PHYSICAL REVIEW E, VOLUME 63, 056702
Lattice Boltzmann simulations of liquid crystal hydrodynamics
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We describe a lattice Boltzmann algorithm to simulate liquid crystal hydrodynamics. The equations of
motion are written in terms of a tensor order parameter. This allows both the isotropic and the nematic phases
to be considered. Backflow effects and the hydrodynamics of topological defects are naturally included in the
simulations, as are non-Newtonian flow properties such as shear thinning and shear banding.

DOI: 10.1103/PhysReVE.63.056702 PACS nunier02.70—c, 83.80.Xz, 47.11j, 64.70.Md

[. INTRODUCTION tion. Therefore it is useful to formulate a method of obtain-
ing numerical solutions of the hydrodynamic equations to
Liquid crystalline materials are often made up of long, further explore their rich phenomenology. Moreover, we
thin, rodlike molecule$1]. The molecular geometry and in- should like to be able to predict flow patterns for given vis-
teractions can lead to a wide range of equilibrium phasesous and elastic coefficients for comparison with experi-
Here we shall be concerned with two of the simplest phasesnents and to explore the effects of hydrodynamics when
the isotropic phase, where the orientation of the molecules iBquid crystals are used in display devices or during industrial
random, and the nematic phase, where the molecules tend {pocessing.
align along a preferred direction. Rey and Tsuji[2] have obtained interesting results on
The aim of this paper is to describe a numerical schem@ow-induced ordering of the director field and on defect dy-
that can explore the hydrodynamics of liquid crystals withinhamics by solving the Beris-Edwards equation for the order
both the isotropic and the nematic phases. There are tWearameter. However, the velocity field was imposed exter-
major differences between the hydrodynamics of simple lidy,51y and no back-flowgeffect of the director configuration

uids and that of liquid crystals. First, the geomgtry Of. theon the velocity fieldl were included. Fukudgr] used a Euler
molecules means that they are rotated by gradients in th’sncheme to solve a model somewhat simpler than the full
velocity field. Second, the equilibrium free energy is more

complex than for a simple fluid and this in turn increases theBe”S_EdWards model but still including backflow, and stud-

complexity of the stress tensor in the Navier-Stokes equatio'ned the effect of hydrodynamics on phase ordering in liquid

for the evolution of the fluid momentum. This coupling be- crystals. cherwise most_ p_revious work on liquid crystal hy-
tween the elastic energy and the flow leads to rich hydrodygrc’dyn_amlcs has peen I|m_|ted to a constant order_ parameter
namic behavior. A simple example is the existence of a tum/{the E.nckse.n—Leslle—Parodl equatigrmnd often restricted to
bling phase where the molecules rotate in an applied she@ne dimension.
[2]. Other examples include shear banding, a nonequilibrium Lattice Boltzmann schemes have recently proved very
phase separation into coexisting states with different straiguccessful in simulations of complex fluids and it is this
rates[3] and the possibility of Williams domains, convection approach that we shall take hdf. Such algorithms can be
cells induced by an applied electric figld]. usefully and variously considered as a slightly unusual finite-
The equations of motion describing liquid crystal hydro- difference discretization of the equations of motion or as a
dynamics are complex. There are several derivations broadhattice version of a simplified Boltzmann equation. It is not
in agreement but differing in the detailed form of someunderstood why the approach is particularly useful for com-
terms. Here we follow the approach of Beris and Edwardsplex fluids but it may be related to the very natural way in
[4] who wrote the equations of motion in terms of a tensorwhich a free energy describing the equilibrium properties of
order paramete® that can be related to the second momenthe fluid can be incorporated in the simulations, drawing on
of the orientational distribution function of the molecules. ideas from statistical mechanid®]. Recent applications
This has the advantage that the hydrodynamics of both thkave included phase ordering and flow in binary flUiti6]
isotropic and the nematic phases, and of topological defectand self-assembly and spontaneous emulsification in am-
in the nematic phase can be included within the same forphiphilic fluids[11,12.
malism. Most other theories of liquid crystal hydrodynamics However, in applications so far, with the exception of
appear as limiting cases. In particular, the Ericksen-Lesli¢13], the order parameter has been a scalar and has coupled
formulation of nematodynamid$,6], widely used in the ex- to the flow via a simple advective term. The liquid crystal
perimental liquid crystal literature, follows when uniaxiality equations of motion are written in terms of a tensor order
is imposed and the magnitude of the order parameter is helparameter. This is responsible for the main new features of
constant. the lattice Boltzmann approach described in this paper. It
Considerable analytic progress in understanding liquidalso leads to the possibility of exploring non-Newtonian fluid
crystal flow in simple geometries has been made but this isehavior such as shear thinning and shear banding without
inevitably limited by the complexity of the equations of mo- the need to impose a constitutive equation for the sfrbés
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In Sec. Il we summarize the hydrodynamic equations of (ﬂt+ﬁ-€)Q—S(W,Q)=FH, (2.2)
motion for liquid crystals. The lattice Boltzmann scheme is
defined in Sec. Ill. A modified version of the collision op- wherel is a collective rotational diffusion constant. The first
erator is used to eliminate lattice viscosity effects. Section IVterm on the left-hand side of E(R.2) is the material deriva-
describes a Chapman-Enskog expansion that relates the niive describing the usual time dependence of a quantity ad-
merical scheme to the hydrodynamic equations of motionyected by a fluid with velocityd. This is generalized by a
Numerical results for simple shear flows are presented iRecond term
Sec. V and other possible applications of the approach are
outlined in Sec. VI. S(W,Q)=(¢(D+Q)(Q+1/3)+(Q+1/3)(éD— Q)

