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Influence of walk-off, dispersion, and diffraction on the coherence of parametric fluorescence
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We consider the basic problem of spontaneous parametric generation from quantum noise fluctuations in the
presence of a continuous plane-wave pump. We show, both numerically and analytically, that the walk-off
between the down-converted fields is the key ingredient that leads to the generation of coherent fields in the
parametric process. Along these lines, our theory reveals that, in the absence of walk-off, diffraction and
chromatic dispersion in usual quadratically nonlinear materials only lead to incoherent erratic dynamics.
Moreover, a two-dimensional study shows that, when the walk-off is exclusively temporal~or spatial!, the
parametric process is not able to yield the generation of spatially~or temporally! coherent fields. This study
sheds light on the problem of coherence in parametric fluorescence and, in particular, allows us to explain
various recent experimental observations.
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I. INTRODUCTION

The phenomenon of parametric generation from quan
noise is a fundamental physical process that has been w
studied since the advent of nonlinear optics in the 1960s
refers to a parametric amplification process where energ
transferred from a pump laser beam into two fields of lar
wavelength usually called the signal and the idler. The qu
tum noise amplification that is observed in the absence
any signal and idler seeds in quadratic optical crystals
called parametric fluorescence.

In the literature, parametric fluorescence was first ext
sively studied in the low-conversion-efficiency regime~i.e.,
linear regime!, in particular for the characterization of it
angular intensity distribution@1,2#. More recently, the grow-
ing interest in traveling-wave optical parametric generat
as sources of high-power tunable femtosecond pulses m
vated the study of parametric fluorescence in the nonlin
regime of pump depletion@3–6#. For instance, generatio
through parametric fluorescence of two-dimensional spa
solitary waves@7# and optical vortices@8# was recently re-
ported. These experiments revealed, in particular, that in
parametric fluorescence process a transition occurs betw
two regimes characterized, respectively, by the incohere
and coherence of the generated signal and idler fields. In
transition toward the coherent regime the initial incohere
of the quantum noise is apparently smoothed down by
parametric process, to lead to regular spatiotemporal fi
distributions.

These experimental observations naturally raise the
lowing question: What is the mechanism responsible for
incoherence-to-coherence transition in parametric fluo
cence? The problem is not trivial, because the existenc
this transition seems to depend critically on the experime
conditions, as revealed in Refs.@7,9#, that report on the gen
eration of spatially incoherent down-converted fields in
spontaneous parametric process.

An attempt to answer this question was proposed by
Trapaniet al. in Ref. @7#. In that work the authors interprete
the spontaneous formation of coherent solitary waves fr
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quantum noise in terms of ‘‘spatial mode locking,’’ relyin
upon the analogy of this process and the temporal mo
locking in laser resonators. Following this interpretation, t
generation of coherent down-converted fields would
closely related to the self-trapping mechanism character
of the solitary-wave formation process. Accordingly, as so
as self-trapping does not occurs, the generated signal
idler fields remain incoherent even in the strong pump dep
tion regime @7#. However, this physical interpretation i
terms of ‘‘spatial mode locking’’ does not seem to provide
complete picture of the problem, since down-converted fie
have also been generated with a high degree of coherenc
from the solitary wave regime, as shown by studies of
herent pattern formation in parametric down-convers
@5,6#.

In the present paper we address the problem from a
ferent point of view. We consider the basic problem of pa
metric fluorescence from a continuous plane-wave pump.
means of numerical simulations and a very simple ma
ematical analysis of the equations that rule optical thr
wave mixing in the classical limit, we show that the walk-o
between the signal and idler waves is the key ingredient
sponsible for the onset of coherence in parametric do
conversion. The term ‘‘walk-off’’ refers here to either th
spatial beam divergence due to the crystal birefringence
the group velocity difference that affects short pulses in d
persive crystals. The mathematical description of the role
the signal-idler walk-off is based on a linear analysis of t
three-wave mixing equations. It reveals that coherent w
generation takes place in the linear regime of parame
fluorescence~i.e., with arbitrarily small pump depletion!.
Conversely, the natural chromatic dispersion~or diffraction
in the spatial domain! encountered in usual materials wit
quadratic nonlinearities, only leads to an incoherent evo
tion of the optical fields. Moreover, a two-dimensional stu
reveals that when the nature of the walk-off is exclusive
temporal~or spatial!, the parametric process is not able
yield the generation of spatially~temporally! coherent fields.
To motivate an experimental confirmation of our theory, w
present a numerical simulation of a realistic experiment
©2001 The American Physical Society11-1



nc

nt
ar
o
n

ity
e
th
is

d
ca
II
e
a
th
rt
n
ro

th
n
th

l

n

s-

n

e
al

ors
of

pa-

d

a-
rti-

hat
es

on
ld
tua-

s in
oc-

he
l

-

ff

-

ANTONIO PICOZZI AND MARC HAELTERMAN PHYSICAL REVIEW E 63 056611
which the transition from incoherent to coherent fluoresce
could be observed and studied.

The paper is organized as follows. In Sec. II, we prese
typical three-wave interaction model that describes the p
metric process. The relevant role of the walk-off on the c
herence of parametric fluorescence is discussed through
merical simulations in Sec. III, and through a linear stabil
analysis in Sec. IV. In Sec. V we discuss the practical r
evance of the walk-off-induced coherence mechanism in
context of some recent experimental results. The compar
between the roles of walk-off and of dispersion~or diffrac-
tion! in the coherence of the generated fields is presente
Sec. VI. This analytical study is then confirmed by numeri
simulations in a realistic experimental situation in Sec. V
In order to complete our analysis, in Sec. VIII we consid
the two-dimensional geometry of the parametric process,
study the influence of the walk-off and diffraction on bo
the spatial and temporal coherences of the down-conve
fields. Finally, Sec. IX gives a summary of our results, a
briefly discusses the related issues and links with other p
lems in physics.

II. GOVERNING EQUATIONS

Our starting points are the usual equations governing
spatiotemporal evolution of optical fields in quadratic no
linear media in one space dimension. The evolution of
slowly varying envelopesAi of these fields, of frequencyv i
and wave numberki , obeys the coupled partial differentia
equations

1

v1

]A1

]t
1

]A1

]z
1 ib1

]2A1

]z2
5s1A3A2* 1Ae1j1~z,t !,

~1a!

