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Special phase matching of second-harmonic generation in helical ferroelectric liquid crystal cells
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The helical structures in ferroelectric liquid crystals can be utilized to realize a special phase matching for
second-harmonic generatié8HG) when two counter fundamental waves propagate along the helical axis and
the wavelength of SHG is near the photofselective reflectionband edge. On the basis of the exact theory
[Drevensek-Olenik and Copic, Phys. Rev5E, 581 (1997], a simple analytical description is derived and
some characteristic features of the special phase matching are sioW@pecial phase matching is definitely
achieved under particular combinations of polarizati@.The SH spectrum is related to a subsidiary oscil-
lating structure in the selective reflection spectrum. The maximum SH intensity is realized at the first dip of the
oscillation near one of the edges in the selective reflection b@)drhe thicknesgd) dependence of the
maximum SH intensity isl* in thick cells, while it isd? for conventional phase matchingl) The linewidth
for the SH peak isl~2 dependent, which is much narrower than in conventional phase matching.
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[. INTRODUCTION is possible under relatively general conditions without using
color dispersiorj7,8]. In the smectic* (Sm-C*) phase of
Considerable attention has been paid to periodic dielectriferroelectric LCs, this special phase matching is possible
media since the idea of the photonic band gap was discusseehen two counterwaves propagate along the helical axis and
[1]. Phenomena occurring in photonic crystals are attractivéhe wavelength of SHG is near the selective reflection edge
from the viewpoints of both basic physics and device appli{9,10]. Although different conditions such as oblique inci-
cations. The interest has been mostly devoted to two- andence have been considered theoretically rec¢ady; only
three-dimensional systems. This is partly because the aim dfie above condition is dealt with in the present paper because
investigations of the photonic effect at first was to confineof its simplicity. Special phase matching is superior to the
light in photonic crystals. However, the characteristic effectconventional one in its thicknedsl) dependence. The SH
occurs not only in the photonic gap but also near the gapintensity is d* dependent for the special phase matching,
where abnormal light propagation occurs because of stronghile it is d? dependent for the conventional one. Because of
dispersion of light. In this respect, one-dimensional photonidhis merit, special phase matching has received much atten-
crystals also provide us with interesting phenomena, if lightion.
propagation, which is strongly influenced by the one- Enhanced SHG under such conditions was observed by
dimensional dielectric periodicity, is dealt with. One of theseKajikawa et al. [12] and by Furukawaet al. [13] using the
optical phenomena is optical harmonic generation. Becaus8m-C* phases of MHPOOCBC and ROLIC6304, respec-
of the coherence of light, generated higher harmonic wavetively. To explain these results, Copic and Drevensek-Olenik
propagate along a certain direction, so that one can tune th@esented an analytical theory for the special phase matching
direction of light propagation to obtain a strong influence ofin Sm-C* phases and suggested that two counterwaves
the photonic effect. Scalorat al. [2] and Hauset al. [3]  would be preferable to the unidirectional wave used in these
theoretically studied the enhanced second-harmonic generaxperiment§9]. Yoo et al. confirmed the theoretical predic-
tion (SHG) in one-dimensional periodic structures. tions using two counterwaveldlO]. Recently, Drevensek-
We should emphasize here that some kinds of liquid crys©Olenik and Copic developed an exact theory, which com-
tal (LC) spontaneously form periodi¢helica) structures, putes the exact electromagnetic fields via a numerical
which provide more possibilities of realizing phase matchingmethod under the assumption that the power depletion of the
conditions than do homogeneous materials. Therefore, LCindamental waves is neglectgt¥]. This theory is consis-
themselves serve as ideal one-dimensional systems for studignt with recent polarization and thickness dependence ex-
ing the photonic effect. The difference that should be borngoeriments[15-17. Although accurate results are obtained
in mind is the variation in dielectric constants, namely, theby the exact theory, it is difficult to grasp its general features
dielectric constant varies sinusoidally along the helical axispecause of the complicated numerical procedure. For ex-
leading to(1) only one photonic gap without higher order ample, the thickness dependence, which is expected to be
ones,(2) optical eigenmodes with nearly circularly polarized special, has not been quantitatively analyzed. To help in un-
light, and(3) a relatively wide gap due to the large dielectric derstanding, the electric fields in LCs were visualized in a
anisotropy. The characteristit) is true only for light propa- previous paper and some features were n¢fg]. In the
gating along the helical axis and higher order stop bandgresent paper, a simple analysis is developed based on the
appear for obliquely propagating waves. exact theory. The effect of polarization is explicitly consid-
Shelton and Shen showed many phase matchings fared, which is rather undetermined in the previous analytical
third-harmonic generation in cholesteric L§4—-6]. For method by Copic and Drevensek-OlenjR]. The phase
SHG, an additional phase matchirgpecialphase matching, matching conditions are definitely determined. Unusual

1063-651X/2001/6(%)/05661@16)/$20.00 63 056610-1 ©2001 The American Physical Society



HOSHI, CHUNG, ISHIKAWA, AND TAKEZOE PHYSICAL REVIEW E63 056610

thickness dependence and linewidth properties are also distherez is the helical axis andj=27/p, which is positive
cussed. (negative for a right- (left)-handed helix.

Il. EXACT THEORY A. Propagation of fundamental waves: Homogeneous waves

Analytical expressions are derived based on the exact The fundamental waves are described by the wave equa-
theory [14]. To define the notations, the exact theory istion in a nonmagnetic systefi4,19,2(
briefly reviewed in this section. In this model, thréeft,
middle, righ) layers are considered. The left and right layers 2

X . . . e J°E

are isotropic substratdsglielectric constants, ande, at the VXVXE+ — —=0.
fundamental frequency ande, andeg at 2o, respectively. ¢t at
The middle layefthicknesdd) consists of a SnG* structure
with local C, symmetry, the axis of which forms a helical For plane waves propagating along thexis, the wave equa-
structure(pitch p) with the helical axis normal to the sub- tion in xyzcoordinates is
strate surface. Local Cartesian coordinates,§,,e;) are
introduced, where the, ande; axes are parallel to th€,
axis and the major principal axis of the dielectric constant
(molecular long axig respectively. In these coordinates, the
nonzero components of the dielectric constant and the non-
linear optical susceptibility areq;, €,,, andes; (or simply
€1, €2, andeg) at , €14, €9y, and&gz (Ore,, €,, andey)
at 2w, and x123, X112, X332, and x»,, Where Kleinman's  where time factore™'“! of the electric field is eliminated,
symmetry is assumed foy'?). The tilt angled is the angle k,= wlc, ande/; andE/ are the components ixyz coordi-
between thee; axis and the helical axis. In this analysis, nates. This equation is known to have a de Vries type solu-
depletion of the fundamental waves is neglected and onlyion [21,22 and is simplified using unitary transformed co-
normally incident fundamental waves are treated. Laboratorgrdinates €, ,e,,e,), where
coordinatesxyz (e, ,e, ,e,), are related to the local coordi-