—2E(Q+1/3)Tr(QW), 2.3
Il. THE HYDRODYNAMIC EQUATIONS OF MOTION €Q )THQW) 23

_ T _ T .
We shall follow the formulation of liquid crystal hydro- where D=(W+W7/2 gndﬂ—(w W2 are 'ghe Sym
metric part and the antisymmetric part, respectively, of the

dynamics described by Beris and Edwaidd. The con- : . N .
tinuum equations of motion are written in terms of a tensor/€locity gradient tensow, ;= dsu,,- W, Q) appears in the

: A .~ equation of motion because the order-parameter distribution
order paramete) that is related to the direction of indi can be both rotated and stretched by flow gradiesis a

vidual moleculesn by Q,z=(Nans— 3 8,5) Where the an-  constant that will depend on the molecular details of a given
gular brackets denote a coarse-grained aver@eek indi-  jiquid crystal.

ces will be used to represent cartesian components of vectors The term on the right-hand side of E@.2) describes the
and tensors and the usual summation over repeated indiceslaxation of the order parameter towards the minimum of
will be assumed.Q is a traceless symmetric tensor that is the free energy. The molecular fighithat provides the driv-

zero in the isotropic phase. We first write down a Landating motion is related to the derivative of the free energy by
free energy that describes the equilibrium properties of the

liquid crystal and the isotropic-nematic transition. This ap- v oF

pears in the equation of motion of the order parameter, which H= _%J’(”g)w%

includes a Cahn-Hilliard-like term through which the system

evolves towards thermodynamic equilibrium. It also includes =—-aQ+b[Q*~(1/13)TrQ?*]-cQ TrQ*+ «V?Q.

a term coupling the order parameter to the flow. The order (2.4)

parameter is both advected by the flow and, because liquid

crystal molecules are rodlike, rotated by velocity gradients.  Continuity and Navier-Stokes equatioriBhe fluid mo-
We then write down the continuity and Navier-Stokes mentum obeys the continuity

equations for the evolution of the flow field. In particular, the

form of the stress appropriate to a tensor order parameter is

discussed. A brief comparison is given to a similar formal-ynere ; is the fluid density and the Navier-Stokes equation

ism introduced by Do{15] and extended by Olmsted and

co-workers[16,17). For a uniaxial nematic in the absence of  pdu,+pUgdgu,=dgT,s+ dp0.p

any defects, the Beris-Edwards equations reduce to the

Ericksen-Leslie-Parodi formulation of nematodynanit$

The hydrodynamic behavior of nematic liquid crystals is of-

ten characterized in terms of the Leslie coefficients and it is

therefore useful to list them below. More details of the map- +daUgt dgUaj]. (2.6

ping between the Beris-Edwards and the Ericksen-LeslieThe form of the equation is not dissimilar to that for a simple

&tp_'—o"apuazoi (25)

PTt
+ T[ﬂﬁ{(5aﬁ—3ﬁppoﬁaﬁ)ﬁyuy

Parodi equations are given in Appendix A. fluid. However, the details of the stress tensor reflect the
. Free.energyThe eqU|I[br|um properties of a liquid crystal 5qgitional complications of liquid crystal hydrodynamics.
in solution can be described by a free eneftyy] There is a symmetric contribution
s |a , b C 5 1
f: d r EQ[IB_ §QaBQﬁyan+ Z(Qaﬁ) o-aﬁ:_PO(saﬁ_gHa'y Qyﬁ+§6'yﬁ
K ) 1 1

