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To achieve multi-GeV electron energies in the laser wakefield accelerator~LWFA!, it is necessary to
propagate an intense laser pulse long distances in a plasma without disruption. One of the purposes of this
paper is to evaluate the stability properties of intense laser pulses propagating extended distances~many tens
of Rayleigh ranges! in plasma channels. A three-dimensional envelope equation for the laser field is derived
that includes nonparaxial effects such as group velocity dispersion, as well as wakefield and relativistic
nonlinearities. It is shown that in the broad beam, short pulse limit the nonlinear terms in the wave equation
that lead to Raman and modulation instabilities cancel. This cancellation can result in pulse propagation over
extended distances, limited only by dispersion. Since relativistic focusing is not effective for short pulses, the
plasma channel provides the guiding necessary for long distance propagation. Long pulses~greater than several
plasma wavelengths!, on the other hand, experience substantial modification due to Raman and modulation
instabilities. For both short and long pulses the seed for instability growth is inherently determined by the pulse
shape and not by background noise. These results would indicate that the self-modulated LWFA is not the
optimal configuration for achieving high energies. The standard LWFA, although having smaller accelerating
fields, can provide acceleration for longer distances. It is shown that by increasing the plasma density as a
function of distance, the phase velocity of the accelerating field behind the laser pulse can be made equal to the
speed of light. Thus electron dephasing in the accelerating wakefield can be avoided and energy gain increased
by spatially tapering the plasma channel. Depending on the tapering gradient, this luminous wakefield phase
velocity is obtained several plasma wavelengths behind the laser pulse. Simulations of laser pulses propagating
in a tapered plasma channel are presented. Experimental techniques for generating a tapered density in a
capillary discharge are described and an example of a GeV channel guided standard LWFA is presented.
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I. INTRODUCTION

The extremely large acceleration gradients generated
laser pulses propagating in plasmas can be used to acce
electrons@1–7#. In the standard laser wakefield accelera
~LWFA! a short laser pulse, on the order of a plasma wa
length long, excites a trailing plasma wave that can trap
accelerate electrons to high energy. There are a numbe
issues that must be resolved before a viable, practical h
energy accelerator can be developed. These include Ra
modulation, and hose instabilities that can disrupt the ac
eration process@8–16#. In addition, extended propagation o
the laser pulse is necessary to a achieve high electron en
In the absence of optical guiding the acceleration distanc
limited to a few Rayleigh ranges, which is far below th
necessary to reach GeV electron energies@1,17#. The physics
of laser beams propagating in plasmas has been studie
great detail@8,18–23#, and there is ample experimental co
firmation of extended guided propagation in plasmas
plasma channels@24–30#. In addition to these issues, depha
ing of electrons in the wakefield can limit the energy ga
Spatially tapering the plasma density may be useful in ov
coming electron dephasing in the wakefield.

This paper addresses the guiding and stability of an
1063-651X/2001/63~5!/056405~11!/$20.00 63 0564
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tense laser pulse in a uniform plasma channel and anal
the wakefield acceleration process in an inhomogene
channel. The coupled electromagnetic and plasma w
equations are derived for laser pulses propagating i
plasma channel with a parabolic radial density profile a
arbitrary axial density variation. For a uniform channel, R
man and modulation instabilities are analyzed and numer
solutions of the three-dimensional~3D! wave equation are
discussed. In particular, propagation of short laser pu
over many Rayleigh ranges is demonstrated for a unifo
channel. For a nonuniform channel the axial and radial e
tric fields associated with the plasma wave are obtained
side and behind the laser pulse. It is shown analytically a
through numerical simulations that by tapering the plas
density the wakefield phase velocity several plasma wa
lengths behind the laser pulse can equal the speed of ligin
vacuo. Tapered density channels have been produced exp
mentally in capillary discharges, and optical guiding in the
channels has been demonstrated. A variable channel de
may be generated by tapering the wall radius of the capill
@27#, or by applying different voltages to a segmented cap
lary.

The equations for the laser envelope and wakefield
derived in Sec. II. The formulation includes the effects
plasma density inhomogeneity, diffraction, nonparax
©2001 The American Physical Society05-1
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propagation, dispersion, and nonlinearities arising fr
plasma waves and relativity. The propagation of laser pu
in a uniform plasma channel is analyzed and discusse
Sec. III. Instabilities resulting in Raman scattering a
modulation of the laser pulse are also discussed. Nume
results illustrating pulse propagation in three dimensions
presented in Sec. IV. In Sec. V an example of a GeV wa
field accelerator in a plasma channel is discussed. L
wakefield generation and acceleration in a tapered pla
channel is the subject of Sec. VI. Section VI also discus
the experimental realization of a tapered plasma channe
summary of the results is given in Sec. VII.

II. LASER AND PLASMA WAVE EQUATIONS

In this section an envelope equation for a linearly pol
ized laser pulse propagating in a spatially tapered pla
channel, as shown in Fig. 1, is obtained. The wave equa
for the laser electric fieldE(r ,z,t) in a tapered channel, cor
rect to orderuEu3, is given by@8#

S“22
1

c2

]2

]t2DE5
vp

2~z!

c2 S 11
r 2

Rch
2 ~z!

1
dn

n0~z!
2

uau2

4 DE,

~1!

where vp(z)5@4pe2n0(z)/m#1/2 is the plasma frequency
n0(z) is the nonuniform plasma channel density,Rch(z) is
the channel radius associated with the parabolic density
file, dn is the plasma density perturbation associated with
wakefield, uau5(ueu/mcv0)^2E•E&1/2 is the magnitude of
the electron oscillation momentum normalized tomc, and the
brackets denote a time average. The first three terms on
right hand side of Eq.~1! represent, respectively, the par
bolic plasma density channel, the plasma wakefield, and
relativistic mass correction.