1

v2

]A2

]t
1

]A2

]z
1 ib2

]2A2

]z2
5s2A3A1* 1Ae2j2~z,t !,

~1b!

1

v3

]A3

]t
1

]A3

]z
1 ib3

]2A3

]z2
52s3A2A11Ae3j3~z,t !,

~1c!

with v35v21v1. For definiteness we callA1 , A2, andA3
the signal, idler, and pump waves, respectively.s i

5dki /ni
2 , v i andb i5v i

2ki9/2 @ki95(]2k/]v2) i # are the cou-
pling constants, the velocities, and the dispersion coefficie
of the crystal at frequencyv i , respectively,d being the ef-
fective nonlinear susceptibility. From now on we will a
sume for simplicity and without loss of generality thats
5s15s25s3/2 andk95ki9 ( i 51,2, and 3!. The complex
stochastic variablesj i(z,t) are Gaussian, with a zero mea
^j i(z,t)&50 and correlation ^j i(z,t)j j* (z8,t8)&5d i , jd(t
2t8)d(z2z8), and e i represents the noise intensity of th
field Ai . This description of noise by means of classic
looking Langevin equations was introduced in Ref.@10# to
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study quantum fluctuations in optical parametric oscillat
below threshold. It was also used to show the formation
noise-sustained convective structures in both cubic@11# and
quadratic@12# nonlinear optical cavities.

Note that Eqs.~1! also hold for a description of purely
transverse spatial evolution governed by diffraction and s
tial walk-off. Indeed, the substitutions (1/v i)(]/]t)
→x i]/]y where x i represents the spatial walk-off, an
b i(]

2/]z2)→2k i(]
2/]y2), where k i51/2ki is the diffrac-

tion parameter, transform Eqs.~1! into the well-known equa-
tion of transverse effects in quadratic crystals@13#.

III. ROLE OF WALK-OFF

To obtain a basic insight into the role of walk-off in par
metric fluorescence, it is interesting to consider first the a
ficial situation of a degenerate down-conversion (v15v2 ,
A15A2) in an ideal dispersionless quadratic crystal, so t
there is no walk-off between the signal and pump wav
(v1,25v3) and b i50 in Eqs.~1!. In this situation, through
Eqs. ~1! we numerically simulated the basic propagati
problem of a continuous pump with a zero initial signal fie
amplitude apart from the presence of quantum noise fluc
tions ~vacuum field!. A typical result is illustrated in Fig. 1,
that shows the evolution of the pump and signal envelope
the reference frame traveling at their common group vel
ity. In this example the injected pump intensity isI
5100 MW/cm2 for s52.831025 V21. As an initial con-
dition in t50, we take a continuous wave envelope for t
pump A3(z,t50)5e0 and a small amplitude noisy signa
field A1(z,t50)5Ae1j1(z,t50). To evaluate the noise in

FIG. 1. Evolution of the interacting envelopes without walk-o
in their own reference frame~degenerate case! in the linear (t
56t0) and nonlinear (t511t0) regimes: the parametric amplifica
tion is incoherent~amplitudes are given in units ofe0, and h in
units of L5v3t050.022 mm).
1-2
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INFLUENCE OF WALK-OFF, DISPERSION, AND . . . PHYSICAL REVIEW E63 056611
tensity e1, we consider that an amplification factor of 1
orders of magnitude is necessary to obtain a signal inten
comparable to that of the pump@7#, which gives a value of
the noise intensity ofe1510210e0

2. It is worth noting that the
value of the noise intensitye1 does not affect our numerica
results. Indeed, we obtained the same qualitative results
amplification factors ranging from 108 to 1014. As revealed
by the structure of Eqs.~1!, this problem of parametric am
plification is characterized by the time constantt0

51/(Av1v2se0) that determines the temporal growth rate
the signal field amplitude in the crystal. For this reason
will use t0 as the time unit in the presentation of our resu
With the parameters considered above, we obtaint0
512 ps.

As can be seen in Fig. 1, the signal field keeps its ini
incoherence~determined by the quantum noise! even in the
nonlinear regime of pump depletion (t.10t0). In other
words, the initial incoherent fluctuations affect the long te
evolution of the parametric process. This result can be ea
interpreted through a geometrical approach of the param
process proposed in Refs.@14,15#. First we note that, in the
absence of walk-off and dispersion, Eqs.~1! can be viewed
as a continuous set of ordinary differential equations for
variableh5z2v1,3t. This means that the field evolution in
particular pointh is independent of the field evolution in th
neighboring pointh1dh, so that there is no means t
smooth down the initial noisy signal envelope. Following t
geometrical approach, due to the Hamiltonian nature of
problem, the dynamical evolution is fully described b
closed orbit trajectories in a two-dimensional phase sp
representation@15,16#. Consequently, the field amplitude
any particular pointh sits on a specific orbit determined b
the random initial condition. It thus appears evident that
signal field keeps its initial incoherence, and that the pu
field loses its initial coherence.

Following this very simple reasoning, one would thin
that the introduction of the walk-off between the pump a
signal waves is sufficient to increase the signal cohere
during the amplification process. Indeed, in the presenc
walk-off the system of equations~1! is no longer equivalen
to a set of ordinary differential equations, and the field a
plitudes inh and h1dh are therefore coupled so as to i

FIG. 2. Same as in Fig. 1, but in the presence of a walk-
between the pump and the down-converted degenerate signal
(h85z2v1t).
05661
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crease coherence. However, our numerical simulations re
that the situation is more complex than this simple pictu
Figure 2 shows a typical result obtained when introducin
walk-off between the pump and signal waves for the sa
parameters as in Fig. 1, but with the velocitiesv351.28
3108 ms21 and v151.323108 ms21 corresponding to a
realistic walk-off parameter of 1/v321/v150.24 ps/mm. As
in Fig. 1, the signal is amplified, but remains incoherent
to the nonlinear regime. However, the presence of the w
off drastically changes the evolution of the pump, that
longer loses its coherence since, as is apparent in Fig. 2
envelope now remains smooth for arbitrarily long interacti
times.

