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Quasiradiation solution to the compound integrable model
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We introduce compound integrable models composed of different systems of nonlinear equations describing
evolution of fields and matter in different space and time intervals. As an example, we investigate the inte-
grable compound model, which includes the modified nonlinear 8afger equation describing propagation
of ultrashort pulses in an optical fiber and system of equations describing the two-wave mixing in a resonant
medium with the two-photon induced Kerr-type nonlinearity. Using the matrix Riemann-Hilbert factorization
approach for nonlinear evolution equations integrable in the sense of the the inverse scattering method, we
study generation of ultrashort pulses in this model. We find a solution of a spectral problem on the semi-infinite
interval and solve the compound model for simple but nontrivial boundary conditions for the resonant medium.
We show that an asymptotic solution for light pulse propagating in the fiber is described by the quasiradiation
solution to the modified nonlinear Scliinger equation.
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[. INTRODUCTION sic fiber loss, and the effects of resonafihoton interaction
of auxiliary fields with the “main” fieldu [1]. In the most
The study of the fundamental dynamical processes asseheoretical studies, such terms are treated as the perturbations

ciated with the propagation of high-power ultrashort pulseshaving a small influence on evolution of the main field and
in optical fibers is of paramount importance: the nonlinearcontribution of these terms are usually investigated analyti-
soliton(ic), or near-solitofic), operating mod@) in such  cally by using the perturbation theory. Such an approach is
systems are very promising; in particular, very high datamainly used for the study of change of the form and param-
transmission rates, high noise immunity,. and the acces§ibilit)§ters of propagating stable pulse having initially the form of
of new frequency bandgl]. The classical, mathematical sgjiton due to these perturbations. However, for a strong

mode| f(?r _nonriinear pullse p(rjqpagat_ion in the picosecondyq, qh influence of the terms composiRgthe perturbation
time f]cae in the ano:na ?us |sper3|on|.reg|me mlan 'St(?troépproaches are not applicable. Besides, interaction with the
pio_ homogeneous, losless, nonampliyn, olatzaton i85 e ST sencrato of he. acona

dinger equatiofNLSE) [1]; however, in the subpicosecond- ultrashort pulses and crucially change asymptotic behavior of

tge main field.

femtosecond time scale, experiments and theories on th Th ) fthe | tteri thod had b
propagation of high-power ultrashort pulses in long mono- € versions of the inverse scatiéring method had been

mode optical fibers have shown that the NLSE is no longefi€véloped only for one space and time interval for media
valid and that additional nonlinear terrfdispersive and dis- With homogeneous nonlinear and dispersive propef@gs
sipative and higher-order linear dispersion should be takerioWever, being applied in the nonlinear optics, this method
into account[1]. In this case, subpicosecond-femtosecond®@n be generalized to the case of interaction of fields with
pulse propagation is describ&d dimensionless and normal- Matter composed of the different nonlinear media situated in
ized form by the following nonlinear evolution equation the different space intervals. From another side, interaction
(MNLSE), of the fields with the same media may be different in the
different time intervals. Consider, e.g., a two-level optical
idgu+ 20%u+|ulPu+isa.(Jul?u)=R, (1.1  medium permitted as one-photon and two-photon transitions.
Let a light field interact with such a medium under the con-
whereu is the slowly varying amplitude of the complex field dition of one-photon resonance during some time interval,
envelope( is the propagation distance along the fiber lengthand then a couple of fields being injected in the same media
7 is the time measured in a frame of reference moving withinteract with the same transition under the condition of the
the pulse at the group velocitghe retarded frames(>0)  two-photon resonance during the next time interval.
governs the effects due to the intensity dependence of the In practice, optical fiber is used as a part of a complex
group velocity(self steepening It has been shown recently experimental optical setup that includes different nonlinear
[1] that the MNLSE utilizing the notion of slowly varying and linear auxiliary media as well. Interaction of fields in
envelope is still valid up to 3-5 periods of field oscillations these auxiliary media may be used for the generation of the
within the envelope. TernR in the right-hand side of Eqg. ultrashort pulses, amplification, selection of pulses, and so
(1.2) may include the terms that governs, for instance, theon. Then these pulses being injected in the fiber are used for
soliton self-frequency shift effect, the Raman gain, the intrin-information transfer and others aims. In this case, in the
right-hand side of Eq1.1), R may include interaction of the
main field u with auxiliary fields and others effects in the
*Electronic address: zabolotskii@iae.nsk.su space intervals out of the fiber. Therefore, interaction pro-
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cesses are spatially separated and one process affects {i€,11). Here we find that under a set of approximations, the
other process occurring in the next medium via the boundarivlaxwell equations are reduced to a couple of equations that
conditions. are formally equivalent to a system of the second-harmonic
The study of such schemes of interaction leads to an imgeneration with additional cubic terms describing the nonlin-
portant class of nonlinear integrable problems that have botBar Stark effects. The Lax representation for this integrable
an initial value and also a nontrivial boundary value. ofmodel is derived here. Then we construct the new integrable
these, the simplest ones are those of an hyperbolic forn8yStem of equations that is compound from the one above

such as the sine-Gordon equation and others of that structur@?d the MNLSE describing evolution in the different space

