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Data clustering and noise undressing of correlation matrices
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We discuss an approach to data clustering. We find that maximum likelihood leads naturally to an Hamil-
tonian of Potts variables that depends on the correlation matrix and whose low temperature behavior describes
the correlation structure of the data. For random, uncorrelated data sets no correlation structure emerges. On
the other hand, for data sets with a built-in cluster structure, the method is able to detect and recover efficiently
that structure. Finally we apply the method to financial time series, where the low-temperature behavior reveals
a nontrivial clustering.
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[. INTRODUCTION finally (3) a data set composed of financial time series with
unknown correlations. We find thét) for random uncorre-
Statistical mechanics typically addresses the question dated time series no persistent structure emerges at low tem-
how structures and order arising from interactions in ex{eratures(2) if the time series are generated with some clus-
tended systems are dressed, and eventually destroyed, B/ structureS*, we find a phase transition to a low-
stochastic—so-called thermal—fluctuations. The inverséemperature phase that is dominated by cluster configurations
problem, unraveling the structure of correlations from sto-close toS™. Hence the method does not introduce spurious
chastic fluctuations in large data sets, has only recently beefPrrelations and is able to recover known correlation struc-
addressed using ideas of statistical mechaficg. This is tures. 'I_'he nature o_f th_e transition is mvestlgated by a simple
the case of data clustering problems, where the goal is thean—ﬂeId calculation in a simple case. This reveals that the

classify N objects, defined byD dimensional vectors Phase transitionis of first order. _

The financial time series that we will study consists of the
., returns of the assets composing the Standard and Poor’s 500
. . . ?S&P 500 index, whose correlations have been the subject
data structure compares with the sample one is studylnq)f much recent intereg8—5]. On one side it has been ob-

T?}'S cc|>st function can be con5|dedred ﬁs e}n Ham'lton'a'%erved[3] that the S&P 500 correlation matrix is affected by
Wnose low-energy states correspon to the cluster Structures,,qijerable noise dressing. Indeed its spectral properties are
that are most compatible with the data sample. Structures a8 se to those of random. uncorrelated time series. On the
identified by configurationsS={s;}!\., of class indices, ’

) ) ) > other hand, these same correlation matrices have revealed a
wheres; is the equivalence class to which objedielongs.  nponrivial structure of correlations when analyzed by mini-
Regarding si as Potts spins, a Potts Hamiltonidd,  ma| spanning tree metho@4] and by the methofb] of Ref.
=—2i<jJi ;05 5; has been recently propos¢d| as a cost 2] These apparently contradictory results raise the issue of
function, with couplingsJ; ; decreasing with the distance disentangling in a systematic way the effects of fluctuations

d; J.=||§i — §j|| between objectsand]j. The underlying struc- from real correlations in a large but finite data set. This is the
ture of data sets emerges as the clustering of Potts variabl@ain issue we shall focus here.
at low temperatures. Quite interestingly, our analysis of the S&P 500 data set

In the present work we address the question of data clugeveals a low-temperature behavior dominated by few clus-
tering. Rather than postulating the form of the Hamiltonian,ters of correlated assets with scale-invariant properties. We
we start from a statistical ansatz and invoke maximum likeshall not enter into the details of the economic meaning of
lihood and maximum entropy principles. In this way, theour findings, which shall be discussed elsewhigg Our
structure of the Hamiltonian arises naturally from the statis-2im is rather to address the problem of revealing the structure
tical ansatz, without the need of assumptions on its formof bare correlations hidden in a finite data set. We show that
The method is particularly suited to study high-dimensional® thermal average over the relevant cluster structures pro-
data sets, where each object is characterized by a large nuvides a good fit of the financial correlations, which allows us
berD>1 of properties. Time series are an ideal example of0 estimate thenoise-undressedorrelation matrix. Finally,
high-dimensional objects. The study of the structure of corwe discuss several generalizations of our approach to generic
relations between time series is therefore a crucial benctflata clustering.
mark for our method.

