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Influence of walk-off, dispersion, and diffraction on the coherence of parametric fluorescence

Antonio Picozzt and Marc Haelterman
ICNRS, Laboratoire de Physique de la Mati€€ondense, Universitede Nice Sophia-Antipolis, 06108 Nice, France
2Service d’Optique et d’Acoustique, Universitibre de Bruxelles, 50 Avenue F.D. Roosevelt, B-1050 Brussels, Belgium
(Received 10 October 2000; published 18 April 2p01

We consider the basic problem of spontaneous parametric generation from quantum noise fluctuations in the
presence of a continuous plane-wave pump. We show, both numerically and analytically, that the walk-off
between the down-converted fields is the key ingredient that leads to the generation of coherent fields in the
parametric process. Along these lines, our theory reveals that, in the absence of walk-off, diffraction and
chromatic dispersion in usual quadratically nonlinear materials only lead to incoherent erratic dynamics.
Moreover, a two-dimensional study shows that, when the walk-off is exclusively temfmorapatia), the
parametric process is not able to yield the generation of spatialyemporally coherent fields. This study
sheds light on the problem of coherence in parametric fluorescence and, in particular, allows us to explain
various recent experimental observations.
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[. INTRODUCTION gquantum noise in terms of “spatial mode locking,” relying
upon the analogy of this process and the temporal mode-
The phenomenon of parametric generation from quantunocking in laser resonators. Following this interpretation, the
noise is a fundamental physical process that has been widefieneration of coherent down-converted fields would be
studied since the advent of nonlinear optics in the 1960s. Itlosely related to the self-trapping mechanism characteristic
refers to a parametric amplification process where energy isf the solitary-wave formation process. Accordingly, as soon
transferred from a pump laser beam into two fields of largemas self-trapping does not occurs, the generated signal and
wavelength usually called the signal and the idler. The quanidler fields remain incoherent even in the strong pump deple-
tum noise amplification that is observed in the absence ofion regime [7]. However, this physical interpretation in
any signal and idler seeds in quadratic optical crystals iserms of “spatial mode locking” does not seem to provide a
called parametric fluorescence. complete picture of the problem, since down-converted fields
In the literature, parametric fluorescence was first extenhave also been generated with a high degree of coherence far
sively studied in the low-conversion-efficiency regifi®.,  from the solitary wave regime, as shown by studies of co-
linear regime, in particular for the characterization of its herent pattern formation in parametric down-conversion
angular intensity distributiofl,2]. More recently, the grow- [5,6].
ing interest in traveling-wave optical parametric generators In the present paper we address the problem from a dif-
as sources of high-power tunable femtosecond pulses motierent point of view. We consider the basic problem of para-
vated the study of parametric fluorescence in the nonlineametric fluorescence from a continuous plane-wave pump. By
regime of pump depletiof3—6]. For instance, generation means of numerical simulations and a very simple math-
through parametric fluorescence of two-dimensional spatiadmatical analysis of the equations that rule optical three-
solitary waveq 7] and optical vortice$8] was recently re- wave mixing in the classical limit, we show that the walk-off
ported. These experiments revealed, in particular, that in theetween the signal and idler waves is the key ingredient re-
parametric fluorescence process a transition occurs betwesponsible for the onset of coherence in parametric down-
two regimes characterized, respectively, by the incoherenceonversion. The term “walk-off” refers here to either the
and coherence of the generated signal and idler fields. In thgpatial beam divergence due to the crystal birefringence or
transition toward the coherent regime the initial incoherencehe group velocity difference that affects short pulses in dis-
of the quantum noise is apparently smoothed down by th@ersive crystals. The mathematical description of the role of
parametric process, to lead to regular spatiotemporal fielthe signal-idler walk-off is based on a linear analysis of the
distributions. three-wave mixing equations. It reveals that coherent wave
These experimental observations naturally raise the folgeneration takes place in the linear regime of parametric
lowing question: What is the mechanism responsible for thdluorescence(i.e., with arbitrarily small pump depletion
incoherence-to-coherence transition in parametric fluoresSonversely, the natural chromatic dispersion diffraction
cence? The problem is not trivial, because the existence aofh the spatial domainencountered in usual materials with
this transition seems to depend critically on the experimentadjuadratic nonlinearities, only leads to an incoherent evolu-
conditions, as revealed in Refd,9], that report on the gen- tion of the optical fields. Moreover, a two-dimensional study
eration of spatially incoherent down-converted fields in thereveals that when the nature of the walk-off is exclusively
spontaneous parametric process. temporal(or spatial, the parametric process is not able to
An attempt to answer this question was proposed by Dyield the generation of spatialigemporally coherent fields.
Trapaniet al.in Ref.[7]. In that work the authors interpreted To motivate an experimental confirmation of our theory, we
the spontaneous formation of coherent solitary waves fronpresent a numerical simulation of a realistic experiment in
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which the transition from incoherent to coherent fluorescence 3 t=61,
could be observed and studied. 6.10
The paper is organized as follows. In Sec. I, we present a
typical three-wave interaction model that describes the para-
metric process. The relevant role of the walk-off on the co-
herence of parametric fluorescence is discussed through nu-
merical simulations in Sec. lll, and through a linear stability
analysis in Sec. IV. In Sec. V we discuss the practical rel-
evance of the walk-off-induced coherence mechanism in the
context of some recent experimental results. The comparison
between the roles of walk-off and of dispersitr diffrac-
tion) in the coherence of the generated fields is presented in
Sec. VI. This analytical study is then confirmed by numerical
simulations in a realistic experimental situation in Sec. VII.
In order to complete our analysis, in Sec. VIII we consider
the two-dimensional geometry of the parametric process, and
study the influence of the walk-off and diffraction on both
the spatial and temporal coherences of the down-converted
fields. Finally, Sec. IX gives a summary of our results, and
briefly discusses the related issues and links with other prob-
lems in physics.
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FIG. 1. Evolution of the interacting envelopes without walk-off
in their own reference framédegenerate casen the linear ¢
Our starting points are the usual equations governing the 67) and nonlinear (= 117,) regimes: the parametric amplifica-
spatiotemporal evolution of optical fields in quadratic non-tion is incoherenamplitudes are given in units @, and 7 in
linear media in one space dimension. The evolution of thainits of A=v37,=0.022 mm).
slowly varying envelopeg,; of these fields, of frequenay;
and wave numbek;, obeys the coupled partial differential study quantum fluctuations in optical parametric oscillators
equations below threshold. It was also used to show the formation of
noise-sustained convective structures in both c{ibig¢ and
5 quadratic[12] nonlinear optical cavities.
ia_Al a_Al i d Alza ALAX + \/e—f (2,) Note that Eqs(1) also hold for a description of purely
vy ot Jz booz2 12 nenh transverse spatial evolution governed by diffraction and spa-
(1a  tial walk-off. Indeed, the substitutions ¢k)(d/dt)
—xidldy where y; represents the spatial walk-off, and
LA A 2A gi(azl&zz)a—xi(azlay%, where k;=1/2; is the diffrac-
— 2, 72 2—22202A3A’I 4 \/e—zfz(z,t), tion parameter, transform Eq4) into the well-known equa-

