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Pulsating solitons, chaotic solitons, period doubling, and pulse coexistence in mode-locked lase
Complex Ginzburg-Landau equation approach
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The complex Ginzburg-Landau equation~CGLE! is a standard model for pulse generation in mode-locked
lasers with fast saturable absorbers. We have found complicated pulsating behavior of solitons of the CGLE
and regions of their existence in the five-dimensional parameter space. We have found zero-velocity, moving
and exploding pulsating localized structures, period doubling~PD! of pulsations and the sequence of PD
bifurcations. We have also found chaotic pulsating solitons. We have plotted regions of parameters of the
CGLE where pulsating solutions exist. We also demonstrate the coexistence~bi- and multistability! of different
types of pulsating solutions in certain regions of the parameter space of the CGLE.
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I. INTRODUCTION

Passive mode locking allows the generation of se
shaped ultrashort pulses in a laser system. It was realize
a number of works that the pulses generated by mode-loc
fiber lasers were solitons@1–4#. Apart from this very impor-
tant application, the mode-locked laser is a nonlinear syst
which can have a very rich dynamics that includes not o
the generation of a periodic train of well-shaped pulses
also much more complicated behaviors. In fact, the gen
tion of stable pulses is possible in a very narrow range of
laser parameters and requires their careful adjustment. M
generally, the pulses change their shape from one round
to another and have complicated dynamics in time. Th
might have periodic behavior in a time scale larger than
round-trip time. As a particular result, the laser might ha
period-doubling, tripling, etc. behavior as well as oscillatio
of the pulse shape with periods that are not necessarily c
mensurate with the round trip time. If there are several p
ods involved in this dynamics, then the pulse-shape ev
tion in time might seem chaotic. This general dynamics a
the particular effect of trapping into the regime of stab
pulse generation is the phenomenon that deserves a de
theoretical and numerical investigation from various poi
of view.

Period doubling bifurcations and chaotic behavior of no
linear systems have been long discussed subjects in th
erature. In optics, period-doubling bifurcations have be
found experimentally in various laser systems. These incl
semiconductor lasers@5#, femtosecond solid-state lasers@6#,
F-center lasers@7,8#, fiber lasers@9,10#, nonlinear cavities
@11,12#, and gaseous lasers@13#. Period doubling in time of a
train of pulses has been observed in mode-locked lasers@6,7#
and nonlinear fiber ring resonators@10#. Originally, period-
doubling phenomenon was numerically found for the sim
case of a logistic map@14#. However, period doubling ha
not been particularly related to solitons.

In previous works, period-doubling bifurcations in lase
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have been described using various approaches including
cursion relations@7#, infinite-dimensional map with nonlin-
ear Schro¨dinger equation~NLSE! @10#, rate equations@15#,
logistic map@16#, equations for nonlinear polarization mix
ing @17#, free-electron laser equations@18#, and other meth-
ods. Period-doubling bifurcations have been attributed to
presence of ion pairs in the highly doped erbium fiber@19#.
Later, it was realized that the presence of saturable absor
in general form can be responsible for this behavior. Disp
sion has also been found to be important in the peri
doubling phenomenon@10#. Although it was well known that
the mode-locked laser operation can be described, in s
approximations, using the complex Ginzburg-Landau eq
tion ~CGLE! @20–23#, period doubling and route to chao
have not been studied yet theoretically using this approa

In the present paper we study pulsating soliton solutio
of the CGLE, which by themselves constitute a surpris
phenomenon. We recall that Hamiltonian systems do
have pulsating soliton solutions. Even if excited initiall
pulsating solitons are subjected to restructuring and evolv
stationary solitons@24#. An exception from this rule are the
integrable models where pulsating structures are nonlin
superpositions of fundamental solitons@25#. Dissipative sys-
tems, in contrast to Hamiltonian ones, admit pulsating s
tons. Interestingly enough, they do not appear from the in
grable limit and hence do not have anything in common w
the nonlinear superposition of fundamental solitons of
NLSE @25#. The parameters of the CGLE have to be f
enough from the NLSE limit in order to obtain pulsatin
solitons. One example of a pulsating soliton of the cub
quintic CGLE has been presented previously by Deissler
Brand@26#. This is the only example we are aware of and
has been found in the normal dispersion regime, where s
tons do not exist in the integrable limit. In fact, as we sh
show below, this is not the only case where pulsating so
tions exist. They do exist in the anomalous dispersion reg
and, moreover, the variety of these solutions and their reg
of existence is huge. In either case, pulsating solutions c
©2001 The American Physical Society02-1
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not be found by extrapolating from those in the integra
limit.

The study of pulsating solutions would not be comple
without the cases when the periodicity of pulsations becom
not perfect. The pulse behavior in time can be more com
cated and even chaotic at certain values of the parame
The system can enter into a chaotic regime in various w
including the classical one through period-doubling bifurc
tions. In our opinion, the most interesting phenomenon
that stationary stable solitons can coexist with the cha
regime of soliton propagation. Which solution is excited d
pends to a great extent on the initial conditions. Clea
chaotic and regular solutions are well separated in the fu
tional space so that they do not transform to each other
less we disturb the solution with a finite perturbation
change the parameters of the system to the extent that o
the solutions becomes unstable. It is not surprising that
stable solutions can coexist. However, the coexistence
chaotic and regular solution rarely happens.

In addition to presenting new classes of pulsating solito
we describe the period-doubling phenomenon using
CGLE. This description fills the gap in theory that exist
before and shows that the phenomenon falls into the gen
class of chaotic behavior and routes to chaos. Moreover
show that new pulsating solitons can coexist both with c
otic solutions and with stationary pulses leading to the p
nomenon of bistability. This complex bistability of chaot
solutions with regular ones might cause a peculiar beha
of ultrashort pulse lasers.

It was a long standing controversial question how a la
system enters into chaotic regime. The transition may hap
abruptly and not necessarily through the sequence of per
doubling bifurcations@10#. In fact, various scenarios of th
route to chaos have been observed. Our approach give
answer to this question too. We study regions of chao
behavior in the five-dimensional parameter space of
CGLE whose borders form a four-dimensional surface
complicated shape. The transition to chaos from the reg
of regular behavior depends very much on where this sur
is crossed. Our simulations show explicitly that the route
chaos can be either through the sequence of period-doub
bifurcations or we can have an abrupt transition. Moreov
our study shows that the borders are not necessarily s
and around them some regions of bistability can exist.

