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Data clustering and noise undressing of correlation matrices
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We discuss an approach to data clustering. We find that maximum likelihood leads naturally to an Hamil-
tonian of Potts variables that depends on the correlation matrix and whose low temperature behavior describes
the correlation structure of the data. For random, uncorrelated data sets no correlation structure emerges. On
the other hand, for data sets with a built-in cluster structure, the method is able to detect and recover efficiently
that structure. Finally we apply the method to financial time series, where the low-temperature behavior reveals
a nontrivial clustering.
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I. INTRODUCTION

Statistical mechanics typically addresses the question
how structures and order arising from interactions in
tended systems are dressed, and eventually destroyed
stochastic—so-called thermal—fluctuations. The inve
problem, unraveling the structure of correlations from s
chastic fluctuations in large data sets, has only recently b
addressed using ideas of statistical mechanics@1,2#. This is
the case of data clustering problems, where the goal i
classify N objects, defined byD dimensional vectors

$jW i% i 51
N , in equivalence classes. The general idea@1# consists

in postulating a cost function that measures how a poss
data structure compares with the sample one is study
This cost function can be considered as an Hamilton
whose low-energy states correspond to the cluster struct
that are most compatible with the data sample. Structures
identified by configurationsS5$si% i 51

N of class indices,
wheresi is the equivalence class to which objecti belongs.
Regarding si as Potts spins, a Potts HamiltonianHq
52( i , j Ji , jdsi ,sj

has been recently proposed@2# as a cost

function, with couplingsJi , j decreasing with the distanc
di , j5uujW i2jW j uu between objectsi andj. The underlying struc-
ture of data sets emerges as the clustering of Potts varia
at low temperatures.

In the present work we address the question of data c
tering. Rather than postulating the form of the Hamiltonia
we start from a statistical ansatz and invoke maximum li
lihood and maximum entropy principles. In this way, t
structure of the Hamiltonian arises naturally from the sta
tical ansatz, without the need of assumptions on its fo
The method is particularly suited to study high-dimensio
data sets, where each object is characterized by a large n
ber D@1 of properties. Time series are an ideal example
high-dimensional objects. The study of the structure of c
relations between time series is therefore a crucial ben
mark for our method.

First we derive the form of the Hamiltonian in the gene
case. Then we study the thermal and the ground-state p
erties of this Hamiltonian by Monte Carlo methods, in thr
different cases:~1! a synthetic uncorrelated data set,~2! a
synthetic data set with a known correlation structure, a
1063-651X/2001/63~6!/061101~8!/$20.00 63 0611
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finally ~3! a data set composed of financial time series w
unknown correlations. We find that~1! for random uncorre-
lated time series no persistent structure emerges at low
peratures;~2! if the time series are generated with some clu
ter structureS !, we find a phase transition to a low
temperature phase that is dominated by cluster configurat
close toS !. Hence the method does not introduce spurio
correlations and is able to recover known correlation str
tures. The nature of the transition is investigated by a sim
mean-field calculation in a simple case. This reveals that
phase transition is of first order.

The financial time series that we will study consists of t
returns of the assets composing the Standard and Poor’s
~S&P 500! index, whose correlations have been the subj
of much recent interest@3–5#. On one side it has been ob
served@3# that the S&P 500 correlation matrix is affected b
considerable noise dressing. Indeed its spectral propertie
close to those of random, uncorrelated time series. On
other hand, these same correlation matrices have revea
nontrivial structure of correlations when analyzed by mi
mal spanning tree methods@4# and by the method@5# of Ref.
@2#. These apparently contradictory results raise the issu
disentangling in a systematic way the effects of fluctuatio
from real correlations in a large but finite data set. This is
main issue we shall focus here.

