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The complex Ginzburg-Landau equati@®@GLE) is a standard model for pulse generation in mode-locked
lasers with fast saturable absorbers. We have found complicated pulsating behavior of solitons of the CGLE
and regions of their existence in the five-dimensional parameter space. We have found zero-velocity, moving
and exploding pulsating localized structures, period doub{fPD) of pulsations and the sequence of PD
bifurcations. We have also found chaotic pulsating solitons. We have plotted regions of parameters of the
CGLE where pulsating solutions exist. We also demonstrate the coexistenaad multistability of different
types of pulsating solutions in certain regions of the parameter space of the CGLE.
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[. INTRODUCTION have been described using various approaches including re-
cursion relationg 7], infinite-dimensional map with nonlin-
Passive mode locking allows the generation of self-ear Schrdinger equationNLSE) [10], rate equation$15],
shaped ultrashort pulses in a laser system. It was realized Ingistic map[16], equations for nonlinear polarization mix-
a number of works that the pulses generated by mode-lockedg [17], free-electron laser equatioh8], and other meth-
fiber lasers were solitofd—4]. Apart from this very impor- ods. Period-doubling bifurcations have been attributed to the
tant application, the mode-locked laser is a nonlinear systenpresence of ion pairs in the highly doped erbium fifEg].
which can have a very rich dynamics that includes not onlyLater, it was realized that the presence of saturable absorbers
the generation of a periodic train of well-shaped pulses buin general form can be responsible for this behavior. Disper-
also much more complicated behaviors. In fact, the generasion has also been found to be important in the period-
tion of stable pulses is possible in a very narrow range of theoubling phenomenofi0]. Although it was well known that
laser parameters and requires their careful adjustment. Mothe mode-locked laser operation can be described, in some
generally, the pulses change their shape from one round trigpproximations, using the complex Ginzburg-Landau equa-
to another and have complicated dynamics in time. Theyion (CGLE) [20—23, period doubling and route to chaos
might have periodic behavior in a time scale larger than thénave not been studied yet theoretically using this approach.
round-trip time. As a particular result, the laser might have In the present paper we study pulsating soliton solutions
period-doubling, tripling, etc. behavior as well as oscillationsof the CGLE, which by themselves constitute a surprising
of the pulse shape with periods that are not necessarily conphenomenon. We recall that Hamiltonian systems do not
mensurate with the round trip time. If there are several perihave pulsating soliton solutions. Even if excited initially,
ods involved in this dynamics, then the pulse-shape evolupulsating solitons are subjected to restructuring and evolve to
tion in time might seem chaotic. This general dynamics andtationary soliton$24]. An exception from this rule are the
the particular effect of trapping into the regime of stableintegrable models where pulsating structures are nonlinear
pulse generation is the phenomenon that deserves a detailsdperpositions of fundamental solitof%5]. Dissipative sys-
theoretical and numerical investigation from various pointstems, in contrast to Hamiltonian ones, admit pulsating soli-
of view. tons. Interestingly enough, they do not appear from the inte-
Period doubling bifurcations and chaotic behavior of non-grable limit and hence do not have anything in common with
linear systems have been long discussed subjects in the lithe nonlinear superposition of fundamental solitons of the
erature. In optics, period-doubling bifurcations have beerNLSE [25]. The parameters of the CGLE have to be far
found experimentally in various laser systems. These includenough from the NLSE limit in order to obtain pulsating
semiconductor lasel$], femtosecond solid-state las¢f, solitons. One example of a pulsating soliton of the cubic-
F-center laserg7,8], fiber lasers[9,10], nonlinear cavities quintic CGLE has been presented previously by Deissler and
[11,12, and gaseous lasdrk3]. Period doubling in time of a Brand[26]. This is the only example we are aware of and it
train of pulses has been observed in mode-locked |46efs  has been found in the normal dispersion regime, where soli-
and nonlinear fiber ring resonatdrs0]. Originally, period-  tons do not exist in the integrable limit. In fact, as we shall
doubling phenomenon was numerically found for the simpleshow below, this is not the only case where pulsating solu-
case of a logistic mapl4]. However, period doubling has tions exist. They do exist in the anomalous dispersion region
not been particularly related to solitons. and, moreover, the variety of these solutions and their region
In previous works, period-doubling bifurcations in lasersof existence is huge. In either case, pulsating solutions can-
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not be found by extrapolating from those in the integrablebetween the periodicity in the system and pulsations in time
limit. might arise. However, in this paper we are interested in the
The study of pulsating solutions would not be completeoccurrence of pulsations in a continuous model and their
without the cases when the periodicity of pulsations becomegvolution for a given set of CGLE parameters. The effect of
not perfect. The pulse behavior in time can be more complidiscreteness can be taken into account in specific applica-
cated and even chaotic at certain values of the parameterd0ns. At present, our main aim is to investigate the results
The system can enter into a chaotic regime in various wayBredicted by the powerful CGLE continuous model rather
including the classical one through period-doubling bifurca-than to look for the origin of possible complications.
tions. In our opinion, the most interesting phenomenon is | N€ rest of the paper is organized as follows. In Sec. Il we
that stationary stable solitons can coexist with the chaoti®€Sent the Master equation which we are solving. Section I
regime of soliton propagation. Which solution is excited de-Presents the numerical scheme used in the simulations. Sec-

pends to a great extent on the initial conditions. Clearly,tion IV shows a variety of examples of pulsating solitons of

chaotic and regular solutions are well separated in the fundh® CGLE, including some highly unusual pulsations like
tional space so that they do not transform to each other ur£XPloding and creeping solitons. The sequence of period
less we disturb the solution with a finite perturbation ordoubling bifurcations of the pulsating solitons and other
change the parameters of the system to the extent that one §Utes to chaotic pulsations is discussed in Sec. V. The pos-
the solutions becomes unstable. It is not surprising that twaiPility of coexistence of various solitons including pulsating

stable solutions can coexist. However, the coexistence did chaotic ones is described in Sec. VI. The regions of
chaotic and regular solution rarely happens. existence of various pulsating and chaotic solutions in the

In addition to presenting new classes of pulsating solitonsP@rameter space of the CGLE are given in Sec. VII. The

we describe the period-doubling phenomenon using th&esults are discussed in Sec. VIl and finally Sec. IX summa-
CGLE. This description fills the gap in theory that existed'12€S OUr main conclusions.

