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We consider three different methods of generating non-Gaussian Markov processes with given probability
density functions and exponential correlation functions. All models are based on stochastic differential equa-
tions. A number of analytically treatable examples are considered. The results obtained can be used in different
areas such as telecommunications and neurobiology.
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[. INTRODUCTION erate continuous non-Gaussian processes with more compli-
cated correlation structure. Other possible applications can

Modeling of signals and interference in the fields of com-be found in the literature and include radar9], biology
munications, radar, sonar, and speech processing is usual}0], statistical electromagneti¢41], etc. However, there is
based on the assumptions that the processes may be conditfle work reported on generation of processes that are
ered as stationaryor at least locally stationayyand that Mixed, i.e., have a continuousionzero driff and a jump
experimental estimations of their simplest statistical characPart. Such processes can be used as models for bursty inter-
teristics the autocovariance functigdCF) and marginal et traffic, Middleton clas® noise, intersymbol interference
probability density functio(PDP), are available. While the ¢ombined with additive noisgl 2], speectj13], and stochas-
generation of stationary random processegjuenceswith a  tic ratchetg14,15. In this paper we provide a unifying ap-
specified PDF or ACF does not present any major difficulty,Proach for modeling non-Gaussian Markov random process
the solution of the joint problem requires much more effort. With exponential correlation functions. _
This was considered ifi.] where some sequential combina- [N the general case a nonlinear system can be driven by a
tions of linear filtering and zero-memory nonlinear transfor-Mixture of white Gaussian noiggt) and a Poisson flow of
mations of white Gaussian noi$@/GN) were used. A dif- Pulsesn(t),
ferent approach is based on treatment of a process with the dx
prescribed characteristics as a stationary solution of the ap- — =)+ g(x) &)+ n(t). (1)
propriate system of stochastic differential equati®BE’s) dt
with the WGN on the right-hand side,3]. Such an inter- o ) )
pretation seems attractive as it takes advantage of MarkoUhe Statistical properties of the solutiort) can be com-
processes theory and appears to be efficient in the modelirffétely described by its transitional probability density
of correlated non-Gaussian processes. 7(X,t;Xg,to), Whlch must obey the differential Chapman-

Markov chains with exponential correlation function are Kolmogorov equatiori16]
effective models for video conference traffic, as used, for

example, in[4,5]. While it is mentioned there that any dis- —m(X|Xg;7)=— i[Kl(X)ﬂ-(x;xo,to)]

crete distribution can be represented, and the continuous time at 2

limit of the Markov chain is considered, the continuum limit 1 g2

was not considered. In particular, as we will show in this + 5 =5 [Ka(X) 7(X,t; X0, t0) ]

paper, it was not clarified whether the Markov chain is ap- 2 X

proaching a continuous Markov process or rather one with o

jumps. It will be shown here that this limit is a process with +)\f [W(x|z,t)m(z,t;Xq,t0)

zero drift and jumps and is thus a good model for impulsive -

noise [6]. Continuous exponentially correlated processes —W(z|x,t)7(2,t;X0,t0)]dZ, )

were extensively studied ifil] and have been used to gen-

where the driftK,(x), diffusion K,(x), and probability of

jumpsW(x|z,t) can be obtained from the corresponding pa-
*Electronic address: primak@engga.uwo.ca rameters of Eq(1) as
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K,(x)=g%(x), (4) defined only the stationary probabilities of the states. For the
case where the correlation function is exponential the solu-
lim 7 (z,t;Xg,to) =AW(X|Z,1), (5)  tion was obtained ifi25]. We follow this procedure here to
=10 obtain the chain approximation with infinite number of states
o as the limit of a finite state Markov chain.
f W(x|z,t)dx=1. (6) To achieve the first goal, we define the following matrix

Q in terms of the probabilities of the states:

(in the Ito form of stochastic integralsin the stationary

case, if it exists, Eq(2) becomes g1 91 ' q
)\f_ [W(X|z,t)m(z|Xq; ) —W(z|X,t) m(X|Xq; 7)]dZ Q= q2 q2 q2 ) (13)
J 9 gy 9n " 4N
=5[K1(X)7T(X|Xo;7)]—zm[Kz(X)W(XVO:T)]- . ~ %
N times
(7