First we derive the form of the Hamiltonian in the general Il. METHOD
case. Then we study the thermal and the ground-state prop- . .
erties of this Hamiltonian by Monte Carlo methods, in three  Let the data seE={£}{L, be composed oN sets¢;
different cases(1) a synthetic uncorrelated data sé2) a  ={&(d)}g-, of D measurements. These are normalized to
synthetic data set with a known correlation structure, andero mear® 4&;(d)/D=0 and unit variancédfiz(d)/D=1.
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For example, in our application belogy(d) is the normal- In order to fit the data s€E with Eq. (2), let us compute

ized daily returns of assétof the S&P 500 index, in dag.  the likelihood. This is the probabilitp (= |S,G) of observing

The data set can also refer to a setMfobjects that are the dataZ as a realization of Eq(2) with structureS and

characterized byp-measured quantities. In this cag§éd) is parametergz{gs}sNzl, and it reads

the “normalized” value of propertyd for objecti. We as-

sume that;(d) are Gaussian variables. The reason is that we b N Os 75 (d) + €(d)

want to focus exclusively on pairwise correlations and the P(E|S,G)= H S| &(d)— - ,

Gaussian model is the only one that is completely specified d=1 \i=1 Vitgs,

at this level. We shall discuss later how deviations from . )

Gaussian statistics can be accounted for. The key quantity §fhere the average is over all thgs and €'s variables and

interest is the matrix 8(x) is Dirac’s delta function. Gaussian integration and el-
ementary algebra leads to

D
1 —_ _
Cii(D)=5 2 &(d)§(d). 1) P(E]5.G)xe e (5)
&1
. . ) 1 OsCs
In order to investigate the structure of correlations, let us H{5,G}=> > |(1+gy| ns— 1+ gan —ngIn(1+gs)
assume thaf;(d) were generated by the equation S ss
Os, 77si(d)+€i(d) +In(1+gsng) | (6)
&i(d)= o, 2
9s For any given structureS and D>1, the likelihood
Here g.>0 ands, are integer variablegso-called Potts P(E[8.0) is maximal forgs=gs, where
sping, 7s(d) ande;(d) areiid Gaussian variables with zero
average and unit variance. §o= Cs—Ns )
The ansatz of Eq2) was proposed by Nof¥] to explain nZ—cs

the spectral properties found in RE3]. The idea behind it is
that each seitbelongs to one clustey and that setsandjin  for ng>1 andg.=0 for ns<1. Inverting Eq.(7) gives c,
the same clusters(=_s]- =_s) are correlated[ci'ngls/(l =(ésn§+ns)/(és+ 1) that is exactly what one would get
+9s)] Whereahs sets in different clusters;£s;) are inde-  compining Eqs(3) and (4). Hence the maximum likelihood
pendent. The™ cluster is composed af, sets with internal estimatorsy, are consistent with our ansaf2)

s .

correlationcg, where
s Note that for uncorrelated setS; ;=4;;, we havecs

N N =n, for eachs and henceys=0. The coupling strengtl
ng= izl Os, s CS:ij§—:1 Ci,ids, ,Sﬁsj 5 (3) inste%d diverges for totally correlated se@ (=1) because
- = Cs=ng.

In order to allow for totally uncorrelated sets, we allgjto An expansion to second order @3- gs of Eqg. (6) shows

take all integer values up t. HenceS={s;}"\., describes that the likelihood quickly vanishes fofgs—g|>1/\D.

the structure of correlations whereas the parameters Hence, forD>1, we can simplify things considerably by