before and shows that the phenomenon falls into the general

class of chaotic behavior and routes to chaos. Moreover, we Il. CGLE EQUATION

show that new pulsating solitons can coexist both with cha- - e quintic complex Ginzburg-Landau equation has been
otic solutions qnd V.V!th stationary pulseg, Ieaq!ng to the p.heUsed to describe a variety of physical phenomena. In optics it
nomenon of bistability. This complex bistability of chaotic is often used to model several types of passively mode-
solutions with regular ones might cause a peculiar behawolrocked lasers with fast saturable absorlj@®-23, paramet-

of ultrashort pulse lasers. ric oscillators[27], and transverse soliton effects in wide

It was a long standing controversial question how a IaseElperture lasers28—-33. In spite of the fact that lumped ef-
system enters into chaotic regime. The transition may happ cts are present in any laser, in many cases its operation is

3brub;?.tly abns not _necesosarilyfthrough_the sequence offp?]rio vell described as a distributed system. In this context the
oubling bifurcationd10]. In fact, various scenarios of the quintic CGLE has the following forni34]:

route to chaos have been observed. Our approach gives the

answer to this question too. We study regions of chaotic D

behavior in the five-dimensional parameter space of the i,+ E‘/’tt+|‘//|2‘/’+ vl y=iy+ielpl?ytiByy

CGLE whose borders form a four-dimensional surface of

complicated shape. The transition to chaos from the region +iu|g|*y, (h)

of regular behavior depends very much on where this surface

is crossed. Our simulations show explicitly that the route towhere z is the cavity round-trip numbet, is the retarded

chaos can be either through the sequence of period-doublirfne, ¢ is the normalized envelope of the fielB, is the

bifurcations or we can have an abrupt transition. Moreovergroup velocity dispersion coefficient wih= + 1 depending

our study shows that the borders are not necessarily shagn whether the group-velocity dispersion is anomalous or

and around them some regions of bistability can exist. normal, respectively$ is the linear gain-loss coefficient,
Our continuous model takes into account the major physit B¢, accounts for spectral filtering or linear parabolic gain

cal effects occurring in a laser cavity such as dispersion(s>0), €| )%y represents the nonlinear gaiwhich arises,

self-phase modulation, spectral filtering, and gain/ldesth  e.g., from saturable absorptiorihe term withu represents,

linear and nonlinear A delicate balance between them gives if negative, the saturation of the nonlinear gain, the term with

rise to the majority of the effects observed experimentally.v corresponds, also if negative, to the saturation of the non-

We observe even period-3, period-5, and period-6 solutioninear refractive index.

in our model. Note that period 6 pulse generation has been We have to note that the variety of localized pulsating

observed recently in a nonlinear fiber ring resonator by Coesolutions found here results from the properties of the cubic-

et al.[10]. quintic CGLE. The higher-order nonlinear terms are impor-
We should keep in mind that in principle there will be tant for the system to have pulsating solutions as well as

differences between the results in our model and in real sygaeriod-doubling bifurcations. We have not observed these

tems because of the finite round-trip time which every lasephenomena in the cubic CGLE. A system has to have a cer-

system has. In the case of the CGLE model the period ofain minimum complexity in its nonlinear properties in order

pulsations can vary continuously rather than in discrete step$o havelocalized robustpulsating solutions. The nonlinear

Moreover, complicated phenomena related to the interplayerms in the case of the cubic CGLE are much simpler and,
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as a result, the cubic CGLE in tH&+1) D case does not B=0.08, u=-0.1,v=-0.1
have such solutions. We recall, in this respect, that even b=-0.1, ¢ =0.66
stationary solitons of the cubic CGLE, in general, are not

stable[34], and, quintic terms are essential for stable solitons

to appeaf22].

14

4

I1l. NUMERICAL SCHEME —
We have solved Eq1) using a split-step Fourier method 5 ) /
for different initial conditions and for a great variety of val- I

[y (z,0)

ues of the equation parameters in the anomalous dispersion
regime, i.e., foD = +1. In general, we fix all the parameters 0 o
except one of theniin most of the cases, which stands for -10 0
cubic gain when positiveand study the behavior of the so- !
lution as this parameter changes. We then change slightly FIG. 1. Plain pulsating soliton of the CGLE. The parameters are
another parameterv(generally and repeat the above pro- D=+1, €=0.66, §=—0.1, 8=0.08, u=—-0.1, andv=—0.1.
cess. Only one period is shown.

The numerical simulations have been carried out using a
split-step technique, with various step sizes down to 0.000%irection (the propagation directionand they are actually
along thez direction, with up to 16 384 points along tiie pulsating. We should say that there can be a great variety of
direction, to ensure that the results contain no numerical afpulsating structures.
tifacts. The results were also checked using independent The solutions we are presenting here have distinctive fea-
codes on various computers. The pulsating or chaotic natungres, and this allows us to classify them as “plain pulsat-
of the solutions is an inherent property of these solitons for ang,” “erupting,” or “exploding” solitons and “creeping”
given range of parameters, and is not a consequence of thglitons. We have studied their main characteristics and in-
discretization. We should also stress that the effect is nojestigated in detail the region in the parameter space where
related to the homoclinic instabilities occurring in integrablethey exist. None of them can be found in analytic form, as it
[35] or Hamiltonian systems, as our equation is dissipative.happens for the vast majority of tiséablestationary solitons