Let us now consider the situation where there is a wa
off between the down-converted fields, namely, between
signal and the idler waves (v1Þv2). This configuration typi-
cally arises in the nondegenerate configuration of the p
metric interaction (v1Þv2 , A1ÞA2). In this case, the am
plification scenario is of a fundamentally different nature.
typical result is represented in Fig. 3, that illustrates the e
lution of the down-converted amplitudesA1,2 in the reference
frame of their average group velocity (v11v2)/2. The pa-
rameters of the simulation are the same as in Fig. 1, ex
that we introduce a temporal walk-off with the velocitie
v151.323108 ms21 andv251.283108 ms21 for the sig-
nal and idler waves, respectively. The incoherent initial no
is rapidly smoothed down during propagation, which leads
a coherent parametric amplification process (t.9t0).

Note that these numerical results are not dependent on
statistical properties of the stochastic functionsj i(z,t). In
particular, the same qualitative results were also obtaine
the absence of the stochastic functionsj i(z,t) @e i50 in Eqs.
~1!# and starting the numerical simulations from a weak ra
dom complex noise for the signal and idler fields.

f
ve

FIG. 3. Amplitude evolution in the linear regime of the nond
generate parametric process: the walk-off between the signal
the idler waves leads to their coherent amplification in the lin
regime @amplitudes are given in units ofe0 ; t0512 ps,L5v3t0

50.022 mm, andh95z2(v11v2)t/2#.
1-3
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IV. STABILITY ANALYSIS

The remarkable aspect of the scenario presented abo
that the amplification process becomes coherent at the
beginning of the parametric interaction. In other words,
transition occurs within the linear regime of the parame
interaction, far from the nonlinear regime of pump depletio
This is visible in Fig. 3 from the values of the signal an
idler amplitudes. This aspect of the problem suggests th
simple linear analysis of Eqs.~1! is sufficient to explain the
role of walk-off in the coherence of the parametric gene
tion process.

Indeed, linearizing Eqs.~1! with respect to the signal an
idler amplitudes leads to a linear problem that may be trea
through the classical theory of instabilities in wave propa
tion @17#. Since our purpose here is to see how the walk-
affects the nature of the parametric interaction, we neg
dispersion for clarity@i.e., we considerb i50 in Eqs.~1!#. It
is convenient to carry out the stability analysis in the ref
ence frame of the average group velocity (v11v2)/2 of the
down-converted fields. This reference frame is defined by
variables@z5z2(v11v2)t/2,t5t#. Thus, assuming an un
depleted pump wave in the whole interaction domain, we
linearize Eqs.~1! near the trivial solution (A35e0 , A15A2
50, for e1,2,350) to obtain the following equation for th
evolution of the signal and idler envelopes,

]2A1,2

]t2
2d2

]2A1,2

]z2
5v1v2s2e0

2A1,2, ~2!

whered5(v22v1)/2. The general solution of this equatio
reads

A1,2~z,t!5E
2`

1`

Ã1,2~q!exp@gw~q!t1 iqz#dq, ~3!

wheregw andq obey the following dispersion relation:

gw~q!5Av1v2s2eo
22d2q2. ~4!

The amplitudesÃ1,2(q) in Eq. ~3! represent the initial signa
and idler perturbations in the wave number space.

We can analyze Eq.~3! by keeping only the unstabl
modes, i.e., Re@gw(q)#.0, since only these modes contrib
ute significantly to the integral over a certain timet. It is
easy to see from the dispersion relation@Eq. ~4!# that the
function Re@gw(q)# exhibits a maximum atq50. This
means that the modeq50 that corresponds to a homogeno
perturbation is preferentially amplified in the parametric p
cess. Equation~4! shows that the associated spectral g
curve Re@gw(q)# becomes narrower as the walk-off in
creases. We can therefore conclude that the selection o
homogeneous mode is more efficient when the walk-of
larger. Conversely, when there is no walk-off, i.e.,d50, the
spectral gain curve Re@gw(q)# becomes flat and the homo
geneous mode is no longer favored. In this case all
modes that are present in the initial conditionÃ1,2(q) are
amplified in the same way, and no regular pattern is sele
in the system. This brief analysis explains in very simp
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terms the essential role of walk-off in the coherence of pa
metric fluorescence. The walk-off simply appears as havin
filtering action that favors the formation of homogeneo
patterns.

This conclusion is confirmed by a rigorous mathemati
treatment applied to Eq.~3!. Indeed, the dispersion relatio
gw of the real variableq @Eq. ~4!# can be analytically con-
tinued in the complexq plane, and one can simply notice th
the complex dispersion relationgw(q) exhibits a saddle
point of the first order inq50, i.e., @]gw /]q#q5050, and
@]2gw /]q2#q50Þ0. We remark that, due to the presence
the square root in the expression~4! of g, the integrand ex-
hibits two branch cuts that can always be chosen so that
do not cross the real axis of integration. In this way, t
integral in Eq. ~3! can be calculated through the steep
descent method, which yields a solution for long timest
@18#,

A1,2~z,t!}
1

A2@]2gw /]q2#q50t
Ã1,2~q50!exp~t/t0!,

where t051/Av1v2se0. This clearly shows that, indepen
dently of the initial condition, the signal and idler field
evolve toward a homogeneous pattern (z independent! in the
amplification process, provided that they exhibit a mutu
walk-off, in accordance with the numerical simulation
Fig. 3. In the absence of walk-off, the dispersion relati
becomesq independent, so that the saddle point no long
exists and the steepest descent method can no longer b
plied. In this case, since all the modes of the initial quant
noise are amplified with the same gain, there is no transi
toward coherent fields, as discussed in our numerical an
sis ~see Figs. 1 and 2!. Note finally that the above analysi
predicts that a single walk-off between the pump and
down-converted signal and idler fields does not lead to
coherent parametric process, as shown in Fig. 2. Indeed
walk-off that exists with respect to the pump does not en
the linearized problem@Eq. ~2!#, and is therefore irrelevant a
regards the coherence of the generated fields, in agree
with our numerical simulations~see Fig. 2!.

