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Pulse evolution in nonlinear optical fibers with sliding-frequency filters
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The effect of fiber loss, amplification, and sliding-frequency filters on the evolution of optical pulses in
nonlinear optical fibers is considered, this evolution being governed by a perturbed nonlineatir®ghro
(NLS) equation. Approximate ordinary differential equatid@DE’s) governing the pulse evolution are ob-
tained using conservation and moment equations for the perturbed NLS equation together with a trial function
incorporating a solitonlike pulse with independently varying amplitude and width. In addition, the trial function
incorporates the interaction between the pulse and the dispersive radiation shed as the pulse evolves. This
interaction must be included in order to obtain approximate ODE’s whose solutions are in good agreement with
full numerical solutions of the governing perturbed NLS equation. The solutions of the approximate ODE'’s are
compared with full numerical solutions of the perturbed NLS equation and very good agreement is found.
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I. INTRODUCTION equation exist§6], there is no exact solution of the perturbed
NLS equation that results when the effect of SFF’s is added.
Sliding-frequency filter§SFF’g are used to suppress the Therefore approximate and/or numerical methods must be
effect of the Gordon-HauéGH) jitter due to erbium-doped used to study pulse evolution governed by this perturbed
fiber amplifiers in optical communication systerfi$,2].  equation. To counteract the pulse damping due to the filter-
These all-optical amplifiers are used to counteract the losgg and the inherent fiber losses, periodically spaced optical
inherent in fiber optic cables. However, while the erbium-ampiifiers are used, which in the limit of the amplifier spac-
doped fiber amplifiers amplify the signal, they also amplifyjng much smaller than the dispersion length can be modeled
the noise in the system. In a soliton based communicatioRy, 5 continuous system of amplifigf]. In an experimental
system, this noise a_mpllflcanon causes a sh_lft in the solitoR n4 humerical study, Mamyshev and Mollenali8rshowed
parameters, most llmportantly, in its amplltudg and f.re'that stable soliton propagation was possible with amplifica-
quency. As the soliton frequency. IS cc_:upled to Its Veloc'tY’tion for a range of filter sliding rates and strengths. In par-
this then causes random fluctuations in the soliton Veloc'“{icular it was found that there are upper and lower bounds on
and thus in the arrival time of the soliton. This negativethe soliton energy for which stable propagation is possible
effect of amplification is known as GH jitt¢B]. For enerai g
gies below the lower bound, the pulse decays into

To reduce the effect of noise, optical filters are up&d di - diation d e filteri df
A fixed-frequency filter can reduce GH jitter by creating an@!SPersive radiation due to excessive filtering and, for ener-

attractive value of soliton frequency, and thus velocity. Ran91€S above the upper bound, a second soliton is formed, as
dom noise will therefore not drive the soliton too far from its MY be expected from inverse scattering the@iy Kodama
preferred velocity, reducing fluctuations in the soliton arrivaland Wabnitz[9] used a multiple scale analysis based on a
time. However, a fixed-frequency filter is unable to reduceslowly varying NLS soliton to derive ordinary differential
radiation within the filter's passband. To reduce this noise, £guations governing the propagation of a soliton in the pres-
sliding-frequency filter is employefil]. A SFF allows the ence of SFF's and amplification. It was shown that these
central frequency of the filter to change along the length ofequations possessed two fixed points, one of which was
the fiber. As the filter passband changes, the nonlinear solstable and the other unstable. It was further shown that the
ton readjusts to this new frequency, while the nearly lineaistable fixed point existed for energies above a certain thresh-
radiation underneath does not. In this way radiation arounald, in agreement with Mamyshev and Mollena{igk How-
and under the soliton is filtered out, reducing GH jitter. ever, the multiple scale analysis did not predict the upper
The basic equation governing pulse propagation in a nonenergy bound. Burtsev and Ka{0] used perturbed inverse
linear optical fiber is the nonlinear Schiiager(NLS) equa-  scattering theory to derive the same approximate equations
tion governing the soliton as Kodama and Wabff% As a per-
turbed soliton propagates, it sheds dispersive radiation and
Burtsev and Kaupl10] deduced that it was this radiation that
gave rise to the second soliton. By extending their perturba-
tion analysis to higher order, Burtsev and Kdp] obtained
[5]. While an exact inverse scattering solution of the NLSestimates on this radiation which enabled them to find an
approximation to the upper energy bound. This upper bound
was found to be in good agreement with that found from
*Email address: jason@maths.ed.ac.uk numerical results if7]. Soliton propagation in the presence
TEmail address: noel@maths.ed.ac.uk of SFF’s was also studied by Malomed and Tasg@a] using
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the same multiple scale method as Kodama and Wa#ijtz In the present work, the shelf method of Kath and Smyth
but for ultrashort pulses for which the amplifiers must be[13] will be extended to study the evolution of pulses under
taken as discrete. the action of SFF'’s, fiber loss, and amplification. As the gov-