1. GOVERNING EQUATIONS

—+ipg . . .
vy, At Jz tion of transverse effects in quadratic crystdls].
(1b)
Ill. ROLE OF WALK-OFF
2
1 9As  9As i Sa_A3 = — 03ALA + Vesés(Z 1), To obtain a basic insight into the role of walk-off in para-
vy dt 0z Ky metric fluorescence, it is interesting to consider first the arti-

(1o ficial situation of a degenerate down-conversiam, € w,,

_ o A1=A,) in an ideal dispersionless quadratic crystal, so that
With w3=w,+ ;. For definiteness we cally, Ay, andA;  there is no walk-off between the signal and pump waves
the signal, idler, and pump waves, respectively; (y,,=v5) and 8;=0 in Egs.(1). In this situation, through
=dk;/nf, v; and Bi=v7k{/2 [K{ = (9°k/dw?);] are the cou- Eqs. (1) we numerically simulated the basic propagation
pling constants, the velocities, and the dispersion COGfﬁCientﬁroblem of a continuous pump with a zero initial signal field
of the crystal at frequency; , respectivelyd being the ef-  amplitude apart from the presence of quantum noise fluctua-
fective nonlinear susceptibility. From now on we will as- tions (vacuum field. A typical result is illustrated in Fig. 1,
sume for simplicity and without loss of generality that  that shows the evolution of the pump and signal envelopes in
=o0,=0,=03/2 andk"=k{ (i=1,2, and 3. The complex the reference frame traveling at their common group veloc-
stochastic variableg;(z,t) are Gaussian, with a zero mean ity. In this example the injected pump intensity Is
(&(zt))=0 and correlation (£(z,t)& (z',t))=6;8(t =100 MWi/cn? for ¢=2.8x10"°> V™. As an initial con-
—t")8(z—2'), and ¢; represents the noise intensity of the dition in t=0, we take a continuous wave envelope for the
field A;. This description of noise by means of classical-pump As(z,t=0)=e, and a small amplitude noisy signal
looking Langevin equations was introduced in R@f0] to  field A;(z,t=0)= ;& (z,t=0). To evaluate the noise in-
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FIG. 2. Same as in Fig. 1, but in the presence of a walk-off ‘All
between the pump and the down-converted degenerate signal wave 0.005 /\
(n'=2-vat). A2
0
. . e 0 2 4 6 8
tensity €;, we consider that an amplification factor of 10 n" [A]
orders of magnitude is necessary to obtain a signal intensity
comparable to that of the punjf], which gives a value of FIG. 3. Amplitude evolution in the linear regime of the nonde-

the noise intensity of, =10 %}, It is worth noting that the  generate parametric process: the walk-off between the signal and
value of the noise intensity; does not affect our numerical the idler waves leads to their coherent amplification in the linear
results. Indeed, we obtained the same qualitative results faegime[amplitudes are given in units &; 70=12 ps,A=v37g
amplification factors ranging from £Go 10'4 As revealed =0.022 mm, andy”=z—(v+v,)t/2].
by the structure of Eqg1), this problem of parametric am-
plification is characterized by the time constany  crease coherence. However, our numerical simulations reveal
=1/(\viv,0€p) that determines the temporal growth rate of that the situation is more complex than this simple picture.
the signal field amplitude in the crystal. For this reason werigure 2 shows a typical result obtained when introducing a
will use 74 as the time unit in the presentation of our results.walk-off between the pump and signal waves for the same
With the parameters considered above, we obtajn parameters as in Fig. 1, but with the velocitieg=1.28
=12 ps. x10® ms ! andv;=1.32x10® ms ! corresponding to a