The electric field associated with the wakefieldEp(r ,z,t)
in spatially tapered plasma is given by

S ]2

]t2 1vp
2~z! DEp52

mc2

ueu
vp

2~z!

4
“uau2, ~2!

where the perturbed wakefield density perturbation is gi
by

FIG. 1. Schematic showing a laser pulse entering an axi
tapered plasma channel having a parabolic radial density profi
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n0~z!
5

2ueu
mvp

2~z!
“•Ep . ~3!

Equation~2! is correct to lowest order ina2, and has been
derived for a spatially varying plasma density, i.e.,vp is a
function of z.

The laser electric field can be written in terms of a slow
varying envelope and a rapidly varying phase

E~r ,z,t !5 1
2 ~mcv0 /ueu!a~r ,z,t !

3expF i S E
0

z

k0~z!dz2v0t D G ê'1c.c., ~4!

wherea(r ,z,t) is proportional to the complex field ampli
tude, i.e., approximately equal to the normalized vector
tential ~uau is approximately equal to the electron oscillatio
momentum normalized to mc!, k0(z) is the wave number,v0
is the carrier frequency,ê' is a transverse unit vector, c.c
denotes the complex conjugate, and^E•E&
5(mcv0 /e)2uau2/2. Substituting the above field represent
tion into Eq.~1! yields the following envelope equation:

S ¹'
2 2k0

21
v0

2

c2 1 i
]k0

]z
12ik0

]

]z
12i

v0

c2

]

]t

1
]2

]z22
1

c2

]2

]t2Da~r ,z,t !

5
vp

2

c2 S 11
r 2

Rch
2 1

dn

n0
2

uau2

4 Da~r ,z,t !. ~5!

In Eq. ~5!, it is convenient to change independent va
ables fromz,t to z,t, wheret5t2*0

zdz8/ng(z8). In terms of
the new variables, ]/]t→]/]t, ]/]z→]/]z
2@1/ng(z)#]/]t, and the laser envelope equation becom

F“'
2 1

4

r o
22
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r 2
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1ng
22~12bg
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]2

]z22
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n0
2

uau2

4 D Ga~r ,z,t!

50, ~6!

where

Dk2~z!5
v0

2

c2 2k0
2~z!2

vp
2~z!

c2 2
4

r 0
2 .

In obtaining Eq.~6!, the term 4/r 0
2, where r 0 is the initial

laser spot size, has been added and subtracted in ord

ly
5-2
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have finite transverse effects included in the expression
the linear group velocity. By defining the laser wave numb
and group velocity to be

k0~z!5c21Av0
224c2/r 0

22vp
2~z! ~7a!

and

ng~z!5c2k0~z!/v0 . ~7b!

respectively, Eq.~6! reduces to

F“'
2 1

4

r 0
22

vp
2~z!

c2

r 2

Rch
2 ~z!

12ik0~z!S 11
i

k0~z!ng~z!

]

]t D ]

]z

1 i
]k0

]z S 12
i

k0~z!ng~z!

]

]t D1ng
22~z!gg

22~z!
]2

]t2

2
vp

2~z!

c2 S dn

n0
2

uau2

4 D Ga~r ,z,t!50, ~8!

where gg5(12bg
2)21/2 is the relativistic factor associate

with the group velocity,bg5ng /c, and the small term pro
portional to]2/]z2 has been neglected. In Eq.~8!, the group
velocity dispersion~GVD! is represented by terms propo
tional to ]2/]t2 and higher ordert derivatives, introduced
through the]2/]t]z term @31#.

III. PULSE PROPAGATION IN A UNIFORM
PLASMA CHANNEL

We first consider the dynamics of a laser pulse propa
ing in an untapered plasma channel. For a uniform chan
the envelope and wakefield density equations become

F“'
2 1

4

r 0
22

vp
2

c2

r 2

Rch
2 12ik0S 11

i

k0ng

]

]t D ]

]z

1ng
22gg

22 ]2

]t22
vp

2

c2 S dn

n0
2

uau2

4 D Ga~r ,z,t!50,

~9a!

S ]2

]t2 1vp
2D dn

n0
5

c2

4
“

2ua~r ,z,t!u2, ~9b!

where

gg5v0 /~vp
214c2/r 0

2!1/2. ~10!

In the broad beam limit (r o@L, whereL is the pulse length!,
“

2>]2/]z2>c22]2/]t2, and Eq.~9b! becomes

S ]2

]t2 1vp
2D dn

n0
>

1

4

]2uau2

]t2 . ~11!

In addition, for a short pulse,L!lp we find from Eq.~11!
that dn/n0>uau2/4. In these limits the nonlinear terms, i.e
wakefield and relativistic terms, in Eq.~9a! cancel@32#. This
implies that the Raman and modulation instability can
each other out in these limits. The possibility that short la
05640
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pulses could propagate without instability was postulated
Ref. @1#. In addition, short pulses were shown to not under
relativistic focusing in Ref.@32#.

Pulse length envelope equation, pulse spreading, and. chirping

In the long pulse (L@lp), broad beam (r 0@L) limit it
follows from Eq. ~10! that udn/n0u
'O@(lp /L)2,(lp /r 0)2#uau2!uau2. In this limit dn/n0 can
be neglected. For a matched beam, i.e.,r 05(2cRch/vp)1/2

5const@see Eq.~22!#, andl/L!1, Eq. ~9a! reduces to

S ]2

]t22
2i

b2

]

]z
2

vp
2

4k0c2b2
ua~0,z,t!u2Da~0,z,t!50,

~12!

where

b252
1

k0ng
2gg

2 >2S vp
214c2/r 0

2

cv0
3 D , ~13!

is the GVD parameter. Note thatb2 is always negative for a
plasma. Equation~12! is identical in form to the conven
tional paraxial wave equation containing a nonlinear foc
ing term, with the transverse coordinate replaced witht. An
equation describing the evolution of the pulse durationt0(z)
can be obtained from Eq.~13! by takinga(0,z,t) to have a
Gaussian longitudinal profile, exp@2t2/t0

2(z)#, where L
5ct0(0). Substituting this profile into Eq.~12! and expand-
ing the nonlinear term, exp@22t2/t0

2(z)#'122t2/t0
2(z), and

matching t2 terms, yields the following equation for th
pulse duration:

]2T0~Z!