It is easy to check that

Different particular cases of the SDE) have been consid- Q2=0Q, (14)
ered in a number of publicationg,3,17—24. The main goal

here is to show how different Markov processes with theand[25]
same non-Gaussian probability density and exponential cor- T4y s AN—1
relation function can be obtained. A method of numerical defQ-AM]=(1=M)(=1)""" (15
simulation of such processes is also considered and some |, terms of the matrixQ, the transition matrixt can be

examples are given. defined ag25]

Il. EXPONENTIALLY CORRELATED MARKOV CHAIN T=Q+d(1-Q), (16)

In this section we consider the discrete time scheme thavhere Osd<1 will define the correlation propertie@le-
generates a non-Gaussian Markov chain with an exponentigcribed belowandl is the identity matrix. At the same time
correlation function and a given arbitrary PDF. Following T satisfies the conditiofil2).

[25], let us assume that the stationary distribution of the Mar- For any integem one can obtain the following expression

kov chainy, with N states from Eqgs.(16) and (14):

Y1<7Y2< " <1Yn (8) T"=Q+d™(1-Q). (17
is described by the following probabilities of an individual Sinced is a positive number less than 1, one has
state: lim T"=0, 19

k= Proly,= v} 9 m—ee

Any Markov chain can be completely described by its tran-Which means that the Markov chain described by Bd)
sitional probability matrixT =[T, ;] where becomes ergodif26] and has a stationary probability given
' by Q-
T =Proym=vdym-1=7} kl=12,...N. The next step is to consider the correlation funcfinof
(100 the Markov chairy,,. The average value and the average of
the squared value can be obtained in terms of the stationary

which is the probability of the eveny,,=y, wheny,_4 probability q, as
k

=, and satisfies the conditions

N
N
Ta=0, > T=1, k=12,...N. (11 (Ym =2, 7 (19
k=1
N
It is well known that the stationary probabilitieg are ob- <Yﬁq)=2 Yeqk, (20)
=1

tained as the eigenvectors of the transition probability matrix

T corresponding to the eigenvalde=1: . . .
P g 9 To calculate the correlation function, one has to consider

N the two-dimensional probability, which may be obtained
;1 Teigdi=0qk, k=12,...N. (12 from Eq.(17) as
_ _ _ - QM(k,1)=Probym=yx.Yo= m}={ak+d™( S — A},
The same matrix defines the power spectrum in the station-
ary case. However, we consider the inverse problem, having (22
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wherem>0 andQ(™(k,|) stands for then-step transitional
probability. It is easy to show that EqR1) fits the consis-
tency relation

N N

> QM(k,h= 2> QM(I,k)=q.

k=1 k=1

(22)

The correlation functiorR,, is an even function ofm de-
fined as

Rn= R—m:<ymy0>_<ym>2- (23
Substitution of Eqs(19)—(22) into Eq. (23) produces

Rn=R_n= <ymy0> _<ym>2

N
= kél Y Proym= v.Yo= %} — <Ym>2

) Yy d™ (S — a) = (Ym)?

N

N
=> 7k7|QkCI|+dmkél YN (S = ) —(Ym)?

kl=1
:<ym>2+ d'""(()/ﬁ])— <Ym>2) - <ym>2
=d"((ya) —(ym?),

which is an exponential function with correlation length de-
fined as

(29)

Neor=(—1)/Ind. (25)

Formula(17) can be extended to the finite state continu-
ous time Markov chairy,(t) as in[25]:

T()=Q+exp(—ut)(1-Q). (26)

The expression for the correlation function can be given in

this case as
Ryy(7)=exp(— u7)((Ya) = (Ym)?)- 27)

Before turning to the continuous time infinite state Mar-
kov chain(a Markov process with a continuum of stgtést

us point out an important property of the exponentially cor-

related Markov chain. It follows from the definition of the
matricesT andT(t) as in Egs(17) and(26) that the transi-
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When 7 approaches infinity the transitional PDF must corre-
spond to the stationary PDF of the process since the values
of the process far away from the observation points are in-
dependent of this observation:

lim 7(X|Xq;7) = lim {exp( =\ 7) 8(X—Xq)

+[1-exp(—A7)]ps(X)}
=ps(X).

