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Lattice Boltzmann simulations of liquid crystal hydrodynamics
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We describe a lattice Boltzmann algorithm to simulate liquid crystal hydrodynamics. The equations of
motion are written in terms of a tensor order parameter. This allows both the isotropic and the nematic phases
to be considered. Backflow effects and the hydrodynamics of topological defects are naturally included in the
simulations, as are non-Newtonian flow properties such as shear thinning and shear banding.
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I. INTRODUCTION

Liquid crystalline materials are often made up of lon
thin, rodlike molecules@1#. The molecular geometry and in
teractions can lead to a wide range of equilibrium phas
Here we shall be concerned with two of the simplest pha
the isotropic phase, where the orientation of the molecule
random, and the nematic phase, where the molecules ten
align along a preferred direction.

The aim of this paper is to describe a numerical sche
that can explore the hydrodynamics of liquid crystals with
both the isotropic and the nematic phases. There are
major differences between the hydrodynamics of simple
uids and that of liquid crystals. First, the geometry of t
molecules means that they are rotated by gradients in
velocity field. Second, the equilibrium free energy is mo
complex than for a simple fluid and this in turn increases
complexity of the stress tensor in the Navier-Stokes equa
for the evolution of the fluid momentum. This coupling b
tween the elastic energy and the flow leads to rich hydro
namic behavior. A simple example is the existence of a tu
bling phase where the molecules rotate in an applied s
@2#. Other examples include shear banding, a nonequilibr
phase separation into coexisting states with different st
rates@3# and the possibility of Williams domains, convectio
cells induced by an applied electric field@1#.

The equations of motion describing liquid crystal hydr
dynamics are complex. There are several derivations bro
in agreement but differing in the detailed form of som
terms. Here we follow the approach of Beris and Edwa
@4# who wrote the equations of motion in terms of a tens
order parameterQ that can be related to the second mom
of the orientational distribution function of the molecule
This has the advantage that the hydrodynamics of both
isotropic and the nematic phases, and of topological def
in the nematic phase can be included within the same
malism. Most other theories of liquid crystal hydrodynam
appear as limiting cases. In particular, the Ericksen-Le
formulation of nematodynamics@5,6#, widely used in the ex-
perimental liquid crystal literature, follows when uniaxiali
is imposed and the magnitude of the order parameter is
constant.

Considerable analytic progress in understanding liq
crystal flow in simple geometries has been made but thi
inevitably limited by the complexity of the equations of m
1063-651X/2001/63~5!/056702~10!/$20.00 63 0567
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tion. Therefore it is useful to formulate a method of obta
ing numerical solutions of the hydrodynamic equations
further explore their rich phenomenology. Moreover, w
should like to be able to predict flow patterns for given v
cous and elastic coefficients for comparison with expe
ments and to explore the effects of hydrodynamics wh
liquid crystals are used in display devices or during indust
processing.

Rey and Tsuji@2# have obtained interesting results o
flow-induced ordering of the director field and on defect d
namics by solving the Beris-Edwards equation for the or
parameter. However, the velocity field was imposed ex
nally and no back-flows~effect of the director configuration
on the velocity field! were included. Fukuda@7# used a Euler
scheme to solve a model somewhat simpler than the
Beris-Edwards model but still including backflow, and stu
ied the effect of hydrodynamics on phase ordering in liqu
crystals. Otherwise most previous work on liquid crystal h
drodynamics has been limited to a constant order param
~the Ericksen-Leslie-Parodi equations! and often restricted to
one dimension.

Lattice Boltzmann schemes have recently proved v
successful in simulations of complex fluids and it is th
approach that we shall take here@8#. Such algorithms can be
usefully and variously considered as a slightly unusual fin
difference discretization of the equations of motion or a
lattice version of a simplified Boltzmann equation. It is n
understood why the approach is particularly useful for co
plex fluids but it may be related to the very natural way
which a free energy describing the equilibrium properties
the fluid can be incorporated in the simulations, drawing
ideas from statistical mechanics@9#. Recent applications
have included phase ordering and flow in binary fluids@10#
and self-assembly and spontaneous emulsification in
phiphilic fluids @11,12#.