(=215 —keelE[=0, 1°

i
© o r

0 0
1 0], 1)
0 0

nates by _ _
e, e, . _elflqz _ieilqz 0 e,
e, e cosfcosqz —singz sinfcosqz e | =W| e |= E giaz —jelaz e
ey | =R| €| =| cosfsinqz cosqz sindsingz €; €; 0 0 V2 \&
e, €3 —siné 0 cosé )
! As discussed in Appendix A, the general homogeneous so-
x| €], lutions are linear combinations of four waves.dbz coordi-
€3 nates, they are given by
|
Ea fleiklz fzeikzz f3e”‘32 f4eik42
Eb _ eiklz eikzZ eik3z eik4Z a, (3)
E, (1_f1)eik128az/822 (1_f2)eik228az/822 (1_f3)eik328az/822 (1_f4)eik428az/822
a='(a;a,a3ay),
|
where I={e,+e,+(e3— 1), SIF O(e,SiN? O+ &5 c08 6)}/2,
k= (2 + k3= \J4lkZg2+ m?kd) V2, @) =—l+e,. ©)
€4, ande,, are given in Appendix A, antl(=1-4) specifies
E. (ke—q)2—Ik2 four modes defined by choosing two signs in Eq.(4). In
f=—0= v (5)  xyzcoordinatesk,, E,, Hy, andH, components are given
Eb mkg by
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B. The boundary conditions for fundamental waves

The coefficientsa are determined by the boundary condi-
tions. LetE] andEf, (E}, andEp) be thex andy compo-

nents of the electric field amplitude that is incident on the left

(right) side of the cell. Similarly, leF}) andF{, (Fy, and
F?y) be thex andy components of the electric field ampli-
tude that emanates from the lgftght) side. E,, E,, H,,
andH, components for the waves incidefit and emanating

(F) from the left and right sides are given by

EEX ng
o EY, - EY
Tl VR | | VelEY |
Ve ED, — e, EX,
FEX FEX
Fy, Fo,
F \/8_|F|Oy , Fr= _\/s_rF?y 8
—JerFS VorF

The boundary conditions are expressed as

I, +F,=P(0)a.
I, +F,=P(d)a.
Using the relations
Fi=SF, F,=SF,

whereF, S, andS; are defined as

=1 1 0O 0 O
Ix
FO 0 1 0 0
F= o |, S= — ,
Frx O € O O
0
Fry ~Je, 0 00

[ . ,
- k_{ft(kt+ q)e' D24 (I —q)el =97
0

i{ftei(kt+Q)Z+ ei(kt_Q)Z}

1 | |
i Tk g)el e D24 (k — et a7
0

=P(z)a (7)
[
00 1 0
00 O 1
S=lo 0 0 &l ©
0 0 Ve, O

the boundary conditions are expressed K& matrix form
as

| |

For exact numerical calculations, the Gauss elimination
method was applied.

P(d)
P(0)

-S
-9

I
I

a
=

(10

C. Propagation of SH waves: Inhomogeneous
and homogeneous waves

The SH waves produced by nonlinear polarizatidare
described by

47 9°P

c? ot

3 E
VXVXE+— —
c? at?

(11)

The particular or inhomogeneous solution is obtained as fol-
lows (see Appendix B In abzcoordinatesP has the form

Pa I:)gij .
Pb :iZl P%'J e'kiiz, k|]Ek|+k] , (12)
P, ! P2ij
and the inhomogeneous solution is given by
Ea E(ajlij )
Eb :Z Eglj e'kiiz, (13)
E,/) " \E?

zij

where
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(kij_q)2 _ Eaz ~ (klj_q)
TR . G
Y _(kij+ZQ)2 %;az ~2_(|<ij‘“2CI)2
Ko €2z K%
~_az{_.é +(kij_q)2} E_az[g _(ki,-+q)2 BofE1+F3+(B1—Fa)c0s W} 25,.(Ki+q%)  (KE—g?)?
~ZZ 2 Kg EZZ 2 Kg 2%‘ZZ EZZKS Ezng
Pgij
X Pgij , (14
Pgij
2L k2 —q?)?
A=L2—M2—K—g(kizj+q2)+”K—éz(kij—Kl)(kij—Kz)(kij—K3)(kij—K4)/K4, (15)

Ko=2w/c, andz,z, L, M, andK; are defined by EgsA3), (6), and (4) using the dielectric constants atw2In xyz
coordinatesk, , Ey, H,, andH, components for the inhomogeneous waves are given by

0 Aiki+ 0 Li(kji—
_Eaijel( ijtazy Ebijel( i~z

i{Egijei(kij +a)zy Egijei(kij *Q)Z}

x

1 i . .
=52 | B et Bk — e B0 | =up(2), (16)
0

I T mm
x <

<

1 : .
K—o{—Egij(kij +a)e' i TV B (ki —q)el ki~ 97
where the subscrigt stands for particulator inhomogeneouyssolution.
On the other handg,, E,, Hy, andH, components for the homogeneous waves are given by the same form @:Eq.
— Ftei(Kt+q)z+ ei(thq)Z

i{Ftei(KtJrq)ZJ,_ ei(thq)Z}

x

<

4
A i ) )
= — | _ i(Ki+a)z _ i[(Ki—a)z =TI(2)A 1
2}11[2 KO{Ft(KtJrq)e trazg (K, —q)el KDz (2)A, 17

I T mm
™

<

1 | |
- FuKtq)e 024 (K — g el a2
0

whereF; is defined by Eq(5) using the dielectric constants The boundary conditions are
at 2w.

D. The boundary conditions for SH waves FL= up(0)+H(O)A. (19
The waves emanating from the cell aAdare determined

by the boundary conditions. L&, andF?, (Fp, andFg,)

be thex andy components of the SH electric field amplitude
that emanates from the leftight) side. E,, E,, H,, and  Using the definitions
H, components for these waves are given by

Fr=Uy(d)+TI(d)A.