T— 0

(30

At the same time the limit of the PDF whenapproaches
zero must be the delta functiaf(x—X;), since the process
cannot assume two different values at the same moment.
Taking the limit of Eq.(28) one finds that this condition is
indeed satisfied:

lim 7m(X|Xq; 7) = lim {exp(— X\ 7) 8(X—Xg)

7—0 —0
+[1-exp(=A7)]ps(X)}
= 5(X—Xp). (31

Finally, in order to represent a Markov process, the PDF
m(X|Xg;7) must obey the Smoluchovski equatigil

mxxgin)= | wxi Ol mdy (@

with 7=7,+ 7,. It is easy to check that this is the case for
the PDF given by Eq(28). Indeed,

I

= fl{exp(—mz)é(x—xl)+[1—exp(—>wz)]ps(x)}

m(X|X1;72) T(Xq|Xg; T1)dXg

X{exp(—\71) 8(X1—Xp)

+[1—exp—N71)]ps(X1)dxg
=exd — A(7yt+ 72)]6(X—Xp)

Hi-exd =71+ 1) ]1ps(X)
=7(X|Xo; 71+ 72). (33

Thus, in fact, the PDR28) defines a Markov process. The

tion probability density does not depend on the current statesorrelation function of this process is, indeed, exponential:

If N tends to infinity, N—, then the Markov continuous

time chain tends to a Markov process, which can be a non- BT

diffusion one. In this case E@26) can be written as
(X[ Xo; 7) =X — u7) 8(X—Xo) + [ 1—exp( — u7) Ips(X).
(28)

Herepg(x) is the stationary distribution of the limit process.

It is important to validate that the expression indeed de-

)=f_mJ_wxxlw(x|x1;r)ps(xl)dxdxl
= j_:J_:xxl[eXF(—)\T)ﬁ(xl—x)]ps(xl)dx dx,

+ f: J:xxl{[l— exp(— A7) ]ps(X)}

fines a proper PDF of the Markov process. Positivity is ob-

vious, since both summands are positive numbers; thus

m(X|Xq; 7)=0. (29

X ps(Xq)dx dxg

=exp—A7)[o2+mi]+[1—exp — A7) ]m?
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=o2exp(—\7)+m2. (34)

The next step is to understand if the Markov process de-
fined by the PDR28) represents a diffusion Markov process
or if it is a process with jumps. In order to do this one must
calculate the following limit, which describe the nondiffu-

sion part of any general Markov procd$¥. (3.4.0 in 1]:

. m(X|Xo; 7)
W(X|Xg;7)= lim ———
7—0
[x=xXo|>&

T

[1—exp(—A7)]ps(X)

T

= lim
7—0
[x—xg|>e

=Aps(X).

(39

The last equation implies that the Markov process defined by
the PDF(30) is a process with jumps sind&(x|xq;7) #0.
However, it is important to note that the probability of jumps
W(x|xq;7) does not depend on the current state This
property is inherited from the fact that the prelimit Markov

chain{y(t)} has the same property.

PHYSICAL REVIEW E63 061103

[1—exp—\7)]
A

+ lim

—0

)2
XJ|x—z|<e(Z X)“ps(z)dz

=0+0(e). (37)

The last two equations show that the SDE generating the
continuous Markov process with transitional PDF given by
Eq. (28) is

ax_ t 38
gt =7, (38)
where n(t) is a stream of5 pulses
(=N, AS(t—KkAt) (39)
ty

with amplitudesA, distributed according to the stationary

PDF pg(x) and time between two sequential arrivals. In

order to obtain the continuous time chaith must approach
ero.