+ E(ﬁanB)\) . (21) - Qay+ §5ay Hyﬁ+ 25 Qaﬁ’+ §5aﬁ deH ve
We shall work within the one elastic constant approximation. ~ 9,0 oF 2.7
Although it is not hard to include more general elastic terms Bvv 03,Q,, '
this simplification will not affect the qualitative behavior. ] ) o
The free energy2.1) describes a first-order transition from @nd an antisymmetric contribution
the isotropic to the nematic phase. Top=QuyH s~ Hay Qs 2.9

Equation of motion of the nematic order parametéhe
equation of motion for the nematic order parametd#is The pressuré is taken to be
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c Ill. A LATTICE BOLTZMANN ALGORITHM
Po=pT— E(VQ)Z. (2.9 FOR LIQUID CRYSTAL HYDRODYNAMICS

We now define a lattice Boltzmann algorithm that solves

An earlier development of liquid crystal hydrodynamics the hydrodynamic equations of motion of a liquid crystal,
in terms of a tensor order parameter was proposed by DdEqs.(2.2), (2.5, and(2.6). Lattice Boltzmann algorithms are
[15]. The Doi theory is based upon a Smoluchowski evolu-defined in terms of a set of continuous variables, usefully
tion equation(similar to the Boltzmann equation for transla- termed partial distribution functions, which move on a lattice
tional motion for the orientational distribution function. The in discrete space and time. They were first developed as
main advantage of the approach is the possibility of relatingnean-field versions of cellular automata simulations but can
the phenomenological coefficients in the equations of motioralso usefully be viewed as a particular finite-difference
to microscopic parameters. One omission is the lack of graimplementation of the continuum equations of motj@ih
dient terms in the free enerdput seg17]). Moreover, it is Lattice Boltzmann approaches have been particularly suc-
necessary to use closure approximations to obtain a tractabtessful in modeling fluids that evolve to minimize a free
set of hydrodynamic equations. The Doi and Beris-Edwardenergy[9]. It has not been proved why this is the case, but
equations are very similar: the main difference is in the sym-one can surmise that the existence oftantheorem, which
metric contribution to the stress tensor. The Doi theory givegioverns the approach to equilibrium, helps to enhance the
a simpler form that is incomplete in that it does not obeystability of the schem§19,20.
Onsager reciprocity(Full molecular theories do not suffer ~ The simplest lattice Boltzmann algorithm, which de-
from this inconsistency18].) scribes the Navier-Stokes equations of a simple fluid, is de-

Hydrodynamic equations for the nematic phase were forfined in terms of a single set of partial distribution functions
mulated by Ericksen and Leslig,6,1]. These are widely that sum on each site to give the density. For liquid crystal
used as the Leslie coefficients provide a useful measure dfydrodynamics, this must be supplemented by a second set,
the viscous properties of the liquid crystal fluid. The Beris-which are tensor variables, and which are related to the ten-
Edwards equations reduce to those of Ericksen and Leslie isor order paramete®. A description of the algorithm is
the uniaxial nematic phase when the magnitude of the ordegiven in Sec. lll A and the continuum limit is taken in Sec.
parameter remains constant. Hence a limitation of thdllB. A Chapman-Enskog expansid21] showing how the
Ericksen-Leslie theory is that it cannot include the hydrody-algorithm reproduces the liquid crystal equations of motion
namics of topological defects. For convenience we list belowollows in Sec. Il C.
the relationship between the Leslie coefficients and the pa-
rameters appearing in the equations of moti@?2 and

(2.6). An outline of their derivation from the Beris-Edwards A. The lattice Boltzmann algorithm