Let us note that this analysis corroborates the early res
obtained in the pioneering works on parametric fluoresce
~Refs.@2#!. Although the role of walk-off on parametric fluo
rescence was not discussed explicitly in these works, it
be found mathematically that the walk-off affects the spec
bandwidth of spontaneous parametric emission. By consi
ing the characteristic function of the parametric amplificati
f (Dk)5sin(DkL/2)/(DkL/2), whereDk is the phase mis-
match andL the crystal length, the authors expanded t
phase matchingDk in frequency; it was then straightforwar
to find that the walk-off narrows the bandwidth of the par
metric amplifier. Here we find this result from a complete
different formalism, that will allow us to compare the role
of the walk-off and dispersion~or diffraction! in a very
simple way, even when the parametric process takes plac
two dimensions~see Secs. VI–VIII!.
1-4
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V. DISCUSSION

Before proceeding with our study it is interesting to d
cuss the practical relevance of the mechanism of walk-
induced coherence studied above through the analysi
some recent experimental results reported in the literat
Our conclusions are consistent with the results of a rec
study that reports on a phenomenon of incoherent param
amplification@7#. It is thus interesting to consider the speci
experimental conditions in that previous study in order
show whether its outcome can be explained in the framew
of our theory or not. First let us note that the experiment w
carried out with a nonlinear crystal used in the type-I te
perature tuned noncritical phase-matching condition, i.e.
the absence of spatial walk-off. The authors observed a
cess of coherent parametric amplification only with su
ciently narrow pump beams. Under these conditions, t
observed the formation of coherent spatial solitary wave
which diffraction is balanced by quadratic nonlinearity a
the so-called ‘‘spatial mode locking’’ mechanism occu
This situation cannot be described in our theory becaus
the predominant role of diffraction@i.e., the role of the sec
ond derivatives in our model equations~1! that will be dis-
cussed in Sec. VI#. Conversely, as the beam size of the
jected pump increases~and then tends to the plane wav
configuration considered in our theory!, the process of para
metric amplification becomes incoherent. Note that o
theory also agrees with an other experiment performed w
a LBO ~lithium triborate! crystal in the type-I noncritica
phase-matching configuration, which also led to the gen
tion of incoherent nondegenerate signal and idler fields@9#.

Let us remark that as these experiments were realize
two dimensions, their interpretation thus requires a tw
dimensional analysis. However, since these experim
were realized in the absence of spatial walk-off, it is cle
that the extension of our analysis to two dimensions
straightforward and does not alter the validity of our conc
sions as regards the coherence of the generated fields.
ertheless, the study of the two-dimensional problem in
presence of walk-off is not trivial, and will be discussed
detail in Sec. VIII.

VI. ROLE OF DISPERSION OR DIFFRACTION

Although our interpretation of the role of the walk-off o
the coherence of the parametric process is corroborate
various experiments, it is interesting to analyze the role
the dispersion effect~or either diffraction in the spatial case!
that has been neglected in our theory. The motivation for
analysis is that, since walk-off and dispersion are two p
cesses that share the same origin, one would be tempte
conclude that dispersion leads to the coherence of the p
metric fluorescence exactly as walk-off does. In order
show that this conclusion is not valid, here we study
influence of dispersion on the parametric fluorescence
cess in the framework of the linear stability analysis cons
ered above~Sec. IV!. Our purpose is to show how the dis
persion affects the parametric instability. We then fi
assume the absence of walk-off between the down-conve
fields for the sake of clarity. In other words, we conside
05661
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degenerate configuration of the parametric interaction wh
the signal and idler fields propagate with the same gro
velocity v1. It is convenient to carry out the stability analys
in the reference frame of a signal group velocity that is d
fined by the variables@z5z2v1t,t5t#. Note that since we
consider a degenerate configuration (v15v2), the variablez
is the same as that introduced in Sec. IV. Assuming an
depleted pump wave in the whole interaction domain, we
derive the evolution of the signal envelope by linearizi
Eqs.~1!:

]t A15sv1e0A1* 2 ib]zzA1 .

The solution of this equation is given by the general exp
sion ~3!; however, in this case, the corresponding dispers
relation gd(q) depends on the dispersion parameterb, in-
stead on the walk-offd:

gd~q!5Av1
2s2eo

22b2v1
2q4. ~5!

Following the same procedure as that outlined in Sec.
we can look at the long term evolution of the paramet
instability by studying the unstable modesq of the above
dispersion relation, i.e., the modes satisfying Re@gd(q)#.0.
At first sight, it seems that the dispersion relation that
counts for dispersion@Eq. ~5!# exhibits the same propertie
as that obtained with the walk-off alone@Eq. ~4!#. Indeed,
sincegd(q) exhibits a maximum atq50, one may expect
that the homogenous mode will be selected by the system
its long term evolution, exactly as in the case of the walk-
effect. However, let us point out that, quite importantly, t
dispersion relationgd(q) displays a flatter peak atq50 as
compared to that ofgw(q) @note thatgw

2 (q) varies asq2,
while gd

2(q) asq4#. This difference can be simply interprete
by stating that the selection of the homogenous modeq50 is
less efficient when the process is ruled by dispersion ra
than walk-off.

Let us consider this aspect quantitatively by a rigoro
mathematical treatment of Eq.~3!. The main difference
between the two complex dispersion relationsgd(q) and
gw(q) is that gd(q) exhibits a saddle point of fourth orde
~i.e., @] igw /]qi #q5050(i 50,1,2,3) and@]4gw /]q4#q50
Þ0… while it is of second order for gw(q) ~i.e.,
@]2gw /]q2#q50Þ0). This means that the evolution of th
down-converted fields in the presence of the walk-off tak
the form

A1,2~z,t!}E
2`

1`

exp@2u 1
2 gw

(2)~0!uq2t#exp~ iqz!dq,

while in the presence of the dispersion it takes the form

A1~z,t!}E
2`

1`

exp@2u 1
24 gd

(4)~0!uq4t#exp~ iqz!dq.

These expressions allow us to introduce two distinct cha
teristic timestw52/@ ugw

(2)(0)uq2# andtd524/@ ugd
(4)(0)uq4#,

whereg ( i )(0)5@] ig/]qi #q50. They represent the times re
quired to obtain the emergence of a coherent parametric
1-5
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cess in the presence of walk-off and dispersion, respectiv
In order to compare the influence of these two effects, i
more convenient to introduce the characteristic lengthsl w,d
5v1tw,d associated with the corresponding characteri
times tw,d . After some simple algebra, one findsugw

(2)(0)u
5d2/(Av1v2se0) and ugd

(4)(0)u512b2v1 /(se0) which
leads to the following relation between the characteris
lengths of the walk-off and the dispersion effects:

l d5
d4

2se0b2v1
3v2

l w
2 .