As can be seen in Fig. 1, the signal field keeps its initialrealistic walk-off parameter of #4— 1/v,=0.24 ps/mm. As
incoherencedetermined by the quantum nojseven in the in Fig. 1, the signal is amplified, but remains incoherent up
nonlinear regime of pump depletiont>107,). In other to the nonlinear regime. However, the presence of the walk-
words, the initial incoherent fluctuations affect the long termoff drastically changes the evolution of the pump, that no
evolution of the parametric process. This result can be easillpnger loses its coherence since, as is apparent in Fig. 2, its
interpreted through a geometrical approach of the parametrienvelope now remains smooth for arbitrarily long interaction
process proposed in Refd4,15. First we note that, in the times.
absence of walk-off and dispersion, Eg$) can be viewed Let us now consider the situation where there is a walk-
as a continuous set of ordinary differential equations for theoff between the down-converted fields, namely, between the
variablen=z—v &. This means that the field evolution in a signal and the idler waves (#v,). This configuration typi-
particular pointy is independent of the field evolution in the cally arises in the nondegenerate configuration of the para-
neighboring pointn+d», so that there is no means to metric interaction {,# w,, A;#A;). In this case, the am-
smooth down the initial noisy signal envelope. Following theplification scenario is of a fundamentally different nature. A
geometrical approach, due to the Hamiltonian nature of théypical result is represented in Fig. 3, that illustrates the evo-
problem, the dynamical evolution is fully described by lution of the down-converted amplitud@s ,in the reference
closed orbit trajectories in a two-dimensional phase spac&ame of their average group velocity {+v,)/2. The pa-
representatiof15,16. Consequently, the field amplitude at rameters of the simulation are the same as in Fig. 1, except
any particular pointy sits on a specific orbit determined by that we introduce a temporal walk-off with the velocities
the random initial condition. It thus appears evident that thes;=1.32x10® ms ! andv,=1.28x10° ms ! for the sig-
signal field keeps its initial incoherence, and that the pumpal and idler waves, respectively. The incoherent initial noise
field loses its initial coherence. is rapidly smoothed down during propagation, which leads to

Following this very simple reasoning, one would think a coherent parametric amplification process 97).
that the introduction of the walk-off between the pump and Note that these numerical results are not dependent on the
signal waves is sufficient to increase the signal coherencstatistical properties of the stochastic functiafjéz,t). In
during the amplification process. Indeed, in the presence gfarticular, the same qualitative results were also obtained in
walk-off the system of equationd) is no longer equivalent the absence of the stochastic functigng,t) [¢;=0 in Egs.
to a set of ordinary differential equations, and the field am{1)] and starting the numerical simulations from a weak ran-
plitudes in» and »+d» are therefore coupled so as to in- dom complex noise for the signal and idler fields.
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IV. STABILITY ANALYSIS terms the essential role of walk-off in the coherence of para-

The remarkable aspect of the scenario presented above etric fluorgscence. The walk-off 5|mp!y appears as having a
rIl|ter|ng action that favors the formation of homogeneous

that the amplification process becomes coherent at the ve
atterns.

beginning of the parametric interaction. In other words, th , o ' . ,
transition occurs within the linear regime of the parametric This conclusion is confirmed by a rigorous mathematical

interaction, far from the nonlinear regime of pump depletion.réadtment applied to Ed3). Indeed, the dispersion relation
This is visible in Fig. 3 from the values of the signal and Yw Of the real variabley [Eq. (4)] can be analytically con-
idler amplitudes. This aspect of the problem suggests that #hued in the compleg plane, and one can simply notice that
simple linear analysis of Eq$l) is sufficient to explain the the complex dispersion relatioty,(q) exhibits a saddle
role of walk-off in the coherence of the parametric generapoint of the first order ing=0, i.e.,[dyw/dq]q-0=0, and
tion process. [3?yw!39%]4-0#0. We remark that, due to the presence of
Indeed, linearizing Eqg1) with respect to the signal and the square root in the expressi¥ of vy, the integrand ex-
idler amplitudes leads to a linear problem that may be treateblibits two branch cuts that can always be chosen so that they
through the classical theory of instabilities in wave propagado not cross the real axis of integration. In this way, the
tion [17]. Since our purpose here is to see how the walk-offintegral in Eq.(3) can be calculated through the steepest
affects the nature of the parametric interaction, we negleadescent method, which yields a solution for long times
dispersion for clarityi.e., we consideB;=0 in Egs.(1)]. It [18],
is convenient to carry out the stability analysis in the refer-
ence frame of the average group velocity, ¢t v,)/2 of the
down-converted fields. This reference frame is defined by the
variables[ {=z— (v, +v,)t/2,7=t]. Thus, assuming an un- A1 A, 7)x = =
depleted pump wave in the whole interaction domain, we can V=1l dq lo=o7
linearize Eqs(1) near the trivial solutionAz=¢ey, A1=A,
=0, for €; ,3=0) to obtain the following equation for the

AL Aq=0)exp(7/7p),

evolution of the signal and idler envelopes, where 7-0=1/\/z_; 1020°€y. Thi_s clearly ghows that_, indepen-
dently of the initial condition, the signal and idler fields
PA, PP - evolve toward a homogeneous pattetrir{dependentin the
5 5 —U1U20°€A1 2, (2 amplification process, provided that they exhibit a mutual
ar 4 walk-off, in accordance with the numerical simulation of