E{gS}SN:l tune the strength of these correlations. settinggs=gs in Eq. (6). The likelihood of structureS under
Note that this ansatz is different from the explicative fac-ansatz(2) then takes the fornP(=|S)<e™ "¢, where

tor model used in financial applicatio8], which is dis-

cussed in the Appendix. 1 2

Sy= -
The correlation matrix generated by H) for D— is HdS)=

ns—Cs

®

==+ (ng— 1)l
n—+(ns—1)In
2 sn>0 Ng S ng_ Ng
C __gSi 95,5 i @ The ground staté, of H yields the maximum likelihood
he 1+gs fit with Eq. (2). This would probably take the ansd® too

seriously. In general, it is preferable to consider probabilistic
Its distribution of eigenvalues is simple: To eashvith ng ~ solutionsP{S} and, following Ref[1], we invoke the maxi-

=1 there correspond one eigenvalue mum entropy principle: Among all distributior3{S} with
the same average log likelihood, we select that one which
1+gng has maximal entropy. This, as usual, leads to the Gibbs dis-
)\S,O:W tribution P{S}ce™ #HctSh where the inverse temperatug
S arises as a Lagrange multiplier.
andn,— 1 eigenvalues.s;=1/(1+gs). Hence, large eigen- The HamiltoniarH . depends implicitly on the Potts spins

values correspond to groups of many.¢1) sets. Ford i through the cluster variables, andc, of Eq. (3). Unlike
finite, we expect noise to lift degeneracies betwagnbut ~ the Potts Hamiltoniai, the dependence ofy g is non-
to leave the structure of large eigenvalues unchanged. linear and it is modulated b§; ;. Fors;#s; for all i # | we
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haven,=c,=1 for all sand henced.=0. This state is rep-
resentative of the high-temperatur8-¢0) limit. The low-
temperature physics dfl; is instead nontrivially related to 107
the correlation matrixC; ; . Note, that the ferromagnetic state

s,=1 for eachi, which dominates ag— in clustering
methods based on Potts modé¢ly, is in general not the

ground state oH,. Intuitively we expect that, if the model 2

of Eq. (2) is reasonableH, should have a well-defined & :
ground state and low-temperature phase that is energeticall 9= | N\ i
dominated by this state. In these cases, as in Rdf.we K

expect a thermal phase transiti.

The form of the HamiltoniarH . clearly depends on the
ansatz(2). For example if one takes a factor model for the
correlations one finds a different Hamiltonian that depends
on different variables, as discussed in the Appendix. Also 10~
note that the present model only describes positive correla A
tions. It is straightforward to generalize this approach to the
case where a sizeable number of matrix elem@)ts are FIG. 1. Distribution of eigenvalues of the correlation matrices of
negative and not small. The idea is to introduce spin variS&P 500(solid line @), random(dotted X ), and synthetic corre-
ableso; = =+ 1 for each set and modify E¢2) by multiplying  lated(dashed< ) time series.

the right-hand side by . This leads us to the analysis of a . :
system where the Pottls variablesand the spin variables; affected by considerable noise dresdi8§j For example, the

interact. An account of this method shall be given elsewherégfP 500 is composed oN=500 assets and considering
[6]. daily data from July 3, 1989 to October 27, 1995, one has

D =1600 data points for each asset. This data set is then an
ideal instance of a problem where our method applies.
In addition, this data set has been studied by other authors
We consider three different data sets, i.e., three differentith several methods including spectral analyg$ mini-
matricesC; ; . For all of them we tookN =443 time series of ~Mal spanning trep4] and super-paramagnetic clusteriiid.
length D=1599. The results with shorter time series will This allows us to compare the results of our method with
also be discussed below. those of other methods. Finally, in order to better appreciate
The first data set refers thl totally uncorrelated time the performance of our method in a real application, we
series of lengttD. This is obtained, for example, from Eq. choose the synthetic correlated data{set,G*} as a “large
(2) with s;=i. The second also is obtained from Eg), but likelihood” structure of the S&P 500 data set. In other words
this time with preassigned structur§* and coupling We performed a simulated annealing experiment on the S&P
strengths; *. We shall discuss below how the specific struc-500 data set, where the fictitious temperatuye was gradu-
ture was chosen. These two data sets help us to understaftly decreased to 0. This allowed us to compare how well the
how the method performs when no structure is present at aleal S&P 500 data set can be described by a maximum like-
and to check whether a predefined structure can be recolihood structure.
ered. Figure 1 shows a comparison of the spectral properties of
Our third data set is made of financial time series of asseifie three correlation matrices. The spectrum of eigenvalues
prices relative to the S&P 500. More precisglyd) is the for uncorrelated time series are known exagtly)]. It ex-
normalized daily returns of asseof the S&P 500, in dayl;  tends over an interval of size N/D around\ =1, as shown