Quite interestingly, our analysis of the S&P 500 data
reveals a low-temperature behavior dominated by few c
ters of correlated assets with scale-invariant properties.
shall not enter into the details of the economic meaning
our findings, which shall be discussed elsewhere@6#. Our
aim is rather to address the problem of revealing the struc
of barecorrelations hidden in a finite data set. We show th
a thermal average over the relevant cluster structures
vides a good fit of the financial correlations, which allows
to estimate thenoise-undressedcorrelation matrix. Finally,
we discuss several generalizations of our approach to gen
data clustering.

II. METHOD

Let the data setJ5$jW i% i 51
N be composed ofN setsjW i

5$j i(d)%d51
D of D measurements. These are normalized

zero mean(dj i(d)/D50 and unit variance(dj i
2(d)/D51.
©2001 The American Physical Society01-1
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For example, in our application belowj i(d) is the normal-
ized daily returns of asseti of the S&P 500 index, in dayd.
The data set can also refer to a set ofN objects that are
characterized byD-measured quantities. In this casej i(d) is
the ‘‘normalized’’ value of propertyd for object i. We as-
sume thatj i(d) are Gaussian variables. The reason is that
want to focus exclusively on pairwise correlations and
Gaussian model is the only one that is completely speci
at this level. We shall discuss later how deviations fro
Gaussian statistics can be accounted for. The key quanti
interest is the matrix

Ci , j~D ![
1

D (
d51

D

j i~d!j j~d!. ~1!

In order to investigate the structure of correlations, let
assume thatj i(d) were generated by the equation

j i~d!5
Agsi

hsi
~d!1e i~d!

A11gsi

. ~2!

Here gs.0 and si are integer variables~so-called Potts
spins!, hs(d) ande i(d) are i id Gaussian variables with zer
average and unit variance.

The ansatz of Eq.~2! was proposed by Noh@7# to explain
the spectral properties found in Ref.@3#. The idea behind it is
that each seti belongs to one clustersi and that setsi andj in
the same cluster (si5sj5s) are correlated@Ci , j'gs /(1
1gs)# whereas sets in different clusters (siÞsj ) are inde-
pendent. Thesth cluster is composed ofns sets with internal
correlationcs , where

ns5(
i 51

N

dsi ,s , cs5 (
i , j 51

N

Ci , jdsi ,sdsj ,s . ~3!

In order to allow for totally uncorrelated sets, we allowsi to
take all integer values up toN. HenceS5$si% i 51

N describes
the structure of correlations whereas the parameterG
[$gs%s51

N tune the strength of these correlations.
Note that this ansatz is different from the explicative fa

tor model used in financial applications@8#, which is dis-
cussed in the Appendix.

The correlation matrix generated by Eq.~2! for D→` is

Ci , j5
gsi

dsi ,sj
1d i , j

11gsi

. ~4!

Its distribution of eigenvalues is simple: To eachs with ns
>1 there correspond one eigenvalue

ls,05
11gsns

11gs

andns21 eigenvaluesls,151/(11gs). Hence, large eigen
values correspond to groups of many (ns@1) sets. ForD
finite, we expect noise to lift degeneracies betweenls,1 but
to leave the structure of large eigenvalues unchanged.
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In order to fit the data setJ with Eq. ~2!, let us compute
the likelihood. This is the probabilityP(JuS,G) of observing
the dataJ as a realization of Eq.~2! with structureS and
parametersG5$gs%s51

N , and it reads

P~JuS,G!5 )
d51

D K )
i 51

N

dS j i~d!2
Agsi

hsi
~d!1e i~d!

A11gsi

D L ,

where the average is over all theh ’s and e ’s variables and
d(x) is Dirac’s delta function. Gaussian integration and
ementary algebra leads to

P~JuS,G!}e2DH$S,G% ~5!

H$S,G%5
1

2 (
s

F ~11gs!S ns2
gscs

11gsns
D2ns ln~11gs!

1 ln~11gsns!G . ~6!