Our continuous model takes into account the major ph
cal effects occurring in a laser cavity such as dispers
self-phase modulation, spectral filtering, and gain/loss~both
linear and nonlinear!. A delicate balance between them giv
rise to the majority of the effects observed experimenta
We observe even period-3, period-5, and period-6 soluti
in our model. Note that period 6 pulse generation has b
observed recently in a nonlinear fiber ring resonator by C
et al. @10#.

We should keep in mind that in principle there will b
differences between the results in our model and in real
tems because of the finite round-trip time which every la
system has. In the case of the CGLE model the period
pulsations can vary continuously rather than in discrete st
Moreover, complicated phenomena related to the interp
05660
e

s
i-
rs.
s
-
s
ic
-
,
c-
n-
r

of
o
of

s,
e

ral
e
-
-

or

r
en
d-

the
ic
e
f
n

ce
o
ng
r,
rp

i-
n,

.
s
n
n

s-
r

of
s.
y

between the periodicity in the system and pulsations in ti
might arise. However, in this paper we are interested in
occurrence of pulsations in a continuous model and th
evolution for a given set of CGLE parameters. The effect
discreteness can be taken into account in specific app
tions. At present, our main aim is to investigate the resu
predicted by the powerful CGLE continuous model rath
than to look for the origin of possible complications.

The rest of the paper is organized as follows. In Sec. II
present the Master equation which we are solving. Section
presents the numerical scheme used in the simulations.
tion IV shows a variety of examples of pulsating solitons
the CGLE, including some highly unusual pulsations li
exploding and creeping solitons. The sequence of pe
doubling bifurcations of the pulsating solitons and oth
routes to chaotic pulsations is discussed in Sec. V. The p
sibility of coexistence of various solitons including pulsatin
and chaotic ones is described in Sec. VI. The regions
existence of various pulsating and chaotic solutions in
parameter space of the CGLE are given in Sec. VII. T
results are discussed in Sec. VIII and finally Sec. IX summ
rizes our main conclusions.

II. CGLE EQUATION

The quintic complex Ginzburg-Landau equation has be
used to describe a variety of physical phenomena. In optic
is often used to model several types of passively mo
locked lasers with fast saturable absorbers@20–23#, paramet-
ric oscillators @27#, and transverse soliton effects in wid
aperture lasers@28–33#. In spite of the fact that lumped ef
fects are present in any laser, in many cases its operatio
well described as a distributed system. In this context
quintic CGLE has the following form@34#:

icz1
D

2
c tt1ucu2c1nucu4c5 idc1 i eucu2c1 ibc tt

1 imucu4c, ~1!

where z is the cavity round-trip number,t is the retarded
time, c is the normalized envelope of the field,D is the
group velocity dispersion coefficient withD561 depending
on whether the group-velocity dispersion is anomalous
normal, respectively,d is the linear gain-loss coefficient
ibc tt accounts for spectral filtering or linear parabolic ga
(b.0), eucu2c represents the nonlinear gain~which arises,
e.g., from saturable absorption!, the term withm represents,
if negative, the saturation of the nonlinear gain, the term w
n corresponds, also if negative, to the saturation of the n
linear refractive index.

We have to note that the variety of localized pulsati
solutions found here results from the properties of the cub
quintic CGLE. The higher-order nonlinear terms are imp
tant for the system to have pulsating solutions as well
period-doubling bifurcations. We have not observed th
phenomena in the cubic CGLE. A system has to have a
tain minimum complexity in its nonlinear properties in ord
to have localized robustpulsating solutions. The nonlinea
terms in the case of the cubic CGLE are much simpler a
2-2
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PULSATING SOLITONS, CHAOTIC SOLITONS, . . . PHYSICAL REVIEW E 63 056602
as a result, the cubic CGLE in the~111! D case does no
have such solutions. We recall, in this respect, that e
stationary solitons of the cubic CGLE, in general, are
stable@34#, and, quintic terms are essential for stable solito
to appear@22#.

III. NUMERICAL SCHEME

We have solved Eq.~1! using a split-step Fourier metho
for different initial conditions and for a great variety of va
ues of the equation parameters in the anomalous dispe
regime, i.e., forD511. In general, we fix all the paramete
except one of them~in most of the casese, which stands for
cubic gain when positive! and study the behavior of the so
lution as this parameter changes. We then change slig
another parameter (n generally! and repeat the above pro
cess.

The numerical simulations have been carried out usin
split-step technique, with various step sizes down to 0.0
along thez direction, with up to 16 384 points along thet
direction, to ensure that the results contain no numerical
tifacts. The results were also checked using independ
codes on various computers. The pulsating or chaotic na
of the solutions is an inherent property of these solitons fo
given range of parameters, and is not a consequence o
discretization. We should also stress that the effect is
related to the homoclinic instabilities occurring in integrab
@35# or Hamiltonian systems, as our equation is dissipati

A big variety of localized solutions can be observe
Among them there are stable stationary pulses~solitons!
@36#, pulses of more complicated shape~composite solitons!
@37#, and moving solitons@34#. The topic of the research in
this paper is the pulses that are globally stable as local
structures but continuously change their shape. The var
of these solutions can be even larger than that of station
solitons. In this paper we concentrate mainly on breather
or pulsating solutions. In terms of the experiment this me
that the laser pulse changes its amplitude, width, and en
in each successive round trip and this process is period
time. Periodicity does not necessarily have to be commen
rate to the round-trip time. It is defined by the macrosco
physical parameters of the system and the only requirem
is that it has to be larger than the round-trip time in order
the effects we have found to be observable.