A big variety of localized solutions can be observed.of the cubic-quintic CGLE34]. Besides, pulsating solutions
Among them there are stable stationary pulésslitons  are generic in the sense that they occupy appreciable regions
[36], pulses of more complicated sha@®mposite solitons  of the five-dimensional parameter space. In addition, they
[37], and moving soliton$34]. The topic of the research in can be excited from a wide range of initial conditions. Even-
this paper is the pulses that are globally stable as localizeglially, and usually very quickly, each of them will converge
structures but continuously change their shape. The varietyy that pulsating soliton that exists for the given set of the
of these solutions can be even larger than that of stationaryquation parameters. An exception to this rule occurs when
solitons. In this paper we concentrate mainly on breatherlikéwo or more solutions exist for the same set of parameters.
or pulsating solutions. In terms of the experiment this meangvhen broad(but still localized initial conditions are used,
that the laser pulse changes its amplitude, width, and energseveral pulsating solitons can be excited simultaneously.
in each successive round trip and this process is periodic in
time. Periodicity does not necessarily have to be commensu-
rate to the round-trip time. It is defined by the macroscopic
physical parameters of the system and the only requirement An example of a pulsating soliton found numerically is
is that it has to be larger than the round-trip time in order forshown in Fig. 1. It shows perfectly periodic behavior with
the effects we have found to be observable. the period inz being around 14. It has a different shape at
eachz, since it evolves, but it recovers its exact initial shape
after a period. In this sense, we can call this type a “plain”
pulsating soliton. Pulsating solutions have been found earlier

In our previous worf36—38 we concentrated on station- by Deissler and Branf26]. However, our new solutions do
ary soliton solutions of the CGLE and in the regions of pa-not belong to the class found in R¢26]. First, the disper-
rameters where they exist. However, these are not the onlgion parameteD in Ref.[26] has the opposite sign, so that
possible type of solitons. Pulsating solitons are another exthe region of parameters where they exist is different. When
ample of localized structures. These are solutions whose prehangingD continuously, pulsating solitons cease to exist at
file evolves inz They arise naturally from stationary ones D=0 so that there is not a continuous transformation of one
when the latter become unstable. So far, we discovered seinto the other. Secondly, the profile of the periodic solutions
eral new types of cubic-quintic CGLE “robust” pulsating in Ref. [26] changes only in the soliton tails whereas our
soliton solutions with complicated behavior. They exist inpulsating soliton changes its shape quite appreciably. As a
isolated regions of the parameter space, a fact that facilitatgesult, the value of energy in R¢R6] stays almost constant,
their identification as different solutions. All these solutionswhile in the case of the solution shown in Fig. 1, the energy,
have two common features—they repeat periodically inthe Q= /. |#|2dt, changes from about 10 to 45. When we

A. Purely periodic pulsating soliton

IV. PULSATING SOLITONS

056602-3



N. AKHMEDIEV, J. M. SOTO-CRESPO, AND G. TOWN PHYSICAL REVIEW B3 056602

0.75 T T

20 0.65 H/|

0.55

0.45 L L
1.5 2.5 3.5 4.5

lw(z,t)]

15

FIG. 3. The spectral width versus the temporal width for an
erupting solitons during ten successive cycles. The parameters are
FIG. 2. Two periods of the evolution of an exploding soliton. the same as in Fig. 2.
The parameters are=1.0, 6=—0.1, 3=0.125, x=-0.1, and

= —0.6 itself and that each explosion is unique. Hence, the quiet

stage of the soliton is an attractor, but is an unstable one. The

length of each “period” also varies slightly, as it should for
change the parameters of the equation, the solution remaing, attractor. The position of the pulse shifts slightlyt after
pulsating in a finite region. As we mentioned above this reeach explosion and consequently the average position roams.

gion does not extend to the region with negative As seen from Figure 3, the produoto is around 1.
This is in more than 10 times greater than the same product
B. Exploding solitons for bandwidth-limited pulses, which is 1#=0.08. This

Another class of pulsating solitons can be called “eprd_shows that the soliton is highly chirped and literally “tries”

ing” or “erupting” [40] solitons. “Exploding” soliton evo- to split apart during the quiet regime_ of evolution. It is re-
lution (see Fig. 2 starts from a stationary localized solution markable that the spectrum of the solitons becomes narrower

that has a perfect soliton shape. After a while, its “slopes”during the burstfrom o¢~0.64 down too~0.51). How-
become covered with small rippléa form of a small scale €Ver, the produdigor increases during the explosion due to
instability) that seem to move downwards along the twothe chaotic structure of the solution in time. This product
slopes of the soliton, and very soon the pulse is covered witFetUns to its previous value when a new soliton emerges
this seemingly chaotic structure. When the ripples increase iffom the fragments of the burst. The growth rate of instabil-
size, the soliton cracks into pieces, like a mountain after &Y iS actually complex and is equal to 6:86.7 for this
strong volcanic eruption or after an earthquake. This can alsBarticular case. The imaginary part of the growth rate eigen-
look like an explosion. This completely chaotic, but well- value is responsible for the radiative structure around the
localized, structure then is filled with “lava,” which restores Soliton. The total energy in the solito®, also pulsates and
the perfect soliton shape after a “cooling” process. The pro/ncreases durlng the _burst by almost a factor of 5 from its
cess repeats forever, although the distance between “exply@lué in the quiet regimeQq=22) up toQ=100. .
sions” fluctuates, and in each of them the pulse splits into Clearly, the exploding soliton is an example of a chaotic
different pieces. solution. The solution might enter this regime directly from
Needless to say, these solutions cannot be found in an&urely periodic pulsating solutions when we change the pa-
lytic form. However, they are as common as stationary soluf@meters of the system. On the other hand, there are also
tions and exist for a wide range of parameters. The procesghaotic solutions that always have a smooth transverse pro-
never repeats itself exactly in successive “periods.” How-file but it never repeats in evolution. This latter case can be

ever, it always returns to the same shape. In this sense, tigached from the pulsating solutions through period-
orbit that corresponds to this solution in each period is hodoubling bifurcations. However, this happens in other areas

moclinic. of the system parameters.
Figure 3 shows the spectral widthy=\(f2)—(f)? _ _
where f is the frequency, versus the temporal widify C. Creeping soliton

=(t9)—(t)* of the “exploding” soliton during several One more example of the class of pulsating solutions is
successive “periods” of explosion. Hergt") stands for the “creeping” soliton, which is shown in Fig. 4. It is a
J7.t"¢]2dt/Q, and the same applies férin the spectral rectangular pulse with two fronts and a sitdue to energy
domain. Although each part of the total trajectory starts andosg at the top. The two fronts pulsate back and forth rela-
ends at the same point, which corresponds to the solution itive to the sink asymmetrically at the two sides. As a result
the quiet part of the evolution, where it changes onlyof this asymmetry, the position of the center-of-mass of the
slightly, they are all different during the “exploding” stage whole soliton shifts after each pulsation. The accumulated
of the evolution. This shows that the evolution never repeatshifts result in the soliton motion with a constant velocity.
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FIG. 4. Creeping soliton of the quintic CGLE. The parameters
are D=+1, =13, 6=-0.1, B=0.101, u=-0.3, and v=
—0.101.