approach is given in Appendix A. We define two distribution functions, the scalé&) and
the symmetric traceless tensdBg(x) on each lattice site.
= — Eq2(3+4q—4q2)§2/1“, (2.10 Eachfj, G is associated with a lattice ve_ctce}i .- We
3 choose a nine-velocity model on a square lattice with veloc-
ity vectors €=(%1,0),(0=1),(=1,+1),(0,0). Physical
1 ) variables are defined as moments of the distribution function
a;=| ~30(2+q)¢—q r, (211
P:Ei fi, pua=2i fi€ia, Q:Ei G. @)
1
a3=[ - gq(2+q)§+q2 / r, (2.12
The distribution functions evolve in a time stég ac-
4 cording to
ay=g(1-a) &I+, (2.13
fi(x+eAt,t+At)—f,(X,t)
1 , 1 At - - -
as=130(4=q)&"+ 30(2+a)é r, (214 27[Cﬁ(x,t,{fi})+Cﬂ(x+eiAt,t—i-At,{fi*})],
3.2
) 1 (3.2
ag=|3q(4-q)&-zq2+q)¢ /T, (215
Gi(X+eAt,t+At)—Gi(X,t)
whereq is the magnitude of the nematic order parameter and At R o
n=pr3. = [Cai(X,t{Gi}) + Cai(x+ AL+ AL{G )]
A detailed comparison of the theories of liquid crystal
hydrodynamics can be found in Beris and Edwdrs 3.3
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This represents free streaming with velooflyand a coll- ~ Conditions(3.6)—~(3.9) can be satisfied as is usual in lat-
sion step that allows the distribution to relax towards equitice Boltzmann schemes by writing the equilibrium distribu-
librium. f* and G* are first-order approximations tﬁ(i tion functions and forcing terms as polynomial expansions in

- I the velocity[8
+eAt,t+At) and G;(x+eAt,t+At), respectively. They yI8]

are obtained from Eqg¢3.2) and (3.3 but with f* and G f89= Ag+ Bgu e, + Cou+ DU, U g€ o8 g+ Esas€in€is,
set tof; andG; . Discretizing in this way, which is similar to
a predictor-corrector scheme, has the advantages that lattice GF9=Js+ KU e, +Lu’+ NsU,Uz€i €5,
viscosity terms are eliminated to second order and that the
stability of the scheme is improved. Pi=TsdpTapCia

The collision operators are taken to have the form of a
single relaxation time Boltzmann equatif8)] together with M;=R¢+SU,€,, (3.10

a forcing term
1 wheres=¢,><{0,1,2 identifies separate coefficients for dif-
Cfi(i,t,{fi})= _ ;[fi(iit)— fieq()zyt!{fi})]"' pi(iit.{fi}), ferent absolute values of the velocities. A suitable choice is

(34) AZZ(UXX+0yy)/16! A1:2A2, A():p_lez,

) 1 . . B,=p/12, B;=4B,,
Cai(X,t{Gi})=— T_{Gi(xit)_Gieq(Xatv{Gi})}
g C,=—pl16, C;=—pl8, Co=—3pl4,
+M(X,t{G}). 3.
i(X,t{Gi}) (3.9 D= pl8, Dy=pl2,
The form of the equations of motion and thermodynamic

equilibrium follow from the choice of the moments of the Eax=(0yx—0yy)/16, Eoyy=—Eou, Eoyy=Esx=0y,/8,
equilibrium distributionsf% and G{% and the driving terms
p; andM; . f£%is constrained by E1xx=4Eoxxs Ei1yy=4Esyy,

Jo=Q,

Ei fieq:p’ EI fieqeia:puai
K,=QI12, K,=4K,,

> 2% 81 5= — 0apt pUslg, (3.6) L,=-Q/16, L;=—Q/8, Lo=—3Q/4,
I

. . N,=Q/8, N;=Q/2,
where the zeroth and first moments are chosen to impose 2=Q 1=Q

conservation of mass and momentum. The second moment T.=1/12. T.=4T
eq H 2= ’ 1= 2
of f®9 controls the symmetric part of the stress tensor

whereas the moments of R,=H/9 R.=R.=R
2= ’ 1— o= M2,

Ei pi=0, Z Pi€ia=dpTap, 2. pi€i.eis=0 (3.7) S,=H/12, S,=4S,, (3.11)
ghere any coefficients not listed are zero.

impose the antisymmetric part of the stress tensor. For th

equilibrium of the order-parameter distribution, we choose
B. Continuum limit

GeI=Q, G%,,=Qu,,, G%, e ,=Qu, U,. We write down the continuum limit of the lattice Boltz-
Zi =Q Z = Q E. i Ciaip= QUally mann evolution equationg.2) and (3.3) showing, in par-
(3.8 ticular, that the predictor-corrector form of the collision in-
tegral eliminates lattice viscosity effects to second order.