]Z2 2
1

T0
3~Z!

S 11sgn~b2!
I

I c
T0

2~Z! D50, ~14!

whereT0(Z)5t0(z)/t0(0) is the normalized pulse duration
Z5z/ZGVD is the normalized propagation distance,ZGVD

5t0
2(0)/(2ub2u) is the well known@31,33# dispersion dis-

tance ~equivalent to a longitudinal Rayleigh length!, I
5c^E•E&/4p5c(mcv0 /e)2uau2/8p is the peak laser inten
sity along thez axis,

I c5S 11
4c2

r 0
2vp

2D P0

pc2t0
2~0!

~15!

is a critical intensity, andP05m2c5/ueu258.71 GW. A
matched pulse in the longitudinal direction (]T0 /]Z50, T0
51) or soliton can exist only forb2,0 and I 5I c . The
variation of laser pulse duration has also been studied
others@34#. For short, broad pulses the nonlinear terms c
be neglected, and only the GVD term remains. In this lim
the envelope equation reduces to

S ]2

]t22
2i

b2

]

]zDa~z,t!50, ~16!

which is identical in form to the standard paraxial wa
equation. For an initially Gaussian pulse, the longitudin
evolution is given by@31#
5-3
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a~Z,t!5a0

1

AT0~Z!
expS 2

t2

t0
2~o!T0

2~Z! Dexp@ ix~Z,t!#,

where T0(Z)5(11Z2)1/2 is the normalized pulse duratio
and

x~z,t!5sgn~b2!S 2Z
t2

t0
2~z!

1
1

2
tan21~Z! D ,

is the phase. The frequency chirp associated with the pul
given by @31#

dv52]x/]t52 sgn~b2!Z@t/t0
2~0!T0

2~Z!#, ~17!

whereb2,0 for a plasma. The frequency chirp varies li
early along the pulse and increases linearly with propaga
distance.

IV. SIMULATION OF PULSE PROPAGATION IN
CHANNELS

In this section we present numerical solutions of Eqs.~9a!
and ~9b!, illustrating the characteristics of long and sho
pulses propagating in a plasma channel@10–17,35#. The
channel radius is chosen such that it is initially matched
the part of the pulse containing the maximum power, i
Rch5ZR /A12P/Pp, whereP is the peak laser power an
Pp@GW#517.4(lp /l)2 is the relativistic self-focusing
power @see Eq.~22! and Ref.@14##. Equations~9a! and ~9b!
are solved numerically on a Cartesian~x,y,z! grid. It is nu-
merically expedient to transform away the cross derivat
term in Eq.~9a!. To this end Eq.~9a! is written in the form of
a generalized nonlinear Schro¨dinger equation by expandin
the operator
-
to

r

e

05640
is

n

t
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e

S 11
i

k0ng

]

]t D 21

' (
m50

N S 2
i

k0ng

]

]t D m

,

wherel/L!1 is the expansion parameter. A sufficient num
ber of terms is kept to insure convergence; in the followi
illustrationsN54 is used. Nonparaxial contributions to th
wave operator have been considered by others in nume
simulations@11,36#. The spatial profile of the electric field a
z50 is specified, and then propagated forward using a se
implicit split-step method@31#. Linear terms in the wave
equation representing GVD and transverse focusing eff
are advanced in Fourier space. Consequently, the ele
field must satisfy periodic axial and transverse bound
conditions. The remaining terms are handled in configurat
~x,y,z! space by finite differencing the]/]t and higher order
derivatives. The equation for the density perturbation
solved at every step assuming thatdn and its temporal de-
rivatives are zero before the pulse.

The initial pulse profile is shown in Fig. 2, and is given b

FIG. 2. Schematic diagram of the axial profile of the initial las
pulse.
a~r ,0,t!5a0 exp~2r 2/r 0
2!H sin~pt/2Tr !, 0,t,Tr

1, Tr,t,T01Tr

cos~p~t2T02Tr !/2Tr !, T01Tr,t,T012Tr ,
d in
red

ner-
the

is

his
ity
n in
where Tr is the rise and decay time, andT0 specifies the
duration of the flat portion of the pulse

Long pulse

In this example the pulse duration is;5tp , where tp
52p/vp is the plasma period (T055tp , Tr5tp/2). The
ambient plasma density is taken to ben051.2431018cm23

(lp530mm). The laser pulse has a wavelengthl51 mm
and an initial spot size of 17.1mm, corresponding to a Ray
leigh length of 0.1 cm. The initial peak intensity is taken
be I 53.431017W/cm2 (a050.5). The critical power for
relativistic self-focusing isPp515 TW, while the peak lase
power is 1.5 TW. Since the pulse power is well belowPp ,
the pulse would diffract within a few Rayleigh lengths in th
absence of channel guiding. In the examples considere
this paper the laser power is chosen to be small compa
with Pp to avoid nonlinear focusing effects@19#. The rise
time is chosen so that a large density perturbation is ge
ated and seeds the Raman instability. The growth rate of
conventional forward Raman instability@37# is G
5(a0vp

2)/(2&v0) which corresponds to ane-folding length
of ;ZR for these parameters.