This pulse coexists with the zero velocity soliton with two
fronts, which are symmetrically pulsating at both sides. The
shape of the creeping soliton resembles the shape of the com-
posite solitor{ 34]. All pulsating solutions exist at the bound-
aries between solitons and frorj&l]. However, the region
for “creeping” solitons is isolated from the region of “ex-
ploding” solitons. Therefore, each can be classified as a
separate type of pulsating soliton.

We are confident that there might be more types of pul-
sating structures of the cubic-quintic CGLE. Their classifica-
tion might comprise a topic of a special research. Pulsating
solutions might have several frequencies in their motion and
these solutions are quasiperiodic. A relatively simple case
would be when the system has two frequencies. An explicit
example is a moving pulsating solution, which instead of
having a constant velocity moves forth and back around a
fixed point. This solution is illustrated in Fig. 5. Obviously,
there are tWO. frequencies involved in this motion V.VhiCh’ in. FIG. 6. Pulsating solitons of the CGLE. The two lower plots
general_, are lncommensurate. The more fr_equenCIeS are IQl’low(b) period doubling andc) period quadrupling of pulsations
volved into evolution, the more complicated is the dynamics;, 4 ; direction when parameter changes. The parameters e
However, at this stage, we cannot predict how many frequen= 1 s=_0.1, 3=0.08, u=—0.1, andv=—0.07, and(a) e
cies would be involved in any particular case. Rather we can-g 75 (b) ¢=0.785, and(c) e=0.793.
simulate solutions numerically and change the parameters

Coggg\?vusxetocziievx?;:'r:)dn Ogr;::;rt}gﬁz vt\;(ztSVa;ne:a\\//;iou ized structures that pulsate chaotically. The spectrum of the
' ) . " ?ongitudinal evolution for the chaotic motion is, clearly con-
types of pulsating solitons as well as on transition to Iocal'tinuous rather than discrete. There might be various sce-
narios of transition from discrete spectrum to a continuous
8=-0.1  p=0.08, u=-0.11, v=-0.08 one and one of them is the sequence of period-doubling bi-

£€=0.835 furcations.

V. PERIOD DOUBLING

i
th

[ 1 A pulsating solution, which can bifurcate to double peri-

1 odic pulsation, is shown in Fig.(8). The solution is strictly
periodic when the pulse shape is repeated in each period of
pulsation. We say it has double periodicity when the shape
repeats itself after two pulsations. The transition from the
former to the latter happens as period-doubling bifurcation
when one of the parameters of the equation is changed. Fig-
ure Gb) illustrates this process. Period quadrupling is ob-
served when parameteris increased as shown in Fig(dj.

This route to chaos has the usual Feigenbaum type conver-

FIG. 5. Evolution of a moving periodic pulsatingreeping gence with the differences in bifurcation poirgg,;— e,
pulses. The parameters in this case &re+1, §=—0.1, 8 converging geometricallf14] so that transition to chaos
=0.08, u=—0.11, v=—0.08, ande= 0.835. happens at finite., .

1
2000
¥4

[w(z,0)]
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45 e T LI tored each successive maximum in Qeversusz function
i e=0.75 (a) for a certainz interval, typically set to 500. To minimize the
30 | initial transient the solution obtained for a certains taken
o : as an initial condition for finding the corresponding solution
151 ] for the next value ofe. Usually we started with the lowest
] value of € in an interval of interest and monotonically in-
ol ' . . ' crease it. When we observed an abrupt transition, we also

moved backwards to see if any hysteretic behavior takes
place.
In the following series of figures these maxima@¢z)
are given as functions of, while the rest of the equation
parameters are fixed. For strictly periodic pulsating solutions
this technique gives a single point in the plot for each value
of e. Bifurcation into double periodic pulsating solution
gives two points in the plot. Period quadrupling bifurcation
produces four points and so on. Chaotic solution generates a
continuous vertical line. Sometimes two points indicate the
existence of two different solutions instead of double period
solutions. This case will be made clearly distinguishable in
each figure.
To make sure that our simple technique adequately de-
] scribes the phenomenon, we constructed also a two dimen-
0 et e — sional Poincaremaps. Namely, we do also monitor some
0 20 40 60 80 100 other solution characteristics such as the peak amplitude or
z the pulse width. These plots are not shown here but using the
FIG. 7. EnergyQ, versus for the solutions whose pulse profiles more complicated technique we observed the same features
are shown in Fig. 6. The two lower plots show cleafty period  of periodic or chaotic solutions as that deduced from moni-
doubling and(c) period quadrupling. toring Q only. In this way we were able to check that we
were not missing some periodic or chaotic solutions that
Above the threshold value af the pulse shape does not could nevertheless keep constant energy.
repeat itself in each pulsation and the behavior is chaotic. We The plot in Fig. 8a) is obtained using the above tech-
stress that we are dealing with a single pulse but the shape ofque. It shows the peak value @f for each oscillation of
this pulse can change in an unpredictable way. This is difthe pulsating solutions versus the parameteXote that sta-
ferent from the chaotic solutions to the CGLE in a transversdionary solitons can also be plotted in this figure. These so-
field profile when several pulses or other solutions can existutions do not oscillate and the value @f which is constant,
simultaneously and interact chaoticall2]. is simultaneously the peak value @ The curve denoted
To illustrate the pulsating behavior of the pulses in moresoliton pulses(SP corresponds to such stationary pulses.
detail we calculated the pulse energy, which also changes ihhe curve above it corresponds to the pulsating solutions.
z along with the pulse shape. Figure 7 shows the en@gy The fact that it is a single curve shows that pulsations are
of the pulse versusg for the same solutions as in Fig. 6. As strictly periodic and have a unique period of oscillations. The
we can see, the pulse energy oscillates for period-1 pulsatinfiyst branching point at approximateb=0.786 corresponds
solutions with a large amplitude, which shows that this is noto period-doubling bifurcation. The second branching point
a weak effect. The oscillations become more complicatedt approximatelye=0.8 corresponds to period quadrupling
when period doublingb) and period quadruplingc) phe-  bifurcations. The part of the plot in a dotted rectangle is
nomena take place. The maxima in Qeversusz plot then ~ zoomed in and shown separately in Figb)8 It shows
alternate such that every second or every fourth maximurhigher-order bifurcations and the full set of period doubling
repeat. After the transition to chaos through the sequence abute to chaos. Note that we must use a finite step size in
period-doubling bifurcations occurs, all maxima in 1Qéz) (typically A e=0.0002), which does not have enough resolu-
appear to be different from each other although the pulsatingon to show the actual threshold where the transition to
feature of the localized solution is clearly there. chaos happens. Nevertheless, this is exactly Feigenbaum-
To show the existence of bifurcations we constructed théype route to chaos, which has all the features of this well-
Poincaremap of the periodic motion. In our case this map known phenomenon.
can be simplified and effectively made one dimensional. Above the threshold, chaotic solutions exist for a certain
Therefore we shall plot a single parameter of the solutiorinterval of values ofe, once the rest of the parameters is
versus a single parameter of the equation. Namely, we udfixed. Varying e, we fix the direction towards the region of
the following procedure. Starting with an arbitrary input, andchaos, which occupies a certain region in the parameter
for a given set of the values of the parameters, we propagatgpace. We could also change any other parameter instead of
it a certain distance until any initial transient has died out ance and keep the rest fixed or we could change simultaneously
the solution is purely periodic or stationary. Then we moni-several parameters moving along a certain direction in the
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' FIG. 9. One-dimensional Poincareap: (a) Two sequences of
60 - (b) period-doubling soliton bifurcations. Bifurcations occur when the
L parametere approaches the region of chaos at 07%20.803
from the left as well as from the right. Solutions in the two small
3 rectangles correspond to moving pulsating solitons. The pulsating
o 50 - solutions located in the right-hand sidlargep rectangle coexist
| with the stable composite solitons and with period-1 pulsating soli-
tons. The branch for the composite solitons is denoted CP. The
simulation parameters al2=+1, §=-0.1, 8=0.08, u=-0.1,
40 | P andv=—0.074.
0.78 0.79 0.8