This ensures that the order parameter is convected with the : : >,z
. . . Eq(3.2. Tayl i(x+eAt,t+A
flow. Finally, the evolution of the order parameter is mostgi\/g,:)r]slder a(3.2. Taylor expandingf;(x + €At L+ A1)

conveniently modeled by choosing
2

- - - - At -
— D2f.
2 _TH(Q) W.Q) a, 2 . (2 i)ua’ fi(x+eAt,t+At)="f;(x,t) + AtDf,(x,t)+ 5 D-fi(x,t)

(3.9 +O(At3), (3.12

which ensures that the fluid minimizes its free energy atwhere D=¢;+¢;,d,. Similarly, expanding the collision
equilibrium. term equation(3.4),

056702-4



LATTICE BOLTZMANN SIMULATIONS OF LIQUID . .. PHYSICAL REVIEW E 63 056702

Cri(X+ &AL t+ AL [fi+AtCH (X, t,{fi})]) It then follows, from substituting Eq(3.18 into Eq.
(3.17), that the first and second-order deviations of the dis-
=Cr(%t{fi}) + AtDCh (X, 1,{fi}) + O(At?) tribution function from equilibrium are
(313 GM= - 7,DG+ 7,M;, (3.21)

and substituting into E(3.2) gives
At G{?=7iD?G{ I~ DM, . (3.22
Df;(x,t) =Cri(X,t,{f}) — = [D?f;(x,t) — DCs; (X, t.{f;
(OO =Calx i) 2 (D) i) Using Eq.(3.2)) in Eq. (3.18, summing ovel, and using
Egs.(3.20, (3.8), and(3.9) give, to first order,

+0O(At?). (3.14
We see immediately that 3,Q+3,(Qu,)=H+0(5). (3.23
Dfi(x,t)=Cri(x,t,{f;}) + O(AL). (3.19 The second-order teri§8.22 gives after a lengthy calcu-

. . . . lation, described in Appendix B, a correction
Using Eq.(3.15 in the expansiori3.14), it follows that there

are no terms of ordeit in Eq. (3.14) and
R R -7 aa(—a = )] (3.249
Dfi(X,t)=Cri(X,t,{f}) + O(At?). (3.16 g[ e
A similar expansion of Eq(3.3) leads to This additional term is a feature common to most lattice
. . Boltzmann models of complex fluids. It is not known
DGi(X,t) =Cgi(X,t,{G;}) + O(At?). (8.17  whether it has a physical origin, but it is very small in all the

) ) o cases tested so far and has no effect upon the behavior of the
In the standard lattice, Boltzmann-discretization terms ofsiq.
orderAt appear in Eqs(3.16 and(3.17). These are of simi- A similar expansion for the partial density distribution

lar forms to those that arise from the Chapman-Enskog &xtynctions f; gives the continuity and Navier-Stokes equa-
pansion and have been subsumed into the viscosity. Howions, Writing

ever, this is not generally possible and it is convenient to use
the predictor-corrector form for the collision term assumed fi= O+ fD 4@ (3.2
in Egs.(3.4) and(3.5) to eliminate them at this stage.

substituting into Eq(3.16 and using the collision operator
(3.4) give

We can now proceed with a Chapman-Enskog expansion,
an expansion of the distribution functions about equilibrium, fO—fedq 7 p (3.26
which assumes that successive derivatives are of increasingly ' ' v
high order[21]. The aim is to show that Eq3.17) repro-
duces the evolution equation of the liquid crystal order pa-
rameter(2.2), Eq. (3.16, and the continuity and Navier-
Stokes Eqgs(2.5) and (2.6) to second order in derivatives. 2= 72D2f29+ 72D ?p; . (3.28
Writing

C. Chapman-Enskog expansion

f0=— 7Dfe% 72Dp;, (3.27

Summingf; overi and using the constraints on the moments
of f;, 79, andp; from Egs.(3.2), (3.6), and(3.7), respec-
and substituting into E¢(3.17) using the form for the colli-  tively,

sion term(3.5) gives, to zeroth order

G =GO+GW+GP+ ... (3.18

GO=G% 7M. (3.19

atp—'— aapua+ Tfaazi pieia)

Summing oveli and using, from Eq93.1) and(3.8),

= 7-fat &tp+ aapua+ TfaaEi Pi€ia

> Gi=Q=2 G (3.20

+7—faa

IpUat g, 2% .85+ 7101, Pi€ia
shows that the zeroth moment i, appears at first order in ' '
the Chapman-Enskog expansion. This is as expected because (3.29
from Eq.(3.9), =;M; is related to free energy derivatives that

will be zero in equilibrium. The first moment will also be The first term in square brackets is second order in deriva-
first order in derivatives. tives. Therefore
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1
atp+(9apua+7-f(9a2 pieia) EI pieiaeiﬁeiy:§(&575aaﬁy+ﬁﬁTb‘ﬁéay_l— ‘957575aﬁ)'
(3.3