For these equations, the initial value—the boundary-valudtervals. , , _
problem is a well-stated problem, and the existence and. 1MiS compound model describes the following physical

uniqueness of the solution is well established. These equaituation. Let the compound medium be composed of a reso-
tions are also integrable. Thus, one can also analyze the§@nt medium situated in the space interaj=0.z,] and
problems and study their solution by the use of an invers@Ptical fibers(Kerr medium situated in the semi-infinite in-
scattering transfornflSTM) [2] on a finite or semi-infinite  t€1val[zz,%]. Initially, the main field is absent and the aux-
interval. Such an ISTM requires the solution of a direct andliary fields are constant in time an.d space_and nonzero in the
inverse scattering problem on the corresponding interval€Sonant medium. Then the main field is generated from
Mentioned works[3—8] have described various formal as- N0iS€ due to parametric interaction with th_e auxiliary fields.
pects of this problem. Some papd#5] have dealt with We show that_for the long e_nough _effectlve length of the
rather special boundary problems that are impractical to bgéSonant medium asymptotic solution to the compound
generalized. As first pointed out in ReB], and as later Model for the main field envelope is described by the qua-
detailed in Ref[6], the evolution of the scattering data along Siradiation solution of the MNLSE.

a boundary where there is boundary data, can strongly differ 1h€ approach for solution of the initial-boundary problem
from what we are familiar with in the infinite interval. The USed here differs from that of RéB]. This approach is more

ISTM formalism based on the Reimann-HilbéRH) prob- convenient in our opinion for the description of fields dy-
lem associated with the Zakharat al. [2] linear spectral namics in the compound model chosen below for particular

problem was used in Ref8] for the solution of the stimuy- initial-boundary conditions. ,
lated Raman scattering in semi-finite interval. FoKa% The paper is organized as follows. In Sec. Il, we descnbg
showed how the inverse scattering approach could be e common structure of a compound model and the peculiari-
ploited to solve linear and nonlinear problems with nontrivial i€S Of eévolution of scattering data associated with such a
boundary and initial conditions. In this regard, the formula-Mmodel. Section il is devoted to the derivation of the com-
tion in terms of Lax pairs proved to be invaluable, especiallyP@Und model out of the physical onset. In Sec. IV the inverse
the realization by Fokas that the two Lax equations, whersCattering problem is applied to an integrable version of the
analyzed simultaneously and when supplemented with theompound _mo_del as the matrix oscillatory Riemann-Hilbert
analysis of a global relation, enabled solutions to be obtainetRH) factorization problem. In Sec. V we show that the qua-
by the Riemann-Hilbert or d-bar methods. His approach jSiradiation solution to the MNLSE that governs the ultrashort

valid for a general form of initial-boundary conditions and PUlSe evolution in optical fiber can be a corollary of the

can be used for the semiaxis or finite interval problems. _s]mplg but nontrivial initial-boundary conditions for an aux-
For the compound models describing the interaction of!iary field.

fields and matter in the sequentially placed media with the

different nonlinear properties the boundary-condition prob- Il. COMPOUND INTEGRABLE MODELS

lem, in common, becomes more complex. In this case, the

evolution of fields in one medium determines the boundary

conditions for the next medium situated in the neighborhood Here we describe structure of a common integrable

in the direction of the fields propagation. model, which is compounded frohx M integrable models.
Development of analytical methods of solution of com-Some of them may coincide. Assume that the compound

pound models describing the evolution of ultrashort lightmodel has the following Lax representation:

pulses in the compound medium including different finite or ; M

semi-infinite media are of practical interest. N . oy
The ultimate goals of this paper afé: the introduction of Erad T’Z'“‘j; Biird(DLi(r.ZNY(rZ M) =Ly,

the integrable “compound models” that can be used for the (2.2

study of pulse dynamics in a compound optical experimental

setup, (ii) the construction of two new integrable models ;4 N

including one physical example of the compound model, and El/l( T,Z;)\):E a; i+ 1(DA(T,ZN) P(7,Z,N ) = A,