Fig. 3. In the absence of walk-off, the dispersion relation
becomesy independent, so that the saddle point no longer
exists and the steepest descent method can no longer be ap-
" plied. In this case, since all the modes of the initial quantum
A AL, 7)= J A fq)exd yu(q)7+iggldg, (3)  noise are amplified with the same gain, there is no transition
e toward coherent fields, as discussed in our numerical analy-
sis (see Figs. 1 and)2 Note finally that the above analysis
predicts that a single walk-off between the pump and the
B > down-converted signal and idler fields does not lead to a
Yul(Q) = V01020°€5— 679 @ coherent parametric process, as shown in Fig. 2. Indeed, the
) ~ ] o walk-off that exists with respect to the pump does not enter
The amplitudesA; (q) in Eq. (3) represent the initial signal  he |inearized probleffEq. (2)], and is therefore irrelevant as
and idler perturbations in the wave number space. regards the coherence of the generated fields, in agreement
We can analyze Eq(3) py keeping only the unstab!e with our numerical simulationésee Fig. 2
modes, i.e., Rey,(q)]>0, since only these modes contrib- | g ys note that this analysis corroborates the early results
ute significantly to the integral over a certain timelt is  gptained in the pioneering works on parametric fluorescence
easy to see from the dispersion relatidfg. (4)] that the  (Refs.[2]). Although the role of walk-off on parametric fluo-
function Re¢y,(q)] exhibits a maximum at=0. This  yescence was not discussed explicitly in these works, it can
means that the modg=0 that corresponds to a homogenouspe found mathematically that the walk-off affects the spectral
perturbation is preferentially amplified in the parametric pro-handwidth of spontaneous parametric emission. By consider-
cess. Equatiort4) shows that the associated spectral gaining the characteristic function of the parametric amplification
curve Reyy(q)] becomes narrower as the walk-off in- f(Ak)=sin(AkL/2)/(AKL/2), where Ak is the phase mis-
creases. We can therefore conclude that the selection of thgatch andL the crystal length, the authors expanded the
homogeneous mode is more efficient when the walk-off isyhase matching k in frequency; it was then straightforward
larger. Conversely, when there is no walk-off, 850, the {0 find that the walk-off narrows the bandwidth of the para-
spectral gain curve Re,(q)] becomes flat and the homo- metric amplifier. Here we find this result from a completely
geneous mode is no longer favored. In this case all thjfferent formalism, that will allow us to compare the roles
modes that are present in the initial conditién(q) are of the walk-off and dispersiorfor diffraction) in a very
amplified in the same way, and no regular pattern is selectesimple way, even when the parametric process takes place in
in the system. This brief analysis explains in very simpletwo dimensiongsee Secs. VI-VII\

where 6= (v,—v4)/2. The general solution of this equation
reads

+

wherey,, andq obey the following dispersion relation:
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V. DISCUSSION degenerate configuration of the parametric interaction where
Before proceeding with our study it is interesting to dis- the s!gnal aqd idler f|glds propagate with the' same group
velocity v 4. It is convenient to carry out the stability analysis

cuss the practical relevance of the mechanism of walk-off- . ) )
in the reference frame of a signal group velocity that is de-

induced coherence studied above through the analysis M ed by the variable§Z=z—v,t,7=t]. Note that since we
= Wt 7=t].

. . . [
some recent experimental results reported in the Ilterature.Onsider a degenerate configuration €uv,), the variablel
the same as that introduced in Sec. IV. Assuming an un-

Our conclusions are consistent with the results of a recenﬁ
study that reports on a phenomenon of incoherent parametri : . : )

epleted pump wave in the whole interaction domain, we can
derive the evolution of the signal envelope by linearizing

amplification[7]. It is thus interesting to consider the specific
experimental conditions in that previous study in order to .
show whether its outcome can be explained in the frameworl%qs' (D)
of our theory or not. First let us note that the experiment was
carried out with a nonlinear crystal used in the type-l tem-

perature tuned nonc;ritical phase-matching condition, i.e., ifrhe solution of this equation is given by the general expan-
the absence of spatial walk-off. The authors observed a prgsig, (3); however, in this case, the corresponding dispersion

cess of coherent parametric amplification only with suffi- .o|5tion v4(q) depends on the dispersion paramegerin-
ciently narrow pump beams. Under these conditions, thekiaaq on the walk-ofB:

observed the formation of coherent spatial solitary waves in
which diffraction is balanced by quadratic nonlinearity and — m
the so-called “spatial mode locking” mechanism occurs. Ya(@)=vioTe fruid ©®
This situation cannot be described in our theory because of Following the same procedure as that outlined in Sec. 1V,
the predominant role of diffractiofi.e., the role of the sec- \we can look at the long term evolution of the parametric
ond derivatives in our model equatio(® that will be dis-  instability by studying the unstable modesof the above
cussed in Sec. VI Conversely, as the beam size of the in- dispersion relation, i.e., the modes satisfyind Rgq)]>0.
jected pump increase@nd then tends to the plane wave at first sight, it seems that the dispersion relation that ac-
configuration considered in our thearyhe process of para- counts for dispersiofiEq. (5)] exhibits the same properties
metric amplification becomes incoherent. Note that ourzs that obtained with the walk-off alof&q. (4)]. Indeed,
a LBO (lithium triboratg crystal in the type-l noncritical that the homogenous mode will be selected by the system in
phase-matching configuration, which also led to the generats |ong term evolution, exactly as in the case of the walk-off
tion of incoherent nondegenerate signal and idler fighls  effect. However, let us point out that, quite importantly, the
Let us remark that as these experiments were realized igjspersion relationyy(q) displays a flatter peak a=0 as
two dimensions, th_eir interpretation thus requires a tWO'compared to that ofy,(q) [note thatyﬁ,(q) varies asg?,
d|menS|or_|aI a_naIyS|s. However, since these experments,;e yﬁ(q) asq*]. This difference can be simply interpreted
were realized in the absence of spatial walk-off, it is clea}rby stating that the selection of the homogenous mpde is

that' the extension of our analysis to two dimensions Sess efficient when the process is ruled by dispersion rather
straightforward and does not alter the validity of our conclu-,[h an walk-off

sions as regards the coherence of the generated fields. Nev- Let us consider this aspect quantitatively by a rigorous