Figures 3 and 4 show theuau2 anddn/n0 profile along a
planar cut through the center of the pulse (y50) atz50 and
z55.5ZR . The pulse undergoes a Raman instability and
modulated at a period of;tp . The profiles of the original
pulse and wakefield are highly distorted as a result of t
instability. Toward the back of the pulse, where the intens
is largest, some transverse self-focusing occurs, as show
5-4
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Fig. 3~b!. The wakefield amplitude shown in Fig. 4~b! varies
within the pulse and has transverse structure. After propa
ing 5.5ZR , the normalized pulse intensity and density pert
bation are large enough that the assumptions underlying
governing equations (uau,1,dn/n0,1) are no longer valid.

Figure 5 shows profiles ofuau2 and the density perturba
tion along the pulse axis as a function of propagation d
tance. The modulations travel backwards in the group ve
ity frame. Figure 5~b! is a shaded contour plot of the on-ax
density fluctuation as a function oft andz. The amplitude of
the density perturbation increases with propagation dista
as the pulse is self-modulated. It should be noted that
wakefield has a phase velocity that is slower than the gr
velocity of the pulse@38,39#.

Short pulse

In this example the pulse duration is;tp , (T050, Tr
5tp/2). Figure 6 shows a planar cut through the center

FIG. 3. Surface plots of the normalized intensityuau2

5ueE/mcv0u2 on a planar cut through the center of the laser pu
(y50) at z50 and z55.5ZR . The parameters areT055tp , Tr

5tp/2, n051.2431018 cm23 (lp530mm), l51 mm, r 0

517.1mm, anda050.5.
05640
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the pulse of the normalized intensity atz50 andz530ZR .
The pulse undergoes significant longitudinal compress
and intensity gain due to modulation instability. The pul
compresses by a factor of;2, while the intensity increase
by ;2.4. After a distancez530ZR , the assumption tha
uau2!1, which underlies the propagation equation is v
lated. Forz,30ZR , the present simulation reproduces t
results of an earlier 2D axis-symmetric simulation that is n
limited to uau2!1.

The observed pulse compression and intensity gain
accompanied by an increase in the wakefield amplitude
by the generation of low frequency components within t
pulse. Figure 7 shows the amplitude of the density pertur
tion on-axis atz50 ~dashed curve! and z530ZR ~solid
curve!. The wakefield density perturbationdn/n0 increases
due to the pulse distortion. Unlike in the previous example
Raman instability for a long pulse, no slippage of the wa
relative to the pulse occurs. Figure 8 shows the Fourier tra
form of the electric field on axis initially and after propaga
ing 30ZR . The spectrum broadens from 2vp to ;6vp ,
while the dominant frequency component shifts downwa
by ;3vp .

e

FIG. 4. Surface plots of the normalized density perturbat
dn/n0 at z50 andz55.5ZR , corresponding to the pulse shown
Fig. 3.
5-5
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The conventional modulation instability~MI ! is recovered
from Eq. ~9a! by considering an infinitely long beam tha
does not generate a density perturbation and hence, is
Raman unstable. The MI is unstable in the range of w
numbers betweenk50 and k5kmax5a0v0 /&c with the

maximum growth rate ofGMI5vp
2a0

2/8v0 occurring for k
5kmax/& @37#. A short pulse of lengthL<lp is not unstable
to Raman instability. However, it has an effective wave nu
ber k5p/L and is subject to a modulation instability whe
L.p/kmax. For parameters of the simulation,L
521p/kmax, so that the effective wave number of the pul
is within the linearly unstable range and the maximu
growth rate of the conventional MI corresponds to
e-folding length of 5ZR . Longitudinal compression and a
increase in intensity of short pulses have also been repo
by others@34#.

V. GeV ELECTRON ACCELERATION IN A
PLASMA CHANNEL

To utilize laser pulses for electron acceleration or rad
tion generation, it is necessary to propagate intense pu
many Rayleigh lengths in plasma without disruption. Th
can be accomplished by propagating a short pulse i
plasma channel. When the pulse length is shorter tha
plasma wavelength, the density perturbation genera

FIG. 5. Normalized on-axis (r 50) intensity ~a! and density
perturbation~b! as a function oft/tp and the normalized propaga
tion distancez/ZR .
05640
ot
e
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ed

-
es

a
a
d

within the pulse tends to cancel the relativistic effects so t
the pulse is stable to both modulation and Raman insta
ties. In this parameter regime, group velocity dispersion
be minimized by making the dispersion lengthZGVD

FIG. 6. Surface plots of the normalized intensityuau2 on a planar
cut through the center of the laser pulse (y50) at z50 and z
530ZR . The parameters areT050, Tr5tp/2, n051.24
31018 cm23 (lp530mm), l51 mm, r 0517.1mm, anda050.5.

FIG. 7. Wakefield density variationdn/n0 and z50 ~dashed
curve! and z530ZR ~solid curve! associated with the laser puls
shown in Fig. 6. The intensity profile of the pulse atz530ZR shows
the location of the pulse relative to the wake.
5-6
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>p@v0
2/(vp

214c2/r 0
2)#L2/l ~L is the pulse length! much

larger than the Rayleigh length. The effect is that the pu
can propagate undistorted over the long distances requ
for accelerator applications. Assuming that the pulse pro
gates undisrupted, the acceleration distance is limited by
dephasing lengthLd'gg

2lp , wheregg5v0 /Avp
214c2/r 0

2.
The electron energy gain isDW>aueEzouLd , where Ezo

>udn/n0uEwb /(118c2/r 0
2vp

2), a> 1
3 accounts for dephasin

~slippage! and transverse focusing requirements, andEwb
5vpmc/ueu is the wavebreaking field. An additional limita
tion on the acceleration distance in the channel-gui
LWFA is the pulse energy depletion length,Le
>uau2(v0 /vp)2(Ewb /Ez0)2L.