However, in applications so far, with the exception
@13#, the order parameter has been a scalar and has cou
to the flow via a simple advective term. The liquid cryst
equations of motion are written in terms of a tensor ord
parameter. This is responsible for the main new feature
the lattice Boltzmann approach described in this paper
also leads to the possibility of exploring non-Newtonian flu
behavior such as shear thinning and shear banding with
the need to impose a constitutive equation for the stress@14#.
©2001 The American Physical Society02-1
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In Sec. II we summarize the hydrodynamic equations
motion for liquid crystals. The lattice Boltzmann scheme
defined in Sec. III. A modified version of the collision op
erator is used to eliminate lattice viscosity effects. Section
describes a Chapman-Enskog expansion that relates the
merical scheme to the hydrodynamic equations of moti
Numerical results for simple shear flows are presented
Sec. V and other possible applications of the approach
outlined in Sec. VI.

II. THE HYDRODYNAMIC EQUATIONS OF MOTION

We shall follow the formulation of liquid crystal hydro
dynamics described by Beris and Edwards@4#. The con-
tinuum equations of motion are written in terms of a ten
order parameterQ that is related to the direction of indi

vidual moleculesn̂W by Qab5^n̂an̂b2 1
3 dab& where the an-

gular brackets denote a coarse-grained average.~Greek indi-
ces will be used to represent cartesian components of ve
and tensors and the usual summation over repeated ind
will be assumed.! Q is a traceless symmetric tensor that
zero in the isotropic phase. We first write down a Land
free energy that describes the equilibrium properties of
liquid crystal and the isotropic-nematic transition. This a
pears in the equation of motion of the order parameter, wh
includes a Cahn-Hilliard-like term through which the syste
evolves towards thermodynamic equilibrium. It also includ
a term coupling the order parameter to the flow. The or
parameter is both advected by the flow and, because liq
crystal molecules are rodlike, rotated by velocity gradien

We then write down the continuity and Navier-Stok
equations for the evolution of the flow field. In particular, t
form of the stress appropriate to a tensor order paramet
discussed. A brief comparison is given to a similar form
ism introduced by Doi@15# and extended by Olmsted an
co-workers@16,17#. For a uniaxial nematic in the absence
any defects, the Beris-Edwards equations reduce to
Ericksen-Leslie-Parodi formulation of nematodynamics@1#.
The hydrodynamic behavior of nematic liquid crystals is
ten characterized in terms of the Leslie coefficients and
therefore useful to list them below. More details of the ma
ping between the Beris-Edwards and the Ericksen-Les
Parodi equations are given in Appendix A.

Free energy: The equilibrium properties of a liquid crysta
in solution can be described by a free energy@17#

F5E d3r H a

2
Qab

2 2
b

3
QabQbgQga1

c

4
~Qab

2 !2

1
k

2
~]aQbl!2J . ~2.1!

We shall work within the one elastic constant approximati
Although it is not hard to include more general elastic ter
this simplification will not affect the qualitative behavio
The free energy~2.1! describes a first-order transition from
the isotropic to the nematic phase.

Equation of motion of the nematic order parameter: The
equation of motion for the nematic order parameter is@4#
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~] t1uW •¹W !Q2S~W,Q!5GH, ~2.2!

whereG is a collective rotational diffusion constant. The fir
term on the left-hand side of Eq.~2.2! is the material deriva-
tive describing the usual time dependence of a quantity
vected by a fluid with velocityuW . This is generalized by a
second term

S~W,Q!5~jD1V!~Q1I /3!1~Q1I /3!~jD2V!

22j~Q1I /3!Tr~QW!, ~2.3!

where D5(W1WT)/2 and V5(W2WT)/2 are the sym-
metric part and the antisymmetric part, respectively, of
velocity gradient tensorWab5]bua• S(W,Q) appears in the
equation of motion because the order-parameter distribu
can be both rotated and stretched by flow gradients.j is a
constant that will depend on the molecular details of a giv
liquid crystal.

The term on the right-hand side of Eq.~2.2! describes the
relaxation of the order parameter towards the minimum
the free energy. The molecular fieldH that provides the driv-
ing motion is related to the derivative of the free energy

H52
d F
dQ

1~ I /3!Tr
d F
d Q

52aQ1b@Q22~ I /3!Tr Q2#2cQ Tr Q21k¹2Q.

~2.4!

Continuity and Navier-Stokes equations: The fluid mo-
mentum obeys the continuity

] tr1]arua50, ~2.5!

wherer is the fluid density and the Navier-Stokes equati

r] tua1rub]bua5]btab1]bsab

1
rt f

3
@]b$~dab23]rP0dab!]gug

1]aub1]bua%#. ~2.6!