IV. PULSATING SOLITONS

In our previous work@36–38# we concentrated on station
ary soliton solutions of the CGLE and in the regions of p
rameters where they exist. However, these are not the
possible type of solitons. Pulsating solitons are another
ample of localized structures. These are solutions whose
file evolves inz. They arise naturally from stationary one
when the latter become unstable. So far, we discovered
eral new types of cubic-quintic CGLE ‘‘robust’’ pulsatin
soliton solutions with complicated behavior. They exist
isolated regions of the parameter space, a fact that facilit
their identification as different solutions. All these solutio
have two common features—they repeat periodically in thz
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direction ~the propagation direction! and they are actually
pulsating. We should say that there can be a great variet
pulsating structures.

The solutions we are presenting here have distinctive
tures, and this allows us to classify them as ‘‘plain puls
ing,’’ ‘‘erupting,’’ or ‘‘exploding’’ solitons and ‘‘creeping’’
solitons. We have studied their main characteristics and
vestigated in detail the region in the parameter space wh
they exist. None of them can be found in analytic form, as
happens for the vast majority of thestablestationary solitons
of the cubic-quintic CGLE@34#. Besides, pulsating solution
are generic in the sense that they occupy appreciable reg
of the five-dimensional parameter space. In addition, th
can be excited from a wide range of initial conditions. Eve
tually, and usually very quickly, each of them will converg
to that pulsating soliton that exists for the given set of t
equation parameters. An exception to this rule occurs w
two or more solutions exist for the same set of paramet
When broad~but still localized! initial conditions are used
several pulsating solitons can be excited simultaneously.

A. Purely periodic pulsating soliton

An example of a pulsating soliton found numerically
shown in Fig. 1. It shows perfectly periodic behavior wi
the period inz being around 14. It has a different shape
eachz, since it evolves, but it recovers its exact initial sha
after a period. In this sense, we can call this type a ‘‘plai
pulsating soliton. Pulsating solutions have been found ea
by Deissler and Brand@26#. However, our new solutions do
not belong to the class found in Ref.@26#. First, the disper-
sion parameterD in Ref. @26# has the opposite sign, so tha
the region of parameters where they exist is different. Wh
changingD continuously, pulsating solitons cease to exist
D50 so that there is not a continuous transformation of o
into the other. Secondly, the profile of the periodic solutio
in Ref. @26# changes only in the soliton tails whereas o
pulsating soliton changes its shape quite appreciably. A
result, the value of energy in Ref.@26# stays almost constant
while in the case of the solution shown in Fig. 1, the ener
Q5*2`

` ucu2dt, changes from about 10 to 45. When w

FIG. 1. Plain pulsating soliton of the CGLE. The parameters
D511, e50.66, d520.1, b50.08, m520.1, andn520.1.
Only one period is shown.
2-3
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change the parameters of the equation, the solution rem
pulsating in a finite region. As we mentioned above this
gion does not extend to the region with negativeD.

B. Exploding solitons

Another class of pulsating solitons can be called ‘‘explo
ing’’ or ‘‘erupting’’ @40# solitons. ‘‘Exploding’’ soliton evo-
lution ~see Fig. 2! starts from a stationary localized solutio
that has a perfect soliton shape. After a while, its ‘‘slope
become covered with small ripples~a form of a small scale
instability! that seem to move downwards along the tw
slopes of the soliton, and very soon the pulse is covered w
this seemingly chaotic structure. When the ripples increas
size, the soliton cracks into pieces, like a mountain afte
strong volcanic eruption or after an earthquake. This can
look like an explosion. This completely chaotic, but we
localized, structure then is filled with ‘‘lava,’’ which restore
the perfect soliton shape after a ‘‘cooling’’ process. The p
cess repeats forever, although the distance between ‘‘ex
sions’’ fluctuates, and in each of them the pulse splits i
different pieces.

Needless to say, these solutions cannot be found in
lytic form. However, they are as common as stationary so
tions and exist for a wide range of parameters. The proc
never repeats itself exactly in successive ‘‘periods.’’ Ho
ever, it always returns to the same shape. In this sense
orbit that corresponds to this solution in each period is
moclinic.

Figure 3 shows the spectral widthsF5A^ f 2&2^ f &2,
where f is the frequency, versus the temporal widthsT

5A^t2&2^t&2 of the ‘‘exploding’’ soliton during severa
successive ‘‘periods’’ of explosion. Here,^tn& stands for
*2`

` tnucu2dt/Q, and the same applies forf in the spectral
domain. Although each part of the total trajectory starts a
ends at the same point, which corresponds to the solutio
the quiet part of the evolution, where it changes on
slightly, they are all different during the ‘‘exploding’’ stag
of the evolution. This shows that the evolution never repe

FIG. 2. Two periods of the evolution of an exploding solito
The parameters aree51.0, d520.1, b50.125, m520.1, and
n520.6.
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itself and that each explosion is unique. Hence, the q
stage of the soliton is an attractor, but is an unstable one.
length of each ‘‘period’’ also varies slightly, as it should fo
an attractor. The position of the pulse shifts slightly int after
each explosion and consequently the average position ro

As seen from Figure 3, the productsFsT is around 1.
This is in more than 10 times greater than the same prod
for bandwidth-limited pulses, which is 1/4p'0.08. This
shows that the soliton is highly chirped and literally ‘‘tries
to split apart during the quiet regime of evolution. It is r
markable that the spectrum of the solitons becomes narro
during the burst~from sF'0.64 down tosF'0.51). How-
ever, the productsFsT increases during the explosion due
the chaotic structure of the solution in time. This produ
returns to its previous value when a new soliton emer
from the fragments of the burst. The growth rate of instab
ity is actually complex and is equal to 0.8116.7i for this
particular case. The imaginary part of the growth rate eig
value is responsible for the radiative structure around
soliton. The total energy in the soliton,Q, also pulsates and
increases during the burst by almost a factor of 5 from
value in the quiet regime (Q522) up toQ5100.

Clearly, the exploding soliton is an example of a chao
solution. The solution might enter this regime directly fro
purely periodic pulsating solutions when we change the
rameters of the system. On the other hand, there are
chaotic solutions that always have a smooth transverse
file but it never repeats in evolution. This latter case can
reached from the pulsating solutions through perio
doubling bifurcations. However, this happens in other ar
of the system parameters.

