, whose PDFp(x,t)
@and the transition probability density functionp(x,tux0 ,t0)#
obeys the Fokker-Planck equation@20#

2
]

]t
p~x,t !5

]

]x
@K1~x!p~x,t !#2

1

2

]2

]x2 @K2~x!p~x,t !#.

~41!

Herej(t) is a WGN of unit variance, and

K1~x!5 f ~x!, ~42!

K2~x!5g2~x! ~43!

are the drift and diffusion of the Markov processx(t). The
nonstationary PDFp(x,t) of the processx(t) converges to
the stationary PDFps(x) when t approaches infinity, i.e.,

lim
t→`

p~x,t !5ps~x!. ~44!

There is a simple relation betweenK1(x), K2(x), andps(x)
@20#:

ps~x!5
C

K2~x!
expF2E

a

x K1~x!

K2~x!
dxG , ~45!
3-4
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where the constantC is chosen to normalize the PDFps(x).
At the same time, the correlation functionKx(t)

5^x(t)x(t1t)& can be considered as the solution of the f
lowing ordinary differential equation@20#:

d

dt
Kx~t!5^x~ t !K1@x~ t1t!#& ~46!

with the initial condition

Kx~0!5sx
25Š~x2^x&!2

‹5^~x2mx!
2&. ~47!

Here ^•& stands for the statistical average over the reali
tions @20#. If one chooses

K1~x!52a~x2mx!, ~48!

then Eq.~46! has a solution of the form

Kxx~t!5sx
2 exp~2autu!. ~49!

After substituting Eq.~48! into Eq. ~45! and solving for
K2(x) one can obtain that

K2~x!52
2a

px~x!
E

2`

x

~x2mx!ps~x!dx. ~50!

It is proven in@2# thatK2(x)>0 for anyps(x); thus the last
equation is a meaningful one for any stationary PDF. T
drift K1(x) and the diffusionK2(x) now define the SDE

ẋ52a~x2mx!1S 2
2a

ps~x!
E

2`

x

~x2mx!ps~x!dxj~ t ! D 1/2

,

~51!

whose solution has the given stationary PDFps(x) and ex-
ponential correlation function~49!. In turn, the SDE~51! can
be numerically simulated, using a technique suggested
@18#, providing one with a convenient tool for generatin
non-Gaussian exponentially correlated random processe

It is impossible to obtain the exact equation for the tra
sitional probability function, except for a number of cas
considered in@27#. However, for a small transitional timet
an approximate formula can be obtained. Indeed, since
solution of the SDE is a diffusion Markov process, it can
approximated by a Gaussian random process with the s
local drift and local diffusion as in@1#,

p~xux0 ;t!5
1

A2pK2~x!t
expF2

@x2x02K1~x!t#2

2K2~x! G ,
~52!

or, taking Eqs.~50!–~51! into account,

p~xux0 ;t!5
Aps~x!

@4pa„*2`
x ~mx2x!ps~x!dx…t#1/2

3expF2
@x2x01a~x2mx!t#2ps~x!

4a~*2`
x ~mx2x!ps~x!dx!t G .

~53!
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This transitional probability can be used to numerica
simulate the random process using the chain method, as
scribed in Sec. V.

IV. MIXED PROCESS WITH EXPONENTIAL
CORRELATION

Another possibility of a non-Gaussian Markov proce
with exponential correlation was considered in@19#. In this
case, the generating SDE was chosen in the form of a lin
system excited by a train ofd functions, similar to Eq.~39!,

dx

dt
52ax1h~ t !. ~54!

However, it was found in@19# that a relatively small class o
non-Gaussian processes can be represented in this form
shown in this paper that using a slightly different approa
one can widen the class of processes represented. Wit
loss of generality one may consider the case of zero m
since a constant value can easily be added to the zero-m
random process to account for it. In this case the des
amplitude distribution and the intensity ofh(t) can be ad-
justed to obtain the desired properties. In the case of
~52!, the differential Chapman-Kolmogorov equation~7! be-
comes

lE
2`

`

@W~xuz,t !p~zux0 ;t!2W~zux,t !p~xux0 ;t!#dz

52a
]

]x
$@xp~xux0 ;t!#% ~55!

since the diffusion coefficient is zero and the drift is a line
term. Multiplying both parts byps(x0) and integrating over
x0 one can obtain that

lE
2`

`

W~xuz,t !ps~z!dz52a
]

]x
$@xps~x!#%1lps~x!