(iii ) the study of the peculiarities of light field generation in =1

such compound models for the nontrivial boundary condi- 2.2

tions. —
It is known that some waves mixing in medium with the Bjj+u(n)=[0(r=7)0(— 7+ 7, )]Bi(7), 711> 7,

two-photon induced Kerr-type nonlineariti€ésesonant me- .

dium) may be described by using the integrable models «;;i+1(2)=[0(z—2z)0(—z+z,1)]a(2), Z+1>7,

A. A common model
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where 6(z) is the step function#(z)=0, z<0; 6(z2)=1,
z>0. Bi(n)#0, “a;(z)#0 are the finite functions.
aii:1(2)ai(2), Biir1(7)Bi(7) are the projectors, ie.,
of 12 ai¥(2) = ey 4 1(2)  @i(2) and so on.

The compatibility condition of linear system®.1) and
(2.2 is

M N
Jd J
o7 j2=:1 Bjj+ra(TLj— > 241 aji+1(2)A

M N
+ ,Zl ﬁ;,m(r)Lj,; aii1(2)A|=0. (2.3

Multiplying (2.3) by @418 j+10; ‘B; - we derive

—_ J ~ —_
ai(z)zAi_F[Bj(T)Lj ,@i(2)Ai]=0;

ZE[Zi,ZH_]_], TE[T],T]+1:|. (24)
Consequently, an evolution in the space-time rectangle
[Zi,Z41],[ 7j,7j+1] is described by the evolution equations
associated with the Lax representationw=,~Bij¢, i
=aiAi.

The ISTM technique for spectral problef®.1) for more
than one interval 7;, 7, 1], Bj j+1(7) #0 does not exist, as
it is known for us. Below we will study a compound model
associated with the Lax pai2.1, 2.2 for only one semi-
infinite interval [ 7;=0,7,=«), B;,#0. Note that a more
common case of the compound model may have the physical
application.

1. z-dependence of the scattering data

Consider a case of one interjat;=0,7,), 7,—% andN
intervals [z,z 1], «;;i+1#0. Find z dependence of the
scattering data for the simple “boundary” vallg(7,0;\)
=const, i.e., for constant “potential.” Let two solutiors ¢
to linear system2.1) have the following values at=0c:

w(oizi)\):q)o()\)a Ilm 1/1(72,2,)\):(1)+()\),
72~>oo
® (N)=e"'73"0dy(N)e! 73", (2.5
wherev, is an arbitrary real constantg=diag(1;-1) is the
Pauli matrix. For an example of a compound model consid-
ered in the present paper we habg=1. These solutions are
related by the matrix(z;\)

PHYSICAL REVIEW B3 056612
AT=D XN A(7, M) P, (N),

A=Dg (N) A0z N)Do(N)

Formal solution to Eq(2.7) is

Tiv1(zN)=exd B(72,2) ] T1(0N)exd —B(0,2)]

=exf Bi(72,2)]Ti(z;,\)exd — 5;(0,2)]
:eXF[Bi(TZIZ)]! L 1eXmBl(TZ!Z)]T1(Zl;)\)
Xexd —B1(02)], ...,exp—B;(02)], (2.8

where we have introduced the functions

Yy; ME ai(2)A(Y,ZNE(Y;N),

sy [

Bi<y,z>=fZE*(y;x)Ai(y,z;A)E(y;m, 2,<2<7.1.

Zj

From Eq. (2.9 it follows that the dependenc& on z

within the interval[ z; ,z; . ;1] is determined by E¢2.7) with
the boundary-valu@ (z; ,\).

For 2X2 matrices A;,L;

ik such that £)1x(72,Z;\)

=(A)21(72,Z;\)=0, for 7,— the z dependence of matrix
T(z;\) is governed by the equation

14 ~
Fk(ZN) = =T (ZMAOZN), (2.9

where

z
Tyx= lim exl{_ias > @ i+1(S)
0i=1

Typ—®

X (A)1(72,5;0)ds| Ty,

A(0Z;N) =Dy H(N)A(0ZN)Do(N)

Formal solution to Eq(2.9) is

Iin=T15T3, - - In-any T i+ 1(ZN)

:exp[ F”ai,iH(s)ﬂi(o,s;)\)ds . (210

From Eq.(2.10, it follows that the change of the matrik

within the intervall z,,z, 1] is governed by Eq(2.9) with
the boundary-valu@y_,, k>2.