This expression allows us to compare the relative strengt
the two basic mechanisms that are liable to yield a cohe
parametric amplification process. Let us compare the cha
teristic lengthsl d and l w in the context of a realistic experi
mental situation. As an example, we consider the same
rameters as those specified in Fig. 3, and a typical disper
coefficient of k950.5 ps2/m. According to the numerica
simulation of Fig. 3, we may estimate the characteris
walk-off length by l w59v1t051.4 cm, since we observe
the onset of coherence after nine characteristic timest0.
With these parameters, we obtainl d.173103l w

2 , showing
that a crystal of approximatively 240 m would be necess
to observe the mechanism of dispersion-induced cohere
during parametric amplification. Even if this experiment w
feasible, we may reasonably expect that the nonlinear s
of the parametric amplification~i.e., pump depletion! would
occur prior to the emergence of the coherent dynamics
other words, the observation of the mechanism of dispers
induced coherence appears to be impossible with any re
tic quadratic nonlinear materials.

Clearly, the situation remains unchanged when one c
siders the role of diffraction in the spatial domain, instead
dispersion in the temporal domain. Indeed, the param
that represents diffraction, i.e.,k i51/2ki ~Sec. II!, is about
one order of magnitude greater thanb. In these conditions
one may expect that a crystal length of several meter
necessary in order to observe the mechanism of diffract
induced coherence in parametric generation, which is w
beyond the possibilities of available technology. This co
clusion is in agreement with the experiment reported in R
@7#. It was shown that diffraction yields a coherent param
ric amplification only for very narrow injected pump beam
and thus far from the plane wave configuration considere
our analysis. Conversely, as the beam size of the pump
creases, the amplification process becomes incoheren
agreement with our theory.

VII. COMPARISON BETWEEN DISPERSION
AND WALK-OFF

According to the above analysis, the walk-off between
down-converted optical fields seems to be a unique me
nism able to yield a coherent parametric process in its lin
regime of undepleted pump. Although the various expe
ments discussed in Sec. V seem to corroborate this con
sion, it would be of great interest to observe, in a sin
05661
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experiment and in a straightforward way, the predicted wa
off-induced coherent transition in parametric amplificatio
Here we discuss the experimental conditions required for
observation. In our discussion we take into account the r
of dispersion~or diffraction! that has been neglected in th
numerical simulations presented above. We compare the
of the dispersion to the role of walk-off by comparing th
degenerate and nondegenerate configurations of the para
ric interaction.

Due to the short interaction length available in typic
nonlinear crystals, it is more realistic to consider the amp
fication process from an intense pump pulse instead o
continuous wave pump. A typical example of nonlinear wa
dynamics in this condition is shown in Fig. 4, that illustrat
the evolution of interacting fields in the reference frame
the pump pulse. Here we considered a Gaussian pump p
profile. In Fig. 4~a! the role of dispersion is taken into ac
count without walk-off~i.e., the degenerate case!, while the
effects of both dispersion and walk-off are included in F
4~b! ~i.e., the nondegenerate case!. In this example the pump
pulse width is 60 ps and its peak intensity isI
5100 MW/cm2. It is launched in a crystal of lengthL
54.2 cm, with an effective nonlinear coefficientd
510 pm/V and a dispersionk950.5 ps2/m. The velocities
v351.303108 ms21, v151.323108 ms21, and v251.28
3108 ms21 are considered, that correspond to the case
the LiNbO3 crystal with the wavelengthsl3.1 mm, l1
.1.35 mm, andl2.3.85 mm. Experimentally, going from
the situation of Fig. 4~a! to the situation of Fig. 4~b! can be
done, for instance, through temperature control of a qu

FIG. 4. Evolution of the three interacting envelopes in the r
erence frame of the pump.~a! In the presence of dispersion.~b! In
the presence of both dispersion and walk-off, the signal and i
envelopes are represented by a solid line, and the the pump
dashed line~amplitudes are given in units ofe0 , t0512 ps, L
5v3t050.022 mm).
1-6
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phase-matched interaction@19#.
As is clearly visible in Fig. 4~a!, even in the presence o

dispersion, the parametric process follows an erratic ev
tion in the absence of walk-off, in agreement with o
theory. However, it is worth noting that in the linear regim
the dispersion effect tends to smooth the initial noise fl
tuations despite the absence of walk-off@Fig. 4~a!, t56t0#.
This is no longer the case for the long term evolution, t
clearly exhibits erratic dynamics that continuously spre
over the whole pump pulse. This scenario, applied to
spatial domain, is similar to that reported in an experim
on spontaneous solitary-wave generation with large in
pump beams in which diffraction alone was not able to p
vide coherence@7#.

Conversely, as shown in Fig. 4~b!, the walk-off effect
induces a coherent parametric amplification whose evolu
is not affected qualitatively by dispersion. Note that t
walk-off reduces the amplification of the down-convert
fields in the linear regime@see Figs. 4~a! and 4~b! at t
56t0#. This is a natural consequence of the group-veloc
difference that limits the effective duration of the paramet
interaction @3,4#. As the down-converted fields grow, the
are advected away from each other (t.17t0) because of
their opposite walk-off directions@note that in the numerica
example of Fig. 4~b! we have chosenv35(v11v2)/2#. In
the nonlinear regime, pump depletion around the pulse p
occurs (t517t0), that eventually leads to ap-phase change
in the pump envelope (t519t0), that in turn leads to a back
conversion from the down-converted fields to the pump@5#.
This back-conversion process, combined with the effec
walk-off, leads to a confinement of the signal and id
pulses that travel away from the pump pulse with their o
posite velocities. This process of self-pulse generation
peats until the energy of the pump is exhausted. This num
cal example shows that, owing to the walk-off between
interacting waves, one may expect the generation of lo
ized coherent structures from noise fluctuations in a way a
to what has been recently suggested for symbiotic soli
waves in quadratic nonlinear media@20#.