Figure 8a) shows, in particular, that the branch of pulsat-
ing solutions exists simultaneously with stationary pulses in
FIG. 8. One-dimensional Poincaneap: (a) Peak energy versus the interval ofe from ~0.726 to~0.766. The branch for the
e for pulsating and stationary solitons. The arrowsanshow the  |atter is denoted SP. This would not be surprising as we
directions in which the transition from pulsating to stationary pulsesknow already that various stationary solitons can coexist

takes place wher changes. The right-hand side of the curve for [34]. Moreover, up to five different “stable” solutions may
pulsating solutions ina@ shows the sequence of period-doubling exist simultaneously39]. However, stationary solutions are
soliton bifurcations and burst into chadb) Magnified part of the g4 utions of an ordinary differential equatié®DE), which
plot, which is framed by dots if8). The values of the parameters re4jize 4 minima of an operator in a functional space, and to
aref=0.08, »=-0.08, 6=—0.1, andu=—0.115. switch from one minimum to another, an appreciable pertur-
bation is needed. In the case of pulsating solutions, we can-
parameter space. These directions are not all equivalent angt reduce the problem to an ODE and the notion “minimum
the route to chaos can vary. Some examples are shown bgf an operator” cannot be applied directly. It might be a

€

|0W-. . “valley” in the functional space and it has to be separated
Finally we should add that although it happens very rarelyfrom the minimum corresponding to a stationary solution.
we have also seen period-2 moving solitons. Only when the parameters of the system change so much that

one of the solutions ceases to exist, can it be transformed
into another type. This process is shown in Figp) &y the
arrows. Namely, in this figure we have the hysteretic cycle
between the stationary plain pulse solutions and the single
It is remarkable and surprising that pulsating solutions argoeriodic solutions. In this case these two kinds of solutions
fixed in the same way as stationary pulses. Namely, the sa@oexist for a large interval of values ef As we will show in
lution #(z,t) is a unique function of andt at each set of the next section, this region of coexistence depends very
equation parameters. This makes solitons in dissipative sysauch on the value of the other parameters.
tems different from those in integrable ones where solitons Figure 9 shows an example of chaotic behavior, which is
are one- or two parameter families. Besides, in nonintegrablocated in the region of 0.792¢<0.803. When changing
but Hamiltonian systems, pulsating solitons do not existprovided that other parameters are fixed, the transition to
Even, if pulsations exist at the beginning due to speciallychaos occurs from the left as well as from the right. Each of
chosen initial conditions, they die out during propagationthese routes to chaos are through the sequence of period-
[24]. In the CGLE case, pulsating solitons do exist and ifdoubling bifurcations. A second small region of chaotic be-
periodic, they are fixed. Once the set of parameters is giverhavior of pulsating solitons appears @&+ 0.819. It appears
any initial condition always converges to the same pulsatingvithout period-doubling bifurcations although solitons are
solution unless two of them exist simultaneously for thestrictly periodic at the left-hand side from this region as well
same set of parameters, being both stable. It can also happas at the right-hand side.
that severalmore than two fixed but qualitatively different The solutions shown inside the small rectangles M are
solutions exist and are stable for the same set of parametemsoving pulsating solitons and they are similar to the solu-

VI. COEXISTENCE OF PULSATING, CHAOQOTIC,
AND STATIONARY SOLITONS
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FIG. 10. One-dimensional Poincareap: example of period FIG. 11. One-dimensional Poincamgap: one more example of
doubling soliton bifurcations whem is slightly shifted relative period-doubling soliton blfulrcatlons. Tr§n5|t|on Fo ghaos occurs
to the case presented in the previous figure. The region of chad¥!ly from the left. The region of chaotic behavior is located at
in this case disappears. Moving pulsating solitons in the box M0-798<€<0.826. It is interrupted by the period-5 solutiofa

coexist with the composite pulse€P) and period-1 pulsating ~0-804) and period-6 solution@t 0.80% e<0.819). Black tri-
solitons (above the box M The simulation parameters are: angles correspond to a period-2 solutions, which are different
D=+1, 6=-0.1, 3=0.08, u=—0.10, andv=—0.0745. from the chaotic solitons. The parameters in this case [are

=+1, 6=-0.1, =0.08, u=—0.10, andv= —0.066.

tions shown in Fig. 4. The moving solitons in the rlght—handtion into another one unless we reached the edge of the re-

side rectangle at>~0.83 coexist with zero velocity pulsat gion for the existence of some particular solution. This

ing solitons whose energf is above the rectangle. Simul- shows, first, that pulsating solutions are globally stable, or
taneously these two pulsating solutions co-exist with station; ’ ’ P 9 g y T

ary composite pulseéthe latter are described in the book better to say, robust. Second, chaotic pulsations in this ex-

[34]). This example shows the possibility of co-existence ofample are complgtely separated n a fu_nct|or_1a| space from
three different solitons for the same values of the equatiothe regular pulsating solutions resulting in their coexistence.