x-——x random
©--< correlated 1
—— S&P500

IIl. DATA

this is defined as in Fig. 1. The spectrum of eigenvalues of the S&P 500 cor-
relation matrix has a similar shape far-1. This suggests
In[p;(d)/p;(d—1)]—r; that significant noise dressing due to findeoccurs[3]. The
&i(d)= o ' 9 tail of the distribution {>1) implies that some correlation

is however present. Within our framework, large eigenvalues
wherep;(d) is the price of assétin dayd. The parametens are associated with large clusters. Indeed the synthetic cor-
and o; are determined in order to have zero mean and unitelated data set has a broad distribution of cluster sizes
variance for alli. Fig. 3 and a correspondingly fat tail in the distribution of

Correlation matrices of financial time series are of greagigenvalues.

practical interest. Indeed they are at the basis of risk mini-
mization in the modern portfolio theofy8]. This states that,
in order to reduce risk, the investment needs to be diversifiedThe maximum likelihood structure may be computationally hard
(i.e., divided on many uncorrelated assets, so that price flucto find and simulated annealing may get trapped into a local mini-
tuations are averaged out. However the measure of correlaum. Indeed in our case we found slightly different structures in

tion in samples with a number of observation times compadifferent experiments. The structu&® was that with largest like-
rable to the number of assets was recently found to béhood.
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IV. CLUSTERING BY MONTE CARLO SIMULATIONS 000l
i

In order to study the properties &f. we resort to Monte -0.02
Carlo (MC) method with Metropolis algorithil1]. This, at )
equilibration, allows us to sample the Gibbs distribution z
P{S} and compute average quantities, such as the interng§ %
energyEz=(H); where( .. .), stands for thermal aver- -0.08
age. To detect the occurrence of spontaneous
magnetization—which correspond to theremaining locked
into energetically favorable configurations at low -0.12
temperature—we measure the autocorrelation function

gj Fs,(1),5;(0) Fs; (-4 7). (t+ 7) os
x(t, )= : (10)

2 850,50

i<j

o
)

Xp, overlap
o
N

This quantity tells us how many pairs of sites belonging to 0.2

the same cluster at timteare still found in the same cluster . oo DQQQE‘E‘F—X o
after r MC steps. Fott large enoughy becomes a function 00m— T T T T T T e
of 7 only. This function decreases rapidly to a plateau value B

Xp={x(t,7))z for t>7>1. Clearly ;=0 implies that no .
persistent structure is present whereas, at the other extremsedo':'(f')z- (aé EnerglytE[a ?OS) 6:1 fL:“Ct'Ot“ OE‘BI for :;ndi?gg()’ S&p

=1 implies that all sites are locked in a persistent struc- , and correlate ata sets or lengty = 1599, respec-
iiﬁ,e of CISSters P tively. The results for the S&P 500 data set over the @st400

c{ays are also showr®). Inset: square energy quctuatiéEf; Vs B

We monitored these quantities for the three data sets. Lef-Olr the same data setsame symbols (b) Autocorrelationy ; as a
us start with a truly uncorrelated time series. We generate th y X6