1 0 00

FO, FO, Fox
2, 2 P I O
o — == 0 ’ L: ’
Fu PO, | Fr —VerFY, | (18) ng 0 Vs 0 O
~elFY, VorF R "Ry —JeL 0 0 0
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Ky=+(92+ LK3+ VALKEq? + M2Kg) 2

e 25 \ '\\ﬁ 2/ f_y,f
E [\ N/ / Ko=+(q2+LK3— VALKZZ+MPK)™2 (22
\|‘ \" l,-‘ !
I N NS Ka=—Kj,
= N4 e/
X g VANV K= K.
50 -9 0 g _ 50 imagi |
K (rad um™) K, and K, are imaginary whenK;, is between Kg,

=¢g/JL+M andKy=q/yL—M, namely, the wavelength
FIG. 1. Dispersion curves for propagation along the helical axish vacuo, Ao(2w), is between\,=\L+Mp and A3
in Sm-C*. Four modes are defined by E@2). =.,L—Mp, which correspond to the edges of the photonic
gap in Fig. 1. Using the relations

00 1 0
00 o 1 L+M=%,, L—M=%.=%,83/(3,Sirf +%5c0¢ 6),
0 0 Jep O the A, (Ko, edge is determined by, and the\ ;53 (Ko19

edge is determined I8/, €5, and6. For ROLIC6304K ), is
the boundary conditions are expressed W& matrix form  higher thank 5,5 because of the negatid. In previous pa-
as pers,L=% is defined as the average value of the dielectric
tensor, whereas- M=« is defined as the dielectric anisot-

[I(d) —Sg|(A} [—uy(d) oy TOPY in the plane of the smectic layf9,14]. These defini-
o) -s J\F |—up0)) @D tions are obvious in the following form:
and solved by the Gauss elimination method. L=(2,1%c)2, M=(8,—%¢)/2. (24)

L and|M| are important factors for determining the location
and the width of the gap, respectively. Actually we note that
The special phase matching is analyzed based on the ejkx,—\;4 is proportional to the optical anisotropy of the

IIl. ANALYSIS AND DISCUSSION

Ex

‘A —Fe (Keraz
-2l

:tzlE IFtel(Kt+q)Z

act theory. In previous papers, the exact theory was found teefractive index in the plane of the smectic layer,
be consistent with experimental results5—17. However,  |\&,— 4.

the general features have not been described yet. Most of the To characterize the modes, we concentrate on the follow-
experiments were performed using a Nd:YA@trium alu-  ing part of the homogeneous wave:

minum garnet laser as the fundamental wayeavelength

1.064 um) and ROLIC6304{10,13,15—-17. In the present gl (Ki—a)z

paper, the numerical results are obtained under these condi- + iei(Ktq)z)]- (25
tions. The molecules form a right-handed helix whose axis is y
normal to the glass substrate. The dielectric constants of )
ROLIC6304 and glass are,=3,;=e,=5,=2.2, £5=54 The f|rst and second terms express either r componerjts.
=28,8,=¢, =¢,=sg=2.25[17,23. The tilt angled is 23° The signs of!<t+q andK;—q define the propagation _d_|rec-
[17,23. x® components are;s: x11o: Xas2: X 200=0.34" tions (_)f the first and second terms, respectlvely_. Positive and
—1.12:—-2.76:3.34, determined by standard angle phas egatl_ve values ok +q c.orre'spond to propagation oqu-
matching using the unwound sample under an electric field1zation toward ther z direction, (+z,r), and propagation
[23]. In the previous experiments, the pitch was tuned by th&f | polarization toward the-z direction, (~z,1), respec-
temperature. Special phase matching was actually observdlf€ly- Those ofK;—q correspond to £z,1), and (~zr),
when the selective reflection band was located near 0.53%SPectively. The ratio of the first and second terms,id
um [10,13,15-17 and|F,| and|F,| are shown in Fig. 2. Using EqéA7) and
(5), F3 andF, are related td-, andF, by

A. Dispersion relations and homogeneous wave modes F,Fs=F,F,=1 (26)

First let us consider the homogeneous wa¥ass.(7) and
(17)] in LCs, which are responsible for the linear optical Using Eq. (25 and Figs. 1 and 2, four modes can be
properties[19,20. We use Eq(17), namely,e at 2w, be- characterized. For mode 1F;|<1 as shown in Fig. 2,
cause the results are applied to SH waves in the followingvhich indicates that the second term is dominant. Moreover,
section. Figure 1 shows the dispersion curf@d4] using K;—q is positive as shown in Fig. 1. Thus, mode 1 is domi-
p=0.35876184m (q=17.513527ragem™ 1), where the nated by ¢zI). Similarly, mode 3 is dominated by
four modes ofK are defined as follows: (—=zl).
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0. a000s b ,f'
! (D) A (E)
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N4 ; / /'\
—_— Y
1k (b) J"'f_f - g?f ¢ ‘\\z‘
1N i { ,f W !
| K
| F2| /
0.1 J,-fm 1 FIG. 3. Possible phase matching conditions when SH frequency
._J/-*" + *};“"_ is located near the photonic band gap.
P e 1 '_,
Loty 7 ; 1,f-"’"j : Ex —isingz
s ' E i cosqz
I 11.3 11.7 12.1 — Y| = )
] 5 1In 1:5. z‘u 5 Aell(2): Hiy v (9sinqz)/Ko Ao (29
Ko(rad le'1 ) Hy —(qcosqz)/Ky

FIG. 2 . dib) |E K. using Ea(5). The i E,=H,=0, which is a standing wave in right-handed helical
Shows .thé(fgg!ioﬂ sgar( tiuL SLZgrs]iLésb;nudSIggp %e)'arroiv'gsis;ica{orm whose electric and magnetic fields are always parallel
the edges of the band. o the C, axis. On the other hand, at the; edge,F,=

—1, and Eq.(17) is expressed as

Modes 2 and 4 are considered separately for the three cosqz
region (I) inside the gap(ll) far from the gap, andlll) sinqz
outside the gap and close to the edge. ALll(2),=Vv2 Ay, (30)

(iq cosqz)/Kg

In region | marked by the arrows in Fig. B, andK, are T
(ig sinqz)/Kgq

purely imaginary,

) ) E,=2A,¢,,/%,,, H,=0, which is a standing wave in right-
Ka=is, Ky=—ls, (27 handed helical form whose electric and magnetic fields are
always normal to theC, axis. In other words, this wave is
wheres is a real function. Modes 2 and 4 are exponentiallyorthogonal to the wave at the, edge.
growing and decreasing waves. So the selective reflection
occurs when a wave whose helicity is the same as that of the B. Second-harmonic generation
helix is incident. Since the complex conjugate Fof, F,,
satisfies the relationfF,=F,=1/F,, F, and F, are ex-
pressed as Let us consider SHG properties. Enhanced SHG is ex-
pected when the amplitudes of the inhomogeneous waves are
large. According to Eq.(15), this situation occurs under
phase matching conditions, namely,

1. Phase matching conditions

F2=ei¢, F4:e_i¢, (28)

where ¢ is a real function. In particular,F,|=1 in this kij=k;+k;=Ki. (32)
region as shown in Fig. 2.