) . , . I:|'hird, the solid triangles in Fig. 11 are visibly located at the
parameters; two of them are pulsating and one is a statlonaré/ . : : .
soliton ontinuation of period-2 curves at the left. Clearly, period-2

If we slightly change the parameterto the value 0.0745 solutions lose their stability after the period quadrupling bi-

i : : furcation but recover their stability again at higher
(see Fig. 19 the region of chaos disappears. The whole We can find some indirect confirmation for the existence

sequence of period-doubling bifurcations also disappears an e . . . -
only period 2 and period 4 solutions can be observed. Cor(-% unstable period-2 solutions in the region of chaos in Fig.

respondingly, we have only two period-doubling bifurcationstlhzé gtir:r’ tg?a?ﬁé?gst::f;z;tzﬁggegaeﬁeedcfn0§224cﬁ;n;| the
on the way to the right and two period-doubling bifurcations P ged. y

appearance of period-2 solutions&t0.792 with the cha-

on the way to the left. This example shows that period- tic pulsations being suppressed. As in the previous case, the
doubling bifurcations do not necessarily lead to chaos unles P g supp : P ’

some other parameters of the system are properly changed GHrves for the period-2 solution appear to be a.V|5|bIe con-
order to reach the region of chaos. As in Fig. 9, the movin inuation of the two curves at the left before period quadru-

pulsating solutions are enclosed in a rectangle lab&fed Iing' bifurcatiorj happens. We can guess 'that the period .2
Only one of these regions is left at this value of The solutions do exist all the way between the intervals where it

tristability situation still remains.

When the parameter is shifted further down to 0.066
(Fig. 11, the region of chaotic behavior reappears. It appears 50 | B=0.08, v=-0.064, u=-0.10%
as a sequence of period-doubling bifurcations from the left, 5=-0.1 :
at e~0.796. However, an interesting feature of this region is e
that in the middle of the region of chaotic solutions, period-5 i 7
and period-6 solutions emerge. Their region of existence
vary with » but remarkably enough, there is not any period
jumping bifurcations at the boundaries of their existence. Or I
at least they cannot be seen with the resolutiom,imvhich . SP
we are using 4 €<0.0002). Period-4 solutions appear also 10 —
in a small interval around=~0.833 without being preceded 072 074 076 078 08
by period-2 solutions. £

Figure 11 gives also an example of the coexistence of riG. 12, One-dimensional Poindarmap: an example of
pulsating solutions with chaotic pulsations. Namely, blackperiod-2 chaotic solitongtwo black spots Multiple bifurcations
triangles represent a pulsating period-2 solution, which isio not happen. Moving pulsating solutions coexist with plain
different from the solutions in the region of chaos. Which pulsating solutions, with chaotic solutions and with station-

one appears depends on the initial conditions. However, onc&y pulses(SP. The values of the parameters in this case are
excited, each of these solutions evolves without transformap=+1, §=-0.1, 8=0.08, u=—0.10, andv=—0.064.
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it (')1 L o '08 ' LU There is not any other period jumping bifurcations between
= 4 ’ v=- “ o

80 I the period-6 solutions and chaotic pulsations. In this respect,
I 8=-0.1, u=-0.10 we have to mention that period-3 and period-6 bifurcations
have been observed in the nonlinear fiber ring resonatjr
$ 60 I e Although no direct comparison with the experiment is pos-
o EEsT sible, qualitatively this phenomenon finds a natural explana-

tion in the CGLE model.

Our numerical examples show that there is a multiplicity
of scenarios of transition to chaotic behavior. Which particu-
lar scenario appears, depends completely on the direction we
choose to move in the five-dimensional space. It follows

£ from this analysis that the best way would be to find the
) ) o boundaries in the five-dimensional parameter space between

FIG. 13. One-dimensional Poincameap: peak energy versus  the regions with qualitatively different solutions and move in
fpr pulsating and stationary so.lltons. Pgrlod-S and perlod-6.solu.,[he directions normal to those boundaries. This is a compli-
tions are surrounded by chaotic behavior. The parameters in this,iaq and highly computer-time consuming task but can be
case ard=+1, §=-0.1, =001, p==0.1, andv=-008. oieq out to some extent if we find at least the projections
is stable but lose its stability and become “invisible.” of these regions on two-dimensional planes of the parameter

Moreover, we can also guess that the chaotic pulsations ifiPace. We have done this work here for several such planes.
Fig. 11 are the consequence of several periods of oscillations
that are incommensurate and can be considered as internal REGIONS OF EXISTENCE OF PULSATING
mode_s of the system. At some values of the parameter SOLITONS IN THE PARAMETER SPACE
certain modes suppress all others and as a result we have
period-5 and period-6 solutions. In Fig. 12, the period-2 The regions of pulsating solitons and the regions of cha-
mode suppresses the others in a small interval. of otic pulsations are regions in a five-dimensional parameter

Another interesting feature of the plot in Fig. 12 is the space, i.e., in the space B8f u, v, €, andé. In order to have
period-2 chaos aé~0.753. This is a chaotic solution with solutions in the form of localized structures we have to re-
two frequencies, i.e., taking every second maximum inQhe strict the values of this parameter. Namedy; 0, §<0, u
versusz plot, we obtain a perfectly periodic sequence. How-<0, 8>0, andv<0. The condition<0 is required to keep
ever, two consecutive maxima show chaotic features, whiclhe zero background to be stable. The condiéorD ensures
is the reason for the appearance of the two black “balls” inthat there is a positive gain in the system. The condijion
the middle of the period-2 branches. Transition to chaos oc<0 allows to saturate the nonlinear gain in order to keep the
curs at the two sides of this chaotic region abruptly withoutsoliton amplitude being limited from above amd<0 satu-
the sequence of period-doubling bifurcations. rates the nonlinear Kerr effect. Finally, the conditigi0