5~l2a!ps~x!2ax
]

]x
ps~x!

~56!

since

E
2`

`

p~xux0 ;t!ps~x0!dx05ps~x! ~57!

and, according to Eq.~5!,

E
2`

`

W~zux,t !p~xux0 ;t!dz5p~xux0 ;t!. ~58!

Since bothW(xuz) andps(x) are non-negative functions,

E
2`

`

W~xuz,t !ps~z!dz5S 12
a

l D ps~x!2
a

l
x

]

]x
ps~x!>0.

~59!
3-5
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This gives us the weakest test of what kind of distributio
can be implemented using this technique. It also give
lower bound on the intensity of the jumpsl needed for a
stationary distribution to exist~recall that the constanta is
defined by the required correlation intervaltcorr51/a and
cannot be chosen arbitrarily@2,19#!:

x
~]/]x!ps~x!

ps~x!
<

l

a
21. ~60!

Let us assume in the following that the condition~60! is
indeed satisfied. Detailed investigation of this matter is
subject of an upcoming publication.

Since one has to choose an unknown functionW(xuz) of
two variables having just one equation~59!, it is possible that
this choice is not unique. Indeed, two possibilities are c
sidered below. Following the idea of Sec. II one can assu
that the jump probability does not depend on the curr
state, i.e.,W(xuz)5W(x). As an alternative, a more com
mon kernel depending on the difference between the cur
and future states can be chosen, i.e.,W(xuz)5W(x2z).
Both cases are investigated here.

A. PDF W„xzz… does not depend on the current state

In this case

W~xuz!5W~x! ~61!

and Eq.~56! becomes

lE
2`

`

W~xuz!ps~z!dz

5lW~x!E
2`

`

ps~z!dz

5lW~x!

5~l2a!ps~x!2ax
]

]x
ps~x! ~62!

and has the unique solution

W~x!5S 12
a

l D ps~x!2
a

l
x

]

]x
ps~x!. ~63!

Since it was assumed that Eq.~60! is satisfied, the function
W(x) is a positive function. The only additional conditio
would be its normalization to 1, i.e.,

E
2`

`

W~x!dx5E
2`

` F S 12
a

l D ps~x!2
a

l
x

]

]x
ps~x!Gdx

5S 12
a

l D2
a

l E
2`

`

x
]

]x
ps~x!dx

51, ~64!

or, equivalently,
06110
s
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E
2`

`

x
]

]x
ps~x!dx521. ~65!

Using integration by parts, the last integral can be tra
formed to

E
2`

`

x
]

]x
ps~x!dx5E

2`

`

x dps~x!

5xps~x!ua
b2E

2`

`

ps~x!dx

5xps~x!ua
b21. ~66!

Here a and b.a are the boundaries of the interval@a,b#,
whereps(x) differs from zero. Both of them can be infinite
Comparing Eq.~66! to Eq. ~65! one can conclude that th
function W(x) represents a proper PDF if

xps~x!ua
b50. ~67!

This condition is satisfied automatically if both boundari
are infinite, sinceps(x) is integrable. If at least one of th
boundaries is finite then Eq.~67! constitutes yet another re
striction on the class of PDF that can be achieved.

B. PROBABILITY DEPENDING ON THE DIFFERENCE
BETWEEN THE CURRENT AND FUTURE STATES

This case was originally considered in@19#. Equation~56!
becomes an integral equation of convolution type,

E
2`

`

W~x2z!ps~z!dz5S 12
a

l D ps~x!2
a

l
x

]

]x
ps~x!,

~68!

and can be solved using the Fourier transform techniq
Indeed, letQw( j v) andQx( j v) be characteristic functions
corresponding to the PDF’sW(x) andps(x), respectively,

Qw~ j v!5E
2`

`

W~x!exp~ j vx!dx, ~69!