C. Creeping soliton

One more example of the class of pulsating solutions
the ‘‘creeping’’ soliton, which is shown in Fig. 4. It is a
rectangular pulse with two fronts and a sink~due to energy
loss! at the top. The two fronts pulsate back and forth re
tive to the sink asymmetrically at the two sides. As a res
of this asymmetry, the position of the center-of-mass of
whole soliton shifts after each pulsation. The accumula
shifts result in the soliton motion with a constant velocit

FIG. 3. The spectral width versus the temporal width for
erupting solitons during ten successive cycles. The parameter
the same as in Fig. 2.
2-4
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This pulse coexists with the zero velocity soliton with tw
fronts, which are symmetrically pulsating at both sides. T
shape of the creeping soliton resembles the shape of the
posite soliton@34#. All pulsating solutions exist at the bound
aries between solitons and fronts@41#. However, the region
for ‘‘creeping’’ solitons is isolated from the region of ‘‘ex
ploding’’ solitons. Therefore, each can be classified a
separate type of pulsating soliton.

We are confident that there might be more types of p
sating structures of the cubic-quintic CGLE. Their classific
tion might comprise a topic of a special research. Pulsa
solutions might have several frequencies in their motion
these solutions are quasiperiodic. A relatively simple c
would be when the system has two frequencies. An exp
example is a moving pulsating solution, which instead
having a constant velocity moves forth and back aroun
fixed point. This solution is illustrated in Fig. 5. Obviousl
there are two frequencies involved in this motion which,
general, are incommensurate. The more frequencies ar
volved into evolution, the more complicated is the dynami
However, at this stage, we cannot predict how many frequ
cies would be involved in any particular case. Rather we
simulate solutions numerically and change the parame
continuously to see what kind of changes we can have.

Below, we concentrate on transitions between vario
types of pulsating solitons as well as on transition to loc

FIG. 4. Creeping soliton of the quintic CGLE. The paramet
are D511, e51.3, d520.1, b50.101, m520.3, and n5
20.101.

FIG. 5. Evolution of a moving periodic pulsating~creeping!
pulses. The parameters in this case areD511, d520.1, b
50.08, m520.11, n520.08, ande50.835.
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ized structures that pulsate chaotically. The spectrum of
longitudinal evolution for the chaotic motion is, clearly co
tinuous rather than discrete. There might be various s
narios of transition from discrete spectrum to a continuo
one and one of them is the sequence of period-doubling
furcations.

V. PERIOD DOUBLING

A pulsating solution, which can bifurcate to double pe
odic pulsation, is shown in Fig. 6~a!. The solution is strictly
periodic when the pulse shape is repeated in each perio
pulsation. We say it has double periodicity when the sha
repeats itself after two pulsations. The transition from t
former to the latter happens as period-doubling bifurcat
when one of the parameters of the equation is changed.
ure 6~b! illustrates this process. Period quadrupling is o
served when parametere is increased as shown in Fig. 6~c!.
This route to chaos has the usual Feigenbaum type con
gence with the differences in bifurcation pointsen112en
converging geometrically@14# so that transition to chao
happens at finitee` .

s

FIG. 6. Pulsating solitons of the CGLE. The two lower plo
show ~b! period doubling and~c! period quadrupling of pulsations
in a z direction when parametere changes. The parameters areD
511, d520.1, b50.08, m520.1, andn520.07, and~a! e
50.75, ~b! e50.785, and~c! e50.793.
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Above the threshold value ofe the pulse shape does n
repeat itself in each pulsation and the behavior is chaotic.
stress that we are dealing with a single pulse but the shap
this pulse can change in an unpredictable way. This is
ferent from the chaotic solutions to the CGLE in a transve
field profile when several pulses or other solutions can e
simultaneously and interact chaotically@42#.

To illustrate the pulsating behavior of the pulses in mo
detail we calculated the pulse energy, which also change
z along with the pulse shape. Figure 7 shows the energyQ,
of the pulse versusz for the same solutions as in Fig. 6. A
we can see, the pulse energy oscillates for period-1 pulsa
solutions with a large amplitude, which shows that this is
a weak effect. The oscillations become more complica
when period doubling~b! and period quadrupling~c! phe-
nomena take place. The maxima in theQ versusz plot then
alternate such that every second or every fourth maxim
repeat. After the transition to chaos through the sequenc
period-doubling bifurcations occurs, all maxima in theQ(z)
appear to be different from each other although the pulsa
feature of the localized solution is clearly there.

To show the existence of bifurcations we constructed
Poincare´ map of the periodic motion. In our case this m
can be simplified and effectively made one dimension
Therefore we shall plot a single parameter of the solut
versus a single parameter of the equation. Namely, we
the following procedure. Starting with an arbitrary input, a
for a given set of the values of the parameters, we propa
it a certain distance until any initial transient has died out a
the solution is purely periodic or stationary. Then we mo

FIG. 7. EnergyQ, versusz for the solutions whose pulse profile
are shown in Fig. 6. The two lower plots show clearly~b! period
doubling and~c! period quadrupling.
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tored each successive maximum in theQ versusz function
for a certainz interval, typically set to 500. To minimize th
initial transient the solution obtained for a certaine is taken
as an initial condition for finding the corresponding soluti
for the next value ofe. Usually we started with the lowes
value of e in an interval of interest and monotonically in
crease it. When we observed an abrupt transition, we
moved backwards to see if any hysteretic behavior ta
place.

In the following series of figures these maxima ofQ(z)
are given as functions ofe, while the rest of the equation
parameters are fixed. For strictly periodic pulsating solutio
this technique gives a single point in the plot for each va
of e. Bifurcation into double periodic pulsating solutio
gives two points in the plot. Period quadrupling bifurcatio
produces four points and so on. Chaotic solution generat
continuous vertical line. Sometimes two points indicate
existence of two different solutions instead of double per
solutions. This case will be made clearly distinguishable
each figure.

To make sure that our simple technique adequately
scribes the phenomenon, we constructed also a two dim
sional Poincare´ maps. Namely, we do also monitor som
other solution characteristics such as the peak amplitud
the pulse width. These plots are not shown here but using
more complicated technique we observed the same feat
of periodic or chaotic solutions as that deduced from mo
toring Q only. In this way we were able to check that w
were not missing some periodic or chaotic solutions t
could nevertheless keep constant energy.