It is remarkable that this period-2 chaos coexists withprovides transverse stability to the soliton. The above restric-
moving pulsating soliton&enoted MP$and with stationary  tions allow us to limit the boundaries for search of pulsating
soliton pulses denoted SP. The range of existence of the twlacalized structures. The dispersi@ncan have either sign
latter solitons is wider than the period-2 chaos and they aréor the CGLE to have localized pulsating solutions. We have
shown by the corresponding lines in the plot. As we can seeshosenD to be positive as, to our knowledge, no one ob-
the tristable behavior of solutions is more the rule rather thaserved pulsating solitons in this case before. The actual value
exception. The new fact here is that chaotic solutions coef D can be rescaled to one without loss of generality.
exist with plain stationary solitons and with moving pulsat-  With the above restrictions we are still faced to deal with
ing solitons(like “creeping” structure showed in Fig.)4 a five-dimensional space of parameters, although now it is

Period quadrupling bifurcation in Fig. 12 occurs @t only one “quadrant” of this space. Obviously, we can only
=0.774 and the direct transition to chaos without any furtheipresent two-dimensional slices of these regions. Neverthe-
sequence of period-doubling bifurcationseat 0.779. Defi- less, these slices give enough information to see interrela-
nitely, the sequence of period-doubling bifurcations is nottions between various types of solitons. We shall present
the only route that can lead to chaos, but many other scehose regions along with the ones for stable stationary soli-
narios are possible. tons, which at certain conditions might overimpose. Our pa-

Figure 13 shows an example of the period-3 solutionsper also shows that the transition to chaos is a complicated
The horizontal lines on the plot correspond to the three sugghenomenon and depends very much on which border is
cessive energy maxima of soliton pulsations. The region o€rossed during the transition.
their existence extends froer0.676 untile~0.689. At the To illustrate the fact that the route to chaos depends on
edges of this interval, the solution bifurcates and transformshe way of crossing the boundary of the region of chaos, we
into period-6 solutions. Both intervals of period-6 solutionsstarted our calculations with the two-dimensional regions on
are much shorter than the interval for period-3 solutions. Athe (e,v) plane. These regions are shown in Fig. 14. There
the outer edges witle~0.673 ande~0.69, period-6 solu- are five main areas on this plot. The lowest redieertically
tions in turn bifurcate into chaotic pulsations with g,  hatched argacorresponds to plain stationary pulsgsable
covering continuously a finite interval along the vertical axis.stationary solitons Stationary solitons were the main object

40
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FIG. 15. The region of existence of stationary plain pulses, pul-
sating solitons(central triangular stripeand fronts on the plane
hatched area pulsating solitongenclosed in a thick line period  (8,€). The small shaded region inside the region of pulsating solu-
doubled(gray area fronts (horizontally hatched ar¢and chaotic ~ tions corresponds to period-2 solutions. The parameters of simula-
solutions on the planey(e). The narrow dark region between cha- tion areD=+1, =0.08, u=-0.1, andv=—0.08.
otic solutions and period-doubled pulsating solitons corresponds to
period-4 solutions. The parameters of the simulation &e |utions. Clearly, there is not a direct smooth transition from
=+1, 6=-0.1, $=0.08, andu=—0.1. one to another in these regions. They are separated in energy

by some gap, which means that they are located far enough
of study in our previous work36]. We should mention here jn the functional space from each other, being independent
that our technique only gives stable structures although ungg|utions.
stable solitons can also exist in these areas. Unstable solitons another slice of the five-dimensional space of parameters
cannot appear explicitly but they can play a certain role ins shown in Fig. 15. This is the§€) plane. It shows again
the general dynamics. that the stripe of pulsating solutions divides this plane into

Above this Vertica”y hatched region the soliton SOlUtionSregionS of Stationary solitons and fronts. The region of
are pulsating. This means that stationary pulses become Ugeriod-doubled pulsating solutions in this case is located in-
stable in this region and |0ngitudina| modulation InStablllty Side the region for periodic pu'sa‘[ions_ They exist 0n|y in a
transforms them into plain pulsating solitons. The pulsationsardly appreciable region for very low values|af.
have a single period of oscillation. The region for pulsating one more slice of the region of existence of pulsating
solitons is enclosed within a thick solid line. . solutions is shown in Fig. 16. This is th@ () plane. Topo-

The region up and to the left of pulsating solutidhsri- |ggjcally this slice is similar to the one presented in Fig. 14.
zontally hatched argecorresponds to fronts. The width of The area of stationary solitons occupies most of this plot. It
solitons in each pulsatiofsimilar to the one in Fig. @] s vertically hatched. Fronts exist in the upper part inside the
becomes so wide that the two fronts at each side of the soligrea hatched horizontally. The stripe of pulsating solutions
ton are not bounded anymore and move away from each
other. It is remarkable that for this set of parameters there is
not a simple transition between the solitons and fronts as
predicted in Ref[41]. The boundary between the region of
stationary solitons and fronts is a stripe, which corresponds
to pulsating solitons. In this region, the two interacting fronts
are not bounded strongly enough to comprise a stationary
structure but the bounding energy is enough for them to os-
cillate relative to each other. |

The upper-rightwhite) region on this plane corresponds 0.7 F A
to chaotic pulsations. Below this region, solutions go through 0
the sequence of period-doubling bifurcations. In particular, I/
period-2 solutions exist in the gray area and period-4 solu- 0
tions in the black stripe. Further period-doubling areas can-
not be resolved in the scale of this plot. However, it is clearly
seen that pulsating solitons can enter the region of chaos
without the sequence of period-doubling bifurcations at the
boundary above the shaded regions. In a five-dimensional FiG. 16. The region of existence of plain pulses, pulsating
parameter space the routes to chaos can take various formsiitons(central triangular aréaand chaotic solitons on the plane

The Fig. 14 also shows that stationary pulses can coexigp,e). The values of the rest of the parameters@re+1,6=—0.1,
with plain pulsating solitons and with period-2 pulsating so-u=—0.1, andv=—0.08.