For any given structureS and D@1, the likelihood
P(JuS,G) is maximal forgs5ĝs , where

ĝs5
cs2ns

ns
22cs

~7!

for ns.1 and ĝs50 for ns<1. Inverting Eq.~7! gives cs

5(ĝsns
21ns)/(ĝs11) that is exactly what one would ge

combining Eqs.~3! and ~4!. Hence the maximum likelihood
estimatorsĝs are consistent with our ansatz~2!.

Note that for uncorrelated setsCi , j5d i , j , we havecs

5ns for eachs and henceĝs50. The coupling strengthĝs
instead diverges for totally correlated sets (Ci , j51) because
cs5ns

2 .

An expansion to second order ings2ĝs of Eq. ~6! shows
that the likelihood quickly vanishes forugs2ĝsu@1/AD.
Hence, forD@1, we can simplify things considerably b
settinggs5ĝs in Eq. ~6!. The likelihood of structureS under
ansatz~2! then takes the formP(JuS)}e2DHc, where

Hc$S %5
1

2 (
s:ns.0

F ln
cs

ns
1~ns21!ln

ns
22cs

ns
22ns

G . ~8!

The ground stateS0 of Hc yields the maximum likelihood
fit with Eq. ~2!. This would probably take the ansatz~2! too
seriously. In general, it is preferable to consider probabilis
solutionsP$S% and, following Ref.@1#, we invoke the maxi-
mum entropy principle: Among all distributionsP$S% with
the same average log likelihood, we select that one wh
has maximal entropy. This, as usual, leads to the Gibbs
tribution P$S%}e2bHc$S% where the inverse temperatureb
arises as a Lagrange multiplier.

The HamiltonianHc depends implicitly on the Potts spin
si through the cluster variablesns andcs of Eq. ~3!. Unlike
the Potts HamiltonianHq , the dependence ondsi ,sj

is non-

linear and it is modulated byCi , j . For siÞsj for all iÞ j we
1-2
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havens5cs51 for all s and henceHc50. This state is rep-
resentative of the high-temperature (b→0) limit. The low-
temperature physics ofHc is instead nontrivially related to
the correlation matrixCi , j . Note, that the ferromagnetic sta
si51 for each i, which dominates asb→` in clustering
methods based on Potts models@2#, is in general not the
ground state ofHc . Intuitively we expect that, if the mode
of Eq. ~2! is reasonable,Hc should have a well-defined
ground state and low-temperature phase that is energeti
dominated by this state. In these cases, as in Ref.@2#, we
expect a thermal phase transition@9#.

The form of the HamiltonianHc clearly depends on the
ansatz~2!. For example if one takes a factor model for t
correlations one finds a different Hamiltonian that depe
on different variables, as discussed in the Appendix. A
note that the present model only describes positive corr
tions. It is straightforward to generalize this approach to
case where a sizeable number of matrix elementsCi , j are
negative and not small. The idea is to introduce spin v
abless i561 for each set and modify Eq.~2! by multiplying
the right-hand side bys i . This leads us to the analysis of
system where the Potts variablessi and the spin variabless i
interact. An account of this method shall be given elsewh
@6#.

III. DATA

We consider three different data sets, i.e., three differ
matricesCi , j . For all of them we tookN5443 time series of
length D51599. The results with shorter time series w
also be discussed below.

The first data set refers toN totally uncorrelated time
series of lengthD. This is obtained, for example, from Eq
~2! with si5 i . The second also is obtained from Eq.~2!, but
this time with preassigned structureS ! and coupling
strengthsG !. We shall discuss below how the specific stru
ture was chosen. These two data sets help us to unders
how the method performs when no structure is present a
and to check whether a predefined structure can be re
ered.

Our third data set is made of financial time series of as
prices relative to the S&P 500. More preciselyj i(d) is the
normalized daily returns of asseti of the S&P 500, in dayd;
this is defined as

j i~d!5
ln@pi~d!/pi~d21!#2r i

s i
, ~9!

wherepi(d) is the price of asseti in dayd. The parametersr i
and s i are determined in order to have zero mean and
variance for alli.