It is interesting to determine which SDE generates such a

process. In order to accomplish that one has to calculate the
drift K;(x) and the diffusionK,(x) coefficients, which are

defined ag1]

Ky (X)+O(g)= I|mE (z—x)m(z|x;7)dz

70T Jx=zl<e
o1

=lim— (z—x){exp(—\7)8(x—2)
70T Jx=zl<e

+[1-exp(—\7)]ps(2)}dz

o exp(—A\7)
=lim—— (z—x)8(x—2z)dz
70 T Ix—z|<e
l—exp—\
4 lim LT SREAD]
7—0 T

X fxzka(z—x)ps(z)dz

=0+0(e) (36)

and

1
Kz(x)+O(s)=Iim;J . (z—x)?m(z|x;7)dz

7—0
1
= lim— (z—x)?{exp(—\7) 8(x—2)
0T Jx—7<e
+[1—exp(—A7)]ps(z)}dz
=IimM (z—X)28(x—2z)dz
7—0 T [x—z|<e

IIl. EXPONENTIALLY CORRELATED
DIFFUSION PROCESS

In order to make this paper self-explanatory, some basic
equations obtained earlier 2] are represented here. These
equations allow one to generate an exponentially correlated
diffusion Markov random process with an arbitrary probabil-
ity density function. It is well known that the solution of a
SDE (Ito form [20])

x=1(x)+g(x)&(1) (40)

is a diffusion Markov random process, whose PPf,t)
[and the transition probability density functiar(x,t|xg,to)]
obeys the Fokker-Planck equatifi20]

= L )= KA (RIPOODT 5y [KA0POXD]
(41)
Here &(t) is a WGN of unit variance, and
K1(x)=1(x), (42)
Ka(x)=g?(x) (43

are the drift and diffusion of the Markov proces&). The
nonstationary PDRp(x,t) of the proces(t) converges to
the stationary PDRp¢(X) whent approaches infinity, i.e.,

lim p(x,t)=pg(X). (44)

—

There is a simple relation betwe&n (x), K,(x), andpg(x)

[20]:
_C xK1(x)
Ps(x)= K2(X) ex;{ZJ'a Ka(X) dx

: (45
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where the constar@ is chosen to normalize the POF(x). This transitional probability can be used to numerically
At the same time, the correlation functioK,(r) simulate the random process using the chain method, as de-
=(x(t)x(t+ 7)) can be considered as the solution of the fol-scribed in Sec. V.
lowing ordinary differential equatiof20]:
IV. MIXED PROCESS WITH EXPONENTIAL

d
EKX(T):<X(t)K1[X(t+ 7]) (46) CORRELATION
Another possibility of a non-Gaussian Markov process
with the initial condition with exponential correlation was considered[9]. In this
e o 2 case, the generating SDE was chosen in the form of a linear
Kx(0)= o ={(x=(x)))=((x=m,)%). (47 system excited by a train of functions, similar to Eq(39),
Here (-) stands for the statistical average over the realiza- dx
tions[20]. If one chooses g Xt ). (54)
Ki(X)=—a(x—my), (48) : , .
However, it was found if19] that a relatively small class of
then Eq.(46) has a solution of the form non-Gaussian processes can be represented in this form. It is
) shown in this paper that using a slightly different approach
Kx(T) = a5 expl—a| 7]). (490 one can widen the class of processes represented. Without

o _ _ loss of generality one may consider the case of zero mean
After substituting Eq(48) into Eq. (45) and solving for  since a constant value can easily be added to the zero-mean

K,(x) one can obtain that random process to account for it. In this case the desired
o [ gmplitude distribution anq the intens.ity of(t) can be ad-
Ky(X)=— f (X—m,) pe(X)dX. (50) Justed to obtain the desired properties. In the case of Eq.
Px(X) J e (52), the differential Chapman-Kolmogorov equatitf) be-
comes

It is proven in[2] thatK,(x)=0 for anypg(x); thus the last

equation is a meaningful one for any stationary PDF. The f‘” CN .
drift K,(x) and the diffusiork ,(x) now define the SDE M) WKz D m(z]xo; 1) = WIZ X, O 7(X|xo; 7) Jd2