ertheless, the study Qf the tqu—dimensiqnal prqblem in t.h‘?nathematical treatment of Ed3). The main difference
presence of walk-off is not trivial, and will be discussed in between the two complex dispersion relatiopg(q) and
detail in Sec. VIII. Yw(Q) is that y4(q) exhibits a saddle point ff fourt4h order
(i.e., [3'yw!d9'1q=0=0(i=0,1,2,3) and[d*yw/dq ]q=0
VI. ROLE OF DISPERSION OR DIFFRACTION £0) while it is of second order for yo(@) (ie..
Although our interpretation of the role of the walk-off on [#°Yw/dd?]q—0#0). This means that the evolution of the

the coherence of the parametric process is corroborated IfpWn-converted fields in the presence of the walk-off takes
various experiments, it is interesting to analyze the role off'® form
the dispersion effedpr either diffraction in the spatial case
that has been neglected in our theory. The motivation for this A, 2(g,7)ocf
analysis is that, since walk-off and dispersion are two pro- ’
cesses that share the same origin, one would be tempted to . o
conclude that dispersion leads to the coherence of the par¥hile in the presence of the dispersion it takes the form
metric fluorescence exactly as walk-off does. In order to
show that this conclusion is not valid, here we study the Al(é“ﬂ')“f
influence of dispersion on the parametric fluorescence pro-
cess in the framework of the linear stability analysis consid-
ered abovegSec. IV). Our purpose is to show how the dis- These expressions allow us to introduce two distinct charac-
persion affects the parametric instability. We then firstteristic timesTW=2/[|y\(,v2)(0)|q2] and 74=24/|{"(0)|q*],
assume the absence of walk-off between the down-converteshere 1 (0)=[4' ¥199']4=o- They represent the times re-
fields for the sake of clarity. In other words, we consider aquired to obtain the emergence of a coherent parametric pro-

(9,.A1=0'U160A’1‘ _|ﬁ(7§§Al

+ o
exd — |3 %(0)|g?r]exp(iq)daq,

+ oo

_exid—[3274"(0)|a*r]expiq)da.
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cess in the presence of walk-off and dispersion, respectively Y (a) s (b)

In order to compare the influence of these two effects, it is pral X10

more convenient to introduce the characteristic lengfj\s Al t=6% t=6%
=v,7,q associated with the corresponding characteristic 5 Al YA

times 7, 4. After some simple algebra, one finfig{?)(0)|

= &% (Juw,oe) and |y{(0)|=128%,/(cey) which
leads to the following relation between the characteristic
lengths of the walk-off and the dispersion effects:

=05
<
4= & 2 FE
2.3 w o] 1
20€pBv1v, =
x
. . . e, 05
This expression allows us to compare the relative strength o =

the two basic mechanisms that are liable to yield a coheren<
parametric amplification process. Let us compare the charac
teristic lengthd 4 andl,, in the context of a realistic experi-

mental situation. As an example, we consider the same pa 5
rameters as those specified in Fig. 3, and a typical dispersiol

coefficient of k”=0.5 pg/m. According to the numerical 0

simulation of Fig. 3, we may estimate the characteristic O 0 [/2& 0 . tz[(j\] 30
walk-off length byl,=9v,79=1.4 cm, since we observed 3 3

the onset of coherence after nine characteristic times FIG. 4. Evolution of the three interacting envelopes in the ref-

With these parameters, we obtdig=17x10°17,, showing  erence frame of the pumpge) In the presence of dispersiofb) In
that a crystal of approximatively 240 m would be necessaryhe presence of both dispersion and walk-off, the signal and idler
to observe the mechanism of dispersion-induced coheren@velopes are represented by a solid line, and the the pump by a
during parametric amplification. Even if this experiment wasdashed line(amplitudes are given in units afy, 70=12 ps, A
feasible, we may reasonably expect that the nonlinear stagevs7,=0.022 mm).
of the parametric amplificatiofi.e., pump depletionwould
occur prior to the emergence of the coherent dynamics. liexperiment and in a straightforward way, the predicted walk-
other words, the observation of the mechanism of dispersioreff-induced coherent transition in parametric amplification.
induced coherence appears to be impossible with any realiiere we discuss the experimental conditions required for this
tic quadratic nonlinear materials. observation. In our discussion we take into account the role
Clearly, the situation remains unchanged when one cornef dispersion(or diffraction) that has been neglected in the
siders the role of diffraction in the spatial domain, instead ofnumerical simulations presented above. We compare the role
dispersion in the temporal domain. Indeed, the parametedf the dispersion to the role of walk-off by comparing the
that represents diffraction, i.ex;=1/2; (Sec. I, is about degenerate and nondegenerate configurations of the paramet-
one order of magnitude greater thgn In these conditions, ric interaction.
one may expect that a crystal length of several meters is Due to the short interaction length available in typical
necessary in order to observe the mechanism of diffractionaonlinear crystals, it is more realistic to consider the ampli-
induced coherence in parametric generation, which is welffication process from an intense pump pulse instead of a
beyond the possibilities of available technology. This con-continuous wave pump. A typical example of nonlinear wave
clusion is in agreement with the experiment reported in Refdynamics in this condition is shown in Fig. 4, that illustrates
[7]. It was shown that diffraction yields a coherent parametthe evolution of interacting fields in the reference frame of
ric amplification only for very narrow injected pump beams, the pump pulse. Here we considered a Gaussian pump pulse
and thus far from the plane wave configuration considered imrofile. In Fig. 4a) the role of dispersion is taken into ac-
our analysis. Conversely, as the beam size of the pump ircount without walk-off(i.e., the degenerate casahile the
creases, the amplification process becomes incoherent gffects of both dispersion and walk-off are included in Fig.
agreement with our theory. 4(b) (i.e., the nondegenerate case this example the pump
pulse width is 60 ps and its peak intensity is
=100 MWr/cnt. It is launched in a crystal of length
=4.2 cm, with an effective nonlinear coefficientl
=10 pm/V and a dispersiok’=0.5 pg/m. The velocities
According to the above analysis, the walk-off between thev;=1.30x10° ms™!, v,=1.32x10®* ms'!, andv,=1.28
down-converted optical fields seems to be a unique mecha<10® ms ! are considered, that correspond to the case of
nism able to yield a coherent parametric process in its lineathe LiINbO; crystal with the wavelength& ;=1 um, \;
regime of undepleted pump. Although the various experi=1.35 um, andA,=3.85 um. Experimentally, going from
ments discussed in Sec. V seem to corroborate this concluke situation of Fig. @) to the situation of Fig. é) can be
sion, it would be of great interest to observe, in a singledone, for instance, through temperature control of a quasi-

