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To achieve multi-GeV electron energies in the laser wakefield accelefid@FA), it is necessary to
propagate an intense laser pulse long distances in a plasma without disruption. One of the purposes of this
paper is to evaluate the stability properties of intense laser pulses propagating extended distangdsns
of Rayleigh rangesin plasma channels. A three-dimensional envelope equation for the laser field is derived
that includes nonparaxial effects such as group velocity dispersion, as well as wakefield and relativistic
nonlinearities. It is shown that in the broad beam, short pulse limit the nonlinear terms in the wave equation
that lead to Raman and modulation instabilities cancel. This cancellation can result in pulse propagation over
extended distances, limited only by dispersion. Since relativistic focusing is not effective for short pulses, the
plasma channel provides the guiding necessary for long distance propagation. Londgrelstes than several
plasma wavelengthson the other hand, experience substantial modification due to Raman and modulation
instabilities. For both short and long pulses the seed for instability growth is inherently determined by the pulse
shape and not by background noise. These results would indicate that the self-modulated LWFA is not the
optimal configuration for achieving high energies. The standard LWFA, although having smaller accelerating
fields, can provide acceleration for longer distances. It is shown that by increasing the plasma density as a
function of distance, the phase velocity of the accelerating field behind the laser pulse can be made equal to the
speed of light. Thus electron dephasing in the accelerating wakefield can be avoided and energy gain increased
by spatially tapering the plasma channel. Depending on the tapering gradient, this luminous wakefield phase
velocity is obtained several plasma wavelengths behind the laser pulse. Simulations of laser pulses propagating
in a tapered plasma channel are presented. Experimental techniques for generating a tapered density in a
capillary discharge are described and an example of a GeV channel guided standard LWFA is presented.
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[. INTRODUCTION tense laser pulse in a uniform plasma channel and analyzes
the wakefield acceleration process in an inhomogeneous
The extremely large acceleration gradients generated bghannel. The coupled electromagnetic and plasma wave
laser pulses propagating in plasmas can be used to acceler&@uations are derived for laser pulses propagating in a
electrons[1-7]. In the standard laser wakefield acceleratorpl?)ima Ché?”lng' W'T a p'artgbolllg radial .?ensnyhprofllle Snd
(LWFA) a short laser pulse, on the order of a plasma wave'P'Iary axial Gensity variation. -or a unitorm channet, a-
. o an and modulation instabilities are analyzed and numerical
length long, excites a trailing plasma wave that can trap an

lerate elect t0 hiah Th b lutions of the three-dimensionéD) wave equation are
accelerate electrons 1o high energy. There aré a NUMDEr Qiqq ssed. In particular, propagation of short laser pulses

issues that must be resolved before a viable,.practical highsyer many Rayleigh ranges is demonstrated for a uniform
energy accelerator can be developed. These include Ramathannel. For a nonuniform channel the axial and radial elec-
modulation, and hose instabilities that can disrupt the accelyic fields associated with the plasma wave are obtained in-
eration procesf8—1€]. In addition, extended propagation of side and behind the laser pulse. It is shown analytically and
the laser pulse is necessary to a achieve high electron energyirough numerical simulations that by tapering the plasma
In the absence of optical guiding the acceleration distance igensity the wakefield phase velocity several plasma wave-
limited to a few Rayleigh ranges, which is far below that|engths behind the laser pulse can equal the speed ofitight
necessary to reach GeV electron enerflle$7]. The physics  vacuo Tapered density channels have been produced experi-
of laser beams propagating in plasmas has been studied imentally in capillary discharges, and optical guiding in these
great detai[8,18-23, and there is ample experimental con- channels has been demonstrated. A variable channel density
firmation of extended guided propagation in plasmas andnay be generated by tapering the wall radius of the capillary
plasma channel[24-30. In addition to these issues, dephas-[27], or by applying different voltages to a segmented capil-
ing of electrons in the wakefield can limit the energy gain.lary.
Spatially tapering the plasma density may be useful in over- The equations for the laser envelope and wakefield are
coming electron dephasing in the wakefield. derived in Sec. Il. The formulation includes the effects of
This paper addresses the guiding and stability of an inplasma density inhomogeneity, diffraction, nonparaxial
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Tapered Plasma Channel sn _ | e|
——=—->-—V"-E,. 3
Laser Pulse No(z) mow p( Z) P