2a X 1/2 J
X=—a(X—my)+ —mj_w(x—mx)ps(X)dXﬁt)) : :_aﬁ_x{[XW(X|XO;T)]} (55)

(51)

since the diffusion coefficient is zero and the drift is a linear
whose solution has the given stationary PPfx) and ex-  term. Multiplying both parts by(x,) and integrating over
ponential correlation functio9). In turn, the SDE51) can  x, one can obtain that
be numerically simulated, using a technique suggested in
[18], providing one with a convenient tool for generating * d
non-Gaussian exponentially correlated random processes. )\fiocW(x|z,t)ps(z)dz= B a&{[XDS(X)]}H\pS(X)

It is impossible to obtain the exact equation for the tran-

sitional probability function, except for a number of cases d
considered if27]. However, for a small transitional time =(A=a)ps(X) —ax—=ps(X)
an approximate formula can be obtained. Indeed, since the

solution of the SDE is a diffusion Markov process, it can be (56)
approximated by a Gaussian random process with the same
local drift and local diffusion as ifl], since
P o] - LR 07 | miximpaiix=p0 7
27Ky (X) T 2K2(x)
(52 and, according to Eq5),
or, taking Eqs(50)—(51) into account, J'oo | | | (
W(z|X,t) m(X|Xq; 7)dz=7(X|Xg; 7). 58)
m(X|Xg; )= Ps(x) h
0.7)= X — 172
[4ma(f=.(m—xX)ps(x)dx)7] Since bothW(x|z) andp4(x) are non-negative functions,
_ _ 2
coxg Dot @l m) 700 . (. a W s
40‘(f—oo(mx_x)ps(x)dx)7 B W(XlZ,t)pS(Z)dZ— 1- x Ps(X) — XX&DS(X)BO.
(53 (59
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This gives us the weakest test of what kind of distributions
can be implemented using this technique. It also gives a
lower bound on the intensity of the jumpsneeded for a
stationary distribution to exidfrecall that the constant is

defined by the required correlation interval,,= 1/a and

cannot be chosen arbitrari[2,19)):

J'w ’ x)d 65
X Pdx= 1. (69

Using integration by parts, the last integral can be trans-
formed to

@0ps00 X I

J
X& ps(X)dx= f
ps(x) a

60) x dps(x)

Let us assume in the following that the conditié80) is =xps(x)|3- ﬁwps(x)dx
indeed satisfied. Detailed investigation of this matter is the
subject of an upcoming publication.

Since one has to choose an unknown functiéfx|z) of
two variables having just one equati®®), it is possible that Here a and b>a are the boundaries of the interviad,b],
this choice is not unique. Indeed, two possibilities are conwherepg(x) differs from zero. Both of them can be infinite.
sidered below. Following the idea of Sec. Il one can assum€omparing Eq.66) to Eq. (65 one can conclude that the
that the jump probability does not depend on the currenfunction W(x) represents a proper PDF if
state, i.e.,W(x|z)=W(x). As an alternative, a more com-
mon kernel depending on the difference between the current

=xps(x)|5—1. (66)

xps(x)|2= (67)

and future states can be chosen, iW(x|z)=W(x—2).
Both cases are investigated here.

A. PDF W(x|z) does not depend on the current state
In this case

W(x|2) = W(x) (61)

and Eq.(56) becomes

)\fw W(x|z)ps(z)dz

=)\W(x)fm ps(z)dz
=AWI(X)
=(A—a)ps(x)—ax—

Ds(X) (62

and has the unique solution
(63)

W<x>=(1—%)ps<x> P,

Since it was assumed that E@O) is satisfied, the function

W(x) is a positive function. The only additional condition

would be its normalization to 1, i.e.,

j:W(x)dx= J’:

) Ps(X)— ps(x)

)\&X

J
X X ps(x)dx
(64)

or, equivalently,

This condition is satisfied automatically if both boundaries
are infinite, sincepg(x) is integrable. If at least one of the
boundaries is finite then E467) constitutes yet another re-
striction on the class of PDF that can be achieved.