Y(1,ZN)=d(7,Z,N)T(Z;N). (2.6
Substituting Eq(2.6) into Eqg.(2.1) we find
%T(z;)\)=K+T(z;x)—T(z;A)ﬂ, 2.7

here

Ill. PHYSICAL ONSET OF THE COMPOUND MODEL

Here we derive an example of the compound model hav-
ing application in fiber optics. The model includes the
MNLSE model and the new integrable one describing the
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wave mixing in the resonant medium. Therefore, we firstthat we neglected the relaxation processes, took into account
derive this new model separately and then derive the comime dependence of the fields envelopes, and used the slow
pound model. The next subsection of this section is devotedmplitude approximationA =2qg;—qg,—qs, A is the wave
to the physical onset of the new model of resonant interacvectors mismatchy; are the phase velocities of the fields
tion. having the envelopeB;, respectively. For other choices of
8, close equations can be derived.
A. The three-wave mixing in a resonant medium In the majority of experiments on the observation of

. L . many-wave mixing that are familiar to us, one or more of the
Let us consider the three-wave mixing in the medium posy Y g

. = . . fields can be taken to be constant to a good approximation
sessing a resonant transition. US".‘g a set of phyS|ca_I assum [2]. This condition also substantially reduces the difficulty
tions, we derive from corresponding Maxwell equations th

integrable system of two coupled equations in synchronizing the field pulses, required for the e_ffect to be

Let the three-component field propégate in One_obser_vable. _The constancy of one of the fields is ensured,
dimensional medium e.g., in the limit| P,|<|P3|. Let P3(x,t)=A=const., there-
fore we withdraw the last equation from systégn3). Under
above approximations we reduce Eg.3) to the system

3
E(X,t):;l{Pjexr[i(qjx—wjt)]Jrc.c.}, (3.1

d,91= =207 qp+ivay, (3.9
here P; is the slow changing envelope; is the carrying 9,02= 92— 1290|942, (3.5
frequencies and; is the carrying wave vectors, respectively.
Itis assumed that the resonance conditions are the followingynere
(1)1+ 51(02:(1)0"' v, w3+ 52w1=w0+ v, (32) T
P1=q1eX[{—l X+|glf Q2 2d’7' y
here, wg is the frequency of transition and the frequency 2 0
mismatchy satisfiesv<w;, j=0—3; §,,=*1.
The resonance conditiori8.2) not only allow the nonlin- . . o,
ear mixing effect to enhanced consideratlly order of mag- P2=ig,exgig; " Go| “d7 ),
nitude), but also permit us to drop the terms in the equation
that describes the cubic self interaction of the fields. This is 1/ a 1 o
also what allows the ISTM to be employed in the model. The g2=— —( = 4 —gl), g1=——,
processes of nonlinear mixing is determined by the two- 2\asA 2 apaht

photon induced Kerr-type nonlinearift0—12.

The standard assumption is that the time scale of the non- y= c*A + %Mlz
linear processes and mismatch is such that one may neglect 8Twiap,  apa
the relaxation and adiabatically eliminate the polarization of
medium from evolution equations. Substituting this in the c? g 1 9 c? Jd 1 9
Maxwell equations, one obtains an equation that in the rotat—afzm X vy dt ZZW X v, t)

ing wave and slow changing envelopes approximations are

reduced to the following system: System(3.4, 3.5 is the new integrable system of equa-
tions having an application in nonlinear interaction of waves
in the resonant medium. Although this model is relative to
the one obtained by the author in REf1], the above system
(3.4, 3.5 poses as mathematical as physical features that
+apaPoPT Pgexp —iAX)], distinguish it from known models.

B ATw,
<ax+v11aopl=|—cz [@seP1|P2|?+ aasPi| P32

1 A7, ) B. Compound model
Oyt v, 0y Pr=i—— P,|P , .
(Gtva a)Pe c? [arsdP2| Pyl In experimental setup, light pulses pass as usual through

different nonlinear and linear media. Let a light pulsén-
+as PiP5 expidx)], (3.3 teract with two auxiliary fields,/ in the media placed in
[z1,2,] by the same way as described above. In the above
notations,£=P,, G=P3=const.,/=P,. The second non-
linear medium extended in the intenja,,>) is an optical

_ ATws
(Ot 03 0)Py=i— 7~ azaPs| Py
fiber. The field evolution in fiber is described by the

+ ag,Ps p% exp(iAz)]. MNLSE. Then the compound model is the following:
Here we used the resonance conditid8<) for &,=5,= IxE+ 0(2—2,)[ID FpE+ al E]2E+ Ba(| €]%E)]
—1. Coefficientsa,g, etc. are the same as in Rgf3], ~ O,
Chapter V. Equation$3.3) differ from that of Ref.[13] in =[0(2)0(z,— 2)1(— 2y, U*G+2ig1&|U?), (3.6)
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[6(2) 0(z,— 2) (9~ ,EU* + 2igaU| £|>+ivd) =0.
(3.7)
Here 6(z) is the step function. Physical meaning of the co-

efficients can be found ifi].
The differentiated cubic nonlinearity in the left-hand side

of Eg. (3.6) arises, then the time duration of pulses becomes

compatible with the carrying frequency of the light field. The
terms~g? , arise as the main third-order terms.