Qx~ j v!5E
2`

`

ps~x!exp~ j vx!dx. ~70!

Taking the Fourier transform of Eq.~68! and recalling the
convolution theorem one can obtain

Qw~ j v!Qx~ j v!5Qx~ j v!1
a

l
v

d

dv
Qx~ j v! ~71!

and thus

Qw~ j v!511
a

l
v

~d/dv!Qx~ j v!

Qx~ j v!
. ~72!

Since the characteristic function of a proper distribution m
obey certain conditions@26#, not all PDF’s of the solution
x(t) can be achieved.
3-6
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V. EXAMPLES

The random processes considered above can be obta
either through generation of the corresponding Markov ch
or by direct simulation of the generating SDE. In the fi
case one obtains an appropriate transition probability ma
T5@Tk,l # first. Equations~13! and ~16! give the appropriate
transitional matrix for the exponentially correlated Mark
chain with zero drift and diffusion. In order to obtain a di
fusion process one can approximate the expression fo
transitional PDF as given by Eq.~53!. The sequence corre
sponding to the transition matrixT can be generated by th
recurrence equation@25#

ym5F~ym21 ,zm!, m50,61,62, . . . , ~73!

wherezm is an independent random number uniformly d
tributed over the interval@0,1#, andF(ym21 ,zm) is a discon-
tinuous function ofzm defined as

F~g l ,z!55
g1 , 0,z<T1,l

g2 , T1,l,z<T1,l1T2,l

g3 , T1,l1T2,l,z<T1,l1T2,l1T3,l

¯ , ¯

gN , 12TN,l,z<1.

~74!

Solving Eq.~73! numerically, we obtain a sample of a Ma
kov chain with exponential correlation and given probab
ties of the states.

Numerical simulation of the process defined by the S
~54! can be performed directly using the fact that the exter
force is a sequence ofd functions, and thus the solution is
sum of the delayed and scaled exponential pulses with de
ratea. Local linearization of the SDE with WGN excitatio
is used to numerically simulate the solution of Eq.~51!. De-
tails of this method can be found in@18#. In all examples we
assume that the correlation function has the exponential f

Kx~t!5s2 exp@2autu# ~75!

or, in the case of discrete time simulations with time stepDt,

Rm5s2 dm, d5exp~2aDt !. ~76!

A. Gaussian marginal PDF

In this case the stationary PDF is defined by

ps~x!5
1

A2ps2
expS 2

x2

2s2D . ~77!

The quantization levelsg i , 1< i<N11, can be obtained
using the entropy method, considered in detail in@28#. The
corresponding probabilitiesqi can be calculated using th
error function@29#. Let us note that, despite the fact that t
marginal PDF of this Markov process is a Gaussian one
the correlation function is exponential, the process itsel
not Gaussian, i.e., the second order joint probability den
is not Gaussian.
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In contrast, the diffusion process with the same distrib
tion and correlation function is Gaussian@30#. The corre-
sponding SDE of the form~51! is linear:

ẋ52ax12s2j~ t ! ~78!

with transitional PDF equal to

p~xux0 ;t!5
1

A2ps2

1

A12exp~2at!

3expS 2
x22exp~2at!xx0

2s2@12exp~22at!# D . ~79!

Condition ~60! becomes

2
x2

s2 <
l

a
21 ~80!

and is satisfied oncel>a. The corresponding density~63!
of jumps then becomes

W~x!5S 12
a

l D ps~x!2
a

l
x

]

]x
ps~x!

5
12a/l1ax2/ls2

A2ps2
expS 2

x2

2s2D , l.a.

~81!

It was shown in@19# that it is impossible to obtain a
Gaussian process using a SDE of this form. Indeed, in o
to achieve a Gaussian process by linear transformation
requires the input to be Gaussian also. However, a Pois
process is not a Gaussian, unless its intensity is infinite.

B. Pearson class of PDF’s

In this case the stationary PDFps(x) obeys the equation

~d/dx!ps~x!

ps~x!
5

A11x1A0

B2x21B1x1B0
. ~82!