All the previous analytical work on pulse propagation in €rning perturbed NLS equation is not conservative, an aver-
the presence of SFF’s is based on a slowly varying solitondged Lagrangian cannot be used to obtain approximate equa-
However, the choice of a slowly varying NLS soliton as thetions governing pulse evolution, as [i3]. Equations for
approximate solution of the perturbed NLS equation has twdh@ss, momentum, and energy and their moments are there-
drawbacks. The first is that the amplitude and width variafore used to obtain the approximate equations. In the case of
tions of the pulse are linked, as the amplitude and width of & conser.vatlve system, tr?'s IS equwalen't to using an averaged
NLS soliton are inversely proportional. It will be shown in -2drangian, due to Nber's theorem. Using a similar analy-

the present work that decoupling the amplitude and widtf?iS to that of Kath and Smyifi.3], the effect of the disper-

results in better agreement with full numerical solutions. The'Ve radiation shed as the pulse evolves is added to the ap-

. . : proximate equations. Solutions of these approximate
second is that the approximate solution[6f11] takes no equations are then compared with full numerical solutions of

Re governing perturbed NLS equation and excellent agree-

) , ) , fment is found. It is found that the approximate equations of
scattering work 0f10] does find equations for this shed ra- \he present work give solutions in better agreement with nu-

diation, it does not include the damping effect of this radia-merical solutions than do those §—11. The main reason

tion on the evolving pulse and the equations for the solitorygy this is that the amplitude and width oscillations of the

amplitude and velocity are the same as thosgoat1]. pulse are now independent. The present approximate equa-
Anderson [12] developed an approximate Lagrangiantions also give the same lower energy bound for stable pulse

method that allows independent amplitude and width oscilpropagation a$9,10]. By using mass and energy conserva-

lations of a pulse. This method is based on using aion, an approximation to the upper energy bound due to the

“chirped” NLS soliton with varying amplitude, width, and formation of a second soliton is also found. This bound is

velocity as a trial function in an averaged Lagrangian. How-found to be in good agreement with the numerical results of

ever, while the amplitude and width oscillations are now[7].

independent under this method, Anderson’s method also

does not take account of the dispersive radiation shed as the Il. APPROXIMATE EQUATIONS

pulse evolves. In many situations the inclusion of the shed

radiation is vital for obtaining good agreement with numeri- nght_ propagatlng in-—a. monomoo_le, _polarlzatlon-
cal solutiong 13—15. preserving, nonlinear optical fiber operating in the anoma-

us group-velocity dispersion regime is described by the

. . . . 10
An approximate method that does include the dlsperswt%\‘ S equatior5]. When the effects of fiber loss and a SFF

radiation shed as a pulse evolves was developed by Kath a . -
Smyth [13] for the NLS equation(1). Their approximate %e added, Fhe governing equation is a perturbed NLS equa-
. . ion, which is

method was again based on an averaged Lagrangian. How-
ever, the trial function used was different from that of Ander- 5
son[12]. As well as a varying solitonlike pulse with inde- i‘;_u+ 1 a_u+|u|2u: —iou+iy
pendent amplitude and width, their trial function included a iz 2 42
“shelf” term, which accounted for the dispersive radiation
in the vicinity of the evolving pulse. Furthermore, the soli- in nondimensional fornj2]. Hereu is the complex-valued
tonlike pulse was not chirped. Kath and Smyth showed thaenvelope of the pulsez is the normalized spatial variable
the dispersive radiation shed by the evolving pulse is govalong the length of the fiber, arids the normalized timéin
erned by a linearized NLS equation. By analyzing solutionsa frame moving with the linear group velocityThe first
of this linearized NLS equation, the mass lost from the pulséerm on the right represents uniform fiber loss, wherés
to shed dispersive radiation was calculated. Kath and Smytthe loss paramete5]. The second term represents a SFF
[13] thus added terms to the variational equations derivedith filter strengthy and frequency sliding rat@ [2]. When
from the averaged Lagrangian that included the effect of thishe amplifier spacing is much smaller than the dispersion
shed radiation. It was found that the solutions of the modifiedength scale, the term i ou on the right hand side of Eg2)
variational equations were in excellent agreement with fullrepresents the excess of gain over lossder0 [2,5].
numerical solutions of the NLS equatidh). The approximate method of Kath and Smyt8] is now

The method of Kath and Smyfii3] has been extended to extended to obtain an approximate solution of E2).that
study pulse propagation in other optical systems. It has beetiescribes pulse propagation under the influence of a SFF and
used to study pulse propagation and switching in nonlinealoss. In the work of Kath and Smyt13], a trial function
twin-core fibers[14] and pulse propagation in nonuniform was substituted into an averaged Lagrangian for the NLS
fibers[15]. In both of these extensions, it was found that theequation. Variations were then taken with respect to the
inclusion of the shed radiation was necessary in order t@ulse parameters and ordinary differential equati@iSE’s)
obtain good agreement with numerical solutions, and that théor these parameters were thus obtained. However, a La-
agreement thus obtained was better than that obtained usirggangian only exists for conservative systems. With the loss
the chirp method of Andersdi.2]. terms on the right hand side of the perturbed NLS equation