The form of the equation is not dissimilar to that for a simp
fluid. However, the details of the stress tensor reflect
additional complications of liquid crystal hydrodynamic
There is a symmetric contribution

sab52P0dab2jHagS Qgb1
1

3
dgbD

2jS Qag1
1

3
dagDHgb12jS Qab1

1

3
dabDQgeHge

2]bQgn

dF
d]aQgn

~2.7!

and an antisymmetric contribution

tab5QagHgb2HagQgb . ~2.8!

The pressureP0 is taken to be
2-2
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P05rT2
k

2
~¹W Q!2. ~2.9!

An earlier development of liquid crystal hydrodynami
in terms of a tensor order parameter was proposed by
@15#. The Doi theory is based upon a Smoluchowski evo
tion equation~similar to the Boltzmann equation for transl
tional motion! for the orientational distribution function. Th
main advantage of the approach is the possibility of relat
the phenomenological coefficients in the equations of mo
to microscopic parameters. One omission is the lack of g
dient terms in the free energy~but see@17#!. Moreover, it is
necessary to use closure approximations to obtain a trac
set of hydrodynamic equations. The Doi and Beris-Edwa
equations are very similar: the main difference is in the sy
metric contribution to the stress tensor. The Doi theory gi
a simpler form that is incomplete in that it does not ob
Onsager reciprocity.~Full molecular theories do not suffe
from this inconsistency@18#.!

Hydrodynamic equations for the nematic phase were
mulated by Ericksen and Leslie@5,6,1#. These are widely
used as the Leslie coefficients provide a useful measur
the viscous properties of the liquid crystal fluid. The Ber
Edwards equations reduce to those of Ericksen and Lesl
the uniaxial nematic phase when the magnitude of the o
parameter remains constant. Hence a limitation of
Ericksen-Leslie theory is that it cannot include the hydrod
namics of topological defects. For convenience we list be
the relationship between the Leslie coefficients and the
rameters appearing in the equations of motion~2.2! and
~2.6!. An outline of their derivation from the Beris-Edward
approach is given in Appendix A.

a152
2

3
q2~314q24q2!j2/G, ~2.10!

a25H 2
1

3
q~21q!j2q2J Y G, ~2.11!

a35H 2
1

3
q~21q!j1q2J Y G, ~2.12!

a45
4

9
~12q!2j2/G1h, ~2.13!

a55H 1

3
q~42q!j21

1

3
q~21q!jJ Y G, ~2.14!

a65H 1

3
q~42q!j22

1

3
q~21q!jJ Y G, ~2.15!

whereq is the magnitude of the nematic order parameter
h5rt f /3.

A detailed comparison of the theories of liquid crys
hydrodynamics can be found in Beris and Edwards@4#.
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III. A LATTICE BOLTZMANN ALGORITHM
FOR LIQUID CRYSTAL HYDRODYNAMICS

We now define a lattice Boltzmann algorithm that solv
the hydrodynamic equations of motion of a liquid cryst
Eqs.~2.2!, ~2.5!, and~2.6!. Lattice Boltzmann algorithms are
defined in terms of a set of continuous variables, usefu
termed partial distribution functions, which move on a latti
in discrete space and time. They were first developed
mean-field versions of cellular automata simulations but
also usefully be viewed as a particular finite-differen
implementation of the continuum equations of motion@8#.

Lattice Boltzmann approaches have been particularly s
cessful in modeling fluids that evolve to minimize a fre
energy@9#. It has not been proved why this is the case, b
one can surmise that the existence of anH theorem, which
governs the approach to equilibrium, helps to enhance
stability of the scheme@19,20#.

The simplest lattice Boltzmann algorithm, which d
scribes the Navier-Stokes equations of a simple fluid, is
fined in terms of a single set of partial distribution functio
that sum on each site to give the density. For liquid crys
hydrodynamics, this must be supplemented by a second
which are tensor variables, and which are related to the
sor order parameterQ. A description of the algorithm is
given in Sec. III A and the continuum limit is taken in Se
III B. A Chapman-Enskog expansion@21# showing how the
algorithm reproduces the liquid crystal equations of mot
follows in Sec. III C.

A. The lattice Boltzmann algorithm

We define two distribution functions, the scalarsf i(xW ) and
the symmetric traceless tensorsGi(xW ) on each lattice sitexW .
Each f i , Gi is associated with a lattice vectoreW i . We
choose a nine-velocity model on a square lattice with vel
ity vectors eW i5(61,0),(0,61),(61,61),(0,0). Physical
variables are defined as moments of the distribution func

r5(
i

f i , rua5(
i

f ieia , Q5(
i

Gi . ~3.1!