In region Il, |F,|<1 is satisfied below the gap, ané,| Under the condition that the SH frequency is located near the
>1 is satisfied above the gap, which indicates that modes ghotonic band gap, possible conditioAs-E are illustrated
and 4 are dominated by thepolarized wave. For mode 2, in Fig. 3 using the diagrams of Drevensek-Olenik and Copic
(—=z,r) is dominant below the gap and-@,r) is dominant [14]. It is clear that no color dispersion is necessary and
above the gap. For mode 4;¢,r) is dominant below the umklapp processes are involved.
gap and (z,r) is dominant above the gap. Phase matching occurs wherk,,=k;+k,=K;. To re-

In region IlIl, the simple interpretation for region Il is not alize this phase matching, two counter fundamental waves,
applicable sincgF,| is close to 1 and two terms in E(R5)  one with (+z,1) and the other with ¢ z,r), (+zl;—-zr),
should be considered. Near the edges, both modes 2 andade effective.
are linear combinations of{{z,r) and (—z,r). In particular, Phase matching8—E occur when Ky=Kg, or Kg,
at the\, edge,F,=1, and Eq.(17) is expressed as =Kg13. For phase matching® andD, counterwaves with
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polarization (+z,r;—z,r) are effective, while, foC andE, neous and emanating SH waves. The right-hand side of Eq.
counterwaves with polarization ¢ z,1; —z,1), are effective. (21 is expressed as

2. Type-ll-like phase matchingA _ up(d): _ up(o)ei(klz—q)d, (36)

The condition for phase matching is k;,=K; and the
effective fundamental waves are-¢,l; —z,r), whose polar-

izations differ from each otheftype Il like). SHG under 1 1
such conditions is analyzed. &bzcoordinates, the homoge- —ug(0)=—| . ! = (37)
neous fundamental wav¢gq. (3)] are dominated by P va | (k2= q)/Ko b2
— (k12— a)/Ko
Ea _ 0 _ The left-hand side of Eq(21) includes the homogeneous
Ep | = _ale'klszaze'kzz . (32 waves. The homogeneous wave with4,1) character is
E, (a,e*1%+a,e*?) e, /e, mode 1. Under the approximation &f;=0, mode 1 is ex-
pressed as
In abz coordinates, nonlinear polarizations with wave num-
bersk,, ko,, andk,, dominate. In particular, near the phase AIH(d)12A1H(O)lei(K1‘Q)d, (39
matching condition, the inhomogeneous waMeg. (13)] are
dominated byk;,. In the matrix elements in Eq14), the 22 1
component is normally dominant for relatively smisllisince 1 i
g%/K3 is aboutL andk;, is about 2 using the approxima- AdIO)y=—| _. p _ AL (39
k ) . V2 i(Ky=a)/Kg
tion thatK is aboutq/+/L. In Eq. (14), if only the 22 com- (K~ q)/Kg

ponent is considered,

—AnKA Near the phase matching condition, we introduce the follow-
Eglzz 0 ing simple approximation:
(k12— K1) (k1o K3) (ko= K3) (ko= Ky) .
-E
(kip+q)? 0 b12
X|L——5— . 0
kg [P (39 A=l o |- (40)
The amplitude is infinite under the phase matching condition 0

ki,=K;. Using Eqs.(B2)—(B4) and(32),
e 9 Eqs(B2)-(B4) 32 Equations(19), (37), (39), and(40) lead to

2
] Zalaz, (34) ( FEX) (o
Fo,/ 10

€az

0
Pp1= { Xbbbt szz(

€2z

: (41)

where xppp and xpz, are given in Appendix B. Irxyz coor-
dinates, the inhomogeneous wd¥. (16)] is expressed as which shows that no SHG comes from the left side. On the
other hand, Eqs.36)—(40) lead to

1

1 i o (=Y . (k,—Kd ([ i
(k1= )z RX| _ . AE0 aikiptK—20)d/2 gjp 22 ~1F
v2 | ~i(ki—a)/Ko Eoee T (39 (ng SV2ERe T ST -1y

(k12— )/ Ko (42

which is (+z,l) according to the interpretation of ER5).  which shows that the SH wave emanating from the right side
The boundary condition Eg21) determines the homoge- is of | polarization. The intensity is

Up(2)=

= C\/S—R{lFo 124 |FO 12— C\/S_R 64772K3{L—(k12+q)2/K(2,}2 Sinz[(klz_Kl)d/2]|Pglz|2
8 RX Ry 8m (K1o— K1)?(K1p— K3)?(Kio— K3) (ko= Kyg)?
(43
:C\/S_R4sirF(k12_K1)d|E° |2=—C\/8—RG|E° 2
87 > b12 "= g p12l -
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expected to be dominated lig, because of the small in

— 20

2 f (a) Eq. (15). Moreover,E2,, andEY,, are dominant because of
= Q o ! large 11(=22) and 12(=21) components in Eq14). In Eq.
§ 20 L'POIR LCR'PO' f (14), if only these components are considered,

% 150 ) [

é Lo (Egm) —4m ( L-g?/Kg  —M ) (Pgm) (45)

5 = \J\ ozl 4 -M  L—q%K3||Pba/’

116 1165 11.7 11.75 11.8 Using Eqgs.(B2)—(B4) and (44),

] Ko(rad um ")
3 T
5 [ ,
£ e 2| (b) 0 0 €az €az
S ’ [Edial | Ill Pa24™=Pp24=2{ Xaaa™ Xabz 8_22 “Xaz 8_22 azaufy,
§ } 'I (46)
N_(\I 15 ! \
= / d Eq.(45) is reduced t
w 1p / | and Eq.(45) is reduced to
¢ st G / \\
s - o, N, ;
o J’—A JIAVAVASA 0

0 _ 0 ~_47T 202
it.e  11.65 11,7 11.75% 11.8 Ea24_Eb24_T(L_q /KO_M)Pa24

K, (rad um 1
4 0
FIG. 4. (a) Phase matchind\ for (+z,1;—2zr) fundamental :qleoz_Ez Paza (47)

waves. Dots, exact theory: curve, E43) where|P,,| is assumed

to be constant in this regiorb) |[EQ;,|? andG as functions oK.
At the )\, edge, Eq.(47) is infinite since q?/K3,=%,,

This is compared with the exact thedfyig. 4@)], where the  namely, enhanced SHG is expected for the phase matching

fundamental waves areHz,l;—z,r), p=0.35876184:m,  condition Ko=Kg,. On the other hand, the other condition

d=87um, and|P),,| is assumed to be constant in this re- K,=Kgy3 is not effective sinca’/K2,,=%,. Thus, no en-

gion. The approximation is shown to be good. Equat#®  hanced SHG is expected near thg edge unless the,; and

is factored into the form oB|Ep,,|? and the spectraddand  \, edges are nearly degenerate. According to(&6), E2,,

|EpyJ? are shown in Fig. #). G is oscillating. The maxi- andEY,, correspond to € z,r) and (—z,r), respectively. In

mum intensity is approximately obtained under the phase&yzcoordinates, the inhomogeneous wave in @) is ex-

matching condition, wherfEp,,|? is infinite, whileG is zero.  pressed as

In other words, infinite inhomogeneous waves 7,|) are

significantly canceled out by the homogeneous waves

(+z,1). The cancellation is complete on the left side. On the —1singz

right side, {sinP(k;,— K1) d/2}/ (ky,— K1)2 in Eq. (43) varies (2)=v3 icosqz | g 48
as d?/4 under the phase matching condition. Thus, phase P (gsingz)/Ko azx
matchingA is conventional in its thickness dependence. —(gcosqz)/Ky