The plot in Fig. 8~a! is obtained using the above tech
nique. It shows the peak value ofQ for each oscillation of
the pulsating solutions versus the parametere. Note that sta-
tionary solitons can also be plotted in this figure. These
lutions do not oscillate and the value ofQ, which is constant,
is simultaneously the peak value ofQ. The curve denoted
soliton pulses~SP! corresponds to such stationary pulse
The curve above it corresponds to the pulsating solutio
The fact that it is a single curve shows that pulsations
strictly periodic and have a unique period of oscillations. T
first branching point at approximatelye50.786 corresponds
to period-doubling bifurcation. The second branching po
at approximatelye50.8 corresponds to period quadruplin
bifurcations. The part of the plot in a dotted rectangle
zoomed in and shown separately in Fig. 8~b!. It shows
higher-order bifurcations and the full set of period doubli
route to chaos. Note that we must use a finite step sizee
~typically De50.0002), which does not have enough reso
tion to show the actual threshold where the transition
chaos happens. Nevertheless, this is exactly Feigenba
type route to chaos, which has all the features of this w
known phenomenon.

Above the threshold, chaotic solutions exist for a cert
interval of values ofe, once the rest of the parameters
fixed. Varyinge, we fix the direction towards the region o
chaos, which occupies a certain region in the param
space. We could also change any other parameter instea
e and keep the rest fixed or we could change simultaneo
several parameters moving along a certain direction in
2-6
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PULSATING SOLITONS, CHAOTIC SOLITONS, . . . PHYSICAL REVIEW E 63 056602
parameter space. These directions are not all equivalent
the route to chaos can vary. Some examples are shown
low.

Finally we should add that although it happens very rar
we have also seen period-2 moving solitons.

VI. COEXISTENCE OF PULSATING, CHAOTIC,
AND STATIONARY SOLITONS

It is remarkable and surprising that pulsating solutions
fixed in the same way as stationary pulses. Namely, the
lution c(z,t) is a unique function ofz and t at each set of
equation parameters. This makes solitons in dissipative
tems different from those in integrable ones where solit
are one- or two parameter families. Besides, in nonintegra
but Hamiltonian systems, pulsating solitons do not ex
Even, if pulsations exist at the beginning due to specia
chosen initial conditions, they die out during propagati
@24#. In the CGLE case, pulsating solitons do exist and
periodic, they are fixed. Once the set of parameters is giv
any initial condition always converges to the same pulsa
solution unless two of them exist simultaneously for t
same set of parameters, being both stable. It can also ha
that several~more than two! fixed but qualitatively different
solutions exist and are stable for the same set of parame

FIG. 8. One-dimensional Poincare´ map:~a! Peak energy versu
e for pulsating and stationary solitons. The arrows in~a! show the
directions in which the transition from pulsating to stationary pul
takes place whene changes. The right-hand side of the curve f
pulsating solutions in~a! shows the sequence of period-doublin
soliton bifurcations and burst into chaos.~b! Magnified part of the
plot, which is framed by dots in~a!. The values of the parameter
areb50.08, n520.08, d520.1, andm520.115.
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Figure 8~a! shows, in particular, that the branch of pulsa
ing solutions exists simultaneously with stationary pulses
the interval ofe from '0.726 to'0.766. The branch for the
latter is denoted SP. This would not be surprising as
know already that various stationary solitons can coe
@34#. Moreover, up to five different ‘‘stable’’ solutions ma
exist simultaneously@39#. However, stationary solutions ar
solutions of an ordinary differential equation~ODE!, which
realize a minima of an operator in a functional space, and
switch from one minimum to another, an appreciable pert
bation is needed. In the case of pulsating solutions, we c
not reduce the problem to an ODE and the notion ‘‘minimu
of an operator’’ cannot be applied directly. It might be
‘‘valley’’ in the functional space and it has to be separat
from the minimum corresponding to a stationary solutio
Only when the parameters of the system change so much
one of the solutions ceases to exist, can it be transform
into another type. This process is shown in Fig. 8~a! by the
arrows. Namely, in this figure we have the hysteretic cy
between the stationary plain pulse solutions and the sin
periodic solutions. In this case these two kinds of solutio
coexist for a large interval of values ofe. As we will show in
the next section, this region of coexistence depends v
much on the value of the other parameters.

Figure 9 shows an example of chaotic behavior, which
located in the region of 0.792,e,0.803. When changinge
provided that other parameters are fixed, the transition
chaos occurs from the left as well as from the right. Each
these routes to chaos are through the sequence of pe
doubling bifurcations. A second small region of chaotic b
havior of pulsating solitons appears ate'0.819. It appears
without period-doubling bifurcations although solitons a
strictly periodic at the left-hand side from this region as w
as at the right-hand side.

The solutions shown inside the small rectangles M
moving pulsating solitons and they are similar to the so

s

FIG. 9. One-dimensional Poincare´ map: ~a! Two sequences of
period-doubling soliton bifurcations. Bifurcations occur when t
parametere approaches the region of chaos at 0.792,e,0.803
from the left as well as from the right. Solutions in the two sm
rectangles correspond to moving pulsating solitons. The pulsa
solutions located in the right-hand side~larger! rectangle coexist
with the stable composite solitons and with period-1 pulsating s
tons. The branch for the composite solitons is denoted CP.
simulation parameters areD511, d520.1, b50.08, m520.1,
andn520.074.
2-7
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tions shown in Fig. 4. The moving solitons in the right-ha
side rectangle ate.'0.83 coexist with zero velocity pulsat
ing solitons whose energyQ is above the rectangle. Simu
taneously these two pulsating solutions co-exist with stati
ary composite pulses~the latter are described in the boo
@34#!. This example shows the possibility of co-existence
three different solitons for the same values of the equa
parameters; two of them are pulsating and one is a statio
soliton.