FIG. 14. The region of existence of stationary puleestically
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FIG. 17. The region of existence of plain pulses, pulsating M

solitons(central triangular stripefronts and chaotic §0Iitoqs on the FIG. 18. Region in the parameter plane €) where exploding
plane  (u,e). The parameters of the simulation are ggjitons exist. The star shows the point where the simulations for
D=+1, 6=-0.1, v=-0.08, ands=0.08. Fig. 2 were done. Other parameters ae—0.1, 8=0.125, and
separates the regions for stationary solitons and fronts. Regff— 0L
lar pulsating solitons become chaotically pulsating in thepe ypper limit, above the shaded strip, they become either
left-hand side white area. Transition to chaos happens bothhagtic or stationary pulses.
through the sequence of period-doubling bifurcations and di-
rectly at the boundary defined by the thick solid line. The
region of period-2 solutions is shown as a gray area and the
region of period-4 solutions as a black area. Period-8 solu- The slices we presented here are to some extent chosen by
tions and higher are located between the period-4 and chaahance. The regions of pulsating solutions occupy an appre-
regions but it is unresolvable in the scale of this plot. We carciable part of the five-dimensional parameter space. We tried
say definitely that the region for the stationary solitons has @ choose the regions that contain the samples presented in
common area with the regions of pulsating solitons withSec. IV. At the same time we tried to cover the most inter-
single and double periods as it is shown in Fig. 16. Howeveresting parts of this five-dimensional space. We can say with
it is difficult to draw a border between the fronts and chaoti-a certain degree of confidence that there is nothing special
cally pulsating solutions. This can be a topic of a separat&appening if we extend the range of parameters beyond those
investigation. we have chosen in Figs. 14—-17. Nevertheless, this area is
Figure 17 shows the region of existence of these solutionstill open for investigations and deserves more efforts. By
in the plane f,€). The topological structure of this slice is far, we can say confidently the following:
similar to the previous Fig. 16. Stationary solitons are lo- (1) We have found new pulsating solutions of the cubic-
cated at lowe and low negativeuw. Stationary solitons be- quintic CGLE. This fact shows that dissipative systems can
come unstable at the upper boundary of their existence anaave strictly periodic localized structures in contrast to
transform into pulsating solitons in the triangular region inHamiltonian systems, which don’t have such solutions. Pul-
the middle of the plot. Above the triangle only fronts exist. sating solutions of the CGLE cannot be obtained as pertur-
The upper-left corner of the plot corresponds to chaotic pulbations of breathers of the nonlinear Sairmer equation.
sations. Transition from the single frequency pulsations to (2) There are several types of pulsating solutions, which
chaotic pulsations happens through the sequence of periodsughly can be classified into plain pulsatigith single
doubling bifurcations as well as directly at the lower bound-period of pulsations quasiperiodigwith several periods in-
ary of the “beak” on the top of the triangular region. volved in the pulse dynamigsexploding soliton, which can
Exploding solitons shown in Fig. 2 represent a speciabe considered as a special type of attractor, creeping solitons,
type of chaotic localized structures, which are qualitativelywhich are pulsating moving localized structures, and chaotic
different from the chaotic pulsations with continuous spec-ulsating solitons, which have a continuous spectrum of pul-
trum. We would expect that their region of existence wouldsations.
be very small. However, this is not true. Figure 18 shows the (3) Each of the above solutions exists in certain regions of
region of existence of exploding solitons in thee plane. parameters in the five-dimensional space. The regions of ex-
The area where these solutions exist is surprisingly wideistence of pulsating localized structures are comparable or
Say, in the middle of the plot, the parametercan be even larger than regions for stationary solitons. Each pulsat-
changed three times and these solutions still exist. Parametig soliton exists in an isolated region so that we can classify
v changes twice from the right-hand side of the plot to theeach of them as a different type of soliton. Crossing the
left-hand side Figuratively speaking, these solutions canndborders of these regions results in the transformation of the
be “missed.” In the lower limit ine, these solutions either solution into another typéinto stationary soliton, front or
become periodic solutions or are extinguished completely. Iithaotic soliton.

VIIl. DISCUSSION
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(4) In some regions of parameters, solutions of variouds defined by the balance between the dispersion and nonlin-
types can coexist resulting in a bistable and tristable behawarity as well as the balance between the gain and loss. The
iors. In particular, we have found the regions of coexistenceeal system has also spectral filtering components. This
for plain stationary or composite stationary solitons withmeans that qualitatively these effects can be observed in real
moving pulsating and plain pulsating solitons. There are alssystems, and after rectification, can find certain applications.
the areas of coexistence between chaotic pulsating solitons

and plain_ pulsating sol_itons._ Double peri_odic splitons can IX. CONCLUSIONS
coexist with both chaotic solitons and plain stationary soli-
tons. This list can be continued. In conclusion, we have found, new fascinating types of

(5) The transition between regular pulsations and chaotigulsating solitons predicted by the quintic complex
pulsations can happen as a single bifurcation as well as @inzburg-Landau equation. Namely, different types of local-
sequence of bifurcations including the sequence of periodized pulsating solutions such as plain pulsating, exploding,
doubling bifurcations. More exotic structures like “double creeping, and chaotic solutions have been found. Pétiod-
periodic chaotic soliton” can also appear. solutions, wheré\ takes almost any integer value, have been

(6) The regions of chaotic solitons contain soliton solu-also predicted. The route to chaos by period-doubling bifur-
tions, which are not stable but play a certain role in thecations has been exhaustively studied, and although being
overall dynamics. We have found examples of double-quite common is not the only way to chaos we present in this
periodic solutions being located inside the regions of chaotipaper. The regions of existence of various types of solutions
solutions. They might become unstable but continue to exidhave been calculated in the five-dimensional parameter
in wide range of parameters. It is very likely that this coex-space. The latter revealed large areas where various types of
istence of unstable solitons with stable pulsating ones givepulses coexist resulting in the effects of bistability and trista-
rise to the chaotic localized structures. However, the lattebility.
assertion needs more investigations to draw definite conclu-
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