3. Special kind of type-I-like phase matchings-BE ]
This wave has the same form as the homogeneous wave at

_ Now let us consider the phase matcherﬁE_. Accord_-_ the \, edge[Eq. (29)], namely, it is a standing wave of
ing to Sec. IlIB1, the possible phase matching conditiongight-handed helical form whose electric and magnetic fields
are Ko=Kop Or Ko=Kgy3. First we concentrate on phase gre always parallel to th€, axis. On the other hand, the
matchingsB and D, where the fundamental waves-¢,r;  inhomogeneous wave is orthogonal to the homogeneous
—z,r) are effecpve. Inabz coordinates, such fundamental \y5ye at the\ 5 edge[Eq. (30)].

waves are dominated by Until now the phase matching@andD were considered.
Now let us consider the phase matchit@andE, where the

Ea ""4‘(4alk42 fundamental waves+ z,I;—z,1) are effective. Inabz coor-
Ep | = a 2 . (44)  dinates, such fundamental waves are dominated by
E; (azeikzz_ ‘5141:4eik42)8a2/8 zz
In abz coordinates, nonlinear izati i - Ea agfae’e?
, polarizations with wave num s
bersky,, kqs, andk,,=0 dominate. In particular, near the Ep | = _ a;ett : (49
phase matching conditions, the inhomogeneous waves are E, (a18™ 1" —asf3e'" ) e,/ e,,
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Following the previous discussion, the inhomogeneous 4. Further details of the special phase matching
waves are dominated bJ,; and Ep,, with wave number The homogeneous and emanating SH waves are deter-
ki3=0 and they are expressed as mined by the boundary conditions. Since the inhomogeneous

waves are polarized, the homogeneous waves are assumed
to be dominated by-polarized modes 2 and 4. For simplic-

— 4
0 _pg0 __ _A2/k2_ 0
Ba1g=Ep1s~ A (L=a7Ko=M)Pass ity, we proceed with the analysis under the following condi-

tions:
= q2/|i—(27)7_§2 Po13 (50) ER=EL, (53
where KoveL=0, (54)
0 0 €az £as)? K2=0. (55
Pa1s= Pb1322[xaaa_xabz<g_zz) _Xazz<g_zz ]a1a3f3' Condition (54) is equivalent toye, p=»\o(2w), namely,s,

(51) s close to the dielectric constants of LCs. Conditi6b) is
satisfied when SHG occurs near the edges of the gap. Under
In xyz coordinates, the inhomogeneous wave is expressed @isese conditions, let us consider a homogeneous wave with
the following form as an approximate solution:

—isinqz
i 0
B i cosqz 0
Up(Z)—\Q (q sinqz)/Ko Eal3' (52) A Az (56)
— (g cosqz)/K, 0 '

Ae2(F,+1)/(Fy+1)
Since Eqs(50), (51), and(52) are similar to Eqs(47), (46), ]
and (48), respectively, phase matchingsand E occur in ~ Here F2+1)/(F4+1) can be transformed to the following
similar ways to phase matchingsandD, respectively. That 'elations using Eq(26):
is, the phase matching is achieved irrespective of the polar- Fo+1 —Fy+1 Fo(Ky+q)+Ky—q
ization of the fundamental waves, if both are the sdtype =— =—

| like) and counterpropagating. The SH wave is enhanced Fetl —Fatl Fa(Katq)+Ka—0
near thex, edge and ig polarized. These predictions were —Fo(K,+q)+Ko—q
actually observed experimentallit5—-17, and will be dis- = Kat o)+ K Q" (57
cussed further in the following. To simplify the notations, we A 4
proceed with the analysis only forHz,r;—z,r). For Eqg.(56), the boundary conditions EL9) are given by
|
Ay(—Fo+1)(1—€X2%)/v2 Foy
A (Fo+1)(1+€2%)/v2+v2iES,, B FY,
~ Aoi{Fa( Ko+ 0) + K= g} (1 €¥29)/v2Ko | VeR?y, | 59
Ax{ = Fa(Ko+0) +Ko—ql(1+e™2%) V2K~ V2qER, /Ko — e FO,
- FEy - FEX ng
A+ —-F2, Fy sinqd) FRy 59
u = =
P \/S_LFE)( - \/S—LFEy Cosqd - \/S—RF%y
0
—VelFY, —VeF, VerFR

(see Appendix € Using Eq.(53), Eq. (59) is simplified to

0

FR= —cosqdF,—sinqdFy,,

0 ; 0 0 (60)
Fry=—sinqdF_,+cosqdF,.

The boundary conditions are now reduced to E§8) and (60). If we eliminateF{, and ny in Eq. (58), we obtain the
relations.
—24EQ,

= - , 6
—KoVe (—Fa+1)+q(Fa+ 1)+ Ka(Fo— 1) + €2 Ko\e (—Fo+ 1)+ q(Fo+ 1)+ Ky(F,— 1)} (o0

Az
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—2Ko e EQy

" Kover(Fat 1) — Q(— Fot 1)+ Ky(F o+ 1)+ eX28{Ko e (Fo+ 1)+ q(— Fo+ 1) — Kp(Fp+ 1)}

(62

respectively. Since the assumed relation, ), is not exact, the slightly different expressions, E@&l) and (62), are
obtained. However, under the conditions of EG®}) and (55), Egs.(61) and (62) are approximately the same, namely, an
approximate solution is obtained. Using E§8), FEX and F(L’y are expressed as

A(—Fo+1 :
0, = 22Tl () g,
V2
_ (63)
o _ Ai{Fa(Ko+tq)+Ko—aq}p
Ly (1 en2 )
V2Ko\eL
A polarization experiment for ROLIC6304 showed that the SH waves generateet by;(~z,r) and (+z,1;—z1I) are
dominated byr polarization[17]. r andl components for the SH waves emanating from the right side are given by

(F(F)(rpol) }(1 i )(F%x)
FRipo/ 211 —i/\FRy
_ Ay(1-e) ( {(KoVeL+0)(Fa— 1)+ Kp(Fp+ 1)}
2V2Kgye, \[{(KoveL—a)(Fo—1)—Kp(Fp+1)te '9¢)"
using Eqs(60) and(63). Under the conditions of Eq§54) and(55), the SH wave is dominated lypolarization, which agrees

with the experiment.
The SH intensitiegl) emanating from andr sides are

c\eL

C
— 2 2
1= St PO+ FE, )=

(64)

J—

md 2+ [FR D), (65)

where Eqgs(53) and(60) were used to lead to the second equalityAJfis evaluated by Eq61) and Eq.(63) is used, in region
lll, where SHG is outside the gap,

_ ey (2KGeD{(LKGe G+ Ka(Fo+ DI(F— DI+ 1) 2o cJ—
87 [(cofK,di2)/Kae [q(Fp+1)/(F—1)+K,]2+1 224

2od’, (66)

where we used the fact thKt, andF, are real. On the other hand, in region | where SHG is inside the gap.