Correlation matrices of financial time series are of gr
practical interest. Indeed they are at the basis of risk m
mization in the modern portfolio theory@8#. This states that
in order to reduce risk, the investment needs to be diversi
~i.e., divided! on many uncorrelated assets, so that price fl
tuations are averaged out. However the measure of cor
tion in samples with a number of observation times com
rable to the number of assets was recently found to
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affected by considerable noise dressing@3#. For example, the
S&P 500 is composed ofN5500 assets and considerin
daily data from July 3, 1989 to October 27, 1995, one h
D51600 data points for each asset. This data set is the
ideal instance of a problem where our method applies.

In addition, this data set has been studied by other auth
with several methods including spectral analysis@3#, mini-
mal spanning tree@4# and super-paramagnetic clustering@5#.
This allows us to compare the results of our method w
those of other methods. Finally, in order to better apprec
the performance of our method in a real application,
choose the synthetic correlated data set$S !,G !% as a ‘‘large
likelihood’’ structure of the S&P 500 data set. In other wor
we performed a simulated annealing experiment on the S
500 data set, where the fictitious temperature 1/b was gradu-
ally decreased to 0. This allowed us to compare how well
real S&P 500 data set can be described by a maximum l
lihood structure.1

Figure 1 shows a comparison of the spectral propertie
the three correlation matrices. The spectrum of eigenva
for uncorrelated time series are known exactly@10#. It ex-
tends over an interval of size;N/D aroundl51, as shown
in Fig. 1. The spectrum of eigenvalues of the S&P 500 c
relation matrix has a similar shape forl'1. This suggests
that significant noise dressing due to finiteD occurs@3#. The
tail of the distribution (l@1) implies that some correlation
is however present. Within our framework, large eigenvalu
are associated with large clusters. Indeed the synthetic
related data set has a broad distribution of cluster sizes~see
Fig. 3! and a correspondingly fat tail in the distribution o
eigenvalues.

1The maximum likelihood structure may be computationally ha
to find and simulated annealing may get trapped into a local m
mum. Indeed in our case we found slightly different structures
different experiments. The structureS ! was that with largest like-
lihood.

FIG. 1. Distribution of eigenvalues of the correlation matrices
S&P 500~solid line d), random~dotted3), and synthetic corre-
lated ~dashedL) time series.
1-3
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IV. CLUSTERING BY MONTE CARLO SIMULATIONS

In order to study the properties ofHc we resort to Monte
Carlo ~MC! method with Metropolis algorithm@11#. This, at
equilibration, allows us to sample the Gibbs distributi
P$S% and compute average quantities, such as the inte
energyEb5^Hc&b where ^ . . . &b stands for thermal aver
age. To detect the occurrence of spontane
magnetization—which correspond to thesi remaining locked
into energetically favorable configurations at lo
temperature—we measure the autocorrelation function

x~ t,t!5

(
i , j

dsi (t),sj (t)
dsi (t1t),sj (t1t)

(
i , j

dsi (t),sj (t)

. ~10!

This quantity tells us how many pairs of sites belonging
the same cluster at timet are still found in the same cluste
after t MC steps. Fort large enough,x becomes a function
of t only. This function decreases rapidly to a plateau va
xb5^x(t,t)&b for t@t@1. Clearly xb.0 implies that no
persistent structure is present whereas, at the other extr
xb51 implies that all sites are locked in a persistent str
ture of clusters.

We monitored these quantities for the three data sets.
us start with a truly uncorrelated time series. We generate
time seriesj i(d) and then computeCi , j by Eq.~1!. With this
we compute the HamiltonianHc and study its thermal prop
erties by the MC method. We do not expect any clustering
emerge in this case. Indeed, the internal energyEb stays very
close to 0@see Fig. 2~a!# for all values ofb investigated up
to b5512. Correspondingly no persistent cluster arises,
xb.0.