PHYSICAL REVIEW B3 056612

—7=7+(1-f)7g?, Q—Q=Qexd-2i(1-f)z], U—U
=U exd —i(1—f?z], which yields the transforn@*—Q*
=fQ*.

IV. THE ISTM APPLICATION

To demonstrate integrability of the new model by using
the ISTM we present the Lax pair of this model, which exists
for any real meaning of the physical coefficients before all

Interactions of the fields in the resonant and Kerr mediderms in Eqgs(3.4, 3.5. The Lax pair is
are spatially separated. Therefore, these interactions can be

associated with the different scales. For instance, interaction (—in’+iv) 2(1—ign)q,
in fibers can be considered as nonlinear for distance that is d,b= ) — Ly D, (4.1
much more than that of resonant medium. Amplit@ean 2(1+igma,  (in"—iv)
be taken as a constant for large enolyigh _
Let . —(1+g?7")F; —(1-ignF, o
25T 2\ (1+ign)F (1+g?9)F, |
~ 7 UJ 9" 77 )F3
(o2& <[vid). 3.9 4.2
After substitutions, 12 2 .
hereF;=|q4|%, F.=qj, F_=qj, » is the spectral param-
_~ i _% .~ _~ eter,®(7,z;\) is the matrix-valued function.
E=pQexp(—2ivy), U=dUexp(—int), t KT'(3 9 But here we will investigate the compound mod&I10,

the system(3.6, 3.7 can be transformed to the following
form:

9Q—az 4 92,Q—2i(|Q*~|Q* ) Q+g?d.[(|Q[?

—Q*1)Q} =y (2U%+2ig?Q|U[?),  (3.10
a A0,U+hQU*)=0, (3.12)
where
g 1 ( 2.1 [ 2 \f
dz  Co\lox  vg é’t a+27)' Lo’
L_4po o, 2
P77 by, V%o
Vo a+2v YiGVa+2v
_Eﬁ\/}}+ 2 (312
=20 7G’ |
2Dv 2B, - -
2_ 2 ¢ YRV = =
|Q | é«o \/5('a+2~1;)! al(z) aZ(Z) 1

Applicability of the ISTM to Eqs.(3.10, 3.1} requires that
the following condition must be fulfilled

_ 7,GV2D
Va+27
Condition (3.13 can be satisfied by choosing mismateh

and (or) by choosing the amplitud&. Q* in Egs. (3.10,
3.11) are determined with an accuracy to the transfam

(3.13

3.1]). Lax pair for this model is the following:

—iN?—ig™2 A
9, 0= \G inzrig-z| P =0
4.3
iy (2\G° 7\g|U|2 U2
_ 12979 _ D+ z
T N%g2+1 | U2 —Aguf? “2d?)
—iH1; Hy
< ) (I)EA(I), (44)
( Hap  THyy
here, N\ is the spectral parameterg=Q/(ig), q*
=Q~/(ig);
Hu=[2(\*+g~ %)= g7 [4(2\*+97 %)~ \?[q|?],
Hi=N2a(\*+g~2=[q"[*) +id.q—[al*a], (4.9

Ho=A[2q(\2+g~2—|q*|>)—ia,q—|al|%q].

This system possesses the new distinguished properties,
which are interesting both for theoretical study and for ap-
plication in nonlinear optics.

The ISTM formalism used here is based on the RH prob-
lem associated with the Wadati-Konno-Ichikawh3) [14]
linear spectral problem. Below we describe the Riemann-
Hilbert problem formulation following to Ref$15,16]. Dif-
ferences are in choosing of the semi-line problem instead of
the full axis spectral problem as in Ref45,16 and respec-
tive alteration of the Jost functions. Therefore, we describe
here the Riemann-Hilbert problem without proof.