An example of the extended propagation of a short pu
in a plasma channel is shown in Fig. 9. The parameters
n051.131017cm23 (lp5100mm), l52pc/v051 mm,
r 0570mm, and a050.6; ct05L537mm is the pulse
length; ZR51.5 cm; Pp5174 TW is the critical power for
relativistic focusing@18#; P538 TW is the peak laser puls
power;Ld555ZR ; ZGVD>2300ZR ; andLe5865ZR . Figure
9 shows the laser intensity and corresponding density pe
bation on a planar cut through the center of the pulse az
50 and atz553ZR . Little distortion of the pulse or the
wake is observed over this distance. In this example the p
wakefield is uEzo /Ewbu'0.1, the peak perturbed density
udn/n0u'0.15 and the estimated energy gain isDW
5aueEz0uLd>0.9 GeV. In the following section, we show
how tapering the plasma channel can increase this en
gain.

VI. LWFA IN A TAPERED PLASMA CHANNEL

In this section the wakefield generated by a laser puls
tapered plasma channel is analyzed. For this purpose the
axis accelerating wakefield within and behind the laser pu
is obtained. The normalized electric field associated with
wakefield, from Eq.~2!, is given by

]2Êp

]t2 1vp
2~z!Êp52

c

4vp~0!
vp

2~z!“ua~r ,z,t!u2, ~18!

whereÊp5Ep /Ewb , Ewb5(mc/ueu)vp(0) is the wavebreak-
ing field, and the perturbed plasma density, from Eq.~3!, is

FIG. 8. On-axis electric-field spectrum atz50 and 30ZR , asso-
ciated with the laser pulse shown in Fig. 6.
05640
e
ed
a-
he

d

e
re

r-

ak

gy

in
n-
e
e

dn

n0~z!
52

vp~0!

c

c2

vp
2~z!

“•Êp . ~19!

To solve for Êp in Eq. ~18!, it is necessary to obtain th
normalized field amplitudea(r ,z,t) in a tapered channel
This is accomplished by using a WKB solution of Eq.~8!.
Neglecting nonlinear terms, GVD, and terms of orderl/ct0 ,
Eq. ~8! simplifies to

F“'
2 1

4

r 0
22

vp
2~z!

c2

r 2

Rch
2 ~z!

12ik0~z!
]

]z
1 i

]k0~z!

]z Ga~r ,z,t!

50. ~20!

For a matched laser pulse, i.e., a spot sizer 0 independent of
z, having a Gaussian radial profile

FIG. 9. Surface plots of the normalized intensityuau2 and den-
sity perturbationdn/n0 on a planar cut through the center of th
pulse forl51 mm, lp5100mm, andr 0570mm, at ~a! z50 and
~b! z553ZR , where ua(z50)umax

2 50.36 and udn(z50)/n0umax

50.15.
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a~r ,z,t!5A~z,t!exp~2r 2/r 0
2!, ~21!

we find that the channel radius is given by

Rch~z!5
r 0

2

2

vp~z!

c
. ~22!

The envelope equation forA(z,t) becomes

S 2k0~z!
]

]z
1

]k0~z!

]z DA~z,t!50, ~23!

with the solution

A~z,t!5A0~t!@k0~0!/k0~z!#1/2. ~24!

Using Eq.~21! together with Eq.~24!, the normalized axial
electric field, within the laser pulse is given by

Êp,z~r 50,z,t!>2
vp~z!

4vp~0!

k0~0!

k0~z!

c

ng~z!

3E t ]A0
2~t8!

]t8
sin@vp~z!~t82t!#dt8,

~25!

where]/]z has been approximated by2ng
21]/]t. The axial

field behind the pulse is obtained from the homogene
solution of Eq.~25! together with the appropriate continuit
conditions at the back of the pulse,t5t0 . The laser pulse is
taken to have the envelope

A0~t!5a0 sin~pt/t0!, ~26!

for 0<t<t0 , and zero otherwise. Note that the front of t
pulse is att50 while the back of the pulse is located att
5t0 . Substituting Eq.~26! into ~25!, the axial component o
the wakefield within the pulse (0<t<t0) is

Êp,z~r 50,z,t!52E0~z!$sin@vp~z!t#

2~vp~z!t0/2p!sin~2pt/t0!%,

~27a!

and behind the pulse (t>t0) is

Êp,z~r 50,z,t!522E0~z!sin~vp~z!t0/2!

3cos@vp~z!~t2t0/2!#, ~27b!

where

E0~z!5
a0

2

8

vp~z!

vp~0!

k0~0!

k0~z!

c

ng~z!

~2p/t0!2

@vp
2~z!2~2p/t0!2#

.

~28!

The phase of the axial component of the wakefield beh
the laser pulse isc(z,t)5vp(z)(t2t0/2). In the laboratory
frame the frequency and wave number associated with
phase of the accelerating wave are
05640
s

d

e

V~z![
]c~z,t!

]t
5vp~z!, ~29a!

K~z,t![2S ]

]z
2

1

ng~z!

]

]t Dc~z,t!

5
vp~z!

ng~z! S 12
]vp~z!

]z
~t2t0/2! D . ~29b!

respectively. Using Eqs.~29!, the standard definition for the
phase velocity,nph, yields

nph~z,t![
V~z,t!

K~z,t!

5
ng~z!

$12@]vp~z!/]z#@ng~z!/vp~z!#~t2t0/2!%
.

~30!