Ve (2q%KEe){(1KEe)[a+sco g P+1) CJ—G 2 6
= 87 [(colsd2)/KZ, Jqcot i) —spir1 | Teed = IES,2, 67)

where we used Eq$27) and(28) and cot/2) is expressed Fo+1 2K ,q
as F,-1 (M+L)K2—g?—K2’ (70
¢ —2sq
cot5= 53 (68) . .
2 (M+L)KG—qg +s exists using Eqs(A7) and(5). Although Eqgs.(66) and(67)
can be unified, the present forms are simple since only real
In Egs.(66) and (67), |E2,,|? is given by variables are used. It is noted that these equationisdifer
) ) from the conventional case, E@t3).
,  167°|Pg, The linear reflectance and SH spectra were calculated
|Ea24| = (69

near the photonic band gdpig. 5). In the linear spectrum,

the selective reflection band appears betweenth@and\ ,

By substitutingK, [Eq. (27)] andF, [Eq. (28)] in Eqg. (66),  edges when a-polarized wave is inciderjtl9,20. Multiple
Eq.(67) is reproduced. So E@67) is considered as a special reflections of modes 2 and 4 result in subsidiary oscillations
form of Eq. (66). Conversely, by substituting[Eq. (27)] in near the edges. Such oscillations have actually been observed
Eqgs.(67) and(68), Eq. (66) is reproduced, where the relation in some carefully prepared cholesteric c¢R«,25. On the

(9YK§—%)?
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1 1
113 side (@) Y

i A2 side
A2 side 0.8 W f\ 0.8
nef i el i

0.4

A13 side (a) selective reflection

Reflectance
Reflectance

0.z v 0.5

175 A13 side
1.5
1.25
0.75

hemreeseeee

Q

14000 12 side
12000

10000 %625
5000

£000

4000

2000 _J ‘\\

11.55 ! n 2r 3m 4m 5n 6n : n 2n 3t 4n Sn 6m

Reflectance

025 H
i

1]

SH Intensity (arb. units)
SH Intensity (arb. units)

11,65 11.7  11.75 11,

100040 (6) SHG K,d (rad) Kd (rad)

2000

FIG. 6. (a), (b) Linear reflection spectrum in Fig.(&, and
(c),(d) SH spectrum in Fig. ®) are shown as functions &f,d.
s000
edge. Thus, SHG is enhanced only near Xheedge unless
N1z and\, are nearly degenerate. In Figch G is a mono-
tonic function in region and oscillating in region Ill, which
differs from G for phase matchiné. For phase matching,
the maximum intensity is realized under the condition that
11.6 11.65 11.7 11.75 11.8 11.8% |E2,,|2 is infinite, althoughG is zero. For the present case, a
g (c) SHG [ similar situation occurs under the phase matching condition
o IES, |2/25| ] Ko=Kgp, namely, at thex, edge, wherdE2,,|? is infinite

(\\ : | and G is zero sinceKy=Kp,=0q/JL+M, K,(F,+1)/(F,
—1)——gM/(L+M), q(F,+1)/(Fy—1)—x, and
cof K,d/2—x. At the \, edge, the infinite amplitude of the
inhomogeneous wave E@48) is canceled by the infinite
homogeneous wave E@29), and the emanating SHG is
comparable to that for phase matchigsee Figs. &) and
5(b)].
| As noted above, the peaks and dips in the SH spectra are
e 1163 Kl(lré; nﬁf)ﬁ HE 118 located at the dips in the selective reflection band. This rela-
o eH tion is clear in Fig. 6, where the selective reflection and SH
1nooe 140 spectra are shown as a functionkofd. In the linear spectra,

soon () SHG }ﬁﬁ \(:) SHG the dips are located at
€000 20
4000 &0

chj::n77, (7])

- " 40 '-.\
2000 .
- T, 20
0 RTINS 0 e wheren are positive integers. On the other hand, in the SH
' ' 11,525 11,83 11,835 11 spectra, the peaks are located at

000

SH Intensity (arb. units)

2000

X

0o 2 ;
G, |Ez4| /25 (arb. units)

(=]

—

FIG. 5. (a) Linear reflection spectrum by the exact theory for
r-polarized incident wavelb) SH spectrum for ¢z,r; —z,r) fun-
damental waves. Except for the polarizations of the fundamental
waves, the parameters are identical with those in Fig. 4. Dots, exadl
theory: curves, Eqs(66) and (67) under the approximation that T
|P%, is constant in this region, taken atK, Kod=N"m, (73
=11.810499 ragkm 1asatyp|cgsll value. Regions near thgedge oo N are even integers, which shows that the locations
are enlarged irfd) and (e). (c) |E;,4* and G versusK, using Egs. f th K d di det ined BYA ding t
(66), (67), and (69). of the peaks an |p§ are determined®yAccording to a

previous papem (N,N") corresponds to the number of wave
packets for the homogeneous waves in the [c&]. When
other hand, the SH spectra in Figgbp 5(d), and §€) show  an even number of wave packets are produced, the inhomo-
that(1) SHG is significantly enhanced only near thgedge, geneous wave is canceled by the homogeneous waves at the
(2) Egs.(66) and (67) are good approximations, arté) the  boundary. According to Eq63), the cancellation is perfect
peaks and dips in the SH spectra are located at the dips in thgr the conditionK,d=N’. On the other hand, when an
subsidiary oscillations in the selective reflection spectrum. odd number of wave packets are produced, the cancellation

Equat|ons(66) and (67) were factored into the form of at the boundary is decreased and significant SHG emanates
G|E2,4/? and their spectra are shown in Figch As noted  from the cell. These relations are shown graphically in Figs.
before,|Ea24|2 is infinite at thex, edge, but not at th&,; 5 and 6 in Ref[18]. Experimentally, at present, the difficulty

K,d=N, (72)

hereN are odd integers, while the dips are located at

056610-11



HOSHI, CHUNG, ISHIKAWA, AND TAKEZOE PHYSICAL REVIEW E63 056610

in preparing high quality cells prevents the observation of the L
dips in ROLIC6304 and such relations between SHG and 17.52 ()