It was shown in@2,21# that the following SDE~Ito form!
allows one to generate all possible Pearson processes
exponential correlation function of this type:

dx

dt
5

l

2
~A1x1A0!1Al~B2x21B1x1B0!j~ t !. ~83!

In all cases the transition probability density can be e
pressed in terms of classical orthogonal polynomials@29# or
in closed integral form as found in@27#. A few examples are
given in Table I.

In order to obtain a convenient expression for the Pear
class of distributions let us rewrite Eq.~63! as
3-7
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TABLE I. Parameters of the continuous Markov process with exponential correlation.

ps(x)
d

dx
ln ps~x! p(x,x0 ;t)

exp(2x) 21 1

2Apt
expF2 x2x0

2
2

t

4GHexpF2 ~x2x0!
2

4t G
1expF2 ~x1x0!

2

4t GJ1 1

Ap
e2xE

~x1x02t!/2At

`

e2z2
dz

xb exp~2x!

G~b11!

b2x

x

1

12e2t S x

x0 exp~2t!D
b/2

3expF2 x1x0e
2t

12e2t GIbS2e2t/2Axx0

12e2t D
G~b1g12!

G~b11!G~g11!

3
~11x!b~12x!g

2a1g11

~b2g!2~b2g!x

12x2
~11x!b~12x!g

2a1g11 (
n50

`

e2n~n1g1b11!

3AnPn
b,g(x0)Pn

b,g(x),

An5
~2n1a1g11!G~n1a1g11!

G~n1a11!G~n1g11!n!
e

o

ts
to
W~x!5S 12
a

l D ps~x!2
a

l
x

]

]x
ps~x!

5F S 12
a

l D2
a

l
x

~]/]x!ps~x!

ps~x! Gps~x!

5F S 12
a

l D2
a

l

A1x21A0x

B2x21B1x1B0
Gps~x!, l.a.

~84!

Table II contains the some of the examples given in Tabl

C. Other PDFs

As an example of a non-Pearson distribution one can c
sider so called Khinchin probability density
06110
I.

n-

ps~x!5
12cosx

px2 . ~85!

This distribution is interesting since none of its momen
exists. Indeed, the characteristic function corresponding
this distribution is

Q~v!5H 0, uvu<1

12uvu, uvu,1
~86!

and is not differentiable atv50. The last statement is
equivalent to the fact that the PDF~85! does not have mo-
ments that converge. Nevertheless, it was shown in@19# that
this distribution can be obtained if
TABLE II. Parameters of Markov process with exponential correlation and jumps.

ps(x)
d

dx
ln ps~x! W(x)

exp(2x) 21 FS12
a

lD1 a

l
xGexp~2x!

xb exp~2x!

G~b11!

b2x

x FS12
a

lD2 a

l
~b2x!G xb exp~2x!

G~b11!
G~b1g12!

G~b11!G~g11!

3
~11x!b~12x!g

2a1g11

~b2g!2~b1g!x

12x2 FS12
a

lD2 a

l

~b2g!x2~b1g!x2

12x2 G
3

G~b1g12!

G~b11!G~g11!

~11x!b~12x!g

2a1g11
3-8
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W~xuy!5
1

p exp~2g! Fa2gAg21CgS x2y

a D1
n exp~g!2n cos@~x2y!/a#1~x2y!sin@x2y/a#

n21~x2y!2 G , ~87!

where

Cg~w!5E
w

` cos~z!

z2g dz ~88!

and

g5
a

l
. ~89!

VI. CONCLUSIONS

In this paper we have considered three different methods of generating non-Gaussian processes with a given mar
ps(x) and exponential correlation function. The difference between the three types of process lies in the proportion
diffusion, drift, and jumpiness of these processes. At the same time we have shown that all three types of proces
considered in the same framework of Markov processes generated by a stochastic differential equation. The results o
this paper can be used in a wide area of applications such as communication systems modeling~fading, error flows!, biomedi-
cal applications~neuron activities!, stochastic control, etc.
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