Expressions similar to Eqs.~29! and ~30! were applied by
Bulanov et al. @23# to examine the variation of the phas
velocity for a particular density profile. Here we make use
Eqs.~29! and~30! to determine the precise form of the de
sity tapering required to achieve optimal acceleration. T
wavelength associated with the wakefield islw(z,t)
52p/K(z,t), whereK is given by Eq.~29b!, and is a func-
tion of z and t for a tapered plasma density. The phase
locity of the wakefield increases~decreases! with distance
from behind the pulse for an increasing~decreasing! plasma
density. The location behind the pulse,tc , for which the
phase velocity equals the speed of light in vacuum is giv
by

tc~z!5S 1

2

vp
2

v0
2 1

2c2

v0
2r 0

2D Y S c
] ln vp

]z D1
t0

2
. ~31!

In generaltc is a function ofz andt, and as the laser puls
propagates the location behind the pulse for whichnph5c,
i.e., the luminous point, moves relative to the back of t
pulse. The existence of a luminous point behind the la
pulse was noted in an earlier wakefield simulation@40#.

For the luminous point to remain fixed relative to th
wakefield, sayN plasma wavelengths behind the pulse, t
plasma density taper must satisfy

]v̂p /] ẑ5~v̂p
2/2pN!@~pr 0 /l!2v̂p

211#, ~32!

wherev̂p5vp( ẑ)/v0 , l52pc/v0 , and ẑ5z/ZR .
The solid curve in Fig. 10 shows the numerical solution

Eq. ~32! for N51.5, and with the same parameters used
Fig. 9. In Fig. 10, the plasma period is normalized to t
initial pulse duration. To facilitate the fully numerical solu
tion of Eqs.~2! and~8!, an analytical form forvp(z) is used;

vp~z!5vp~0!expS (
j 51

4

a j ẑ
j D ,

wherea j are the fitting constants. The dashed curve in F
10 represents a best fit to the numerical solution using
5-8
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analytic form. To provide guiding, the plasma channel rad
varies as indicated by Eq.~22!.

The plasma density in Fig. 10 increases such that, aft
distance of ;50ZR , the short pulse requirement (t0
,2p/vp) breaks down and pulse distortion occurs as sho
in Fig. 11. The curves in Fig. 11 represent the scaled on-
laser intensity atz50 andz552ZR resulting from a numeri-
cal solution of Eqs.~2! and ~8!. The pulse distortion shown
in Fig. 11 is not described by the WKB solution given b
Eqs.~21! and ~24!, and is similar to that shown in Fig. 6 i
which t052p/vp .

The energy gain of a test particle in the wake of the la
pulse (t.t0) is obtained by solving the following couple
equations for the relativistic factorg and the wake phaseC
at the position of the particle,

]g

]z
52E0~z!sin@vp~z!t0/2#cosC, ~33a!

C5Cuz0
1

vp~z!

c E
z0

z

dzF 1

A121/g2
2

1

bg~z!G , ~33b!

wherez0 is the initial position of the particle.
Figure 12 shows the normalized on-axis longitudinal el

tric field, Êp,z (r 50,z,t), as a function oftc/lp (z50) and
scaled propagation distancez/ZR . Panel~a! shows the ana-

FIG. 10. Solution of Eq.~32! showing the normalized plasm
frequency as a function ofz/ZR , for N51.5, r 050.7lp , v0 /vpo

5100, a050.6, andct050.37lp . The dashed curve denotes th
analytic form forvp used in the numerical simulations discussed
the text.

FIG. 11. Numerical simulations showing the on-axis profiles
the scaled intensity atz50 ~dashed curve! and z552ZR ~solid
curve! for a pulse propagating in a tapered channel in which
plasma frequency is given by the dashed curve in Fig. 10. The o
parameters are the same as for Fig. 9.
05640
s

a

n
is

r

-

lytical solution given by Eqs.~27a!, ~27b!, and ~28!. The
white dashed curve denotes the trajectory of a test par
obtained from solving Eqs.~33! with the analytic wakefields.
The particle is injected into the luminous part of the wa
and remains in an accelerating and focusing region. Pane~b!
shows the longitudinal electric field resulting from the fu
numerical calculation. Initially (z/ZR<20), oscillations oc-
cur due to the slight mismatch between the laser pulse
the channel. The luminous accelerating region, however
preserved and evolves in a manner similar to the anal
model.

The solid curve in Fig. 13 shows the test particle ene

f

e
er

FIG. 12. ~a! Normalized on-axis longitudinal electric field as
function of the propagation distancez/ZR and timetc/lp0 obtained
using the analytic model.~b! The full numerical simulation. Here
lpo[lp (z50). The parameters are the same as used in Fig.
The white, dashed curve in panel~a! denotes the trajectory of a tes
particle injected into the luminous part of the wake.

FIG. 13. The solid curve denotes the electron energy vs pro
gation distance for the test particle trajectory shown in Fig. 12~a!.
The dashed curve shows the energy obtained using an untap
channel.
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as a function of propagation distance corresponding to
trajectory in Fig. 12~a!. The dashed curve shows the soluti
obtained for an untapered channel. The predicted energy
of 4 GeV is four times larger than the gain obtained using
untapered channel. Note also the dephasing length is la
in the tapered channel.

In an experimental realization of a tapered plasma chan
the density can be tailored to closely follow the analytic
form given by Eq.~32!, with small variations due to voltag
jitter, noise, etc. To quantify the role of the density variatio
we have investigated the effects of density profile pertur
tions on the energy gain. As an example we assume tha
plasma frequency is given byvp(z)5vp0(z) b1« sin(z/Lp)c,
wherevp0(z) is a solution of Eq.~32!, and« andLp are the
amplitude and scale length of the perturbation, respectiv
For the example shown in Fig. 11, we find that, for«<0.1
and for a broad range ofLp(Ld/100,Lp,100Ld), the en-
ergy gain is not significantly diminished~;3.5 GeV!.