(9 2
E+|Qz) u 2
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(2), this equation does not describe a conservative systerhich again can be directly derived from the perturbed NLS
However for nonconservative systems, approximate ODE’'&quation(2).
governing pulse evolution can be obtained by substituting It should be mentioned that the phase of the soliton is not
the trial function of 13] into conservation and moment equa- determined by the conservation or moment equations as
tions. In the present context, a conservation equation dodbese equations are all independent of phase. An equation for
not mean that the quantity is conserved. What is meant arthe phase for the NLS equatidgfh) can be derived from an
equations for mass, momentum, and energy modified by lossxtension of Nther’s theoreni17] based on scale invariance
terms due to the SFF and fiber loss. The ODE’s obtainedf the NLS equatior{13]. However, the equations for the
from these conservation and moment equations are exactlyther parametersamplitude, width, and velocijywill be
those of[13] when the loss terms on the right hand side offound to be independent of the phase and so the phase equa-
the perturbed NLS equatid®) are set equal to zero. It is this tion is not dealt with in the present work.
conservation and moment equation approach that is used in The key to the method of Kath and Smyth is the choice of
the present work. trial function to use in the conservation and moment equa-
The perturbed NLS equatiof?) has three conservation tions (4) and (5). Based on numerical solutions, previous
equations, commonly referred to as mass, momentum, anekperimental work by other authors, and perturbed inverse
energy[ 16], although in the context of optical fibers they do scattering theory for the NLS equation, a solution of the form
not physically correspond to these quantities. In this regard,

iti t

the three quantities U= ﬂseChv—v+i9 exdi 0] ©®)

p=|ul?, (33 , _
was sought. The same trial function, extended to allow for a
i variable pulse velocity, will be used in the present work.
J= s (uuf —u*uy), (3b) Hence a solution of the form
2
t-y . -
E=|uy?—|ul?, (30 u= nsechvﬂg exgif+iVv(t—y)] @

are defined16], which are referred to as mass density, mo-will be sought for the perturbed NLS equatit®). Here the
mentum density, and energy density, respectively. Here amplitude s, width w, velocity V, mean positiory, phasef,
denotes the complex conjugate. From the perturbed NL@ndg are functions ofz. The first term in sech is a varying
equation(2), the conservation equations solitonlike pulse. The second term gnaccounts for the low
frequency radiation in the vicinity of the pul$&3]. From

a = _ |- 2.2 numerical solutions of the NLS equation and perturbed in-
dzJ,xp dt= J,m[(ZUJFZVQ Z)p+4yQz] verse scattering theory, it was found by Kath and Sni¢8j

that the radiation in the vicinity of the pulse is independent

+2y(E+p?)]dt, (48  of t. The reason for this is that the group velocity for the

linearized NLS equation isy=—2k, wherek is the wave

d (= 0 2 ) number, so that low frequency radiation stays in the vicinity
d_szw‘] dt:_ﬁw[(z‘ﬁLZ?’Q 2°)J+4yQz(E+p) of the pulse. High frequency radiation rapidly propagates
away from the pulse, leaving a flat shelf of radiation on
+iy(uuf; —uf uy)] dt, (4b)  which the pulse remains. The radiation cannot continue to be

flat away from the pulse, otherwise it would contain infinite
d r= % mass. It is therefore assumed that the radiation is flat in the
iz E dtzf {(20+2y0%2%)(p?>—E)+29[4|u?|ul>  region —//2<t<//2 about the pulse. The form of the ra-
- - diation outside this region is dealt with in the next section.
+(u*)2ut2+u2(u;*)2—|un|2]+2i yQz(UF Uy Furthermore, .numerical solutions show that the radiation is
of small amplitude, so thdyg|< ».

—uud +2|ul?uuf —2|u|u* uy)ldt (40 Substituting the trial solution(7) into the conservation
laws and moment equatiorid) and(5) yields
can be directly derived. The perturbed NLS equat®ralso 5
possesses mome_nt equations. The moment equation used in (2772W+/g2)d_v: _ §y(QZ+V)77—, (8a)
the present work is the moment of momentum equation dz 3 w
d (= * 1, 2.2 a 77—2—2 | =20+ Q222+ W2+ 2902V
a2 _xtJ dt= - E+ Ep —(20+2yQ°z9)td dz\'w 7 Y Y Y

2

4774W—7’W +y 3

247 w2 — 14772)

+iyt(ufutt—utuﬁ)—4yﬂzt(E+p2)} dt, X Sw

©) (8b)
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d 2(7* 4 22 2
d—z(ﬂ'ngw)=§ — —g'W|—=2(c+ yQ°z°+3yV

w
+4VyQz) T ygw, (80
d
d—z(2n2w+/gz)=—2(a+ yQ27%+ yV?
4 772
2 sn2y
+2yQzV)(25°Ww+ /g°) RATE
(8d)
The last equation is
dy

PHYSICAL REVIEW B3 056604

In turn, the fixed point amplitudé was found from the NLS
energy conservation equation, which is the energy equation
(10b) with o=y=0. It was thus found that the fixed point
amplitude is

W (12

2\ 1/3
K= ( 27 w— 7]—) .
However, the only fixed point of the present approximate
equationg9)—(100d) in the absence of amplification =0
due to the loss terms. Therefore the methofll8] cannot be
used to determine”. If the loss parameters- and y are
small, then a slowly varying approximation 16is Eq.(11).
In a similar vein, since the fixed point of the present approxi-
mate equation9)—(10d) (in the absence of amplificatipis

n=k=0, the NLS fixed point12) will be used to determine

which links the soliton center position to the velocity. After / via Eq.(11). Foro andy_sma_lll,;} given by Eq.(12) is not
some manipulation, the conservation and moment equatiorgonstant, but slowly varying iz. This slowly varying ap-