The results change turning to correlated data. Let us
discuss the S&P 500 data~for D51599). As Fig. 2~a! shows,
for b'20 the energyEb starts deviating significantly from
zero. Forb.20 persistent clusters are present:xb rapidly
raises from zero and it has a maximum atb'40 @see Fig.
2~b!#. The energy fluctuations reported in the inset show
broad peak of intensity marking the onset of an ordered lo
temperature phase. Asb increases the dynamics is signifi
cantly slowed down. Atb'200 the energy reaches a min
mal valueEb.20.11N and does not decrease significan
increasingb at least up tob54095. This energy is smalle
than that of the ferromagnetic state (Ef520.086N), with all
sets in the same cluster. The system in this range of temp
tures visits only few configurations.

The statistical properties of cluster configurations, asb
varies, are shown in Fig. 3. For smallb only small clusters
survive to thermal fluctuations. Asb increases a distribution
of cluster sizes develops. At low temperatures the rank o
plot of ns reveals a broad distribution of clusters with th
largest aggregating more than 190 sets. By a power-law fi
this distribution, we find that the number of clusters w
more thann sets decays asn20.83. The scatter plot ofcs
versusns also reveals a nontrivial power-law dependen
cs;ns

1.66. This gives a statistical characterization of t
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dominant configurations of clusters at low energy. The cl
ter structure we obtain is reasonable from the economic p
of view: companies in the same economic sector belong
the same cluster. These issues will be discussed in d
elsewhere@6#. Here we restrict our attention to the clusterin
method.

It is instructive to compare these results with those o
tained form shorter time series. We performed a second

FIG. 2. ~a! EnergyEb as a function ofb for random (3), S&P
500 (1), and correlated (h) data sets of lengthD51599, respec-
tively. The results for the S&P 500 data set over the lastD5400
days are also shown (d). Inset: square energy fluctuationdEb

2 vs b
for the same data sets~same symbols!. ~b! Autocorrelationxb as a
function of b for the same data sets~same symbols!. The solid
~dashed! line refers to the overlap with the configurations! for the
S&P 500~correlated! data set withD51599.

FIG. 3. Rank plot ofns for several values ofb. The line corre-
sponds ton;rank21.2. Inset: cs versusns for b5256 (d) and
b (h). The line corresponds toc;n1.66.
1-4
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of simulations withCi , j computed using the quotes of th
S&P 500 assets for the lastD5400 days. We find two in-
verse temperaturesb1'20 andb2'80 that separates thre
regimes. This is signaled by the bending in theEb curve and
by peaks in thedEb

2 versusb plot. At the first temperature
clusters start to appear. Forb,b2 the largest cluster group
less than 30 sets and forb.b2 larger clustersns'100 ap-
pear. This hints at a time dependence of correlations, wh
are averaged in theD51599 data set. For even shorter tim
series we found that sampling errors, acting like a tempe
ture, destroy large clusters and only relatively small clust
(ns,40 for D560) were found.

Finally let us discuss the results for the synthetic cor
lated data set~for D51599). As already mentioned, th
structureS ! is a typical low-energy configuration for th
S&P 500 data set extracted from the previous simulati
~with D51599). The parametersgs

! where deduced from the
ns and cs of this configuration, via Eq.~7!. We recall that
this data set is useful for two reasons: first it allows one
understand to what extent a structure of correlation put
hand with the form dictated by Eq.~2! can be correctly re-
covered. Secondly it allows us to compare the results fo
for the S&P 500 data with those of a time series with cor
lations described by Eq.~2!.

For b,150, the behaviors ofEb , dEb
2 , andxb are simi-

lar to those found for the S&P 500 data~see Fig. 2!. A
second, sharp peak indEb

2 at b'170 signals a new cluster
ing transition. Below this temperature, as shown by the p
of xb @Fig. 2~b!#, the MC dynamics freezes into the origin
structureS !. The overlap with the configurationS !, defined
as in Eq.~10! as the fraction of ‘‘bonds’’si5sj for which
si

!5sj
! , quickly converges to 1@see Fig. 2~b!# for the syn-

thetic time series, whereas it remains around 60% for
S&P 500 data set. This, on one hand means that the orig
structureS ! can be recovered quite efficiently. On the oth
hand, it suggests that several cluster configurations com
at low temperatures in the S&P 500 data set.