Using Egs.(3.35 and(3.36), the viscous terms in the square
brackets in Eq(3.34) can be simplified. We assume that the
+0(3°%). (3.30 fluid is incompressible, ignore terms of third order in the
velocities, and furthermore, assume that within these second-
We now multiply Eq.(3.25 by e, and sum over. Using  order terms, the stress tensor can be approximated by mi-

=Tidg (7tPUa+f9/32 7% .5+ TfﬂtZi Pi€ia

the constraint¢3.6), (3.7), and the definition$3.1), nussing the equilibrium pressuRg. We consider each term
in the square brackets in turn.
<5tPUa+ 352 % .85+ Tff?tzi pieia) (1) The first term can be rewritten as
ato-aﬁ: - (apPO)(atp)5aﬁzp(apP0)a'yu'y5aﬁ ’
=2 Pi€ia+ TidY| dpUst gD, 2% .85 (3.37

I I
where the last step follows using the continuity equation

+ 110D Pilia| T g 0D 2% 08, (2.5.

f tzi Pi€i s tzi P Fesp (2) Rewriting

F(pUqyUp) = di(pUg)Ugt Uydi(pUp) (3.39

+ 0772' fieqeiaeiﬁei y‘l‘ Tf(?YEi pieiaeiﬁei y

and replacing the time derivatives with space derivatives us-

(3.3)  ing the Euler terms in E¢(3.34, one sees that this term is
zero given the assumptions listed above.

So to first order in derivatives (3) Using Eq.(3.35,
ela o o P
atpua"_&BEi fi e gt 7'f&tzi plela) (7y2i f?qeiaeiﬁeiy—g(aﬁua+ﬁauﬁ+ﬁyuy5aﬁ).
(3.39
=2 pigiat O, (3.32

(4) From Eq.(3.36 the fourth term is of third order in
derivatives and can be neglected.
Placing Eq.(3.32 into the square brackets in E®.30, we
obtain the continuity equatiof2.5) to second order in de-
rivatives

Replacing the square brackets in E8.34) with contribu-
tions from(1) and(3), we obtain the incompressible Navier-
Stokes equatiofi2.6).

(dp+ dapu,)=0+0(3%). (3.33
IV. NUMERICAL RESULTS

Substituting Eq(3.32) into the first square brackets in Eq.
(3.31) and imposing the constraints on the first momenp,of
and the second moment &9, Egs.(3.7) and(3.6), gives

The primary aim of this paper is to describe the details of
a numerical algorithm for simulating liquid crystal hydrody-
namics. Therefore we restrict ourselves here to presenting a
few brief test cases aimed at checking the approach. Further
numerical applications are listed in the summary of the paper
and will be presented in detail elsewhere.
=005t dgTapt Tidg| — 010451 di(pUyUp) In equilibrium with no flow, the free energi.1) is mini-
mized. For a generic lyotropic liquid crystal, we talke
=(1-1vy/3) andb=c=7y, wherey=¢Lv,/a is Doi's ex-
+07yz fieqeiaeiﬁeiy+ Tfl?yz Pi€ia€ipCiy cluded volume paramet¢f5,4]. [L is the molecular aspect
' ' ratio, ¢» the concentration, and, anda areO(1) geometri-
(3.3  cal prefactord. At a=b?/(27c) or y=2.7 for the generic
o . ) ) . lyotropic, there is a first-order transition to the nematic
showing immediately that the equation of moti6&6) is  phases and ag is increased further, the nematic order pa-
reproduced to Euler levefirst order in derivativels rameterq increases. The variation ofwith y can be calcu-
From the definitiong3.11), lated analytically. The agreement with simulation results is
excellent as shown in Fig. 1.
Imposing a shear on the system in the nematic phase will
act to align the director field along the flow gradient. Assum-
(3.35 ing a steady state, homogeneous flow, and a uniaxial nematic

d(pUy) +dg(puglp)

P
Ei f?qeiaeiﬁeiy=§(ua5[;y+ UBaa,},"_ u7501ﬁ)'
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FIG. 1. Equilibrium order parametegrversusc¢. The points are
from a simulation and the line is the analytic result.

state, it follows from Eq.(2.2) that the angle between the
direction of flow and the directof is given by[4]

20 3 4.1
£cos 20= m ( . )
The simulations reproduce this relation well as shown in Fig. 0 1000 2000 3000

2 for different values ofj and&.
When there is no solution to Eq4.1), the director

tumbles in the flow or may move out of the plane to form a 0.
log-rolling state[1,2]. Figure 3 gives an example of this type
of behavior showing the director angle as a function of time. 0.