VIl. COMPARISON BETWEEN DISPERSION
AND WALK-OFF
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phase-matched interacti¢h9. parametric process in the framework of the linear stability
As is clearly visible in Fig. 4a), even in the presence of analysis considered aboy8ec. IV). In the following we will

dispersion, the parametric process follows an erratic evolustudy the particular case where the temporal walk-off com-

tion in the absence of walk-off, in agreement with ourpetes with diffraction. However, let us emphasize that our

theory. However, it is worth noting that in the linear regime, results are also relevant for the situation where the spatial

the dispersion effect tends to smooth the initial noise flucwalk-off competes with dispersion, or even with diffraction

tuations despite the absence of walk-{dfg. 4(a), t=67g]. in the case where the parametric process takes place in two

This is no longer the case for the long term evolution, thatransverse dimensions for negligible temporal walk-off. In

clearly exhibits erratic dynamics that continuously spreadhis view, our purpose here is to see how the diffraction and

over the whole pump pulse. This scenario, applied to theéhe temporal walk-off affect the nature of parametric fluores-

spatial domain, is similar to that reported in an experimentcence. We then neglect the dispersion effect that was re-

on spontaneous solitary-wave generation with large inpuvealed to be irrelevant as regards the coherence of the gen-

pump beams in which diffraction alone was not able to pro-erated fields.

vide coherencé7]. To study the influence of the temporal walk-off, it is more
Conversely, as shown in Fig.(#), the walk-off effect convenient to carry out a stability analysis in the reference

induces a coherent parametric amplification whose evolutioframe of the average group velocity(+v,)/2 of the signal

is not affected qualitatively by dispersion. Note that theand idler fields that is define@Sec. I\V) by the following

walk-off reduces the amplification of the down-convertedvariables [{=z— (v,+v,)t/2,7=t]. Assuming an unde-

fields in the linear regimdsee Figs. &) and 4b) at t pleted plane wave for the pump field in the whole interaction

=67]. This is a natural consequence of the group-velocitydomain, the down-converted fields evolve according to the

difference that limits the effective duration of the parametriclinear equations

interaction[3,4]. As the down-converted fields grow, they

are advected away from each othear>(77,) because of dA, A, PPA .

their opposite walk-off directiongote that in the numerical or 5(9_§ - Plg_yz =0V180A7, (6a)

example of Fig. &) we have chosem;=(v;+v,)/2]. In

the nonlinear regime, pump depletion around the pulse peak

occurs (=177), that eventually leads to a-phase change

in the pump envelope € 197), that in turn leads to a back-

conversion from the down-converted fields to the pUmp

This back-conversion process, combined with the effect ofvherep;=v;«; represents the effective diffraction parameter

walk-off, leads to a confinement of the signal and idler(Sec. 1) and 6=(v,—v;)/2 the velocity mismatch of the

pulses that travel away from the pump pulse with their op-down-converted fields. The solution to the linear equations

posite velocities. This process of self-pulse generation rel6) reads

peats until the energy of the pump is exhausted. This numeri-

_caI exa_mple shows that, owing to the walk-off b_etween the Al,Z(r’T):f J A, Aq,p)exd y(a.p) 7

interacting waves, one may expect the generation of local- "2

ized coherent structures from noise fluctuations in a way akin

to what has been recently suggested for symbiotic solitary

waves in quadratic nonlinear medi20]. where  r=(.y) and A= orAr ALy,
=0)exd —i(q{+py)]dgdpis the Fourier transform of the ini-
VIIl. TWO-DIMENSIONAL SPATIOTEMPORAL tially fluctuating signal and idler fields. The dispersion rela-
DYNAMICS tion y(q,p) reads

A, A, A,

e — *
P + ﬂg |p2_(9y2 O'U2eoA1 y (Gb)

+i(q¢+py)]dqdp @)

In the previous sections we identified the walk-off as the (g 0)= —jAp2+ \[1/72— 62¢%— m2p*+ 26mq P
key ingredient responsible for the onset of coherence in the ' 0 '
parametric fluorescence. However, it is worth noting that oukyhereA = (p, — p,)/2 andm=(p; + p,)/2 are the difference
analysis was limited to the purely one-dimensional case, anfind average values of the diffraction parameters, respec-
it would be interesting to study the influence of the walk-off tjyely. Following the procedure outlined in Sec. IV, it is
in the more complex two-dimensional problem. More pre-worth noting that the complex dispersion relatigfd, p)
cisely, when one considers the two-dimensional parametrigyhibits a saddle point ajy=p2m/ s, so that the integral
process in the presence of temporal or spatial walk-off, th%verq in Eq. (7) can be calculated by the steepest method

following question naturally raises: Is a pure tempai@l  that yields an asymptotic expansion for the generated fields,
either spatigl walk-off able to yield a coherent spatial and

temporal dynamics? This problem is not trivial, since we 1
have two antagonistic effects as regards the coherence of the ApAr, 7)o gf
generated fields: on the one hand, the temp@alspatial
walk-off favors a coherent behavior, and, on the other hand, x exdi(py+ p?m¢/8)]dp, (8
diffraction (or dispersiofn leads to an incoherent behavior.