B. PROBABILITY DEPENDING ON THE DIFFERENCE
BETWEEN THE CURRENT AND FUTURE STATES

This case was originally considered[it9]. Equation(56)
becomes an integral equation of convolution type,

J
5 pg(X),
(68)

| wo2pg2dz- 1- %) ps(x)— 5 x

and can be solved using the Fourier transform technique.
Indeed, let®,(jw) and ©,(j w) be characteristic functions,
corresponding to the PDFW/(x) andpg(x), respectively,

0,(jo)= f:W(x)exp(j wX)dx (69

o= peiondx (70

Taking the Fourier transform of E¢68) and recalling the
convolution theorem one can obtain

Ou(jw)Oy(jw)=06 Ox(jw)  (71)
and thus
L (dde)0yje)
@W(Jw)—l'f'xww (72)

Since the characteristic function of a proper distribution must
obey certain condition§26], not all PDF's of the solution
X(t) can be achieved.
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V. EXAMPLES In contrast, the diffusion process with the same distribu-

The random brocesses considered above can be obtainti n and correlation function is Gaussi§B0]. The corre-
P .ggonding SDE of the forn@s1) is linear:

either through generation of the corresponding Markov chain
or by direct simulation of the generating SDE. In the first o 5
case one obtains an appropriate transition probability matrix X=—ax+2074(1) (78
T=[Ty,] first. Equationg13) and(16) give the appropriate -

transitional matrix for the exponentially correlated Markov With transitional PDF equal to

chain with zero drift and diffusion. In order to obtain a dif-

fusion process one can approximate the expression for its 1 1
transitional PDF as given by E@53). The sequence corre- m(X|Xo; 7) = >
sponding to the transition matrik can be generated by the V2mo? 1-exp(—a7)
recurrence equatiof25] X2— exXp( — aT)XXo
><exp( - . (79
Ym=F(Ym-1.{m), M=0,+1,+2 .. ., (73 20 1-exp(—2arT)]
where {,, is an independent random number uniformly dis-  Condition (60) becomes
tributed over the intervdlo,1], andF(y,,—1,{m) is a discon-
tinuous function of¢,,, defined as X2\

y1, O0<{=Ty

, o T <IsTy+T ) L ) )
72 wsEsTut Tz and is satisfied onck=«. The corresponding densit$3)
F(y,00=4 Y3 TutTo<{<sTy+Ty+Ts (74 of jumps then becomes
7 o

. 1-Ty <I<1. (12 a9
N NI<{ W(X) (1 A)ps(x) X o Ps(X)

Solving Eq.(73) numerically, we obtain a sample of a Mar-

kov chain with exponential correlation and given probabili-

ties of the states. 270
Numerical simulation of the process defined by the SDE

(54) can be performed directly using the fact that the external

force is a sequence dffunctions, and thus the solution is a

sum of the delayed and scaled exponential pulses with decay It was shown in[19] that it is impossible to obtain a

rate . Local linearization of the SDE with WGN excitation Gaussian process using a SDE of this form. Indeed, in order

is used to numerically simulate the solution of Egl). De-  to achieve a Gaussian process by linear transformation one

tails of this method can be found [a8]. In all examples we requires the input to be Gaussian also. However, a Poisson

assume that the correlation function has the exponential forrarocess is not a Gaussian, unless its intensity is infinite.

1— a/\+ ax?INd? ;{ X
= exp —
20

2
—2), A>a.