V. MEAN-FIELD MODEL

In this section we would like to determine the nature
the clustering transition that takes place in our system.
apply our method to an unrealistically simple situation th
will allow us to extract analytical expressions for the ord
parameter associated with the phase transition. Our ana
is rather similar to that in Ref.@2#.

We takeN time series that belong toM clusters of the
same sizen5N/M . Let s̄i be the cluster index of thei th time
series, and let

Ci , j5gd s̄i ,s̄j
1~12g!d i , j ~11!

be the correlation matrix forD5`. This means that time
series withs̄i5 s̄j have correlationg whereass̄iÞ s̄j have
Ci , j50. The matrixCi , j hasN/M blocks of sizeM along the
diagonal and is zero elsewhere. A finiteD sample of this
problem is generated with Eq.~2! with gs5g/(12g) and
si5 s̄i .
06110
h

a-
rs

-

s

o
y

d
-

t

e
al

r
te

f
e
t
r
sis

To fix ideas we can imagine to have the problem of p
ting N balls of M different colors inM boxes. Colors repre-
sent the original structures̄i whereas boxes represent th
actual clustering configurationsi . When the balls contained
in each box have the same color, the original cluster struc
has been recovered. Letms

c be the number of balls of colorc
in box ~or cluster! s. Now (sms

c5n5N/M is the overall
number of balls of colorc, assumed equal for all colors, an
(cms

c5ns is the number of balls in boxs, as in Eq.~3!. With
the above choice of parameters the internal correlation
box s for a given configuration$ms

c% of clusters is

cs5~12g!ns1g(
c

ms
c2. ~12!

To compute the free energyF5U2TS of the system we
use the energyHc as in Eq.~8! and we estimate the configu
ration entropy in the following way: The number of ways
which one can distribute the balls of colorc by puttingms

c of
them in boxs is

S (
s

ms
cD !

)
s

~ms
c! !

5
n!

)
s

~ms
c! !

, ~13!

and the total number of configurations for all the colors is
product overc of this expression. Taking the logarithm o
this product we obtain the configuration entropy

S5 lnS )
c

S (
s

ms
cD !

)
s

~ms
c! !
D 5(

s,c
ms

c lnS ms
c

n D , ~14!

where we have approximated in the usual way the logarit
of the factorial. Finally the free energy is

F5(
s

Fs

Fs5
1

2 F ln
cs

n
1~n21!lnS n22cs

n22n
D G1T(

c
ms

c lnS ms
c

n D .

~15!

After substitution of Eq.~12! we find an expression tha
depends on the occupation variablesms

c . The occupations in
different boxes are related by the overall constraints(sms

c

5N/M . We take the mean-field approximation, which is l
gitimate in cases like this, where we neglect these effects
other words, we minimize each of theFs independently and
we omit therefore the subscripts from now on.

We can then focus on just one box and look for solutio
of the form
1-5
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mc5
N

M H f, c51

12f

M21
, cÞ1,

~16!

with 0<f<1. In this ansatz, the balls of colorc51 are
more ~or less! numerous that those of other colorsc.1. In
the spirit of mean-field approximation, we neglect the pos
bility that the number of balls of colorsc.1 may be un-
evenly distributed. Hence the parameterf plays the role of
the order parameter.

The paramagnetic solutionf51/M , which corresponds to
an uniform distribution of colors, is always a solution of th
saddle point equations]F/]f50. This state is expected t
be stable~the minimum ofF) at high temperature. A secon
solution of ]F/]f50, which corresponds to the clustere
‘‘ferromagnetic’’ state, appears at intermediate temperatu
with f'1. For T5Tc the values of the free energy corr
sponding to the two states are equal and a first-order p
transition to a ferromagnetic state takes place. The orde
the transition is independent of the values of the parame
while the critical temperature is determined mainly by t
number of time seriesN.