Realization of tapered plasma channels

Capillary discharges are ideally suited for generating v
able density plasma channels. In its simplest form, the de
consists of a thin hollow cylinder of insulating material su
as polyethylene with high voltage electrodes at the ends,
a plasma column is produced from wall material when
appropriate voltage pulse is applied. Capillary dischar
have been used extensively to generate plasma columns
the on-axis density minimum required for optical guiding
intense laser pulses. High efficiency transmission over
tances of several centimeters was demonstrated in se
experiments@25–27#, with guided laser spot sizes of 20–3
mm. Hydrodynamic simulations of capillary discharges@27#
indicate that the on-axis plasma densityn0 increases with the
discharge currentI d or voltageVd and scales asRc

23, where
Rc is the radius of the capillary. This suggests that plas
density can be varied by changing the channel radius or
charge current or voltage along the capillary. Control of
plasma density by tapering the channel radius was dem
strated in Ref.@27#. Plasma densities at each end of the c
illary were deduced from interferometry measurements
2-cm-long capillary with diameter tapered from 300 to 5
mm showed a factor of 2 drop in the on-axis plasma dens
A similar capillary with a 500–1400-mm taper exhibited a
density reduction of more than an order of magnitude, w
Ne going from 1019 to 831017cm23. Results were consisten
with one-dimensional hydrodynamic simulations.

Other experiments demonstrated an alternative appro
that produces an axial variation in the channel density
varying the discharge currentI d . This is accomplished by
dividing the capillary into separate segments, each conne
to a separate capacitor that can be charged to a diffe
voltage. An experimental demonstration of the segmen
capillary technique was carried out using a three stage,
mm-diameter capillary and a Ti sapphire laser at 800 n
producing 40 mJ in a 160-fs-long pulse with a pulse rep
tion rate of 10 Hz. The group velocity of the laser pul
propagating through a single stage of the capillary was m
sured using an autocorrelator, thus providing a direct m
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sure of the plasma density. Raman backscatter provided
additional density diagnostic.

The top part of Fig. 14 illustrates the configuration for
three stage segmented capillary. A typical axial plasma d
sity profile is shown in the bottom portion of the figure for
case withV1,V2,V3 . The plasma density is expected to b
approximately constant in each segment, as shown in
figure. Since the capillary diameter remains the same in e
segment, the guided laser spot size should be nearly con
throughout the capillary, thus preserving the high intens
required for wakefield generation.

VII. CONCLUSIONS

This paper presents an analysis of intense laser p
propagation in a plasma channel. The results of this study
relevant to a number of areas including laser wakefield
celeration and x-ray laser development. The analysis is ba
on a coupled pair of equations for the laser and the plas
electric fields and includes the effects of 3D and nonpara
propagation, group velocity dispersion, relativistic ma
variation, and a tapered plasma channel. It is shown
propagation of short and long pulses can be markedly dif
ent. For a pulse that is long compared to a plasma wa
length, Raman, and modulational instability lead to pu
breakup and disruption after a few Rayleigh ranges. On
other hand, for pulses that are short compared to a pla
wavelength, extended propagation is demonstrated. I
shown that for broad, short pulses the Raman and mod
tional instability terms in the wave equation cancel out.
this limit, laser propagation of a laser pulse is only limited
pulse dispersion. For an up-tapered plasma channel

FIG. 14. A segmented capillary discharge that produces an a
variation in the plasma density. The top portion of the figure illu
trates the configuration for a three-stage segmented capillary
typical axial plasma density profile is shown at the bottom port
of the figure forV1,V2,V3 .
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shown that the phase velocity of the wakefield behind
laser pulse increases with distance from the back of
pulse. Several wavelengths behind the pulse the wake p
velocity can equal the speed of light vacuum. Finally, wa
fields in a tapered plasma have been numerically simula
In a tapered channel, the dephasing distance is incre
ys
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relative to the untapered channel, and larger energy gains
achieved.

ACKNOWLEDGMENTS

This work was supported by the Department of Ener
and the Office of Naval Research.
,

ev.

,

-

,

pl.

,

,

s

le,

s,

ma
.
s.

as

G.

.

@1# P. Sprangle, E. Esarey, A. Ting, and G. Joyce, Appl. Ph
Lett. 53, 2146~1988!.

@2# E. Esarey, P. Sprangle, J. Krall, and A. Ting, IEEE Tra
Plasma Sci.24, 252 ~1996!.

@3# A. Modena, Z. Najmudin, A. E. Dangor, C. E. Clayton, K. A
Marsh, C. Joshi, V. Malka, C. B. Darrow, and C. Danso
IEEE Trans. Plasma Sci.24, 289 ~1996!.

@4# C. I. Moore, A. Ting, K. Krushelnick, E. Esarey, R. F. Hub
bard, B. Hafizi, H. R. Burris, C. Manka, and P. Sprangle, Ph
Rev. Lett.79, 3909~1997!; E. Esarey, B. Hafizi, R. Hubbard
and A. Ting,ibid. 80, 5552~1998!.

@5# D. Gordon, K. C. Tzeng, C. E. Clayton, A. E. Dangor, V
Malka, K. A. Marsh, A. Modena, W. B. Mori, P. Muggli, Z
Najmudin, D. Neely, C. Danson, and C. Joshi, Phys. Rev. L
80, 2133~1998!.

@6# D. Umstadter, S. Y. Chen, A. Maksimchuk, G. Mourou, and
Wagner, Science273, 472 ~1996!.

@7# F. Dorchies, J. R. Marques, B. Cros, G. Matthieussent,
Courtois, T. Velikoroussov, P. Audebert, J. P. Geindre, S.
bibo, G. Hamoniaux, and F. Amiranoff, Phys. Rev. Lett.82,
4655 ~1999!.