For functionq(7,z) of = and all its derivatives decrease
faster than any positive degreesmfr— oo, define the vector
functionsy™(7,z;\) and ¢~ (7,z;\) as the Jost solutions of
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Imx)

Imi2y<o -1+ Im@2)>o0

- -] ™ + Rew

+ —
ry| -

Impzy>0 +]- Ime2)<o

FIG. 1. Continuous spectrudi:{\,Im\2=0} and contours of
integrationI” . .

the first equation of systefy,.—L,(7,z;\)]¢~(7,z,\)=0
and [d,—Lq(7,Z,0)]¢™(7,2;\)=0, with the following
asymptotic,

lim ¢ (7,z;0)=(0,1)Teir*7,

T—+®

lim ¢~ (r,z:\)=(1,0Te A" (4.6)
T— +
¢"(0zM)=(10", ¢ (0zN)=(0-1)T, (4.7

>
where A>=\?+g~?, the superscripts: mean Im§?) _0,

PHYSICAL REVIEW E 63 056612

Let (7,Z,\)=pu(7,z;\)exp(—iA®ro3). Define Im(\?)
>0,

—qslfT'z;)\) Y1 (T,ZN)
(rzN)= N expiA®7o3);
M7, 4, = 3/
b5 (T.ZN)
s - JZIN
at (ZN) Wy (1,Z,N)
for Im(A?)<0,
vi(rzn) - 2N
a (z\N)
wo(1,ZN)= - expiA%703);
— ¢, (1,Z;N)
Uy (rzn) — 20
a (zN)
and p(N)=p (\). Then 2x2 matrix function
u(7,z;\) [defu(7,z;N)}=1] solves the following

Riemann-Hilbert problem:
(1) u(7,z;\) is holomorphicV A eC—T.
(2) u(7,z;\) satisfies the following jump conditions:

A ef,
(4.9

w (TN =p (1, ZN)E(TN) TIG(NE(TN),

and T denotes transposition. From the Cauchy theorem folWhere

lows that condition4.7) fulfills V 7<0.
The Jost solutions have the following properties:
(N =Fa (ZN) o (7,Z\)
+b(zN) o™ (1,z;N),  Im(A?)=0,

4.9

wherea™(\) analytically expandable in Im(z)ZO and for
A—», Im(A?)>0, a*(\)=1+O(N"?), for Im(A?)=0,
a*(M)a (\)+b"(\)b"(A\)=1, a*(\)=a (), b*(\)=
—b~(\), a“*(—A)=a*(\), b*(\)=—b*(—-\), and

p (\)=b*(\)/a*(\), andI'={\;Im(A?) =0} is the con-
tour oriented as in Fig. 1;

.

W(T,z;x)e—mzf:(q(;)’\z)i +O(N7?),
— T

¢+(T,z;>\)eiA27=(1fq(2L)’\z) +O(\"2),

and, forh—o, Im(\?)<0, a (z;\)=1+O(\"?),

— T
l//(T,Z;)\)eiAZTZ(l,q(ZL);Z) +O(N"2),
T
¢ (rz;N)e M= —(q(ZT)’\Z),l +O(\"2).

1-p(Mp(V) pw)
—p(\) 1

G()\)=(

E(T;)\)=eXF(—iA27'U3),

p(\) e S(I'), andp(—N)=—p(\).

(3) ForA—o, NeC—T,
w(rzN) =1+ O\ 1),

Above properties follow from definition ofu(7,z;\) for

>
Im()\2)<0 and analytical properties of the Jost functions.

Let [|pl|c=y=sup clp(\)|<1, [17,18. Then: (i) the
RH problem is uniquely solvable; (i) (7,z;\)
= u(7,z;\)exp(—iA®7az) is the solution of systertd.3,4.4;

q(7,z)=2i lim[Au(7,2;N)]12

A—o0

and

q(7,2)=—2i lim[Au(7,2;M) ]21;

A—00

(4.10

and w(7,z;\) possesses the following symmetry re-
ductions, u(7,z;,—N)=o3u(7,Z;\)o3 and u(7,z;\)

:0'1#/«(7'12;:)01-

056612-6
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The solvability of the RH problenv z follows from the
condition||p|| =<1, see details in Ref§16—19. Condi-
tion (ii) follows from Eq.(4.3) and decomposition oh %,
A—o,

For a(\)#0, assuming thaa(\) # 0, the first vector of
the above equation impliegaking the complex conjugate
and the plus projectiorthe integral equations

— ) 0 1 f .. 2irY2 — .
1/11(7-121)\)_ 1 +ﬂ F+p(21)\)e I/IZ(Trza)\)g__)\v
(4.11
_ . 1
1//2(7-!21)\): 0
o d
+5— r_p(z;)\)eZ'TYzwf(T,z;)\)g_—g}\.
(4.12

Here, Y?= %2+ g 2. ContoursI.. oriented as in Fig. 1 in-

clude the paths along the axis and arcs in infinity. The for-

mulas(4.11, 4.12 taking into accoun(4.10 and dependence

PHYSICAL REVIEW B3 056612

o 2ol

We search for the solution of Ed2.7) for 2X2 matrix
A(0,z;N\): detA(0.z;\)#0, V z, which is constant within
intervals A;(0,z;0\)=A.(0,0;\), ze€[0,2,]; A»(0,z;\)
=A,(0\), z2>2,. a;(2)=1ji=1,2. A(0z;\) changes
stepwise in the point=z,. For the initial-boundary condi-
tions (5.1) this solutionV z>0 is

a(\) b(\)
b(\) a()\)

T(N) (5.2

a, ~ ~
a(z;N) = ﬁ{[(ﬂ +A1) + epohyle (2 HOM)

+[(Q A1) — epohy]el™* ®@l, (53

— do = 2 :
b(z\) = 55 {[(Q~Ap)po-+ eAggle (2040

+[(Q+A ) po— €A ]el0@N (5.4

p=H/a, p=Dbl/a on z furnish the solution of the inverse

problem.