(8a)—(8d) become
2

2wt /g =~ 8z 10
(29w /Q)E— §7( z )W’ (109

d (7 4 2.2 2
d—Z(W—Zn W |=2(o+ yQz°+ yV+2yQzV)

2 4,2 2
s M 245 "w —14y
X\ 4n*w W)+7<—5W3 )
(10b)
d
d—z(nw)=—(a+ Y222+ W2+ 2yQzV) gw
/91-2(gw)®> y 7y
27w 5w (109
dg Uj 2 2.2 2
Ezs——z[l—(nw) 1= (o+yQ°z°+5yV°+6yQ2zV)g
v 9
e (100

In deriving these equations, terms®{g?) and higher have

been dropped, except for the quadratic terrg proportional

to /. This term was not dropped as it is important in mass

conservatiorj13].
For the case of the NLS equatidf), Kath and Smyth

[13] found the length/” of the shelf by matching the fre-

proximation gives the local value of amplitude that the
pulse would achieve if the fiber loss and filter strength were
set to zero instantaneously. Furthermore, with this value of
/, settingo=vy=0 in the present approximate equations
(108—(10d reduces the equations to those derived from an
averaged Lagrangian by Kath and SmiAl3].

Kodama and Wabnitg9] and Malomed and Tasgéll]
derived another set of approximate equations for the pulse
amplitude and velocity based on another trial function. Their
method uses a trial solution in the form of a NLS soliton
with variable parameters

u=nysechn(t—y)lexd —io—iV(t—y)]. (13

This trial solution assumes that the amplitugleand width

7~ of the pulse are inversely related. The pulse phage is
and the pulse velocity i¥. The parameters are all functions
of z. Based on this trial solution, Kodama and Wabr&2
used the method of multiple scales and Malomed and Tasgal
[11] used the balance-equation techniq8] to derive the
following approximate equations for the pulse parameters of
Eq. (13):

dy 7" )

E——Zn oty ?-i-(V—QZ) , (149
av__2. V-Q 14b
FERE y(V-Q2). (14b)

Notice that settingy=1/w andg=0 in the present approxi-

quency of oscillation of the solution of the NLS approximate Mate equations10a and(10b) gives these equations, as ex-

equations near their fixed poinj=« to the steady NLS
soliton oscillation frequencﬁ;}, obtaining

- 372

8k

/ (11)

pected.
The approximate equation®)—(10d) along with Egs.

(11) and(12) for / and« are not yet complete as they do not
incorporate the effect of the dispersive radiation shed by the
evolving pulse. This shed radiation is the subject of the next
section.
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IIl. RADIATION LOSS 1 _ _ _
(——iy Uy+2QzyU+isU=0. (20

As the pulse propagates it sheds radiation, so losing mass
and momentunfand energy to higher orderThe effect of
this shed radiation on the evolution of the pulse will now beKeeping only leading order terms i we obtain the follow-
analyzed in a similar manner to that of Kath and Smything expression fotJ,:
[13,19.

As the shed radiation has small amplitude, the nonlinear drz U
term in the perturbed NLS equatid®) is negligible away = —20zyU—\2(e ™4+ yei™4) _f — dr
from the pulse. Therefore, the equation governing the shed dzJo \Jm(z—7)
radiation is (21
1 . — . .
iu,+ =Uuy=—iou+iyu,—2Qzyu,—iyQ?z%u. (150  on solving Eq.(20) for U and inverting the transform. Sub-
2 stituting this expression into the mass conservation relation

The substitution (19 and ignoring quadratic terms i, we obtain

u=U(Z,t)eX[<—0'Z—%'yQZZ3) (16) ijm |Ul2dt=—V|U|Z, .,
dz)y+ 2 y
transforms the linearized equati¢b5) to (14 9)U* drz U g
+(1+ — | ——=dr
iU+ E—i'y Uy=—2QzyU;. 17 ' A2Jom(z=1)
2 (22

The conservation of mass equation for this transforme

equation(17) is qor the mass radiated to the right of the pulée., t>y

+/12). An expression for the mass radiated to the left of the

Uz i . . g . pulse(i.e.,t<y—//2) may be obtained in a similar manner,
o7~ 2 7 (VTUm WU +y— (UT U+ UUY) the only difference to the mass expressi2g) being that the

sign of theV|U|? term is reversed. Then inverting the trans-

—29|U{?=2iQzy(UU} —U*U,). (18)  formation (16) and substituting the right and left mass loss

expressions into the mass equati{dnfor the pulse results in
Integrating this mass equation from the edge of the shelf the modified mass equation for the pulse
=y+//2 tot=o, and noticing that the last two terms in Eq.
(18) are already included in the original mass conservation d r= o
equation(4), yields an expression for the mass radiated to the d_zf pdt=— f [(20+2y02%Z%)p+4yQz]
right away from the pulse as - -

+2y(E+p?)]dt—2(1+ y)r

o0

[U[2dt=—V|U[Z_, . o+ IMU* U]y

dz 1
vz Xexr{ —oz— 570223)
_Z‘YRe(U*Ut)|t:y+//2- (19
1
Furthermore, for smaly, the velocityV may be taken to be d rz r exp{ oT+ 3 y9273)
a constant to first order, as ii5]. If this approximation X — f dr. (23
were not made, then the radiation would be determined by a dz Jo Nm(z—17)

moving boundary problem whose boundasyy +//2 is un-

known and determined by the approximate equations of Se¢yerer =|u(y+//2,7)| is the height of the shelf at its edge.
II. The second term on the right hand side of E2p) is the