. . . . %nction of B for the same data setsame symbols The solid

time serie<t;(d) and then comput€; ; by Eq.(1). With this o0y Iineﬁrefers to the overlap with the cozfiguratish for the

we compute the HamiltoniaH . and study its thermal prop- ggp 500(correlated data set withD = 1599.

erties by the MC method. We do not expect any clustering to

emerge in this case. Indeed, the internal ené&rggtays very  dominant configurations of clusters at low energy. The clus-

close to O[see Fig. 2a)] for all values ofp3 investigated up ter structure we obtain is reasonable from the economic point

to B=512. Correspondingly no persistent cluster arises, i.e.of view: companies in the same economic sector belong to

Xp=0. the same cluster. These issues will be discussed in detail
The results change turning to correlated data. Let us firstlsewherg6]. Here we restrict our attention to the clustering

discuss the S&P 500 datfor D =1599). As Fig. 2a) shows, method.

for B~20 the energyE, starts deviating significantly from It is instructive to compare these results with those ob-

zero. For3>20 persistent clusters are presegg rapidly  tained form shorter time series. We performed a second set

raises from zero and it has a maximumg 40 [see Fig. .

2(b)]. The energy fluctuations reported in the inset shows a oE, B=256, x P64, o P=8 T

broad peak of intensity marking the onset of an ordered low- F o p=128, + p=32 ok

temperature phase. A8 increases the dynamics is signifi- -

cantly slowed down. A3~ 200 the energy reaches a mini-

mal valueEz=—0.1IN and does not decrease significantly 10°
increasingB at least up tg3=4095. This energy is smaller -
than that of the ferromagnetic staté;& — 0.086N), with all <

sets in the same cluster. The system in this range of tempere

tures visits only few configurations. 10’
The statistical properties of cluster configurations,as ;

varies, are shown in Fig. 3. For sm@lonly small clusters

survive to thermal fluctuations. A8 increases a distribution

of cluster sizes develops. At low temperatures the rank orde|

plot of ng reveals a broad distribution of clusters with the 10° - -

largest aggregating more than 190 sets. By a power-law fit of 10 10

this distribution, we find that the number of clusters with rank

more thann sets decays as~ %% The scatter plot oft, FIG. 3. Rank plot ofn, for several values oB. The line corre-

versusng also reveals a nontrivial power-law dependencesponds ton~rank 2 Inset: c, versusng for =256 (@) and
c~ni®. This gives a statistical characterization of the g (). The line corresponds to~n™
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of simulations withC; ; computed using the quotes of the  To fix ideas we can imagine to have the problem of put-
S&P 500 assets for the laBt=400 days. We find two in- ting N balls of M different colors inM boxes. Colors repre-

verse temperature8; ~20 and3,~80 that separates three sent the original structurs; whereas boxes represent the
regimes. This is signaled by the bending in Eygcurve and  actual clustering configuratios). When the balls contained
by peaks in theSE}; versusp plot. At the first temperature in each box have the same color, the original cluster structure
clusters start to appear. FBr 3, the largest cluster groups has been recovered. Let. be the number of balls of colar

less than 30 sets and f@> j, larger clustersi;~100 ap- in box (or clustej s. Now S ;mS=n=N/M is the overall
pear. This hints at a time dependence of correlations, whicRumber of balls of colot, assumed equal for all colors, and
are averaged in thB=1599 'data set. For even shorter time S .mS=ng is the number of balls in bog as in Eq.(3). With
series we found that sampling errors, acting like a temperame apove choice of parameters the internal correlation of

ture, destroy large clusters and only relatively small clusterg,,. < tor a given configuratio§mC} of clusters is
(ng<<40 for D=60) were found. °