(81)

Ku(7)=0?exq — 7

()= exd —af7]] 79 B. Pearson class of PDF’s

or, in the case of discrete time simulations with time siep In this case the stationary POfz(x) obeys the equation
Ry,=02d™, d=exp —aAt). (76) (dldx)ps(x)  AptXx+Ag

ps(X) B 82X2+ le+ BO ' (82)

A. Gaussian marginal PDF
It was shown in[2,21] that the following SDE(Ito form)

allows one to generate all possible Pearson processes with
X2 exponential correlation function of this type:
EXF< - F) . (77)

In this case the stationary PDF is defined by

(0=
X)=

Ps 2mwa? dx X\
Gt = 2 (Ax+Ag) + IN(BX*+ Bix+Bo)£(1). (83

The quantization levelg;, 1<i<N+1, can be obtained
using the entropy method, considered in detai[28]. The
corresponding probabilitieg; can be calculated using the In all cases the transition probability density can be ex-
error function[29]. Let us note that, despite the fact that the pressed in terms of classical orthogonal polynomia® or
marginal PDF of this Markov process is a Gaussian one anih closed integral form as found [27]. A few examples are
the correlation function is exponential, the process itself igjiven in Table .

not Gaussian, i.e., the second order joint probability density In order to obtain a convenient expression for the Pearson
is not Gaussian. class of distributions let us rewrite E(3) as

061103-7



S. PRIMAK, V. LYANDRES, AND V. KONTOROVICH

PHYSICAL REVIEW E63 061103

TABLE |. Parameters of the continuous Markov process with exponential correlation.

d
ps(X) SN P (X, Xo;7)
exp(=x) -1 1 X=X T (X—Xo)?
PN B | s
X+Xo)? 1 >
p{——( a +—e‘xf e ? dz
ar \/; (X+Xo—7)/2{7
xP exp(—x) B—X 1 X B2
I'g+1) X 1-e "\xpexp(—7)
F{ X+Xoe " (Zeﬂz\/xx())
XEX - — B —r
1-e 1-e
I(g+y+2) (B— 7)—(,423— Y)X (1+x)3(1—x)72 ot v B+
F(B+1)F(7+1) 1-—x 2a+'y+1 —
1+x)P(1—x)7
S i X APE (X0 PE(X),
2 _(@ntaty+t DI (n+aty+1)
T T(nta+L)T(n+y+D)n!

a a Jd
W(X):(l_ x ps(x)_ XX&pS(X)

1__
N pa0)

N

a\  a (dlax)ps(x)
= ( ) ——— | Ps(X)

_I[4 a  AXP+AX
- N/ N\ Byx2+B;x+By

(84) O(w)=

pPs(X), A>a.

1—-cosx

Ps(X) = 2

mX

(89

This distribution is interesting since none of its moments
exists. Indeed, the characteristic function corresponding to

this distribution is

0, |w|=1
1-|o|, |w|<1

Table Il contains the some of the examples given in Table I.

and is not differentiable ato=0. The last statement is
equivalent to the fact that the POB5) does not have mo-
As an example of a non-Pearson distribution one can conments that converge. Nevertheless, it was showri @ that

C. Other PDFs

sider so called Khinchin probability density

this distribution can be obtained if

TABLE Il. Parameters of Markov process with exponential correlation and jumps.

d
ps(x) &ln ps(x) W(X)

exp) -1 [(1— %)-f- %x}exq—x)
X exp(—x) B—X a\ «a X exp(—x)

T(B+1) e (1_ X)_ NG YY)

L(B+y+2) (B—Y)—(B+¥)x ( - g)_ a (B=Yx=(B+ ¥
L(B+DI(y+1) 1-x° VDY 1-x2

(1+x)#(1—x)” [(B+vy+2) (1+x)P1—x)”
2ot FB+DL(r+D) 2777
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e X=y exp(y) — v cog (x—y)/ a]+ (x—y)sinx—y/ a]
W(X|Y):m a YAY 1Cy( = >+V rr V2+(Xciy)2 2 (87)
where
C,(w)= fw 8% 4z (9
and
o
Y=y (89

VI. CONCLUSIONS

In this paper we have considered three different methods of generating non-Gaussian processes with a given marginal PDF
ps(x) and exponential correlation function. The difference between the three types of process lies in the proportion between
diffusion, drift, and jumpiness of these processes. At the same time we have shown that all three types of process can be
considered in the same framework of Markov processes generated by a stochastic differential equation. The results obtained in
this paper can be used in a wide area of applications such as communication systems nfaditiggerror flows, biomedi-
cal applicationgneuron activities stochastic control, etc.
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