We checked that this result is compatible with that o
tained from Monte Carlo simulations. We find that the mea
field approach provides a good qualitative picture of the tr
sition and a reliable estimate of the critical temperature
which it takes place~see Fig. 4!.

VI. NOISE UNDRESSING

Equation~2! with a single cluster configuration (b→`),
is inadequate to capture the full complexity of the corre
tions in the S&P 500 data set. Probabilistic clustering, wh
several cluster structuresS are allowed with their Gibbs
probability P$S%, provides an alternative approximation.
this approach the parameterb can be tuned to determine th
optimal spread in configuration space, which best descr
the correlation structure built in the original data set. T
line of reasoning will lead us to a method to ‘‘fit’’ the cor

FIG. 4. Ferromagnetic clustering: filled dots and full lines co
respond to Monte Carlo and analytical results for a system withN
5150, M56; empty dots and dashed lines toN52400, M524.
g is always 0.3.
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relation structure of a data set with a single parameterb.
This will finally allow us to undress the correlation matr
Ci , j (D) of its noise dressing and to reveal the bare corre
tions.

Let us start by remarking that the problem with Eq.~2! is
that it stipulates that a seti can belong to only one cluster
This suggests to consider the generalized model

j i~d!5

(
s

Ags,ihs~d!1e i~d!

A11(
s

gs,i

, ~17!

where each seti can belong to any clusters. Equation~17!
has, on the other side, the disadvantage that it depends o
many variables, and it leads to overfitting stochastic fluct
tions.

The finite temperature distributionP$S% provides a natu-
ral way out of this situation. Indeed at finiteb each seti
visits different clusterss and we can define

gs,i~b!5K cs2ns

ns
22cs

ds,siL
b

. ~18!

The parametersgs,i(b) can be measured in a MC simu
lation and provide us with a measure of the strength of
correlation between seti and clusters.

These parameters and Eq.~17! also allow us to generate
synthetic data setsj̃ i(d), whose statistical properties can b
compared to those of the original data set. We make
comparison using the spectral properties of the correla
matrix. In other words, with Eq.~1! andj̃ i(d) we compute a
‘‘ b-synthetic’’ correlation matrix; we determine the spe
trum of eigenvalues and compare it to that of the origin
matrix. The parameterb can be tuned in order to get the be
fit.

This procedure was carried out for the S&P 500 data
The eigenvalue spectra of the two matrices are compare
Fig. 5 for b548. The value ofb was chosen by visual in
spection as that giving the best fit. The curves are remarka
close, suggesting that Eq.~17! provides a good statistica
description of the correlations among assets.

Once the valueb* that gives the best fit is found, we ca
compute thenoise undressedcorrelation matrix

Ci , j* ~`!5

d i , j1(
s

Ags,i* gs, j*

A11(
s

gs,i* A11(
s

gs, j*

~19!

from the parametersgs,i* 5gs,i(b* ). This is the correlation
matrix of a synthetic data set obtained from Eq.~17! with
D→`. Figure 5 shows the eigenvalue distribution of t
noise undressed matrixCi , j* (`). This allows one to appreci
ate the effect of noise dressing. As expected, noise ma
affects small eigenvalues.
1-6
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VII. DISCUSSION AND CONCLUSIONS

The applicability of the method can be extended cons
erably to a generic data set$xW i% i 51

N . xW i need not be a time
series. The distribution ofxi(d) need not be Gaussian and
does not even need to be the same acrossi. For example,
xi(d) may be the measure of thedth feature of thei th object
or the concentration of speciesi in the dth sample of an
experiment. The idea is to map the data setxW i into a Gaussian
time seriesjW i to which we apply Eq.~2!. The mapping re-
sults from requiring that nonparametric cross correlatio
t i , j

x 5t i , j
j are preserved. To do this in practice we comp

Kendall’s t @12# for the xW i data sets:t i , j
x 5^sgn@xi(d)

2xi(d8)#sgn@xj (d)2xj (d8)#&d,d8 . For two Gaussian time
series with correlationCi , j one can compute analyticallyt i , j

x

in the limit D→`. This leads to the relation

Ci , j5sinS pt i j
x

2 D ~20!

between Gaussian and nonparametric correlations.
equation allows us to translate nonparametric correlati
into Gaussian correlations. From these one can buildHc of
Eq. ~8! and study the clustering properties.