V. QUASIRADIATION SOLUTION TO THE
COMPOUND MODEL

In this section we show that a quasiradiation solution
system(3.10, 3.1]} for the field Q(7,z) is generated by a
simple “boundary” (r=0) conditions for the auxiliary field
u.

Impose the following initial-boundary conditions:

Q(7,00=0, =0, Q(0,2)=0, V z
U(z,00=Uy=const#0, ze[07z,]; U(z,0=0,
z>7,. (5.1

It can be shown that a trivial solutio@(7,z2)=0 to Eq.

(3.10 for z>z, is linearly stable. This fact and conditions

(5.2) justify the following assumptionQ(r,z)=0, 7—o;
vV z

From the symmetry properties of spectral probléhB)
follows that matrixT has the form

All A2].
coth(Q7)— E-ﬁ-poﬁ
T(Z;)\):SO ~ ~
—_ All A21
Po COﬂ'(QT)—E - E

where A; is the element of the matrix A

=dy 1 (N)A(0,00)Do(N) =A(0,0,\), O(z;\)
IIéﬂfl(s;)\)ds, FAL(Z;)\)
lim, [P AT ZN) P (M) = lim, A7, ZN),
2=RZ/(0Z;\) +A1(0Z; M)Ay (0.Z:N), po(N)=p(z=0\)
=by/ay.

The coefficiento(z;\) is

to

oo

p(Z;\)

_ [(Q—A1)po+ €Asle 222+ [(Q+ A1) po— €A]
[(Q+A1)+epoAorle 22+ [(Q—Ay) — epohay]
(5.5

Coefficientpg(M\) is determined by a solution of the spectral
problem(4.3) for a fixed potentialy(7,0).
The matrixT V zis

: A Ayl
i0 _ 12 11 i0
e [ Q + pg| coth( Q) 7) + Q }e .
~ ~ , 5.
~ie All _A12 ~ie
e COﬂ'(QT)-FE —poﬁ e

056612-7
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wheresy=agsinh(27),
i
0= e dD[(1-g*AD|Uo*+ ap 220~ e 42)

X (1—-g%A?)| U4,
1— 92A2

Ap=An=— a1 A2)i|Uo|? o 204 2)iA",

A?=\?+9g72 a;(z)=1. Expression ford;, (A,;) will not
be used below and we omit it.

Taking into account thafd= a; (z2)A;+ a, (2) A=A,
for z>z, and using Eq(5.6), it can easily shown that for
conditions(5.1) the following relation is fulfilled

T(ZN=T(2,2T(2:M)T;4(2,2), 2>z, (5.7)

here T, (z,,z) is the formal solution to the linear system
(4.4) for zero nondiagonal elements of maté& r,,z;\)

T, (25, z\)=e 120302 757 (5.9
From Eq.(5.7) follows
a(z\)=ae ®, b(z,\)=be® '@ (59

herea,, Hz are the elements of matrik(0,z,,\).
To solve Egs(4.11, 4.12 one must findo(z;\) and the

zeros ofa(\). Poles position in complex plane is derived Im{(n)=0,

from the equatioT;(z;\)=a(z;\) =0, i.e.,

11

Aul —An
=h) COﬂ’(QT)—ﬁ +boﬁ=0' (5.10

From conditionq(7,0)=0, it follows thatby(z;\)=0. Then
the poles are determined by the equation

coth(Qz)— Q
u

=0. (5.11

For z=z, we get can rewrite Eq5.11) in the form

o efiAﬁﬁ 4iNAz6(2—25)

PHYSICAL REVIEW E 63 056612
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FIG. 2. Dependence of the imaginary and the real parts arf
n. Figs. (a,b are depicted fol ,=0.01, Figs.(c,d) correspond to
L0:50

coth(i{Ly)=¢, (5.12

here, {=+g?A%2—1/gA, Lo=2,|Uy|?g? This equation
has a set of solutions(n), n is an integer, which satisfy to
Z(n)+1 _mn

Z(n)Lo+i lng(n)—l —L—O.