VIII. TWO-DIMENSIONAL SPATIOTEMPORAL
DYNAMICS

In the previous sections we identified the walk-off as t
key ingredient responsible for the onset of coherence in
parametric fluorescence. However, it is worth noting that
analysis was limited to the purely one-dimensional case,
it would be interesting to study the influence of the walk-o
in the more complex two-dimensional problem. More p
cisely, when one considers the two-dimensional parame
process in the presence of temporal or spatial walk-off,
following question naturally raises: Is a pure temporal~or
either spatial! walk-off able to yield a coherent spatial an
temporal dynamics? This problem is not trivial, since w
have two antagonistic effects as regards the coherence o
generated fields: on the one hand, the temporal~or spatial!
walk-off favors a coherent behavior, and, on the other ha
diffraction ~or dispersion! leads to an incoherent behavior.

Let us study this two-dimensional configuration of t
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parametric process in the framework of the linear stabi
analysis considered above~Sec. IV!. In the following we will
study the particular case where the temporal walk-off co
petes with diffraction. However, let us emphasize that o
results are also relevant for the situation where the spa
walk-off competes with dispersion, or even with diffractio
in the case where the parametric process takes place in
transverse dimensions for negligible temporal walk-off.
this view, our purpose here is to see how the diffraction a
the temporal walk-off affect the nature of parametric fluore
cence. We then neglect the dispersion effect that was
vealed to be irrelevant as regards the coherence of the
erated fields.

To study the influence of the temporal walk-off, it is mo
convenient to carry out a stability analysis in the referen
frame of the average group velocity (v11v2)/2 of the signal
and idler fields that is defined~Sec. IV! by the following
variables @z5z2(v11v2)t/2,t5t#. Assuming an unde-
pleted plane wave for the pump field in the whole interact
domain, the down-converted fields evolve according to
linear equations

]A1

]t
2d

]A1

]z
2 ir1

]2A1

]y2
5sv1e0A2* , ~6a!

]A2

]t
1d

]A2

]z
2 ir2

]2A2

]y2
5sv2e0A1* , ~6b!

wherer i5v ik i represents the effective diffraction parame
~Sec. II! and d5(v22v1)/2 the velocity mismatch of the
down-converted fields. The solution to the linear equatio
~6! reads

A1,2~r ,t!5E E
R2

Â1,2~q,p!exp@g~q,p!t

1 i ~qz1py!#dqdp, ~7!

where r5(z,y) and Â1,2(q,p)5**R2A1,2(z,y,t
50)exp@2i(qz1py)#dqdpis the Fourier transform of the ini
tially fluctuating signal and idler fields. The dispersion re
tion g(q,p) reads

g~q,p!52 iDp21A1/t0
22d2q22m2p412dmqp2,

whereD5(r12r2)/2 andm5(r11r2)/2 are the difference
and average values of the diffraction parameters, resp
tively. Following the procedure outlined in Sec. IV, it i
worth noting that the complex dispersion relationg(q,p)
exhibits a saddle point atq05p2m/d, so that the integral
over q in Eq. ~7! can be calculated by the steepest meth
that yields an asymptotic expansion for the generated fie

A1,2~r ,t!}
1

dE2`

1`

Â1,2~q0 ,p!exp@G~p!t#

3exp@ i ~py1p2mz/d!#dp, ~8!

whereG(p)51/t02 iDp2.
1-7
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ANTONIO PICOZZI AND MARC HAELTERMAN PHYSICAL REVIEW E 63 056611
At this point, it is interesting to point out some importa
aspects of the structure of integral~8!. First, let us note that
as discussed previously in Sec. IV, the function Re@G(p)# is
analogous to a spectral gain curve whose typical bandw
here is inversely proportional toD. We may then anticipate
that the parameterD plays a key role in the coherence
parametric fluorescence.

A. CaseDÄ0

Let us first consider the simplest case ofD50, i.e.,
v1k15v2k2. In this situation, we note that, as the ratiom/d
tends to zero~i.e., the diffraction parameter becomes neg
gible with respect to the walk-off!, the second term in the
second exponential of Eq.~8! becomes negligible, and th
asymptotic evolution of the down-converted fields is simp
given by the inverse Fourier transform ofÂ1,2(q0 ,p) with
respect top,

A1,2~z,y,t!}
1

d
exp~t/t0!Ã1,2~q0 ,y!, ~9!

whereÃ1,2(q0 ,y) may be written as

Ã1,2~q0 ,y!5E
2`

1`

A1,2~z,y,t50!exp~2 iq0z!dz. ~10!

It becomes apparent from Eq.~9! that, during the amplifica-
tion process, the signal and idler fields evolve toward a
mogenous pattern along the axisz, which simply means tha
the generated fields are temporally coherent. Conversely
asymptotic behavior of the down-converted fields along
axisy remains erratic because of the presence in Eq.~9! of a
noisy functionÃ1,2(q0 ,y) that is closely related to the initia
quantum noiseA1,2(z,y,t50) through Eq.~10!. To summa-
rize, when the parametric process takes place in the pres
of a strong temporal walk-off and a perturbative diffractio
the down-converted fields are temporally coherent and s
tially incoherent.

This prediction of the linear stability analysis has be
checked numerically by solving the complete set of non
ear two-dimensional equations governing the parametric
cess. More specifically, we solved Eqs.~1! without disper-
sion and in the presence of diffraction along the additio
axisy. A typical result is shown in Fig. 5, that illustrates th
intensity distributionuA1u(z,y) of the signal field. This in-
tensity distribution has been obtained at timet513t0, when
we observed a negligible depletion of the pump. As an ini
condition, for the signal and idler amplitudes we take a co
plex random noise, and for the pump beam a super-Gaus
function in both they andz axes with a maximum amplitud
e0. We considered a square grid of 2563256 points, repre-
senting 32332 spatial units ofL5v3t0. In this example, the
diffraction effect is perturbative with respect to the tempo
walk-off and, as expected, the signal field appears to be
herent along the walk-off axisz and incoherent along th
transverse axisy. Note that the idler field follows an evolu
tion almost identical to that of the signal field, in agreeme
with our theory.
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These findings, as regards the spatiotemporal cohere
of the generated fields in the presence of a perturbative
fraction and a temporal walk-off are not surprising. Indee
on the basis of a purely one-dimensional model, we show
in Secs. VI–VII that walk-off leads to a coherent behavio
whereas diffraction only yields an erratic dynamics. Ho
ever, we shall see in the following that, when diffraction
no longer perturbative, its combination with walk-off effec
leads to intriguing dynamics.