This procedure has been tested for the S&P 500 data
for which it is known thatj i(d) has non-Gaussian statistic
@13#. We have found indistinguishable results that indic
that the deviations from Gaussian behavior have little or
effect on the results. We expect that this approach bre
down when the marginal distribution ofj i(d) is such that the
second moment is not defined. In that caseCi , j computed
from t i , j and Eq.~20! can even fail to be positive definite.

With respect to Ref.@2#, our approach does not need a
assumption on the form of the Hamiltonian. As input, t
method only needs the correlation matrixCi , j ~or t i , j ). The
range of interactions is set by the correlations themsel

FIG. 5. Comparison of the spectrum of the S&P 500 correlat
matrix ~solid line d), with noise-dressed~dotted h), and bare
~dashed1) correlation matrices generated by Eq.~17!.
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Indeed our method predicts a nontrivial ground stateS0 that
is not, in general, the ferromagnetic one.

For smallD, the local interaction of Ref.@2# may well be
more efficient in capturing the structure of data. Our meth
is most useful in cases whereD;N@1. These ideas can
clearly be extended to models of correlations different fro
Eq. ~2! as shown, for example, in the Appendix.
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APPENDIX

We define here the explicative factor model for stoc
returns~also known as multi-index model, see e.g.,@8#!:

j i~ t !5
vW ihW ~ t !1e i

A11v i
2

, v i
25vW ivW i5 (

a51

L

~v i
a!2 ~A1!

wherevW i areL dimensional vectors andhW (t) is a L dimen-
sional Gaussian random vector^ha(t)&50 and
^ha(t)hb(t8)&5da,bd t,t8 .

The idea is that there areL explicative factors
h1(t), . . . ,hL(t) that describe the fluctuations of each sto
price. This model is different from the one we considered
the text in that each time series is coupled to all other wit
different strength. This can be easily understood by obse
ing that the model~2! can be cast in the form of an explica
tive factor model withv i

a5gsi
da,si

. This is a rather particu-
lar form of Eq.~A1!. We observe, however, thatL must be
much smaller thanN in order to avoid problems of overfit
ting with Eq. ~A1!, while Eq. ~2! requiresL'N.

As we did in Sec. II we look at the probability of observ
ing the time seriesj i(t) given the model Eq.~A1! and the
parametersvW i :

P$j i~ t !uvW i%5)
t51

D K )
i 51

N

dS j i~ t !2
vW ihW 1e i

A11v i
2D L

hW ,e

.

~A2!

After taking the average over the Gaussian variables
obtains the equivalent of Eqs.~6! and ~5!

P$j i~ t !uvW i%5e2DH$vW %,

H$vW %5
1

2 (
i

@~11v i
2!2 ln~11v i

2!#2
1

2
Tr ln~11V!

2
1

2
Tr

x

11V
, ~A3!

where we have defined the matrices

Va,b5(
i 51

N

v i
av i

b ~A4!

n

1-7
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xa,b5 (
i , j 51

N

Ci , jA11v i
2v i

aA11v j
2v j

b , ~A5!

andCi , j is defined in Eq.~1!. We note that the second term
in Eq. ~A3! is subextensive, and could be neglected; nev
s.

y
.

06110
r-

theless in the presence of the matrixx a Monte Carlo simu-
lation becomes excessively time consuming, since a cha

in vW k requires orderN operations to compute the new matri
This may considerably limit the practical applicability of th
method.
ted
ses.

fit.
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