@8# E. Esarey, P. Sprangle, J. Krall, and A. Ting, IEEE Tra
Plasma Sci.33, 1879~1997!.

@9# P. Chessa, P. Mora, and T. M. Antonsen, Phys. Plasma5,
3451 ~1998!.

@10# T. M. Antonsen and P. Mora, Phys. Fluids B5, 1440~1993!.
@11# P. Mora and T. M. Antonsen, Phys. Plasmas4, 217 ~1997!.
@12# C. D. Decker and W. B. Mori, Phys. Rev. Lett.72, 490~1994!;

Phys. Rev. E51, 1364~1995!.
@13# W. B. Mori, IEEE J. Quantum Electron.33, 1942~1997!.
@14# P. Sprangle, B. Hafizi, and J. R. Penano, Phys. Rev. E61, 4381

~2000!.
@15# P. Sprangle, J. Krall, and E. Esarey, Phys. Rev. Lett.73, 3544

~1994!.
@16# B. J. Duda and W. B. Mori, Phys. Rev. E61, 1683~2000!.
@17# P. Sprangle and B. Hafizi, Phys. Plasmas6, 1683~1999!.
@18# A. B. Borisov, A. V. Borovskiy, O. B. Shiryaev, V. V. Ko-

robkin, A. M. Porokhorov, J. C. Solem, T. S. Luk, K. Boye
and C. K. Rhodes, Phys. Rev. A45, 5830~1992!; B. Hafizi, A.
Ting, P. Sprangle, and R. F. Hubbard, Phys. Rev. E62, 4120
~2000!.

@19# P. Sprangle, B. Hafizi, and P. Serafim, Phys. Rev. Lett.82,
1173 ~1999!; Phys. Rev. E59, 3614~1999!.

@20# E. Esarey, C. B. Schroeder, B. A. Shadwick, J. S. Wurtele,
W. P. Leemans, Phys. Rev. Lett.84, 3081~2000!.

@21# N. E. Andreev, L. M. Gorbunov, and A. A. Frolov, Fiz
Plazmy24, 888 ~1998! @Plasma Phys. Rep.24, 825 ~1998!#.
.

.

,

.

t.

.

.
-

.

d

@22# N. E. Andreev, L. M. Gorbunov, V. I. Kirsanov, K. Nakajima
and A. Ogata, Phys. Plasmas4, 1145~1997!.

@23# S. Bulanov, N. Naumova, F. Pegoraro, and J. Sakai, Phys. R
E 58, R5257~1998!.

@24# K. Krushelnick, A. Ting, C. I. Moore, H. R. Burris, E. Esarey
P. Sprangle, and M. Baine, Phys. Rev. Lett.78, 4047~1997!.

@25# Y. Ehrlich, C. Cohen, D. Kaganovich, A. Zigler, R. F. Hub
bard, P. Sprangle, and E. Esarey, J. Opt. Soc. Am. B15, 2416
~1998!.

@26# D. Kaganovich, A. Ting, C. I. Moore, A. Zigler, H. R. Burris
Y. Ehrlich, R. Hubbard, and P. Sprangle, Phys. Rev. E59,
R4769~1999!.

@27# D. Kaganovich, P. Sasorov, C. Cohen, and A. Zigler, Ap
Phys. Lett.75, 772 ~1999!.

@28# C. G. Durfee III and H. M. Milchberg, Phys. Rev. Lett.71,
2409~1993!; C. G. Durfee III, J. Lynch, and H. M. Milchberg
Phys. Rev. E51, 2368 ~1995!; C. G. Durfee III, T. R. Clark,
and H. M. Milchberg, J. Opt. Soc. Am. B13, 59 ~1996!.

@29# H. M. Milchberg, T. R. Clark, C. G. Durfree, T. M. Antonsen
and P. Mora, Phys. Plasmas3, 2149~1996!.

@30# P. Volfbeyn, E. Esarey, and W. P. Leemans, Phys. Plasma6,
2269 ~1999!.

@31# G. P. Agrawal,Nonlinear Fiber Optics~Academic, San Diego,
CA, 1995!.

@32# P. Sprangle, E. Esarey, and A. Ting, Phys. Rev. A41, 4463
~1990!.

@33# C. A. Kapetanakos, B. Hafizi, H. M. Milchberg, P. Sprang
R. Hubbard, and A. Ting, IEEE J. Quantum Electron.QE-35,
565 ~1999!.

@34# C. Ren, B. J. Duda, R. G. Hemker, W. B. Mori, T. Katsoulea
T. M. Antonsen, Jr., and P. Mora, Phys. Rev. E63, 026411
~2001!.

@35# R. F. Hubbard, P. Sprangle, and B. Hafizi, IEEE Trans. Plas
Sci. 28, 1159 ~2000!; R. F. Hubbard, D. Kaganovich, B
Hafizi, C. I. Moore, P. Sprangle, A. Ting, and Z. Zigler, Phy
Rev. E63, 036502~2001!.

@36# J. Krall, E. Esarey, P. Sprangle, and G. Joyce, Phys. Plasm1,
1738 ~1994!.

@37# P. Sprangle, E. Esarey, and B. Hafizi, Phys. Rev. Lett.79,
1046 ~1997!; Phys. Rev. E56, 5894~1997!.

@38# W. P. Leemans, C. W. Siders, E. Esarey, N. E. Andreev,
Shvets, and W. B. Mori, IEEE Trans. Plasma Sci.24, 331
~1996!.

@39# N. E. Andreev, V. I. Kirsanov, L. M. Gorbunov, and A. S
Sakharov, IEEE Trans. Plasma Sci.24, 331 ~1996!.

@40# T. Katsouleas, Phys. Rev. A33, 2056~1986!.
5-11