~ Kath and Smytfj13] used Laplace transforms to solve the mass shed by the pulse in the form of dispersive radiation.
linearized NLS equation and thus determined an expressiofyhen o and y are small, the height of the shelf is given by

for the mass radiated by the pulse. However, the linearizeghe same expression as in Kath and Srjyit8]. Therefore
equation(17) has nonconstant coefficients and so Laplace

transforms are not really useful for its analysis. In the pre- .

ceding section, it was assumed thais small. For smally, 29K 20 90 2

the ngnconstant coefficient in thehfianearized equa('[bﬁriys = 8 (27°W=2k+797). (24
slowly varying, and so may be taken to be constant on the

fast scalez. Laplace transforms may then be used to solve thgyhen the mass loss term in E&3) is added to the approxi-
linearized Equatlorﬁ17) Denoting the Laplace transform of mate equation@)_(low of the previous section, the equa-
U(z,t) by U(s,t), it is found that tion for g is modified to
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dg_ 2 7 2 2.2 2 3k 1 1 .3
E_Eﬁ[l_(nw) 1= (o+ yQ°z°+ 59V +6yQzV)g a—?rex —GZ—§yQ z
Y9 r ex (r7'~|-l 0273
—gﬁ—Za(lJﬂ’)g, (29 ><d fz 37 g (289
_ .
dz Jo Va(t—17)
where -
3k -
r’=—27°w—2«k+/9%). (28b)
- 8
3k 1 1
a= 5= X —a’Z—§yQZZ3
r IV. RESULTS
rex;{ Uﬂ_}szTs) In this section, solutions of the a_pproximate equations
d [z 3 (27) of the present work and the equatiqiida and(14b) of

dr. (26) [9—11] will be compared with full numerical solutions of the

governing perturbed NLS equatiof2). The approximate
o . . ODE’s (27) and (148 and (14b) were solved numerically
In a similar manner, the momentum lost to shed dispersivgsing a fourth-order Runge-Kutta scheme. The integral in the
radiation can be added to the momentum integ#h). How- o, hression(26) for « was evaluated numerically using the
ever, it is found that the same momentum equatiéln) re-  ethod of Miksis and Ting20]. The perturbed NLS equa-
sults. The energy lost to shed dispersive radiation is of higheg, (2) was solved numerically using an extension of the
order than the lost mass and momentum, so can be negleCt%eudospectral method of Fornberg and Whitjadj. The
Hence the full set of equations governing pulse evolutiongytension involved calculating the derivatives using fast
with fiber loss and SFF's, including radiation loss, is Fourier transforms and propagating in theirection using a
fourth-order Runge-Kutta scheme, this propagation taking
) _,dv_ 8 7? place in Fourier space.
(2n°w+/g )E: - §y(Qz+ V)W’ (272 When the effect of amplification is added, the parameter
o in the perturbed NLS equatig®) is negative. In this case,
the approximate equatiori27), which include the effect of

“azloT Vmz o

i 77_2_2 4y radiation damping, possess a steady state. For gméltan
dz\ w K easily be found that this steady state is given by
U 30
=2(o+ yQ27%+ ‘yV2+2yQZV)(4774W—W) V=—Qz+—, (293
4yk?
24n*'w?— 147
-+ -7 1
Ty 5w ' 27 w=— (29b)

at first order, where the steady amplituge: « is the solu-

d .
M =—(o+ YQ2Z%+ W2+ 2yQzV) W tion of
/g 1-2(pw)? 613 4+2702 0 (30
/g 1-2(npw k°+30k*+ —=—=0.
. e L Al e 3 (279 7 16
2w W2 5w

It should be noted that in the steady stgte0. This steady
state equation fok is the same as that found 0,10]. For

dg_ 2 7 2 2,2 2
d—=3——2[1—(7;w) 1= (o+yQ°z°+5yV°+6yQzV)g 3
7z T W |O_|>Z 92/371/3 (31
_%%_za(lJr),)g' (270 Eq. (30) possesses two solutions, the smaller of which is
W

unstable and the larger of which is stable, again in agreement
with [9,10]. The inequality(31) determines the lower energy
dy bound on the existence of stable pulse propagation in the

E:V’ (279  presence of SFF’'s and amplificati®,10], as for

3
with |0.| <Z 92/3,),1/3 (32)
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Eq. (30) possesses no real solutions. 0.25 :
For a given value of the filter strength, a sufficiently Two Solitons
high value of the amplificatiofs| amplifies the dispersive ozl o ————

radiation to the point at which a second soliton can form.
This formation of a second soliton is obviously undesirable
in applications and was termed instability [irA,10]. How- 015

ever, this is not instability in the sense that the evolving o1 j One Soliton
pulse loses its coherence. The parameter values for whicha ;| | ]
second soliton will form were determined [A0] via the _____________________________________
perturbed inverse scattering solution of the perturbed NLS e
equation(2). In the present work equations for mass and %93 _— Cut off
energy will be used to determine when a second soliton will
form. From Eqgs(3c), (8b), and(27b) it can be seen that the 0 . : .
energy of the pulse is 0.5 05,1 015 02
7 4 FIG. 1. Number of stable pulses in the|-y plane as given by
E= W 277°W. (33 the approximate and full numerical solutions for the soliton bound-
ary conditiony=1, w=1, andV=1 for the filter sliding rate()
If there is no filtering and amplification, then an initial pulse =0.1. Boundaries from full numerical solution, —; boundaries