If we slightly change the parametern to the value 0.0745
~see Fig. 10!, the region of chaos disappears. The wh
sequence of period-doubling bifurcations also disappears
only period 2 and period 4 solutions can be observed. C
respondingly, we have only two period-doubling bifurcatio
on the way to the right and two period-doubling bifurcatio
on the way to the left. This example shows that perio
doubling bifurcations do not necessarily lead to chaos un
some other parameters of the system are properly chang
order to reach the region of chaos. As in Fig. 9, the mov
pulsating solutions are enclosed in a rectangle labeledM.
Only one of these regions is left at this value ofn. The
tristability situation still remains.

When the parametern is shifted further down to 0.066
~Fig. 11!, the region of chaotic behavior reappears. It appe
as a sequence of period-doubling bifurcations from the l
at e'0.796. However, an interesting feature of this region
that in the middle of the region of chaotic solutions, period
and period-6 solutions emerge. Their region of existe
vary with n but remarkably enough, there is not any peri
jumping bifurcations at the boundaries of their existence.
at least they cannot be seen with the resolution ine, which
we are using (De,0.0002). Period-4 solutions appear al
in a small interval arounde'0.833 without being precede
by period-2 solutions.

Figure 11 gives also an example of the coexistence
pulsating solutions with chaotic pulsations. Namely, bla
triangles represent a pulsating period-2 solution, which
different from the solutions in the region of chaos. Whi
one appears depends on the initial conditions. However, o
excited, each of these solutions evolves without transfor

FIG. 10. One-dimensional Poincare´ map: example of period
doubling soliton bifurcations whenn is slightly shifted relative
to the case presented in the previous figure. The region of ch
in this case disappears. Moving pulsating solitons in the box
coexist with the composite pulses~CP! and period-1 pulsating
solitons ~above the box M!. The simulation parameters are
D511, d520.1, b50.08, m520.10, andn520.0745.
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tion into another one unless we reached the edge of the
gion for the existence of some particular solution. Th
shows, first, that pulsating solutions are globally stable,
better to say, robust. Second, chaotic pulsations in this
ample are completely separated in a functional space f
the regular pulsating solutions resulting in their coexisten
Third, the solid triangles in Fig. 11 are visibly located at t
continuation of period-2 curves at the left. Clearly, period
solutions lose their stability after the period quadrupling
furcation but recover their stability again at highere.

We can find some indirect confirmation for the existen
of unstable period-2 solutions in the region of chaos in F
12. Here, the parametern is further decreased to20.064 and
the other parameters are not changed. We can see clearl
appearance of period-2 solutions ate'0.792 with the cha-
otic pulsations being suppressed. As in the previous case
curves for the period-2 solution appear to be a visible c
tinuation of the two curves at the left before period quad
pling bifurcation happens. We can guess that the perio
solutions do exist all the way between the intervals wher

os

FIG. 11. One-dimensional Poincare´ map: one more example o
period-doubling soliton bifurcations. Transition to chaos occ
only from the left. The region of chaotic behavior is located
0.798,e,0.826. It is interrupted by the period-5 solutions~at e
'0.804) and period-6 solutions~at 0.807,e,0.819). Black tri-
angles correspond to a period-2 solutions, which are differ
from the chaotic solitons. The parameters in this case areD
511, d520.1, b50.08, m520.10, andn520.066.

FIG. 12. One-dimensional Poincare´ map: an example of
period-2 chaotic solitons~two black spots!. Multiple bifurcations
do not happen. Moving pulsating solutions coexist with pla
pulsating solutions, with chaotic solutions and with statio
ary pulses~SP!. The values of the parameters in this case
D511, d520.1, b50.08, m520.10, andn520.064.
2-8
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PULSATING SOLITONS, CHAOTIC SOLITONS, . . . PHYSICAL REVIEW E 63 056602
is stable but lose its stability and become ‘‘invisible.’’
Moreover, we can also guess that the chaotic pulsation

Fig. 11 are the consequence of several periods of oscillat
that are incommensurate and can be considered as int
modes of the system. At some values of the parametee,
certain modes suppress all others and as a result we
period-5 and period-6 solutions. In Fig. 12, the period
mode suppresses the others in a small interval ofe.

Another interesting feature of the plot in Fig. 12 is th
period-2 chaos ate'0.753. This is a chaotic solution wit
two frequencies, i.e., taking every second maximum in thQ
versusz plot, we obtain a perfectly periodic sequence. Ho
ever, two consecutive maxima show chaotic features, wh
is the reason for the appearance of the two black ‘‘balls’’
the middle of the period-2 branches. Transition to chaos
curs at the two sides of this chaotic region abruptly witho
the sequence of period-doubling bifurcations.

It is remarkable that this period-2 chaos coexists w
moving pulsating solitons~denoted MPS! and with stationary
soliton pulses denoted SP. The range of existence of the
latter solitons is wider than the period-2 chaos and they
shown by the corresponding lines in the plot. As we can s
the tristable behavior of solutions is more the rule rather t
exception. The new fact here is that chaotic solutions
exist with plain stationary solitons and with moving pulsa
ing solitons~like ‘‘creeping’’ structure showed in Fig. 4!.

Period quadrupling bifurcation in Fig. 12 occurs ate
50.774 and the direct transition to chaos without any furt
sequence of period-doubling bifurcations ate50.779. Defi-
nitely, the sequence of period-doubling bifurcations is n
the only route that can lead to chaos, but many other s
narios are possible.

Figure 13 shows an example of the period-3 solutio
The horizontal lines on the plot correspond to the three s
cessive energy maxima of soliton pulsations. The region
their existence extends frome'0.676 untile'0.689. At the
edges of this interval, the solution bifurcates and transfo
into period-6 solutions. Both intervals of period-6 solutio
are much shorter than the interval for period-3 solutions.
the outer edges withe'0.673 ande'0.69, period-6 solu-
tions in turn bifurcate into chaotic pulsations with theQpeak
covering continuously a finite interval along the vertical ax

FIG. 13. One-dimensional Poincare´ map: peak energy versuse
for pulsating and stationary solitons. Period-3 and period-6 s
tions are surrounded by chaotic behavior. The parameters in
case areD511, d520.1, b50.01, m520.1, andn520.08.
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There is not any other period jumping bifurcations betwe
the period-6 solutions and chaotic pulsations. In this resp
we have to mention that period-3 and period-6 bifurcatio
have been observed in the nonlinear fiber ring resonator@10#.
Although no direct comparison with the experiment is po
sible, qualitatively this phenomenon finds a natural expla
tion in the CGLE model.