The distribution functions evolve in a time stepDt ac-
cording to

f i~xW1eW iDt,t1Dt !2 f i~xW ,t !

5
Dt

2
@Cf i~xW ,t,$ f i%!1Cf i~xW1eW iDt,t1Dt,$ f i* %!#,

~3.2!

Gi~xW1eW iDt,t1Dt !2Gi~xW ,t !

5
Dt

2
@CGi~xW ,t,$Gi%!1CGi~xW1eW iDt,t1Dt,$Gi* %!#.

~3.3!
2-3



u

tt
th

f

i
e

o
e

so

th
e

t
s

a

t-
u-
in

f-
is

-

-

COLIN DENNISTON, ENZO ORLANDINI, AND J. M. YEOMANS PHYSICAL REVIEW E63 056702
This represents free streaming with velocityeW i and a colli-
sion step that allows the distribution to relax towards eq
librium. f i* and Gi* are first-order approximations tof i(xW

1eW iDt,t1Dt) and Gi(xW1eW iDt,t1Dt), respectively. They
are obtained from Eqs.~3.2! and ~3.3! but with f i* and Gi*
set tof i andGi . Discretizing in this way, which is similar to
a predictor-corrector scheme, has the advantages that la
viscosity terms are eliminated to second order and that
stability of the scheme is improved.

The collision operators are taken to have the form o
single relaxation time Boltzmann equation@8# together with
a forcing term

Cf i~xW ,t,$ f i%!52
1

t f
@ f i~xW ,t !2 f i

eq~xW ,t,$ f i%!#1pi~xW ,t,$ f i%!,

~3.4!

CGi~xW ,t,$Gi%!52
1

tg
$Gi~xW ,t !2Gi

eq~xW ,t,$Gi%!%

1M i~xW ,t,$Gi%!. ~3.5!

The form of the equations of motion and thermodynam
equilibrium follow from the choice of the moments of th
equilibrium distributionsf i

eq and Gi
eq and the driving terms

pi andM i . f i
eq is constrained by

(
i

f i
eq5r, (

i
f i

eqeia5rua ,

(
i

f i
eqeiaeib52sab1ruaub , ~3.6!

where the zeroth and first moments are chosen to imp
conservation of mass and momentum. The second mom
of f eq controls the symmetric part of the stress ten
whereas the moments ofpi

(
i

pi50, (
i

pieia5]btab , (
i

pieiaeib50 ~3.7!

impose the antisymmetric part of the stress tensor. For
equilibrium of the order-parameter distribution, we choos

(
i

Gi
eq5Q, (

i
Gi

eqeia5Qua , (
i

Gi
eqeiaeib5Quaub .

~3.8!

This ensures that the order parameter is convected with
flow. Finally, the evolution of the order parameter is mo
conveniently modeled by choosing

(
i

M i5GH~Q!1S~W,Q![Ĥ, (
i

M ieia5S (
i

M i Dua ,

~3.9!

which ensures that the fluid minimizes its free energy
equilibrium.
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Conditions~3.6!–~3.9! can be satisfied as is usual in la
tice Boltzmann schemes by writing the equilibrium distrib
tion functions and forcing terms as polynomial expansions
the velocity@8#

f i
eq5As1Bsuaeia1Csu

21Dsuaubeiaeib1Esabeiaeib ,

Gi
eq5Js1K suaeia1L su

21Nsuaubeiaeib ,

pi5Ts]btabeia ,

M i5Rs1Ssuaeia , ~3.10!

wheres5eW i
2P$0,1,2% identifies separate coefficients for di

ferent absolute values of the velocities. A suitable choice

A25~sxx1syy!/16, A152A2 , A05r212A2 ,

B25r/12, B154B2 ,

C252r/16, C152r/8, C0523r/4,

D25r/8, D15r/2,

E2xx5~sxx2syy!/16, E2yy52E2xx , E2xy5E2yx5sxy/8,

E1xx54E2xx , E1yy54E2yy ,

J05Q,

K25Q/12, K154K2 ,

L252Q/16, L152Q/8, L0523Q/4,

N25Q/8, N15Q/2,

T251/12, T154T2 ,

R25Ĥ/9, R15R05R2 ,

S25Ĥ/12, S154S2 , ~3.11!

where any coefficients not listed are zero.

B. Continuum limit

We write down the continuum limit of the lattice Boltz
mann evolution equations~3.2! and ~3.3! showing, in par-
ticular, that the predictor-corrector form of the collision in
tegral eliminates lattice viscosity effects to second order.