will evolve to a steady soliton for whicly=«k andw=1/x  from approximate equation®7), — — - —.
and whose energy iE=— «3. Hence an initial pulse can

evolve to a steady soliton only if its initial energy is nega- pjitude. In the preceding analysis for the generation of a
tive. If its initial energy is positive, then it will decay into gecong soliton, the effects of amplification and filtering have

dispersive radiation alone. The borderline case is then ag,q, ignored. However, the conditiopv>1.702 at some
|r;|:tj‘|al pulse mtht ?n(etrr(;q)Eb: Od' Flr_om the etr;]ergy Iexpress||_(t)nd oint in the evolution of the pulse for formation of a second
(33) we see that for this borderline case the pulse amplitudg o, il still be valid if it is assumed that, when there is

and width are related by sufficient mass and energy for a second pulse to form, it will

1 do so, and it will then evolve under the influence of ampli-
W= —. (34)  fication and filtering. Much the same assumption was made
V2 in [10] based on their perturbed inverse scattering solution.

However, the present analysis for predicting the formation of

Let us now consider a pulse of amplitugeand widthw second soliton can be extended to equations for which
which has just enough mass and energy to break up into tw§1 . i _ i q
dhere is no inverse scattering solution. The NLS equation

solitons. At the boundary between one and two soliton X ; . . . .
forming, the second soliton will have zero energy. Let usPossesses an inverse scattering solution. Using this solution,

take the final steady amplitude and width of the first soliton[8] Showed that, for a boundary condition of the foum
to be 7=« andw=1/x. Then = g secht, a second soliton will form for the NLS equation
when »>1.5, which is in good agreement with the valye
>1.702 found from the present mass and energy argument.
The approximate equatiorf27) can now be used to de-
termine when a second soliton will form during the evolution
since the second soliton has zero energy. From 8gsand  of an initial pulse. The combinatiopw is calculated as the
(8d) it can be seen that the total mass of the two solitons ispulse evolves and a second soliton is said to form when
Ch o nw>1.702. Figure 1 shows a comparison in v plane
M=277w=127+ 2« (36 of the boundaries between the regions of oertnd two soli-
on equating the pulse mass to the mass of the final steadpns as given by the approximate and full numerical solu-
soliton with amplitudex plus the mass of a pulse with zero tions. Also shown in this figure is a similar comparison for
energy, for which the amplitude-width relatiéd4) holds. In  the region(32) for no stable pulse. It can be seen that there is
making this division of the mass and energy, it has beexcellent agreement for the region of no stable pulse, as was
assumed that in the borderline case no mass and energy @80 found in[10]. The agreement between the numerical
taken away by dispersive radiation. On solving forfrom and approximate solutions for the region of two solitons is
the energy conservation res(®5) and then substituting into  900d in view of the approximations made to derive the ap-

772
E=W—2774w=—,<3, (35)

the mass relatiofi36), it is found that proximate boundaryyw=1.702. It can further be seen that
the agreement for the region of two solitons decreaseg as

6 ! 4 , 1 increases. This is to be expected as the analysis of Sec. Il for

(7wW)°= 5 (gw)"+ 7 (7w)* =5 =0, (37 calculation of the effect of the shed dispersive radiation was

based upon assuming thais small. The overall comparison
so thatyw=1.702. Therefore foryw>1.702 an initial pulse for the region of two solitons is similar to that obtained by
will break up into two solitons, both of nontrivial final am- Burtsev and Kaup10].
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4

tion (2), by the present approximate equatio®y), both
with and without radiation damping, and by the solution of
the approximate equationd4a and (14b) of [9,10] for a
case of stable pulse propagation for which the inequédity
holds. It can be seen that the numerical amplitude shows an
oscillation which is also present in the solution of the present
approximate equatior(®7) with radiation loss, and that there
is excellent agreement between these two solutions. The
main difference between the numerical and approximate so-
lutions is a phase difference, which is expected as equations
for the phase are of higher order than the modulation equa-
tions (27) [22,23. It can be further seen that the solution of
the modulation equationd4g and (14b) of [9,10] does not
oscillate and in fact gives the mean of the numerical oscilla-
tions. This is because their perturbation solutid@3) has
35 - - - - - - - fixed the widthw of the pulse to be the inverse amplitude
(b) 1/7, so that the pulse cannot undergo the amplitude-width
oscillations exhibited by the numerical and present approxi-
mate solutions. The final observation to be made about Fig.
i 2(a) is that, if the radiation damping in the approximate
25r 1 equationg27) is neglectedi.e., «=0), the approximate so-
a lution exhibits amplitude-width-shelf oscillations that do not
ol A | settle to a steady state, as noted in the previous paragraph.
i The addition of loss due to dispersive radiation allows leak-
j age from the shelf under the pulse so that the pulse can settle
151 1 to a steady state. It can therefore be concluded that allowing

,,"' the pulse amplitude and width to vary independently and the

1 . . . . . . . inclusion of radiative loss result in better agreement with the
¢ 10 20 3 4 s 6 70 & full numerical solution. Neither of these effects was included
z in the perturbation solutions ¢©,10].