Finally let us discuss the results for the synthetic corre-
lated data ge(for D.=1599). As already. menFioned, the cs=(1—7y)ng+ 72 ng_ (12)
structureS™ is a typical low-energy configuration for the c
S&P 500 data set extracted from the previous simulations
(with D=1599). The parametegs where deduced fromthe =~ To compute the free enerdy=U —TS of the system we
ne and ¢ of this configuration, via Eq(7). We recall that  Use the energyi. as in Eq.(8) and we estimate the configu-
this data set is useful for two reasons: first it allows one tgation entropy in the following way: The number of ways in
understand to what extent a structure of correlation put byvhich one can distribute the balls of coloby puttingm{ of
hand with the form dictated by E@2) can be correctly re- them in boxs is
covered. Secondly it allows us to compare the results found

for the S&P 500 data with those of a time series with corre- c
lations described by Ed2). (231 ms>! 0!
For 3<150, the behaviors diz, 5E§, andy are simi- = ' , (13
lar to those found for the S&P 500 dafeee Fig. 2. A 11 (mgl) 11 (mS1)
S S

second, sharp peak 'kﬁEf, at 8~170 signals a new cluster-
ing transition. Below this temperature, as shown by the plot
of x4 [Fig. 2(b)], the MC dynamics freezes into the original and the total number of configurations for all the colors is the
structureS*. The overlap with the configuratiafi*, defined ~ product overc of this expression. Taking the logarithm of
as in Eq.(10) as the fraction of “bonds”s;=s; for which  this product we obtain the configuration entropy

si =s, quickly converges to Isee Fig. 2b)] for the syn-
thetic time series, whereas it remains around 60% for the

S !

S&P 500 data set. This, on one hand means that the original S mS
structureS* can be recovered quite efficiently. On the other S=in| [[ ——— | =2 méin[—=], (19
. - - C S,C n
hand, it suggests that several cluster configurations compete H (mll) '
S

at low temperatures in the S&P 500 data set.

V. MEAN-FIELD MODEL where we have approximated in the usual way the logarithm

of the factorial. Finally the free energy is
In this section we would like to determine the nature of

the clustering transition that takes place in our system. We

apply our method to an unrealistically simple situation that F=E Fs
will allow us to extract analytical expressions for the order s
parameter associated with the phase transition. Our analysis

is rather similar to that in Ref2]. 1| ¢ n?—cs oo [ Mg
We takeN time series that belong th clusters of the Fs=5|Iny+(n=1)n o +T§c: mgin{ —=/.
same siz&ev=N/M. Lets; be the cluster index of thigh time (15)

series, and let

After substitution of Eq(12) we find an expression that
depends on the occupation variabie$. The occupations in
. . . . different boxes are related by the overall constraibmg
be the corrEIatEn matrix fob=co. This means Eat time  _N/M. We take the mean-field approximation, which is le-
series withs;=s; have correlationy whereass;#s; have  gitimate in cases like this, where we neglect these effects. In
Cij=0. The matrixC; ; hasN/M blocks of sizeM along the  other words, we minimize each of tife, independently and
diagonal and is zero elsewhere. A finie sample of this \ye omit therefore the subscriptfrom now on.
problem is generated with E¢2) with gs=/(1-7) and We can then focus on just one box and look for solutions
S;=S;. of the form

Ci,j=75§i,§j+(l_')’)5i,j (11
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relation structure of a data set with a single paramg@er
This will finally allow us to undress the correlation matrix
C; j(D) of its noise dressing and to reveal the bare correla-
tions.

Let us start by remarking that the problem with E2). is
that it stipulates that a sétcan belong to only one cluster.
This suggests to consider the generalized model

g Vs, 7s(d) + €(d)
fi(d):

0.1 \/1 + 25 Os,i

FIG. 4. Ferromagnetic clustering: filled dots and full lines cor- Where each setcan belong to any clustex Equation(17)
respond to Monte Carlo and analytical results for a system With has, on the other side, the disadvantage that it depends on too
=150, M=6; empty dots and dashed lineso=2400, M=24.  many variables, and it leads to overfitting stochastic fluctua-

Internal Energy (arbitrary units)

(17)