In the framework of the stability analysis, the asympto
evolution of the down-converted fields is given by integ
~8!, wherem/dÞ0 and where we still assumeD50. The
integrand is thus to be the product of the noisy functi

Â1,2(q0 ,p) and the phase term exp@i(py1p2mz/d)#. Although
this integral cannot be computed analytically in the gene
case, it is clear that there is no means for the phase term

smooth down the noisy functionÂ1,2(q0 ,p). Indeed, all the
modes that are present in the fluctuating initial conditi

Â1,2(q0 ,p) are amplified in a similar way, without an
mechanism of wave number selection. This is simply b
cause the gain curveG(p)51/t0 is flat for D50. One can
then reasonably expect that the asymptotic evolution of
down-converted fields remain erratic. Importantly, this
ratic evolution results in both spatial and temporal incoh
ence.

We checked these predictions by numerically solving
complete set of nonlinear equations, and we illustrate an
ample of typical distribution of the signal field in Fig. 6 a
time t513t0. The parameters are the same as in Fig.
except that we increased the ratiom/d. As expected, the
generated fields are incoherent both temporally and spati
This study then reveals that, quite surprisingly, diffraction
able to break down the temporal coherence of the gener
fields, even when the temporal walk-off is present.

FIG. 5. Intensity distribution of the signal fielduA1u at time t
513t0 along the transversey and longitudinalz axes. Parameters
are d543107 m/s, m516 m2/s, andD50 ~the window size is
L532L, L5v3t050.022 mm, andt0512 ps).
1-8
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B. CaseDÅ0

At this point we may summarize our results as follow
apart from the particular case where the diffraction effec
negligible with respect to the walk-off, we have shown th
providedD50, the two-dimensional parametric process ge
erally leads to the emergence of both spatially and tem
rally incoherent fields. This result is due to the simple fa
that, whenD50, the effective bandwidth of the gain curv
Re@G(p)# is flat, and there is no means for the emergence
a spatially coherent field. Let us now consider the gene
caseDÞ0 in the framework of the linear stability analysis.
is worth noting that forDÞ0 the complex dispersion relatio
G(p)51/t2 iDp2 has a saddle point inp50, and integral
~8! may be calculated by the steepest descent method. N
ertheless, note that the real axis Re(p) is not the right con-
tour of integration because it is not the contour of steep
descent. Using the Cauchy theorem, we can equivale
evaluate integral~8! along any contourC in the complex
planep connecting the extrema of integration, provided t
integrand has no singularities in the area bounded by
original and the new contour. The integrand of Eq.~8! being
analytic everywhere, we can calculate the corresponding
tegral on a contour that goes through the saddle poin
depicted in Fig. 7. Along this specific contour, Re@G(p)# has

FIG. 6. Intensity distribution of the signal fielduA1u at time t
513t0 along the transversey and longitudinalz axes. Parameter
are d553106 m/s andm516 m2/s, D50 ~the window size is
L532L; L5v3t050.022 mm andt0512 ps).

FIG. 7. ContourC of integration in the complex planep.
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the steepest ascent for Re(p),0 and the steepest descent f
Re(p).0, while Im@G(p)# is constant, as it must be in orde
to apply the steepest descent method@18#. Accordingly, the
result of the integral reads

A1,2~z,y,t!}
1

d
exp~t/t0! ~11!

and one may expect the generation of a homogenous pa
along both the walk-off axisz and the transverse axisy,
which simply means that the generated fields would be b
spatially and temporally coherent.

In order to verify the validity of this result, we numer
cally solved the full set of nonlinear equations for the sa
conditions as in Fig. 6, except that we impose a nonvan
ing value of the parameterD. A typical result is illustrated in
Fig. 8, that shows the intensity distribution of the sign
component at a timet513t0. A comparison between Figs.
and 6 shows that the generated signal exhibits some de
of spatial and temporal coherence that may be clearly att
uted to the nonvanishing value ofD. However, it is clear that
the intensity distribution is far from being homogenous alo
the axesz and y, as the linear theory predicts through E
~11!. As a matter of fact, here we are in the same situation
that encountered when studying the role of diffraction in t
purely one-dimensional case. We have indeed shown in
VI that dispersion or diffraction is able,a priori, to yield a
coherent behavior in a way similar to the walk-off effec
However, the interaction length required is in practice t
long to allow for an observation of the diffraction-induce
coherence process. In the two-dimensional case consid
here, the requested interaction length is inversely prop
tional to D, i.e., to the bandwidth of the gain curveG(p).

FIG. 8. Intensity distribution of the signal fielduA1u at time t
513t0 along the transversey and longitudinalz axes. Parameters
are d553106 m/s andm516 m2/s, D512 m2/s ~the window
size isL532L; L5v3t050.022 mm andt0512 ps).
1-9
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ANTONIO PICOZZI AND MARC HAELTERMAN PHYSICAL REVIEW E 63 056611
The parameterD being of the same order of magnitude a
hat of the effective diffraction parameterr i , it is not surpris-
ing that the numerical simulations show an erratic spatiote
poral evolution of the down-converted fields for realis
values of the diffraction parameter. The incoherence of
generated fields in the two-dimensional configuration of
parametric process is then of the same nature as that enc
tered in the purely one-dimensional case considered in
VI.

IX. CONCLUSION

In conclusion, we considered the fundamental phys
problem of spontaneous parametric generation from n
fluctuations in the presence of a plane pump wave.
showed that in the absence of walk-off between the do
converted signal and idler fields, the process of parame
amplification is intrinsically incoherent, even in the nonli
ear regime of pump depletion. Apart from the particular ca
where very short pulses~or narrow beams, for the spatia
domain! are involved, dispersion~or diffraction! alone is not
able to lead to a coherent parametric process. We sho
both analytically, through a simple linear analysis of t
model equations, and numerically that it is the walk-off b
tween the generated fields that is at the origin of the coh
ence of the parametric amplification process. Conversely,
t.
.

e-
zi

s,

.