FIG. 2. Comparison between approximate and numerical solu- Figure 2b) shows the evolution of the pulse amplitude as
tions for soliton boundary condition witp=1, w=1, andv=0  given by the full numerical solution and by the present ap-
with parameter value€2=0.1, y=0.03, ando=—0.1. (8 Full  Proximate equations for the same parameter values as in Fig.
numerical solution, —; solution of approximate equatié2® with ~ 2(a) for a larger range of. It can be seen that the numerical

radiation,— — — —; solution of approximate equatiorf@7) without ~ amplitude shows long term oscillations which are mirrored
radiation, - - - ; solution of approximate equatiori$4d and (14b), by the approximate solution. The approximate solution
.—-—. (b)Full numerical solution, —; solution of approximate shows excellent agreement with the numerical solution in
equationg27) with radiation,— — — —. terms of both the final steady amplitude and the value af

which the oscillations have essentially died out.

If the effect of the dispersive radiation shed as the pulse Let us now consider the evolution of a pulse in the ab-
evolves were neglected, so that 0, then the approximate sence of amplification. Figure(& shows a comparison be-
equations(27) would not possess a steady state and theréween the solutions of the present approximate equations
would be a persistent oscillation in, w, andg about the (27), the approximate equatiori$4ag and (14b) of [9-11],
state given by Eq(30). As the amplitude and width of the and the full numerical solution of the perturbed NLS equa-
pulse oscillate, dispersion radiation is generated in the shetfon (2). The present approximate equations were solved both
under the pulse, which is then amplified and filtered. Thewith and without the effect of shed dispersive radiation. The
steady oscillations in the absence of damping then represepairameter values used were the same as those of Malomed
a balance between the amplitude and width oscillations andnd Tasgal[11], (2=0.1, y=0.09, and 0=0.046. The
this radiation in the shelf. The inclusion of the effect of the boundary pulse was taken as a NLS soliton wits 1 and
dispersive radiation shed as the pulse evolves is vital in ordev=1 and the initial velocity wa¥ =0. As can be seen from
to drive the system to a steady state. This shed radiatiothe figure, the solution of the present approximate equations
leaks away from the shelf and allows the system to settle t@s closer to the numerical solution than the solution of the
a steady state. In this regard, Mamyshev and Mollengller approximate equations ¢9—11], especially for largeez. It
noted that full numerical solutions of the perturbed NLScan also be seen that for the NLS soliton boundary condition
equation(2) show oscillations in the pulse amplitude, which the shed dispersive radiation makes little difference to the
they attributed to the generation of radiation by the slidingevolution of the pulse. This is because the nonzero toss
and filtering. quickly damps the dispersive radiation so that it has essen-

Figure 2a) shows the evolution of the pulse amplitude astially no effect on the evolution of the pulse. Indeed, the
given by the full numerical solution of the governing equa-approximate solution is slightly closer to the full numerical
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FIG. 4. The product of amplitude and wid#w as given by the
approximate equation®7) with radiation for soliton boundary con-
dition with =1, w=1, andV=0 and parameter valug€3=0.1,
y=0.09, ando=0.046.

proximate velocity due to the nonzero fiber lasslamping
the dispersive radiation.

As radiation loss makes little difference for NLS soliton
boundary conditions, it cannot explain the difference be-
tween the solution of the approximate equati¢2id and the
equationg14a and(14b) of [9—-11]. Therefore the only ex-
planation for the difference must be in the trial functions
used. The trial function used i®—11], Eq. (13), does not
allow the pulse amplitude and width to vary independently.
Rather, they are restricted to be inversely proportional, as in
a NLS soliton. Figure 4 shows the product of amplitude and
width »w as given by the solution of the approximate equa-

FIG. 3. Comparison between approximate and numerical solutions (27) with radiation for the same parameter values as in
tions for soliton boundary condition witp=1, w=1, andV=0

with parameter value$§)=0.1, y=0.09, ando=0.046. Full nu-

merical solution, —; solution of approximate equatid23) with
radiation,— — — —; solution of approximate equatiorig7) without
radiation, - - - ; solution of approximate equatiori$4a and (14b):

-—-—. (a) Amplitude 7 as a function of distance (b) Velocity V

as a function of distance

Fig. 2. Notice that the amplitude and width are clearly not
inversely proportional, in contrast to the assumption made in
[9—11]. The trial function used in the present work, E@),
allows for independently varying pulse amplitude and width.
As found previously in the case of amplification, this added
degree of freedom results in better agreement with full nu-
merical solutions.
Let us now examine the evolution of a non-NLS soliton

solution when the effect of the shed dispersive radiation idoundary condition. As large loss and filter strength act as
neglected. This counterintuitive result is due to the errordamping, killing off most dynamic, evolutionary behavior,
made in the derivation in Sec. IIl of the effect on the pulse ofwe shall take small values fer and y. Figure §a) shows a
the dispersive radiation and again implies that the dispersiveomparison between the pulse amplitugeas given by the
radiation can be neglected for nonzero fiber lossef®r a

soliton boundary condition.

present approximate equatiof7), both with and without
radiation damping, and by the full numerical solution of the