Temperature (log scale)

v is always 0.3. tions.
The finite temperature distributidA{S} provides a natu-
b, c=1 ral way out of this situation. Indeed at fini{¢ each set
mc—ﬂ 1— ¢ (16 visits different clusters and we can define
M| =L c#1,
M-1 Cs— Ny
Usi(B)= chss,si : (18)

with 0= ¢=<1. In this ansatz, the balls of colar=1 are s B

more (or less numerous that those of other colas 1. In Th N b di MC i
the spirit of mean-field approximation, we neglect the possi-I i € pgrame_grgs,i(ﬁ).tﬁan € measurfeth n ? tr1sm11uth
bility that the number of balls of colore>1 may be un- ation and provide us with a measure ot the strength of the

_— correlation between sétand clusters.
evenly distributed. Hence the parameteiplays the role of
the order parameter. These parameters and E4.7) also allow us to generate

The paramagnetic solutiap=1/M, which corresponds to synthetic data setg(d), whosg _statistical properties can be_
an uniform distribution of colors, is always a solution of the c0mpared to those of the original data set. We make this
saddle point equationgF/Jd¢=0. This state is expected to COmparison using the spectral propcirtles of the correlation
be stablgthe minimum ofF) at high temperature. A second matrix. In other words, with Eq.1) and¢;(d) we compute a
solution of 9F/d¢=0, which corresponds to the clustered “ 8-synthetic” correlation matrix; we determine the spec-
“ferromagnetic” state, appears at intermediate temperatureum of eigenvalues and compare it to that of the original
with ¢~1. For T=T, the values of the free energy corre- matrix. The parametgg can be tuned in order to get the best
sponding to the two states are equal and a first-order phadié
transition to a ferromagnetic state takes place. The order of This procedure was carried out for the S&P 500 data set.
the transition is independent of the values of the parameterd,he eigenvalue spectra of the two matrices are compared in
while the critical temperature is determined mainly by theFig. 5 for 5=48. The value ofs was chosen by visual in-
number of time serieBl. spection as that giving the best fit. The curves are remarkably

We checked that this result is compatible with that ob-close, suggesting that Eq17) provides a good statistical
tained from Monte Carlo simulations. We find that the mean-description of the correlations among assets.
field approach provides a good qualitative picture of the tran- Once the valugg* that gives the best fit is found, we can
sition and a reliable estimate of the critical temperature acompute thenoise undressedorrelation matrix

which it takes placdsee Fig. 4.
5i,,-+2 V0595
S
Cli(=)=

. _Equation(2) with a single cluster configgratior)BEoc), \/1+2 ot \/1+E g%
is inadequate to capture the full complexity of the correla- s s
tions in the S&P 500 data set. Probabilistic clustering, where

several cluster structureS are allowed with their Gibbs from the parametergg;=gs;(8*). This is the correlation
probability P{S}, provides an alternative approximation. In matrix of a synthetic data set obtained from E#7) with

this approach the parametg@rcan be tuned to determine the D—. Figure 5 shows the eigenvalue distribution of the
optimal spread in configuration space, which best describesoise undressed matrig{*;(«). This allows one to appreci-
the correlation structure built in the original data set. Thisate the effect of noise dressing. As expected, noise mainly
line of reasoning will lead us to a method to “fit” the cor- affects small eigenvalues.

VI. NOISE UNDRESSING

(19
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Indeed our method predicts a nontrivial ground stggehat
is not, in general, the ferromagnetic one.

y o0 dressed For smallD, the local interaction of Ref2] may well be
10 7] Tes] i i
+---+ bare more efficient in capturing the structure of data. Our method
—— S&P500 is most useful in cases whe@~N>1. These ideas can
clearly be extended to models of correlations different from
2 Eq. (2) as shown, for example, in the Appendix.
a
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We define here the explicative factor model for stocks