Olmsted and Goldbaftl6] have argued that shear stress <
acts to favor the nematic over the isotropic phase. Hence
application of shear moves the phase boundary, which ex-
tends from the first-order equilibrium transition at zero shear
along a line of first-order transitions that end at a nonequi-
librium critical point. Numerical results for this boundary are 0 1000 2000 3000
shown in Fig. 4. The results are qualitatively similar to those t
of [16,17] who obtained the phase boundary for a slightly
different model using an interface stability argument.

On the coexistence line the liquid crystal prefers to phas<$l
separate into shear bands,17,3, coexisting regions of dif- °
ferent strain rate running parallel to the shear direction. Such V. SUMMARY AND DISCUSSION
shear banding occurs spontaneously in the simulations re-
ported here. An example is shown in Fig. 5.

FIG. 3. The components of the director as a function of time for
system changing from a metastable tumbling state to a stable
g-rolling state.

In this paper we described in detail a lattice Boltzmann
algorithm to simulate liquid crystal hydrodynamics. In the
continuum limit we recover the Beris-Edwards formulation

i within which the liquid crystal equations of motion are writ-
o8l ten in terms of a tensor order parameter. The equations are
' applicable to the isotropic, uniaxial nematic, and biaxial
T 0.6 nematic phases. Working within the framework of a variable
= tensor order parameter, it is possible to simulate the dynam-
8 0.4 ics of topological defects and nonequilibrium phase transi-
un tions between different flow regimes.
0. ol Lattice Boltzmann simulations have worked well for com-
plex fluids where a free energy can be used to define ther-
ol modynamic equilibrium. However, previous work has con-
0 0.2 0.4 0.6 0.8 1 centrated on self-assembly with much less attention being

paid to more complex flow properties. The algorithm de-

FIG. 2. ¢ times the cosine of twice the angle between the direc-scribed here includes coupling between the order parameter
tor and the flowé cos 2 versus the magnitude of the order param- and the flow. This allows the investigation of non-Newtonian
eterq. The points are from simulations and the line is the expecteceffects such as shear thinning and shear banding. Examples
value 3/(2+q) from Eq. (4.1). are given in Sec. IV.
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0.005 phase when the magnitude of the order parameter remains
constant. Hence we obtain expressions for the Leslie coeffi-
cients in terms of the parameters appearing in the equations

0.004 of motion (2.2) and(2.6) [4].

Taking n to represent the order-parameter field, the

0.003 Ericksen-Leslie stress tensor and the equation of motion for

o the order parameter are, respectivghy,,1]
>
= EL_

0.002 aaﬁ—alnan[,n”npD#er asD gt asngn,D,,

+agn,n,D g+ angN,+azn,Ng, (A1)

0.001 N [ h,EL: YN, + ¥2NeD o (A2)
together with the relations

0.05 0.1 0.5 02 S A3)
a
FIG. 4. Phase diagram in the shear strBsg, effective tem- Y2=ag— as=axtas. (Ad)
peraturea plane.[a is the coefficient of the quadratic term in the ) . .
free energy(2.1).] The second of these, known as Parodi’s relation, is a result of

Onsager reciprocityNote that, following the convention in
There are many directions for further research opened ugq. (2.6), the stress tensor is written so that in the corre-
by the rich physics inherent in liquid crystal hydrodynamicssponding Navier-Stokes equation one contracts on the sec-
and the generality of the Beris-Edwards equations. For exend index when taking the divergente.
ample, results for liquid crystals under Poiseuille flow show The N, are corotational derivatives
that the director configuration can depend on the sample his-
tory as well as the viscous coefficients and thermodynamic N,=3diN,+Ugdgn,—Q,,N, . (A5)
parameter$22]. The effect of hydrodynamics on phase or-
dering is being investigatel@®3] and it would be interesting The molecular fielch is given by
to study the pathways by which different dynamic states
transform into each other. The addition of an electric field to OF  tlen
the equations of motion will allow problems relevant to lig- hy=—55=r Vi, (AB)
uid crystal displays to be addressed. Numerical investiga- a
tions are proving vital as the complexity of the equationswhere the last line assumes the one-elastic constant approxi-

makes analytic progress difficult. mation and¢ is a Lagrange multiplier to impos##=1.
To obtain the Ericksen-Leslie-Parodi equations from the
tensor formalism, uniaxial symmetry is imposed on the order
We outline how the Beris-Edwards equations reduce tdarameter
those of Ericksen, Leslie, and Parodi in the uniaxial nematic