Consider Eq.~3.2!. Taylor expandingf i(xW1eW iDt,t1Dt)
gives

f i~xW1eW iDt,t1Dt !5 f i~xW ,t !1DtD f i~xW ,t !1
Dt2

2
D2f i~xW ,t !

1O~Dt3!, ~3.12!

where D[] t1eia]a . Similarly, expanding the collision
term equation~3.4!,
2-4
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Cf i„xW1eW iDt,t1Dt,@ f i1DtCf i~xW ,t,$ f i%!#…

5Cf i~xW ,t,$ f i%!1DtDCf i~xW ,t,$ f i%!1O~Dt2!

~3.13!

and substituting into Eq.~3.2! gives

D f i~xW ,t !5Cf i~xW ,t,$ f i%!2
Dt

2
@D2f i~xW ,t !2DCf i~xW ,t,$ f i%!#

1O~Dt2!. ~3.14!

We see immediately that

D f i~xW ,t !5Cf i~xW ,t,$ f i%!1O~Dt !. ~3.15!

Using Eq.~3.15! in the expansion~3.14!, it follows that there
are no terms of orderDt in Eq. ~3.14! and

D f i~xW ,t !5Cf i~xW ,t,$ f i%!1O~Dt2!. ~3.16!

A similar expansion of Eq.~3.3! leads to

DGi~xW ,t !5CGi~xW ,t,$Gi%!1O~Dt2!. ~3.17!

In the standard lattice, Boltzmann-discretization terms
orderDt appear in Eqs.~3.16! and~3.17!. These are of simi-
lar forms to those that arise from the Chapman-Enskog
pansion and have been subsumed into the viscosity. H
ever, this is not generally possible and it is convenient to
the predictor-corrector form for the collision term assum
in Eqs.~3.4! and ~3.5! to eliminate them at this stage.

C. Chapman-Enskog expansion

We can now proceed with a Chapman-Enskog expans
an expansion of the distribution functions about equilibriu
which assumes that successive derivatives are of increas
high order@21#. The aim is to show that Eq.~3.17! repro-
duces the evolution equation of the liquid crystal order
rameter ~2.2!, Eq. ~3.16!, and the continuity and Navier
Stokes Eqs.~2.5! and ~2.6! to second order in derivatives
Writing

Gi5Gi
(0)1Gi

(1)1Gi
(2)1••• ~3.18!

and substituting into Eq.~3.17! using the form for the colli-
sion term~3.5! gives, to zeroth order

Gi
(0)5Gi

eq1tgM i . ~3.19!

Summing overi and using, from Eqs.~3.1! and ~3.8!,

(
i

Gi[Q5(
i

Gi
eq ~3.20!

shows that the zeroth moment ofM i appears at first order in
the Chapman-Enskog expansion. This is as expected bec
from Eq.~3.9!, ( iM i is related to free energy derivatives th
will be zero in equilibrium. The first moment will also b
first order in derivatives.
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It then follows, from substituting Eq.~3.18! into Eq.
~3.17!, that the first and second-order deviations of the d
tribution function from equilibrium are

Gi
(1)52tgDGi

eq1tgM i , ~3.21!

Gi
(2)5tg

2D2Gi
eq2tg

2DM i . ~3.22!

Using Eq.~3.21! in Eq. ~3.18!, summing overi, and using
Eqs.~3.20!, ~3.8!, and~3.9! give, to first order,

] tQ1]a~Qua!5Ĥ1O~]2!. ~3.23!

The second-order term~3.22! gives after a lengthy calcu
lation, described in Appendix B, a correction

2tgH ]aS Q

r
]hP0D J . ~3.24!

This additional term is a feature common to most latt
Boltzmann models of complex fluids. It is not know
whether it has a physical origin, but it is very small in all th
cases tested so far and has no effect upon the behavior o
fluid.

A similar expansion for the partial density distributio
functions f i gives the continuity and Navier-Stokes equ
tions. Writing

f i5 f i
(0)1 f i

(1)1 f i
(2)1•••, ~3.25!

substituting into Eq.~3.16! and using the collision operato
~3.4! give

f i
(0)5 f i

eq1t f pi , ~3.26!

f i
(1)52t fD f i

eq2t f
2Dpi , ~3.27!

f i
(2)5t f

2D2f i
eq1t f

3D2pi . ~3.28!