selective reflections have not been confirmed yet. W

5. Cell thickness dependence of SH intensity and width

1
)
\qu:\
+ o
g.o
I3

To estimate the maximurh near the\, edge using Eq. E 17511 L
(66), we assume thaK,(F,+1)/(F,—1) in the numerator ® + 20
and K, in q(F,+1)/(F,—1)+K, in the denominator are = o D_>‘”
negligible, ! — |-
-po R-pol
+ R-LC
cep
| = 17.50 - T
8m 0 100 200 300 400
2,1, 2,1, Thickness (um)
y (297/Kge)[(q/Kge) +1] 10000000 !
[(cof K,d/2)/K2e 1[q(F,+1)/(F,—1)]2+1 z (o)
>
> | E224|2. (74) g 1000000
Moreover, we assume thathas its maximum valué .. ‘g? 100000 3 4
under the conditiork,d=Nr, namely, catK,d/2=0. Now 2
we consider Eq(74) as a function ofj andd since previous T 10000+ 4 3
experiments were carried out under the condition gt (g d
was fixed and the pitch and thickness were varied. To ex- g 1000 ‘ :
press the condition showing the maximunin an approxi- 3 10 100 1000
mate form, it is convenient to introduc® As noted previ- = Thickness (um)
ously, M for ROLIC6304 is negative anl{,, is larger than 0.01 —
Ko13. TO express region lll near thi€,, edge for negative (c) 3
M, 8 (>0) is defined as vl d
€ 00013 3
g=KoVyL+M—6. (75 B
For small 8, K, can be expressed in the following series: % 0.00011 L
L
Ko=| K3(2L+M)—2Ko\L+M &+ &2
0.00001 e
12 10 100 1000
— VKA(2L+M)2—8K3LL + M 5+ 4K2L 62 Thickness (um)
FIG. 7. (a) Thickness dependence of the peak position and width
= \/75(C0+C15+°--), (76)  for the SHG peaksN=1). yu (O) is the location of the SHG
peak and FWHM(+) is the location ofg that corresponds to the
where FWHM for the SHG peak. They are numerically calculated by the
exact theory using identical parameters to those in éxcept
CO:‘{/L—'— M \/_ZKOM/(ZL+ M), )\O(w)=1.0g4,um.gThe curvepis drawn based on api()%ximatg Eq.
1 SLM2 (77 (78). (b) Thickness dependence of the maximum SHG intensity
Clz_[ 1— . (N=1) calculated by the exact theory. The results are well fitted to
2C, (2L+M)3 the d* dependencéstraight ling. The locations ofj are shown in

(@. (c) Thickness dependence of FWHNN E 1) calculated by the
Cy is about 0.5 in our case. If only the first term is consid-exact theory. FWHM is obtained fror®). The results are well
ered,K,d=Nr is expressed as fitted to thed™3 dependencéstraight ling. The locations of the
FWHM are shown in(a).

N2 72

Oma= KoVL+M— ——, (78)
- Cod Pax _ |2 [ 2VLFMNZm2 Nz \2
i i K2 °2) T\ T TK,cZa? | KiCid®
whereqax is theq value that corresponds to the maximum 0 0“0 0~0
As shown in this equatiorng,,,x converges td,yL+M at 4(L+M)N*7

infinite d. Figure {a) confirms these expectations, where =, (79
Omax IS Numerically obtained from the peak bfversusq KoCod

using the exact theory and shown as a function of thickness.

The denominator of Eq69) for qpmay IS where we assume that is relatively large. Moreover, for
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suchd values,qzl(Kés L) terms are evaluated approximately than that for the conventional ofieigs. 4a) and 3b)]. For a

by using 100 um thick ROLIC6304 cell, the FWHM isAq=8.82
, , X 10" 4radum™L. This corresponds ta p=0.018 nm when
Omax=Ko(L +M). (80)  pis varied instead of|. For applications, the requirement of
o _ such high stability is the problematic point of special phase
Under these approximationk,,,, is expressed as matching.
c\/s—L 7%, In summary, two types of phase matching condition have

P2 (81 been described. Both are due to SHG using counterpropagat-
ing fundamental waves. The first type is for the incidence of
r- and |-polarized waves. It was found that phase matched
SHG occurs along the direction where theolarized wave

3 4K2Ckd*
2+ ) 0~0

52W2N4

I max= 8

€L \&L

Thus,| maxis d* andN~* dependent. Thaél~* dependence is

roughly shown in Fig. @). The thickness 4dependence of is incident. That is, the propagation direction of the phase
Ime}x |545hown in Fig. '_(b), which verifies thed (_jependence. _matched SH wave is the same as the propagation direction of
This d” dependence is the advantageous point of the specighe fndamental-polarized wave. It was also found that the
phase matching7,10]. In a previous papef10], Yoo etal.  ,hase matched SH wave lispolarized and the process is
carried out a S|mulat|pn using the analytical t'heciry by CopiCqescribed by Fig. 3 typa, including an umklapp process. In
and Drevensek-Olenif9] and ShOWEd thdtm_ax !Sq depen- e present analysis, the SH intensity in this process is de-
dent. In the present paper, this characteristic is shown andiped by an expressidiEq. (43)] similar to that for the

lytically based on the exact theory. , usual phase matched SH intensity, and depends on the square
For the SHG peaks as a function gfthe full width at ¢ 10 sample thickness?.

half maximum(FWHM) is also thickness dependent. In Eq. The second type of phase matching condition is for the

(74), half values ofl 5 are obtained when incidence of light of the same polarization. The phase
2 matched SHG is very characteristic in many ways.
cotZ(I2<2d/2) (q Fatt 1) =1 (82 (1) The phase matching occurs near one of the edyes (
KoeL Fo—1 edge of a photonic gap(selective reflection bandin the

. present casénegativeM), it is near the higher energy edge.
Moreover, wherK,d/2 is close toN/2, This situation is clear in Eqg47) and (50).
2 2 (2) The exact position showing the maximum SH inten-
K_"’d:(K_2d_ M) 2<C°\/5d_ &) . (83 sity corresponds to the first dip position of the subsidiary
2 2 2 2 2 oscillation in the higher energy region of the selective reflec-
tion, so that the peak position shifts toward theedge with
increasing cell thickness.

cof

Furthermore, for smalb,

E.11)\2 4K2q (3) Because of the shift, the dependence of the SH inten-
q—= = 2 sity on the cell thickness is quite special, i.d% This is
Fom1)  {(M+L)K§—g’—K3}? i i i
2 o9 2 explained as follows. The inhomogeneous w&fg, is ex-
—8KEM(L+M)528/(2L+M)+--- pressed by Eq47). If we defineAK, asK, measured from

I YIS the edgeK,, it is readily found thaEg24 is proportional to
o )=o°l( )"+ AKg. On the other handAK, is proportional toK3, since
KéMZ the dispersion curve near zekg is approximated by a para-
=—5_. (84)  bolic function. UsingK,d=N, AK is proportional tod?.
Coo Then finally we reach the conclusion that the maximum SH
intensity [ proportional to (5224)2] occurs at the first dip of
the subsidiary oscillation in the selective reflection and de-
pends ond*. A physically intuitive interpretation concerns
5 8C§\/8—L772N2d . the diipersion rellation, sin<r:]e th; grqug_ ve_locity of the SH
= . 5 wave becomes slow near the edge, indicating stronger non-
* —KoM(Cgd?—4CGe, KgM?)? 9 linear interaction. ’ ’ ’

Using E@s.(83) and (84), two approximate solutions fos,
&1 and §,, for Eq. (82) satisfy