C

s-

.

i,

W
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dispersion or diffraction effects are not able in practice
increase the coherence of the down-converted fields. M
over, a two-dimensional study reveals that when the na
of the walk-off is exclusively temporal~or spatial!, the para-
metric process is not able to yield the generation of b
spatially and temporally coherent fields. Our physical int
pretation of the theory allowed us to explain the results o
series of recent experimental studies of parametric fluo
cence. It would be interesting to extend the proposed the
in order to study rigorously the statistical properties of t
parametrically generated fields, which is of particular imp
tance for a quantitative comparison between the theory
experiments. This aspect is presently under investigation

Although we restricted our analysis to the parametric a
plification process in quadratic nonlinear media, the mec
nism of walk-off-induced coherence is generic, and can
extended to four-wave mixing in cubic nonlinear media
other physical parametric processes, such as, e.g., the ef
of external fields on pattern forming systems@21# or coupled
molecular and atomic Bose-Einstein condensates@22#. The
experimental confirmation of the mechanism of walk-o
induced coherence would be of great interest, on the
hand, for a fundamental study of spontaneous formation
coherent structures in nonlinear physics@7,8,20# and, on the
other hand, for a better knowledge and control of practi
traveling-wave optical parametric generators@4#.
A

.

d

ef,

ef,

.

S.

tt.

d

-

E

@1# See, e.g., Y. R. Shen,The Principles of Nonlinear Optics
~Wiley, New York, 1984!; F. Devaeux and E. Lantz, J. Op
Soc. Am. B12, 2245~1995!; A. Berzanskis, P. Di Trapani, W
Chinaglia, L. A. Lugiato, and K.-H. Feller, Phys. Rev. A60,
1626 ~1999!.

@2# R. L. Byer and S. E. Harris, Phys. Rev.168, 1064~1968!; J. E.
Pearson, A. Yariv, and U. Ganiel, Appl. Opt.12, 1165~1973!.

@3# P. Di Trapani, A. Andreoni, G. P. Banfi, C. Solcia, R. Dani
lius, A. Piskarskas, P. Foggi, M. Monguzzi, and C. Soz
Phys. Rev. A51, 3164~1995!.

@4# P. Di Trapani, A. Andreoni, C. Solcia, P. Foggi, R. Danieliu
A. Dubietis, and A. Piskarskas, J. Opt. Soc. Am. B12, 2237
~1995!; P. Di Trapani, A. Andreoni, P. Foggi, C. Solcia, R
Danielius, and A. Piskarskas, Opt. Commun.119, 327 ~1995!;
R. Danielus, A. Piskarskas, P. Di Trapani, A. Andreoni,
Solcia, and P. Foggi, Opt. Lett.21, 973 ~1996!; P. Di Trapani,
A. Andreoni, C. Solcia, G. P. Banfi, R. Danielius, A. Piskar
kas, and P. Foggi, J. Opt. Soc. Am. B14, 1245 ~1997!; V.
Krylov, O. Ollikainen, J. Gallus, U. Wild, A. Rebane, and A
Kalintsev, Opt. Lett.23, 100 ~1998!.

@5# T. Nishikawa and N. Uesugi, J. Appl. Phys.77, 4941~1995!;
78, 6362~1995!.

@6# T. Nishikawa and N. Uesugi, Opt. Commun.124, 512 ~1996!;
140, 277 ~1997!.

@7# P. Di Trapani, G. Valiulis, W. Chinaglia, and A. Andreon
Phys. Rev. Lett.80, 265 ~1998!.

@8# P. Di Trapani, A. Berzanskis, S. Minardi, S. Sapone, and
Chinaglia, Phys. Rev. Lett.81, 5133~1998!.
,

.

.

@9# J. Arlt, K. Dholakia, L. Allen, and M. J. Padgett, Phys. Rev.
59, 3950~1999!.

@10# A. Gatti, H. Wiedemann, L. A. Lugiato, I. Marzoli, G.-L
Oppo, and S. M. Barnett, Phys. Rev. A56, 877 ~1997!; A.
Gatti, L. A. Lugiato, G.-L. Oppo, R. Martin, P. Di Trapani, an
A. Berzanskis, Opt. Express1, 21 ~1997!.

@11# M. Santagiustina, P. Colet, M. San Miguel, and D. Walgra
Phys. Rev. Lett.79, 3633~1997!.

@12# M. Santagiustina, P. Colet, M. San Miguel, and D. Walgra
Phys. Rev. E58, 3843~1998!.

@13# M. J. Werner and P. D. Drummond, J. Opt. Soc. Am. B10,
2390 ~1993!; D. E. Pelinovsky, A. V. Buryak, and Y. S
Kivshar, Phys. Rev. Lett.75, 591 ~1995!; R. A. Fuerst, D. M.
Baboiu, B. Lawrence, W. E. Torruellas, G. I. Stegeman,
Trillo, and S. Wabnitz,ibid. 78, 2756 ~1997!; L. Torner, D.
Mazilu, and D. Mihalache,ibid. 77, 2455~1996!.

@14# S. A. Akhmanov and R. V. Khokhlov,Problems of Nonlinear
Optics ~Gordon and Breach, New York, 1972!.

@15# S. Trillo, S. Wabnitz, R. Chisari, and G. Cappellini, Opt. Le
17, 637 ~1992!.

@16# T. A. B. Kennedy and S. Trillo, Phys. Rev. A54, 4396~1996!;
S. Trillo and S. Wabnitz, Phys. Rev. E55, R4897~1997!.

@17# E. Infeld and G. Rowlands,Nonlinear Waves, Solitons an
Chaos~Cambridge University Press, London, 1990!, Chap. 3,
and references therein.

@18# Ph. M. Morse and H. Feshbach,Methods of Theoretical Phys
ics ~McGraw-Hill, New York, 1953!, p. 437.

@19# M. M. Fejer, G. A. Magel, D. H. Jundt, and R. L. Byer, IEE
J. Quantum Electron.28, 2631~1992!.
1-10



v.
-

INFLUENCE OF WALK-OFF, DISPERSION, AND . . . PHYSICAL REVIEW E63 056611
@20# A. Picozzi and M. Haelterman, Europhys. Lett.45, 463~1999!;
Phys. Rev. E59, 3749~1999!; Opt. Lett.23, 1808~1998!.

@21# D. Walgraef, Spatio-Temporal Pattern Formation~Springer
New York, 1997!, Chap. 8.
05661
@22# P. D. Drummond, K. V. Kheruntsyan, and H. He, Phys. Re
Lett. 81, 3055~1998!; D. J. Heinzen, R. Wynar, P. D. Drum
mond, and K. V. Kheruntsyan, Phys. Rev. Lett.84, 5029
~2000!.
1-11