Summingf i over i and using the constraints on the momen
of f i , f i

eq , and pi from Eqs.~3.1!, ~3.6!, and ~3.7!, respec-
tively,

S ] tr1]arua1t f]a(
i

pieiaD
5t f] tF] tr1]arua1t f]a(

i
pieiaG

1t f]aF] trua1]b(
i

f i
eqeiaeib1t f] t(

i
pieiaG .

~3.29!

The first term in square brackets is second order in der
tives. Therefore
2-5
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S ] tr1]arua1t f]a(
i

pieiaD
5t f]aF] trua1]b(

i
f i

eqeiaeib1t f] t(
i

pieiaG
1O~]3!. ~3.30!

We now multiply Eq.~3.25! by eia and sum overi. Using
the constraints~3.6!, ~3.7!, and the definitions~3.1!,

S ] trua1]b(
i

f i
eqeiaeib1t f] t(

i
pieiaD

5(
i

pieia1t f] tF] trua1]b(
i

f i
eqeiaeib

1t f] t(
i

pieiaG1t f]bF] t(
i

f i
eqeiaeib

1]g(
i

f i
eqeiaeibeig1t f]g(

i
pieiaeibeigG .

~3.31!

So to first order in derivatives

S ] trua1]b(
i

f i
eqeiaeib1t f] t(

i
pieiaD

5(
i

pieia1O~]2!. ~3.32!

Placing Eq.~3.32! into the square brackets in Eq.~3.30!, we
obtain the continuity equation~2.5! to second order in de
rivatives

~] tr1]arua!501O~]3!. ~3.33!

Substituting Eq.~3.32! into the first square brackets in Eq
~3.31! and imposing the constraints on the first moment ofpi

and the second moment off i
eq , Eqs.~3.7! and ~3.6!, gives

] t~rua!1]b~ruaub!

5]bsab1]btab1t f]bF2] tsab1] t~ruaub!

1]g(
i

f i
eqeiaeibeig1t f]g(

i
pieiaeibeigG

~3.34!

showing immediately that the equation of motion~2.6! is
reproduced to Euler level~first order in derivatives!.

From the definitions~3.11!,

(
i

f i
eqeiaeibeig5

r

3
~uadbg1ubdag1ugdab!,

~3.35!
05670
(
i

pieiaeibeig5
1

3
~]dtdadbg1]dtdbdag1]dtdgdab!.

~3.36!

Using Eqs.~3.35! and~3.36!, the viscous terms in the squar
brackets in Eq.~3.34! can be simplified. We assume that th
fluid is incompressible, ignore terms of third order in th
velocities, and furthermore, assume that within these seco
order terms, the stress tensor can be approximated by
nussing the equilibrium pressureP0. We consider each term
in the square brackets in turn.

~1! The first term can be rewritten as

] tsab52~]rP0!~] tr!dab5r~]rP0!]gugdab ,
~3.37!

where the last step follows using the continuity equat
~2.5!.

~2! Rewriting

] t~ruaub!5] t~rua!ub1ua] t~rub! ~3.38!

and replacing the time derivatives with space derivatives
ing the Euler terms in Eq.~3.34!, one sees that this term i
zero given the assumptions listed above.

~3! Using Eq.~3.35!,

]g(
i

f i
eqeiaeibeig5

r

3
~]bua1]aub1]gugdab!.

~3.39!

~4! From Eq. ~3.36! the fourth term is of third order in
derivatives and can be neglected.

Replacing the square brackets in Eq.~3.34! with contribu-
tions from~1! and~3!, we obtain the incompressible Navie
Stokes equation~2.6!.

IV. NUMERICAL RESULTS

The primary aim of this paper is to describe the details
a numerical algorithm for simulating liquid crystal hydrod
namics. Therefore we restrict ourselves here to presentin
few brief test cases aimed at checking the approach. Fur
numerical applications are listed in the summary of the pa
and will be presented in detail elsewhere.

In equilibrium with no flow, the free energy~2.1! is mini-
mized. For a generic lyotropic liquid crystal, we takea
5(12g/3) and b5c5g, whereg5fLn2 /a is Doi’s ex-
cluded volume parameter@15,4#. @L is the molecular aspec
ratio, f the concentration, andn2 anda areO(1) geometri-
cal prefactors.# At a5b2/(27c) or g52.7 for the generic
lyotropic, there is a first-order transition to the nema
phases and asg is increased further, the nematic order p
rameterq increases. The variation ofq with g can be calcu-
lated analytically. The agreement with simulation results
excellent as shown in Fig. 1.