61—

In the denominator of Eq85), the first term is dominant i

is relatively large. Thus, the FWHM ig~3 and N2 depen- IV. CONCLUSION

dent in a thick cell, The special phase matching process was analyzed. The
Jor -~ numerical results obtained from the exact theory were ex-
51— S 4Ve (2L+M)m°N (86) pressed in simple analytical forms. It was shown that two
Lo KSMzw/L+Md3 counterpropagating waves in+@,r;—z,r) and (+zl;

—2z,l) polarizations lead to special phase matching. The re-
Such ad™® dependence was also noted by Belyakov andation between the selective reflection and SHG spectra was
Shipov [7]. The thickness dependence of the FWHM isalso pointed out. The maximum SH intensity occurs at the
shown in Fig. Tb), which verifies thed 2 dependence. The first dip on the\, side of the selective reflection spectrum. In
FWHM for the special phase matching is much narrowerthick cells, the maximum SH intensity @ dependent, while
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the conventional phase matchingd$ dependent. However, which leads to

since the FWHM isd ™3 dependent, extremely stable LC
cells are required to realize th## dependence of the SH
intensity.
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APPENDIX A

Equationg3)—(6) are derived. Irabzcoordinates, Eq.1)
is transformed to

Woi(— 215 — kel (W™ 1) 4Ez=0. (A1)
We definee ,; as

&ag=Woi (W) ge/, =W,i(W™ 1) R, Riqepq, (A2)
given by

€aa=Epp={€1+2e,t &3+ (e,—&3)C0S 20}/4,

€apb=Epa={—€11T2e,—e3+(e3—&41)C0S 20}/4,

: (A3)
€a7= €za= — Epz= — &€= (€1~ €3)SIN 20/12V2,
g,,= &1 SIN? O+ g5 coS 6.
Using the relation
(q—id,)? 0 0
~W, 21 (W™ h) 5= 0 (q+ig)? 0],
0 0 0
Eqg. (Al) is expressed as
(q_iaz)z_k(z)saa _k(z)sab _k(staz E.
—kgeba (q+id,)°~kieny —Kden, ( Eb)
_kgsza _kgszb _kgszz E,
=0, (A4)
which is reduced to
E 1 ( )(Ea)
z= €2y €za €zb Ey)’
(A5)
(q—id,)?~ K3l —kgm (Eﬂ
~k2m (q+ia,)2—K2l | \Eo/

wherel and m are given by Eq(6). The solutions for Eq.
(Ab) are given by

=

E,

0
Ea) eikZ, (AG)

Ep

(k+q)2—k3l

2
—kgm

—k3m
(k=)= K3l

0. (A7)

Ep

|

Thus,k,E,/E,, and the general solutions are given by Egs.
(4), (5), and(3), respectively.

Eﬁ

APPENDIX B

Equations(12)—(16) are derived. Inxyz coordinates, Eq.
(11) is expressed in the same way as E,

0

(_3§|ij_KSE/

DE]=4mKEP/ (B1)

where the time factoe™ 2! is eliminated. %, E{, andP{

are the components ixyz coordinates. To express it abz
coordinates, we definB, and x4, as

Po=W,iP{ =W, x{iE{ Ex

=W, (W) (W™ D)o X ESE y= XapyEE
(B2)

Xaﬁy:Wai(W_ 1)Jﬁ(W_ l)kyXi,jk

=W,i(W™ ) 5(W ), RipRgRieXpqrs  (BI)

wherexi’jk are the components kyzcoordinates. x,gz, are
expressed as

Xaaa™ Xaab™ Xaba™ Xbab™ Xbba™ Xbbb

=i{x1127 2X222F X332F (X112~ X332 COS 20
+ 2X132$in 20}/4\/2,

Xazz= Xbzz— — Xzaz~ ~ Xzbz— ~ Xzza~ ~ Xzzb

=i{— X112~ X332+ (X112~ X332)COS 20

+ 2X1323in 20}/2\/2, (B4)

Xabb= Xbaa= 1~ 3X112T 2X2220~ 3X332+ (X332
- 3X112)COS 26_ 6X1325in 20}/4\/2,

Xabz= Xazb— Xzaa— ~— Xbaz— ~ Xbza— ~ Xzbb

=i{—2x132€08 20+ (X112~ X332)SiN 20}/2,

Xaaz= Xaza™ Xbbz= Xbzb™ Xzab™ Xzba= Xz27= 0-

In abzcoordinates, EqB1) is transformed in the same way
as Eq.(A4).
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(q_iaz)z_KSEaa _KSEab _Kggaz
—KgEha (Q+i9,)°—KGop —KgBh,
_ngza _K(Z)Ezb _Kg’ézz

Ea Pa
x( Eb) =4wK3( Pb) , (B5)
E, P,

wherez ,; are defined as in EqA3) using the dielectric
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APPENDIX C

Equations(58) and (59) are derived. For Eq(56), the
homogeneous wave E(L7) is expressed as

(—Fy+1)(1—e'k2d)
i(Fpt1)(1+eK2d)
—i{Fa(Ko+a)+Ky—gh(1—-e"2%/K,
{—Fa(Ko+a)+Ky—gh(1+e*2%)/K,

Az
M(0)A=—2
V2

constants at @ Thus, the inhomogeneous wave is given by

Egs.(13)—(15).

atz=0. Thus, Eq(58) is obtained. Also, using the relations

—i(Fy+1) —F,+1
AT d) A eisz —F2+1 |(F2+ 1) S|nqd) (CZ)
211(d)2= V2 —{—Fa(Ky+q)+Ky—a}/Kg  —i{Fa(Ky+a)+Ky—q}/Kg | | cOsad)’
—i{Fa(Ko+q)+Ko—al/Kg  {—Fa(Ky+0q)+Ky—q}/Kg
—i(Fs+1) —F,+1
ATL() A —F,+1 i(Fat+1) sinqd
AT ST FuKu+ @)+ Ky—qi Ky —i{F4(Ka+a)+K,—ql/K, | | cosad)”
—i{F4(K4+ )+ K= aql/Ky  {—Fa(Ks+a)+Kys—0q}/Kg
—i(Fp+1) —(—Fp+1)
A —(—F,+1) i(Fo+1) sinqd) 3
V2 | —{=FaKyta)+K—ql/Kg  i{Fa(Ky+q)+Ky—q}/K, | cosqd)’
{F2(Ko+q)+Ko—al/Kg  {—Fa(Ky+q)+Ky—a}/Kg
—i(Fo+1)(1+e2d) —(—Fy+1)(1—e'k29)
ed A, —(—Fy+1)(1-ek29) i(Fo+1)(1+eK29) Sinqd)
(DA | ~(-Falkat @)+ Kom aH (142K, i{Fo(Kota)+Ko—a}(1-€X2/K, ||cosqal (Y
i{Fa(Ko+ ) +Ko—gh(1-e 2%)/Ky  {=Fa(Ky+q)+Ky—g}(1+e¥2d)/K,
—i 0
0 i sinqd
Ry
up(d)_‘éEa24 q/KO 0 Cosqd ’ (CS)
0 —a/Kq

and Eq.(58), Eq. (59) is obtained.
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