Our numerical examples show that there is a multiplic
of scenarios of transition to chaotic behavior. Which partic
lar scenario appears, depends completely on the direction
choose to move in the five-dimensional space. It follo
from this analysis that the best way would be to find t
boundaries in the five-dimensional parameter space betw
the regions with qualitatively different solutions and move
the directions normal to those boundaries. This is a com
cated and highly computer-time consuming task but can
carried out to some extent if we find at least the projectio
of these regions on two-dimensional planes of the param
space. We have done this work here for several such pla

VII. REGIONS OF EXISTENCE OF PULSATING
SOLITONS IN THE PARAMETER SPACE

The regions of pulsating solitons and the regions of c
otic pulsations are regions in a five-dimensional parame
space, i.e., in the space ofb, m, n, e, andd. In order to have
solutions in the form of localized structures we have to
strict the values of this parameter. Namely,e.0, d,0, m
,0, b.0, andn,0. The conditiond,0 is required to keep
the zero background to be stable. The conditione.0 ensures
that there is a positive gain in the system. The conditionm
,0 allows to saturate the nonlinear gain in order to keep
soliton amplitude being limited from above andn,0 satu-
rates the nonlinear Kerr effect. Finally, the conditionb.0
provides transverse stability to the soliton. The above rest
tions allow us to limit the boundaries for search of pulsati
localized structures. The dispersionD can have either sign
for the CGLE to have localized pulsating solutions. We ha
chosenD to be positive as, to our knowledge, no one o
served pulsating solitons in this case before. The actual v
of D can be rescaled to one without loss of generality.

With the above restrictions we are still faced to deal w
a five-dimensional space of parameters, although now
only one ‘‘quadrant’’ of this space. Obviously, we can on
present two-dimensional slices of these regions. Never
less, these slices give enough information to see interr
tions between various types of solitons. We shall pres
those regions along with the ones for stable stationary s
tons, which at certain conditions might overimpose. Our
per also shows that the transition to chaos is a complica
phenomenon and depends very much on which borde
crossed during the transition.

To illustrate the fact that the route to chaos depends
the way of crossing the boundary of the region of chaos,
started our calculations with the two-dimensional regions
the (e,n) plane. These regions are shown in Fig. 14. Th
are five main areas on this plot. The lowest region~vertically
hatched area! corresponds to plain stationary pulses~stable
stationary solitons!. Stationary solitons were the main obje

-
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of study in our previous work@36#. We should mention here
that our technique only gives stable structures although
stable solitons can also exist in these areas. Unstable sol
cannot appear explicitly but they can play a certain role
the general dynamics.

Above this vertically hatched region the soliton solutio
are pulsating. This means that stationary pulses become
stable in this region and longitudinal modulation instabil
transforms them into plain pulsating solitons. The pulsatio
have a single period of oscillation. The region for pulsati
solitons is enclosed within a thick solid line.

The region up and to the left of pulsating solutions~hori-
zontally hatched area! corresponds to fronts. The width o
solitons in each pulsation@similar to the one in Fig. 6~a!#
becomes so wide that the two fronts at each side of the s
ton are not bounded anymore and move away from e
other. It is remarkable that for this set of parameters ther
not a simple transition between the solitons and fronts
predicted in Ref.@41#. The boundary between the region
stationary solitons and fronts is a stripe, which correspo
to pulsating solitons. In this region, the two interacting fron
are not bounded strongly enough to comprise a station
structure but the bounding energy is enough for them to
cillate relative to each other.

The upper-right~white! region on this plane correspond
to chaotic pulsations. Below this region, solutions go throu
the sequence of period-doubling bifurcations. In particu
period-2 solutions exist in the gray area and period-4 so
tions in the black stripe. Further period-doubling areas c
not be resolved in the scale of this plot. However, it is clea
seen that pulsating solitons can enter the region of ch
without the sequence of period-doubling bifurcations at
boundary above the shaded regions. In a five-dimensio
parameter space the routes to chaos can take various fo

The Fig. 14 also shows that stationary pulses can coe
with plain pulsating solitons and with period-2 pulsating s

FIG. 14. The region of existence of stationary pulses~vertically
hatched area!, pulsating solitons~enclosed in a thick line!, period
doubled~gray area! fronts ~horizontally hatched area! and chaotic
solutions on the plane (n,e). The narrow dark region between ch
otic solutions and period-doubled pulsating solitons correspond
period-4 solutions. The parameters of the simulation areD
511, d520.1, b50.08, andm520.1.
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lutions. Clearly, there is not a direct smooth transition fro
one to another in these regions. They are separated in en
by some gap, which means that they are located far eno
in the functional space from each other, being independ
solutions.

Another slice of the five-dimensional space of paramet
is shown in Fig. 15. This is the (d,e) plane. It shows again
that the stripe of pulsating solutions divides this plane in
regions of stationary solitons and fronts. The region
period-doubled pulsating solutions in this case is located
side the region for periodic pulsations. They exist only in
hardly appreciable region for very low values ofudu.

One more slice of the region of existence of pulsati
solutions is shown in Fig. 16. This is the (b,e) plane. Topo-
logically this slice is similar to the one presented in Fig. 1
The area of stationary solitons occupies most of this plot
is vertically hatched. Fronts exist in the upper part inside
area hatched horizontally. The stripe of pulsating solutio

to

FIG. 15. The region of existence of stationary plain pulses, p
sating solitons~central triangular stripe! and fronts on the plane
(d,e). The small shaded region inside the region of pulsating so
tions corresponds to period-2 solutions. The parameters of sim
tion areD511, b50.08, m520.1, andn520.08.