Imposing a shear on the system in the nematic phase
act to align the director field along the flow gradient. Assu
ing a steady state, homogeneous flow, and a uniaxial nem
2-6
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state, it follows from Eq.~2.2! that the angle between th
direction of flow and the directoru is given by@4#

j cos 2u5
3q

21q
. ~4.1!

The simulations reproduce this relation well as shown in F
2 for different values ofq andj.

When there is no solution to Eq.~4.1!, the director
tumbles in the flow or may move out of the plane to form
log-rolling state@1,2#. Figure 3 gives an example of this typ
of behavior showing the director angle as a function of tim

Olmsted and Goldbart@16# have argued that shear stre
acts to favor the nematic over the isotropic phase. He
application of shear moves the phase boundary, which
tends from the first-order equilibrium transition at zero sh
along a line of first-order transitions that end at a noneq
librium critical point. Numerical results for this boundary a
shown in Fig. 4. The results are qualitatively similar to tho
of @16,17# who obtained the phase boundary for a sligh
different model using an interface stability argument.

On the coexistence line the liquid crystal prefers to ph
separate into shear bands@16,17,3#, coexisting regions of dif-
ferent strain rate running parallel to the shear direction. S
shear banding occurs spontaneously in the simulations
ported here. An example is shown in Fig. 5.

FIG. 1. Equilibrium order parameterq versuscf. The points are
from a simulation and the line is the analytic result.

FIG. 2. j times the cosine of twice the angle between the dir
tor and the flowj cos 2u versus the magnitude of the order para
eterq. The points are from simulations and the line is the expec
value 3q/(21q) from Eq. ~4.1!.
05670
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V. SUMMARY AND DISCUSSION

In this paper we described in detail a lattice Boltzma
algorithm to simulate liquid crystal hydrodynamics. In th
continuum limit we recover the Beris-Edwards formulatio
within which the liquid crystal equations of motion are wri
ten in terms of a tensor order parameter. The equations
applicable to the isotropic, uniaxial nematic, and biax
nematic phases. Working within the framework of a variab
tensor order parameter, it is possible to simulate the dyn
ics of topological defects and nonequilibrium phase tran
tions between different flow regimes.

Lattice Boltzmann simulations have worked well for com
plex fluids where a free energy can be used to define t
modynamic equilibrium. However, previous work has co
centrated on self-assembly with much less attention be
paid to more complex flow properties. The algorithm d
scribed here includes coupling between the order param
and the flow. This allows the investigation of non-Newtoni
effects such as shear thinning and shear banding. Exam
are given in Sec. IV.

-

d

FIG. 3. The components of the director as a function of time
a system changing from a metastable tumbling state to a st
log-rolling state.
2-7
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There are many directions for further research opened
by the rich physics inherent in liquid crystal hydrodynam
and the generality of the Beris-Edwards equations. For
ample, results for liquid crystals under Poiseuille flow sh
that the director configuration can depend on the sample
tory as well as the viscous coefficients and thermodyna
parameters@22#. The effect of hydrodynamics on phase o
dering is being investigated@23# and it would be interesting
to study the pathways by which different dynamic sta
transform into each other. The addition of an electric field
the equations of motion will allow problems relevant to li
uid crystal displays to be addressed. Numerical invest
tions are proving vital as the complexity of the equatio
makes analytic progress difficult.

APPENDIX A

We outline how the Beris-Edwards equations reduce
those of Ericksen, Leslie, and Parodi in the uniaxial nem

FIG. 4. Phase diagram in the shear stressPxy , effective tem-
peraturea plane.@a is the coefficient of the quadratic term in th
free energy~2.1!.#

FIG. 5. Shear bands for a range of strain rates. The bands
formed by the coexistence of isotropic~darker! and nematic states
The variation of the strain rate across the system, scaled by 100G to
make it dimensionless, is also shown.
05670
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phase when the magnitude of the order parameter rem
constant. Hence we obtain expressions for the Leslie co
cients in terms of the parameters appearing in the equat
of motion ~2.2! and ~2.6! @4#.

Taking nW to represent the order-parameter field, t
Ericksen-Leslie stress tensor and the equation of motion
the order parameter are, respectively,@5,6,1#

sab
EL5a1nanbnmnrDmr1a4Dab1a5nbnmDma

1a6nanmDmb1a2nbNa1a3naNb , ~A1!

hm
EL5g1Nm1g2naDam ~A2!

together with the relations

g15a32a2 , ~A3!

g25a62a55a21a3 . ~A4!