. _returns(also known as multi-index model, see e[@)):
FIG. 5. Comparison of the spectrum of the S&P 500 correlation

matrix (solid line @), with noise-dresseddotted [1), and bare

0 m(t) + €
(dashed+) correlation matrices generated by E#j7). vin®t &

L
gi(t):ﬁ- Uizzl;il;i:zl(via)z (A1)

VII. DISCUSSION AND CONCLUSIONS . ) ) . ) )
wherev; areL dimensional vectors ang(t) is aL dimen-
The applicability of the method can be extended considsional ~Gaussian random  vector( 7%(t))=0 and
erably to a generic data séﬂ}i”:l. x; need not be a time (7%(t) 7%(t'))= 8 g0t -
series. The distribution of;(d) need not be Gaussian and it The idea is that there ard. explicative factors
does not even need to be the same acio$®r example, 7*(t), ...,7"(t) that describe the fluctuations of each stock
x;(d) may be the measure of tligh feature of theth object  price. This model is different from the one we considered in
or the concentration of speciésin the dth sample of an the text in that each time series is coupled to all other with a

experiment. The idea is to map the dataxsénto a Gaussian  different strength. This can be easily understood by observ-

time serieséi to which we apply Eq(2). The mapping re- ipg that the mode(g) can be cast in t.he.form of an explica-
sults from requiring that nonparametric cross correlationd!Ve factor model withv*=gg 5, .. This is a rather particu-

7, =rf, are preserved. To do this in practice we computea’ form of Eq.(Al). We observe, however, thatmust be
’ ’ much smaller thaN in order to avoid problems of overfit-

Kendall's 7 [12] for the x; data sets: 7, ;=(sgrix;(d) , . ; .
B , a , ’ . . ting with Eq. (A1), while Eq.(2) requiresL~N.
xi(d")1sgrix;(d) =x;(d") ])g<a - For wo Gaussian time 7o id in Sec. Il we look at the probability of observ-

;eries \.Nit.h correlatio@i,j one can compu_te analytically ing the time series; (t) given the model Eq(A1) and the
in the limit D—. This leads to the relation -

parameters, :
Cij= '(WTixi) 20 P{&(D]0 —IE[ ﬁ 8 _l;/—i;ﬁei
=sin — (20 {gi(t)|vi}_t=l Ph] & 1+v? re

(A2)

between Gaussian and nonparametric correlations. This . ) )
equation allows us to translate nonparametric correlation§fter taking the average over the Gaussian variables one
into Gaussian correlations. From these one can Hujicof ~ Obtains the equivalent of Eqe) and(5)
Eq. (8) and study the clustering properties. =\ _ A—DH{J}

This procedure has been tested for the S&P 500 data set, P{&(Dlvi}=e ,
for which it is known thaté;(d) has non-Gaussian statistics
[13]. We have found indistinguishable results that indicate H{J}IE > [(1+Ui2)—|n(1+ui2)]—lTrIn(1+V)
that the deviations from Gaussian behavior have little or no 25 2
effect on the results. We expect that this approach breaks
down when the marginal distribution &f(d) is such that the _ ETr X (A3)
second moment is not defined. In that c&%e computed 2 1+V’
from 7; ; and Eq.(20) can even fail to be positive definite.

With respect to Ref[2], our approach does not need any
assumption on the form of the Hamiltonian. As input, the N
method only neegis th_e correlation matfx; (_or 7,j). The V= 2 UianB (A4)
range of interactions is set by the correlations themselves. To=

where we have defined the matrices
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N theless in the presence of the matgi»a Monte Carlo simu-
Xa.p= Z Ci,j\/1+vi2vi“ 1+vj2v]-ﬂ, (A5) lation becomes excessively time consuming, since a change
=1 .- . . .
" in vy requires ordeN operations to compute the new matrix.

andC;  is defined in Eq(1). We note that the second term This may considerably limit the practical applicability of this
in Eq. (A3) is subextensive, and could be neglected; nevermethod.
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