FIG. 16. The region of existence of plain pulses, pulsat
solitons~central triangular area!, and chaotic solitons on the plan
~b,e!. The values of the rest of the parameters areD511,d520.1,
m520.1, andn520.08.
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PULSATING SOLITONS, CHAOTIC SOLITONS, . . . PHYSICAL REVIEW E 63 056602
separates the regions for stationary solitons and fronts. R
lar pulsating solitons become chaotically pulsating in
left-hand side white area. Transition to chaos happens b
through the sequence of period-doubling bifurcations and
rectly at the boundary defined by the thick solid line. T
region of period-2 solutions is shown as a gray area and
region of period-4 solutions as a black area. Period-8 s
tions and higher are located between the period-4 and c
regions but it is unresolvable in the scale of this plot. We c
say definitely that the region for the stationary solitons ha
common area with the regions of pulsating solitons w
single and double periods as it is shown in Fig. 16. Howev
it is difficult to draw a border between the fronts and chao
cally pulsating solutions. This can be a topic of a separ
investigation.

Figure 17 shows the region of existence of these soluti
in the plane (m,e). The topological structure of this slice i
similar to the previous Fig. 16. Stationary solitons are
cated at lowe and low negativem. Stationary solitons be
come unstable at the upper boundary of their existence
transform into pulsating solitons in the triangular region
the middle of the plot. Above the triangle only fronts exi
The upper-left corner of the plot corresponds to chaotic p
sations. Transition from the single frequency pulsations
chaotic pulsations happens through the sequence of pe
doubling bifurcations as well as directly at the lower boun
ary of the ‘‘beak’’ on the top of the triangular region.

Exploding solitons shown in Fig. 2 represent a spec
type of chaotic localized structures, which are qualitativ
different from the chaotic pulsations with continuous sp
trum. We would expect that their region of existence wou
be very small. However, this is not true. Figure 18 shows
region of existence of exploding solitons in then-e plane.
The area where these solutions exist is surprisingly w
Say, in the middle of the plot, the parametere can be
changed three times and these solutions still exist. Param
n changes twice from the right-hand side of the plot to
left-hand side Figuratively speaking, these solutions can
be ‘‘missed.’’ In the lower limit ine, these solutions eithe
become periodic solutions or are extinguished completely

FIG. 17. The region of existence of plain pulses, pulsat
solitons~central triangular stripe!, fronts and chaotic solitons on th
plane (m,e). The parameters of the simulation a
D511, d520.1, n520.08, andb50.08.
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the upper limit, above the shaded strip, they become ei
chaotic or stationary pulses.

VIII. DISCUSSION

The slices we presented here are to some extent chose
chance. The regions of pulsating solutions occupy an ap
ciable part of the five-dimensional parameter space. We t
to choose the regions that contain the samples presente
Sec. IV. At the same time we tried to cover the most int
esting parts of this five-dimensional space. We can say w
a certain degree of confidence that there is nothing spe
happening if we extend the range of parameters beyond th
we have chosen in Figs. 14–17. Nevertheless, this are
still open for investigations and deserves more efforts.
far, we can say confidently the following:

~1! We have found new pulsating solutions of the cub
quintic CGLE. This fact shows that dissipative systems c
have strictly periodic localized structures in contrast
Hamiltonian systems, which don’t have such solutions. P
sating solutions of the CGLE cannot be obtained as per
bations of breathers of the nonlinear Schro¨dinger equation.

~2! There are several types of pulsating solutions, wh
roughly can be classified into plain pulsating~with single
period of pulsations!, quasiperiodic~with several periods in-
volved in the pulse dynamics!, exploding soliton, which can
be considered as a special type of attractor, creeping solit
which are pulsating moving localized structures, and cha
pulsating solitons, which have a continuous spectrum of p
sations.

~3! Each of the above solutions exists in certain regions
parameters in the five-dimensional space. The regions of
istence of pulsating localized structures are comparable
even larger than regions for stationary solitons. Each pul
ing soliton exists in an isolated region so that we can clas
each of them as a different type of soliton. Crossing
borders of these regions results in the transformation of
solution into another type~into stationary soliton, front or
chaotic soliton!.

FIG. 18. Region in the parameter plane (n,e) where exploding
solitons exist. The star shows the point where the simulations
Fig. 2 were done. Other parameters ared520.1, b50.125, and
m520.1.
2-11
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~4! In some regions of parameters, solutions of vario
types can coexist resulting in a bistable and tristable beh
iors. In particular, we have found the regions of coexiste
for plain stationary or composite stationary solitons w
moving pulsating and plain pulsating solitons. There are a
the areas of coexistence between chaotic pulsating soli
and plain pulsating solitons. Double periodic solitons c
coexist with both chaotic solitons and plain stationary so
tons. This list can be continued.

~5! The transition between regular pulsations and cha
pulsations can happen as a single bifurcation as well a
sequence of bifurcations including the sequence of per
doubling bifurcations. More exotic structures like ‘‘doub
periodic chaotic soliton’’ can also appear.

~6! The regions of chaotic solitons contain soliton so
tions, which are not stable but play a certain role in t
overall dynamics. We have found examples of doub
periodic solutions being located inside the regions of cha
solutions. They might become unstable but continue to e
in wide range of parameters. It is very likely that this coe
istence of unstable solitons with stable pulsating ones g
rise to the chaotic localized structures. However, the la
assertion needs more investigations to draw definite con
sions.

Our results are quite general and cannot be directly
plied to any particular experiment. However, the knowled
we extracted from this study can be used to analyze the
perimental data. Passively mode-locked lasers with fast s
rable absorbers have all the physical effects, which are
scribed by the CGLE. Namely, the generation of short pul
p.
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is defined by the balance between the dispersion and no
earity as well as the balance between the gain and loss.
real system has also spectral filtering components. T
means that qualitatively these effects can be observed in
systems, and after rectification, can find certain applicatio

IX. CONCLUSIONS

In conclusion, we have found, new fascinating types
pulsating solitons predicted by the quintic compl
Ginzburg-Landau equation. Namely, different types of loc
ized pulsating solutions such as plain pulsating, explodi
creeping, and chaotic solutions have been found. PerioN
solutions, whereN takes almost any integer value, have be
also predicted. The route to chaos by period-doubling bif
cations has been exhaustively studied, and although b
quite common is not the only way to chaos we present in
paper. The regions of existence of various types of soluti
have been calculated in the five-dimensional param
space. The latter revealed large areas where various typ
pulses coexist resulting in the effects of bistability and tris
bility.
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