The second of these, known as Parodi’s relation, is a resu
Onsager reciprocity.@Note that, following the convention in
Eq. ~2.6!, the stress tensor is written so that in the cor
sponding Navier-Stokes equation one contracts on the
ond index when taking the divergence.#

The Na are corotational derivatives

Na5] tna1ub]bna2Vamnm . ~A5!

The molecular fieldhW is given by

hm52
d F
d nm

5kEL¹2nm1z~r !nm, ~A6!

where the last line assumes the one-elastic constant app
mation andz is a Lagrange multiplier to imposenW 251.

To obtain the Ericksen-Leslie-Parodi equations from
tensor formalism, uniaxial symmetry is imposed on the or
parameter

Qab5q~nanb21/3dab!. ~A7!

We first obtain an expression forkEL in terms ofk and show
that Eq.~2.4! reduces to the form~A6!. Using the chain rule

hm
EL52

d F
d nm

52
d F

d Qab

]Qab

]nm
5q~Hmbnb1naHam!.

~A8!

SubstitutingH from Eq. ~2.4! into Eq. ~A8!, writing Q in
uniaxial form and simplifying gives after some algebra

hm
EL52q2k¹2nm . ~A9!

The terms proportional tonm have been omitted as these w
only change the magnitude of the order parameter, and
Lagrange multipierz will adjust to prevent this. Hence com
paring Eqs.~A6! and ~A9!,

kEL52q2k. ~A10!

re
2-8
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Consider now the equation of motion for the order para
eter ~A2!. Solving theQ-evolution equation~2.2! for H and
writing Q in uniaxial form give

GHab5q~nbNa1naNb!2qj~Dagngnb1nangDgb!

1
2

3
~q21!jDab12q2jnanbDgnnnng

1
2

3
q~12q!jdabDgnnnng . ~A11!

Substituting this into Eq.~A8! yields, after some algebra,

hm52q2Nm2
2

3
q~q12!jnaDam , ~A12!

where we have again omitted terms proportional tonm .
Comparison to Eq.~A2! gives

g152q2/G, ~A13!

g252
2

3
q~q12!j/G. ~A14!

Finally, we consider how the stress tensor maps betw
the two theories. Using Eqs.~A11! and~A7!, the symmetric
part ~2.7! and the antisymmetric part~2.8! of the Beris-
Edwards stress tensor become, respectively,

Gtab5q2~naNb2Nanb!2q~q12!/3j~nangDgb

2Dagngnb! ~A15!

Gsab52
qj

3
~q12!~nbNa1naNb!1

qj2

3
~42q!

3~Dagngnb1nangDgb!1
2j2

3
~q21!2Dab

2
8q2j2

3 S 3

4
1q2q2D jnanbDgnnnng

1terms indabDgnnnng , ~A16!

where we have ignored the final distortion term in Eq.~2.7!.
A comparison of Eq.~A15! and Eqs.~A16!–~A1! gives the
,

05670
-

en

Leslie coefficients~2.10!–~2.15!. ~These agree with the ex
pressions given by Beris and Edwards in@4# apart for the
formula fora1. However, the formula fora1 listed in @24# is
the same as that calculated here.!

APPENDIX B

We obtain the second-order term~3.24! in the Chapman-
Enskog expansion for the equation of motion of the ord
parameter. Proceeding as in the derivation of Eq.~3.23! but
including the second-order term~3.22! gives

] tQ1]a~Qua!2Ĥ5tg$] t
2Q12]a] t~Qua!1]a]b~Quaub!

2] tĤ2]a~Ĥua!%, ~B1!

where we have used the definitions~3.8! and~3.9! to perform
the sums overi. Equation~3.23! shows that the first, half the
second, and the fourth term in the curly brackets are toge
of higher order in derivatives and can be eliminated.

We next note that

]a] t~Qua!5]aS 2
Q

r
~] tr!ua1~] tQ!ua1

Q

r
] t~rua! D .

~B2!

The time derivatives can be replaced by spatial derivati
by using Eqs.~3.33!, ~3.23!, and~3.32!, respectively. Substi-
tuting back into Eq.~B1! and ignoring terms in( i pieia
;]btab that contain an extra derivative

] tQ1]a~Qua!2Ĥ

5tgH ]aS Q

r D ]b~rub!ua2]a]b~Qub!ua1]a~Ĥua!J
2tgH ]aS Q

r
@]b~ruaub!2]bsab# D

1]a]b~Quaub!2]a~Ĥua!J . ~B3!

Rearranging the derivatives this simplifies to

] tQ1]a~Qua!2Ĥ52tgH ]aS Q

r
]aP0D J . ~B4!
s,

ett.
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