Let us study this two-dimensional configuration of the wherel'(p)=1/7,—iApZ.

+

“Ay Ao, p)exi{T(p) 7]

— o0
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At this point, it is interesting to point out some important 55
aspects of the structure of integ(8). First, let us note that,
as discussed previously in Sec. IV, the functio R@) ] is
analogous to a spectral gain curve whose typical bandwidtt 200
here is inversely proportional th. We may then anticipate
that the parameteA plays a key role in the coherence of
parametric fluorescence. 150

A. CaseA=0
100

Let us first consider the simplest case &f0, i.e.,
v1K1=V2K5. In this situation, we note that, as the ratnds
tends to zerdi.e., the diffraction parameter becomes negli- 50
gible with respect to the walk-off the second term in the
second exponential of Eq8) becomes negligible, and the
asymptotic evolution of the down-converted fields is simply

. ) i . ) 50 100 150 200 250
given by the inverse Fourier transform 8f (qo,p) with y

respect tap,

FIG. 5. Intensity distribution of the signal field\,| at timet

1 - s
A v, 7)o —exp /7o) A ), 9 =137, along the transversg and longitudinalz axes. Parameters
144y, 7) o K7/ 70) A1 Ao, Y) © are 6=4x10" m/s, m=16 n?/s, andA=0 (the window size is

_ L=32A, A=v379=0.022 mm, andr,=12 ps).
whereA; dg,y) may be written as

o These findings, as regards the spatiotemporal coherence
ALy, 7=0)exp(—iqel)ds. (10) of the generated fields in the presence of a perturbative dif-
* fraction and a temporal walk-off are not surprising. Indeed,

It becomes apparent from EQ) that, during the amplifica- pnsthe be:?lls\(/);‘l e;hpl:rely”i)n(faf-cljlmgn?lonal rT;]odeI,tv;e r?ho_wed
tion process, the signal and idler fields evolve toward a ho!l S€cs. Vi~ at walk-ol leads 1o a coherent behavior,

mogenous pattern along the agiswhich simply means that whereas diffraction_only yields an erratic dynamics. _Hovy—
the generated fields are temporally coherent. Conversely, tH&V€l, We shall see in the following that, when diffraction is
asymptotic behavior of the down-converted fields along thd1© longer perturbative, its combination with walk-off effects
axisy remains erratic because of the presence in(8qof a leads to intriguing dynamics. - ' '

noisy functionA; do,y) that is closely related to the initial In the framewaork of the Stab'“ty. anal)'/5|s,. the asy.mptotlc
quantum noise!\£,2(§,y,r=0) through Eq/(10). To summa- evolution of the down-converted fields is given by integral

fize, when the parametric process takes place in the presenf®: Wherem/5#0 and where we still assumg=0. The

of a strong temporal walk-off and a perturbative diffraction,intégrand is thus to be the product of the noisy function

the down-converted fields are temporally coherent and spaA; (do,p) and the phase term epifpy+ p’m¢/8)]. Although

tially incoherent. this integral cannot be computed analytically in the general
This prediction of the linear stability analysis has beencase, it is clear that there is no means for the phase term to

checked numerically by solving the complete set of nonlin-gmooth down the noisy funCtiOﬁl,z(qo,p)- Indeed, all the

ear two-dimensional equations governing the parametric proy,oges that are present in the fluctuating initial condition
cess. More specifically, we solved Eq4) without disper-

sion and in the presence of diffraction along the additiona
axisy. A typical result is shown in Fig. 5, that illustrates the . _
intensity distribution|A,|(,y) of the signal field. This in- Ccause the gain curve(p)=1/z, is flat for A=0. One can
tensity distribution has been obtained at time13r,, when then reasonably gxpect that_the asymptotm evolutlon.of the
we observed a negligible depletion of the pump. As an initiadown-converted fields remain erratic. Importantly, this er-
condition, for the signal and idler amplitudes we take a com/atic evolution results in both spatial and temporal incoher-
plex random noise, and for the pump beam a super-Gaussi&fiCe.

function in both they and¢ axes with a maximum amplitude ~~ We checked these predictions by numerically solving the
eo. We considered a square grid of 26856 points, repre- complete set of nonlinear equations, and we illustrate an ex-
senting 32X 32 spatial units o\ =v37,. In this example, the ample of typical distribution of the signal field in Fig. 6 at
diffraction effect is perturbative with respect to the temporaltime 7=13r,. The parameters are the same as in Fig. 5,
walk-off and, as expected, the signal field appears to be caexcept that we increased the ratiw' 5. As expected, the
herent along the walk-off axig and incoherent along the generated fields are incoherent both temporally and spatially.
transverse axig. Note that the idler field follows an evolu- This study then reveals that, quite surprisingly, diffraction is
tion almost identical to that of the signal field, in agreementable to break down the temporal coherence of the generated
with our theory. fields, even when the temporal walk-off is present.