(5.13

Numerical solution to Eq(5.13 is depicted in Fig. 2. We
reveal numerically that foby<1 Im¢(n) tends to nonzero
constant ap—«. If Ly>1, then one can reckon

Re{(n)=nw/Ly, n=0,£1,+2,+3,...,
(5.19

with an accuracyO(1/(LglogLy)).

Solutions to(4.11, 4.12 for ze[0,z,] describe the fields
dynamics in the resonant medium, where the dependence
on z yields an infinite number of pole&.13. For z>z,
(optical fibe) the dependence gf on z becomes simple

2\2

2=p(zp)e (5.15
Therefore to solve Eqs4.11, 4.12 we have to calculate all
residues in\,:A\2=g 27%(n)[1—¢3(n)]"* in the right-
hand side(RHS) of equation(4.11),

p(ZN)=p(2,)e¥ 79 iz,

C1(Np)+Co(h )220

Fi(r22:6)= 2 ry

=—

here Q' (\p)=limy _\ 9lNQ(N). g2t ) =
—ca(Ap)/cs(hp). A2=N2+g 2 Coefficientsc;, i=1—4
for bg(z;\)=0 are: ci(N\)=€eA,=—Cs(N\), Cc3(\)=Q
+A11, cs(\)=Q—A;, see, Eq.(5.5. In Eq. (5.16 the
matrix elementsA;;(z2)=A;;(0) are taken in the interval
[0,2,]. The first multipliers of the terms of suifs.16 are
associated with the evolution awithin interval the[ z, ).
The second multipliers of such a term originate frarde-

(N €2E0W2IL O (N,

2T \n), (5.16

pendence of scattering data within the first interpajz, ]
and therefore are associated with the evolution of fields dur-
ing the wave mixing in the resonant medium.

Below we restrict our investigation to the case of large
effective length of the resonant medium, ileg>1. Let us
substitute\, in Eq. (5.16 and use Eq(5.14). For Ly>1
coefficients in the sunf5.16 change smoothly and differ-
ence between the elements of sum tends to zert fes .

056612-8
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These statements justify the transformation from summation Let us find a solution for a sma#l. Using Eq.(4.10, we

in Eq. (5.16 over n to integration with respect tqu
:n’TT/LO

2iX2r+4iX426(z—2,)
2

[ e (Tim)gudu
Fl(Tyzag)_Jr+ g_)\ 7T(1_,LL2)3

gs e2iX27+ 4iX*26(z— z,)

(75 x)dXZ,;

“2wr, E—x

(5.17

whereX?=g~2(1—u?) ?+g ?=x%+g 2. Then we com-
pute the integral in the RHS of E¢4.12 by the same way.
As a result, we obtain the following integral equations:

— 0
Y (TN =
1 — S U2 oA — d)(
el 2i X2+ iy X Loy oX
+2i7Tf[‘+pe“(X)e y ‘/IZ(T!er))\_Xa
(5.18
U (T.YiN)

1 1 NPT dx
— —2iTX = 4iy X"+ .
(O)+2lﬂfrpeff(X)e dll(T!yIX))\_Xa

(5.19

here,peri(x)=2i 93y, X?=x?+9 % y=2z-2,>0.
Systemg5.18 and(5.19 describe a radiation solution to

find for (1),~1, (¥3)2=~0,

i’ 7] (%)m ( f)
~ —@8 —_— _—
Q(Ty)/) ZW\/Ee Yy -1 \/Z—y -1 \/Z—y ’
y=2—2,>0, (5.20

hereD _,(y) is the function of the parabolic cylind¢20].

VI. CONCLUSION

Application of compound integrable models in nonlinear
optics is conditioned by the fact that experimental setup in-
cludes different linear and nonlinear media as usual. Light
pulses can be amplified, squeezed, and deformed while they
propagate through these media. From another side the com-
pound models extend the region of application of the ISTM.

It have been shown in this paper that the quasiradiation
solution to the MNLSE in one medium can be generated by
the simple boundary conditioriat 7=0) for the field inter-
acting in an another medium. Analogous results can be de-
rived for a more simple case of the model including the
Maxwell-Bloch model and the nonlinear ScHinger equa-
tion (NSE) compounded by the same way as considered
here. It can be shown that for analogous initial-boundary
conditions a quasiradiation solution to the NSE is generated
by the nonzero initial polarization of medium. These results
indicate that asymptotic behavior of the solution found in the
present paper is expected to occur in other compound mod-
els.

the MNLSE associated with the continuous spectrum

[':Im\?=0 and the effective coefficientyy;.
An asymptotic solution to Eqg5.18 and (5.19 may be
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