APPENDIX A

— We first obtain an expression faf" in terms ofx and show
i§ that Eq.(2.4) reduces to the fornfA6). Using the chain rule
Al
B !
e EL 5F O0F dQup
=— =— = + .
. M TGN, 5Qu, an,  AHusMsT NaHa)
i I (A8)
; |
|
N E SubstitutingH from Eg. (2.4) into Eq. (A8), writing Q in
L \i uniaxial form and simplifying gives after some algebra
¥
it
\:5 h&-=2¢?«V?n,, . (A9)
1 1'366 N 14 L The terms proportional to,, have been omitted as these will
y VX

only change the magnitude of the order parameter, and the
FIG. 5. Shear bands for a range of strain rates. The bands aleagrange multipie¢ will adjust to prevent this. Hence com-
formed by the coexistence of isotrogidarkey and nematic states. paring Eqs(A6) and(A9),
The variation of the strain rate across the system, scaled dy @00
make it dimensionless, is also shown. kEL=20%k. (A10)

056702-8



LATTICE BOLTZMANN SIMULATIONS OF LIQUID. ..

PHYSICAL REVIEW E 63 056702

Consider now the equation of motion for the order param-eslie coefficientg2.10—(2.15. (These agree with the ex-

eter(A2). Solving theQ-evolution equatior(2.2) for H and
writing Q in uniaxial form give

T'H,5=d(NgN,+NeNg) —g&(Do,N,Ng+N,N D )
2
* §(q_ 1)éD 5+ 20¢n,ngD 0,0,

2
+§q(1—q)§6aﬁDwnyny. (A11)

Substituting this into Eq(A8) yields, after some algebra,

2
h.=20N,~ z4(d+2)én.D,, (A12)

where we have again omitted terms proportionalntp.

Comparison to Eq(A2) gives

y1=209%T, (A13)

2
¥2=— 3A(A+2)8IT. (AL4)

Finally, we consider how the stress tensor maps between

the two theories. Using Eq$§A11) and (A7), the symmetric
part (2.7) and the antisymmetric pai2.8) of the Beris-
Edwards stress tensor become, respectively,

I'7,5=09%(NNg—N,Ng) —a(q+2)/3&(n,n,D. 4

—Dy,nyNnp) (A15)

qé qé?
[0op= =5 (A+2) (NN, +n,Ng) + = (4-0)

2

2¢ 5
X (DN nﬁ+nanyDyﬁ)+?(q—l) Daus

ay 'y

B 8q2§2
3

3 2
Z+q—q gnanIBD,/,,n,,n7

+termsiné,gD,,n,n,, (A16)

where we have ignored the final distortion term in E2}7).
A comparison of Eq(A15) and Eqs.(A16)—(Al) gives the

pressions given by Beris and Edwards[#] apart for the
formula for ;. However, the formula fow, listed in[24] is
the same as that calculated hgre.

APPENDIX B

We obtain the second-order teri®.24) in the Chapman-
Enskog expansion for the equation of motion of the order
parameter. Proceeding as in the derivation of B3 but
including the second-order ter(8.22 gives

3Q+ 9,(Qu,) —H=7{7Q+23,9,(QU,) + d,d 5(QuU,U )
—aH—d,(Hu,)}, (B1)

where we have used the definitiof®8) and(3.9) to perform
the sums over. Equation(3.23 shows that the first, half the
second, and the fourth term in the curly brackets are together
of higher order in derivatives and can be eliminated.

We next note that

aa&t(Qua):aa - %(atp)ua+ (&tQ)ua—'_ %at(pua)) .
(B2)

The time derivatives can be replaced by spatial derivatives
by using Eqs(3.33), (3.23, and(3.32, respectively. Substi-
tuting back into Eq.(B1) and ignoring terms inz;p;e;,
~dpgT,p that contain an extra derivative

9 Q+,(Qu,)—H

= Tg[ 070((%) é’ﬂ(puﬁ)ua_ aaaB(Quﬁ)ua+ aa(ﬂua)]
- Tg[ (9a( %[%(Puauﬁ) - (7ﬁ0aﬁ])

+aaaﬁ(Quauﬁ)—aa(ﬂuQ)]. (B3)

Rearranging the derivatives this simplifies to

4Q+4a,(Qu,)—H=— Tg{ aa<%aapo) ] . (BY
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