’Al,Z(q01y):J'

ﬁ\l’iqo,p) are amplified in a similar way, without any
mechanism of wave number selection. This is simply be-
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50 100 150 200 250 50 100 150 200 250

FIG. 6. Intensity distribution of the signal field\,| at timet FIG. 8. Intensity distribution of the signal field\;| at timet
=13, along the transversg and longitudinalz axes. Parameters =137, along the transversg and longitudinalz axes. Parameters
are 6=5x10° m/s andm=16 nt/s, A=0 (the window size is are 6=5x10° m/s andm=16 n?/s, A=12 n?/s (the window
L=32A; A=v379=0.022 mm andry=12 ps). size isL=32A; A=v379=0.022 mm andry=12 ps).

B. CaseA#0 the steepest ascent for R@& 0 and the steepest descent for
Re(p)>0, while In{T"(p)] is constant, as it must be in order
At this point we may summarize our results as follows:to apply the steepest descent mettid8]. Accordingly, the
apart from the particular case where the diffraction effect igesult of the integral reads
negligible with respect to the walk-off, we have shown that,
providedA =0, the two-dimensional parametric process gen-
erally leads to the emergence of both spatially and tempo- AL ALY r)oc}exp( 7o) (11)
rally incoherent fields. This result is due to the simple fact A= ntTs 0
that, whenA =0, the effective bandwidth of the gain curve
R4 T'(p)] is flat, and there is no means for the emergence of

a spatially coherent field. Let us now consider the generahng one may expect the generation of a homogenous pattern
caseA # 0 in the framework of the linear stability analysis. It along both the walk-off axig and the transverse axig

is worth noting that fol # 0 the complex dispersion relation which simply means that the generated fields would be both
I'(p)=1/r—iAp? has a saddle point ip=0, and integral spatially and temporally coherent.

(8) may be calculated by the steepest descent method. Nev- In order to verify the validity of this result, we numeri-
ertheless, note that the real axis Be(s not the right con- cally solved the full set of nonlinear equations for the same
tour of integration because it is not the contour of steepestonditions as in Fig. 6, except that we impose a nonvanish-
descent. Using the Cauchy theorem, we can equivalentling value of the parameter. A typical result is illustrated in
evaluate integral8) along any contourC in the complex Fig. 8, that shows the intensity distribution of the signal
planep connecting the extrema of integration, provided thecomponent at a time= 13r,. A comparison between Figs. 8
integrand has no singularities in the area bounded by thand 6 shows that the generated signal exhibits some degree
original and the new contour. The integrand of E&).being  Of spatial and temporal coherence that may be clearly attrib-
analytic everywhere, we can calculate the corresponding indted to the nonvanishing value &4f However, it is clear that
tegral on a contour that goes through the saddle point a€ intensity distribution is far from being homogenous along

depicted in Fig. 7. Along this specific contour,[R¢p)] has  the axes{ andy, as the linear theory predicts through Eg.
(11). As a matter of fact, here we are in the same situation as

. that encountered when studying the role of diffraction in the
x4t Im(p) purely one-dimensional case. We have indeed shown in Sec.
(©) VI that dispersion or diffraction is able, priori, to yield a
Re(p) coherent behavior in a way similar to the walk-off effect.
However, the interaction length required is in practice too
long to allow for an observation of the diffraction-induced
coherence process. In the two-dimensional case considered
here, the requested interaction length is inversely propor-
FIG. 7. ContourC of integration in the complex plana tional to A, i.e., to the bandwidth of the gain cunigp).
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The parameteA being of the same order of magnitude ast-dispersion or diffraction effects are not able in practice to
hat of the effective diffraction parametgy, it is not surpris-  increase the coherence of the down-converted fields. More-
ing that the numerical simulations show an erratic spatiotemover, a two-dimensional study reveals that when the nature
poral evolution of the down-converted fields for realistic Of the walk-off is exclusively tempordbr spatia), the para-
values of the diffraction parameter. The incoherence of thénetric process is not able to yield the generation of both
generated fields in the two-dimensional configuration of theSPatially and temporally coherent fields. Our physical inter-
parametric process is then of the same nature as that encoudf€tation of the theory allowed us to explain the results of a

tered in the purely one-dimensional case considered in Segeries of recent experimental studies of parametric fluores-
VI, cence. It would be interesting to extend the proposed theory

in order to study rigorously the statistical properties of the
IX. CONCLUSION parametrically generated fields, which is of particular impor-
tance for a quantitative comparison between the theory and
In conclusion, we considered the fundamental physicaéxperiments. This aspect is presently under investigation.

problem of spontaneous parametric generation from noise Although we restricted our analysis to the parametric am-
fluctuations in the presence of a plane pump wave. Welification process in quadratic nonlinear media, the mecha-
showed that in the absence of walk-off between the downnism of walk-off-induced coherence is generic, and can be
converted signal and idler fields, the process of parametriextended to four-wave mixing in cubic nonlinear media or
amplification is intrinsically incoherent, even in the nonlin- other physical parametric processes, such as, e.g., the effects
ear regime of pump depletion. Apart from the particular caseof external fields on pattern forming systef24] or coupled
where very short pulsegr narrow beams, for the spatial molecular and atomic Bose-Einstein condensf®y. The
domain are involved, dispersiofor diffraction) alone is not experimental confirmation of the mechanism of walk-off-
able to lead to a coherent parametric process. We showedduced coherence would be of great interest, on the one
both analytically, through a simple linear analysis of thehand, for a fundamental study of spontaneous formation of
model equations, and numerically that it is the walk-off be-coherent structures in nonlinear physj@s8,2Q and, on the
tween the generated fields that is at the origin of the coherether hand, for a better knowledge and control of practical
ence of the parametric amplification process. Conversely, thigaveling-wave optical parametric generatpt$
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