Figure 3b) shows a comparison between the pulse velocperturbed NLS equatiof2). The boundary condition is a
ity as given by the approximate and numerical solutions fomon-NLS soliton pulse withy=1.25 andw=1. The initial

the same parameter values as in Fig).3This velocity com-

velocity was taken a¥=0.1 and the parameter values

parison shows a marked difference between the approximate0, y=0.01, and()=0.1 were chosen. The pulse is there-

solution of the present work and that [@#-11]. It can be

fore propagating into a lossless fiber with a SFF, so that

seen that the velocity as given by the approximate equationdispersive loss is expected to have an effect on the pulse
of [9-11] approaches a steady value, while the velocity asvolution. No comparison was made with the solution of
given by the present approximate equations continues to dé&=qgs. (143 and (14b as these approximate equations are
crease ag increases, in agreement with the full numericalvalid only for a NLS soliton boundary condition. It can be
solution. In addition, the velocity as given by the approxi- seen from the amplitude comparison shown in Fig) shat
mate equation§27) is in good agreement with the numerical incorporating radiation loss gives an approximate amplitude
velocity. As for the amplitude comparison of Figa the
inclusion of shed radiation makes little difference to the ap+adiation loss acts as a damping, without which the pulse

in better agreement with the full numerical amplitude. The
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01 _ . ' ' . FIG. 6. Comparison between approximate and numerical solu-
tions for the pulse amplitude for the nonsoliton boundary condi-
0051 (b) tion with »=1.25, w=1, andV=0.1 with parameter value€
ol ™ i =0.1, y=0.03, andor=0.005. Full numerical solution, —; solution
of approximate equation®7) with radiation,— — — —; solution of
-0.05F 1 approximate equation®7) without radiation,- - - .
y 01 i
sl largez. As for the amplitude oscillations of Fig(&, there is
' N again a phase and period difference between the numerical
0.2 N T and approximate velocity oscillations.
el Using the same parameters values as Malomed and Tasgal
[11], Fig. 6 shows a comparison between the pulse amplitude
03 7 as given by the solution of the present approximate equa-
035 . g g i tions (27), both with and without radiation loss, and the full
° °, " 20 Z numerical solution for the non-NLS soliton boundary condi-

tion with »=1.25,w=1, andV=0.1. The parameters used
FIG. 5. Comparison between approximate and numerical soluwere()=0.1, y=0.03, ando=0.005[11]. As for the com-
tions for nonsoliton boundary condition with=1.25,w=1, and  parison shown in Fig. 3, adding radiation loss causes little
V=0.1 with parameter value® =0.1, y=0.01, ando=0.0. Full  change in the agreement with the full numerical solution.
numerical solution, —; solution of approximate equatié®® with  This is again due to the damping of the radiation by the fiber
radiation, — — — —; solution of approximate equatiorig7) without  |oss (¢#0). It can also be seen that radiation loss overesti-
radiat?on, e (@ Amplitude_n as a function of distance. (b) mates the amplitude damping near the boundas®. This
Velocity V as a function of distance is not surprising as the radiation loss was derived for large

amplitude is overestimated at every oscillation. However, it?€havior[13]. Without radiation loss, the amplitude oscilla-
can be seen that the amplitude of the oscillations of the agion has too large an amplitude nez 0.
proximate solution is decaying slightly faster than that of the
numerigal solution, S0 that 'the radiation damping has begn V. CONCLUSIONS
overestimated. There is again a phase difference and a period
difference between the approximate and numerical amplitude The evolutionary behavior of pulses in nonlinear optical
oscillations which is due to the assumption that the shelfibers including fiber loss, amplification, and SFF's has been
forms instantaneously. The phase of the amplitude oscillaexamined. As exact solutions of the governing perturbed
tion is a higher order effect, and, while methods exist toNLS equation(2) do not exist, approximate methods were
determine equations for this phd®,23], these methods do used to analyze the pulse evolution. The approximate method
not determine the initial phase, which is of importance hereof [13] was extended and approximate evolution equations
In this regard, it should be noted that the amplitude of thefor the pulse were derived using conservation and moment
pulse oscillation is in good agreement with the numericalequations. Major benefits of this method are that it allows the
amplitude. amplitude and width of the pulse to evolve independently
Figure 3b) shows the velocity of the pulse as given by and that it incorporates the effect of the dispersive radiation
the solution of the approximate equatid23), both with and  shed as the pulse evolves. Excellent agreement was found
without radiation damping, and by the full numerical solu- between solutions of these approximate equations and full
tion of the perturbed NLS equatiof2). The boundary and numerical solutions of the governing perturbed NLS equa-
parameter values are as for Figap It can be seen that the tion (2). Based on a mass and energy argument, a condition
inclusion of radiative loss is necessary in order to obtainwas also found for an evolving pulse to split into two pulses.
good agreement with the numerical solution, particularly forGood agreement was found between this condition and full
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numerical solutions of the governing perturbed NLS equaindependent amplitude and width oscillations of the pulse
tion (2). Furthermore, comparisons were made with solutionsand (ii) the present method includes the dispersive radiation
obtained from the perturbation equations[6f11]. It was  shed by the pulse as it evolves. The perturbation equations of
found that the present approximate equations give bettd®—11] do not include these effects. Finally, it was concluded
agreement with full numerical solutions and that the previoughat in the absence of amplification and when fiber loss is
perturbation equations miss important features of the pulspresent, the damping effect of shed dispersive radiation is
evolution. This is becausg) the present method allows for negligible due to the damping of this radiation.
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