Ren(2)
/\_ Equation(2) is correct to lowest order ia?, and has been

derived for a spatially varying plasma density, i.@, is a
function of z
The laser electric field can be written in terms of a slowly

= ‘/ varying envelope and a rapidly varying phase
E(r,z,t)=3(mcwo/|e)a(r,z,t)
0 r
z
FIG. 1. Schematic showing a laser pulse entering an axially xex;{i(f ko(z)dz— wqt | |& +cC.C., (4)
tapered plasma channel having a parabolic radial density profile. 0

propagation, dispersion, and nonlinearities arising fromwherea(r,z,t) is proportional to the complex field ampli-
plasma waves and relativity. The propagation of laser pulsetide, i.e., approximately equal to the normalized vector po-
in a uniform plasma channel is analyzed and discussed itential (|a| is approximately equal to the electron oscillation
Sec. lll. Instabilities resulting in Raman scattering andmomentum normalized to mdy(z) is the wave numbeuy
modulation of the laser pulse are also discussed. Numericas the carrier frequencyg, is a transverse unit vector, c.c.
results illustrating pulse propagation in three dimensions ardenotes  the  complex  conjugate, and(E-E)
presented in Sec. IV. In Sec. V an example of a GeV wake=(mcw,/e)?|a|?/2. Substituting the above field representa-
field accelerator in a plasma channel is discussed. Lasgion into Eq.(1) yields the following envelope equation:
wakefield generation and acceleration in a tapered plasma

channel is the subject of Sec. VI. Section VI also discusses w2 o
the experimental realization of a tapered plasma channel. A ( —k§+ C—§+ +2|k0—+2| s

summary of the results is given in Sec. VII. gz it
#? 1
Il. LASER AND PLASMA WAVE EQUATIONS o2 @ pzjanzy
In this section an envelope equation for a linearly polar- : 2 sn al?
ized laser pulse propagating in a spatially tapered plasma =—2p 1+ — R +——T a(r,z,t). (5)
c No

channel, as shown in Fig. 1, is obtained. The wave equation

for the laser electric field&(r,z,t) in a tapered channel, cor-

rect to orderE|3, is given by[8] In Eq. (5), it is convenient to change independent vari-
ables fromz,tto z, 7, wherer=t— [§dZ'/v4(Z'). In terms of

, 17 g(z) r2 on  al? the new variables, d/ot—aldr,  dldz—aldz
ve- 2 a2 c2 RZ(2) + no(z) 4 E, —[1/v4(2)]d/ 37, and the laser envelope equation becomes
()
, 4 or? . A
where w,(2) =[4me’ng(2)/m]*? is the plasma frequency, | Vit 2~z gz +AK +2iko| 1+ ——— |-
No(z) is the nonuniform plasma channel densiBy(z) is ° ch 0"
the channel radius associated with the parabolic density pro- ~dKo i 9 [wy ko
file, on is the plasma density perturbation associated with the +1i E( Tk a7 +2i (?_ V—) ar
wakefield, |a| = (|e]/mcwy)(2E-E)Y? is the magnitude of 0% g
the electron oscillation momentum normalizedig and the ) ? 92 wf, on |al?
brackets denote a time average. The first three terms on the ~ +vg -(1—3) 2T ?(n—o— -/ |arzn

right hand side of Eq(1) represent, respectively, the para-
bolic plasma density channel, the plasma wakefield, and the =0, (6)
relativistic mass correction.

The electric field associated with the wakefi#@g(r,z,t)

. . e where
in spatially tapered plasma is given by
w2 2
(92 mC2 11)2(2 2 Wo 2 wp(z) 4
o 2 _ p 2 Ak (z)———k(z)————.
&t2+wp(z) E o[ 4 Vial4, (2 2~ Ko o2 I’S

where the perturbed wakefield density perturbation is givern obtaining Eq.(6), the term 4/3, wherer, is the initial
by laser spot size, has been added and subtracted in order to
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have finite transverse effects included in the expression fopulses could propagate without instability was postulated in
the linear group velocity. By defining the laser wave numberRef.[1]. In addition, short pulses were shown to not undergo

and group velocity to be

ko(2)=c""wg—4c?/r§— wi(2)

(7a)
and

v4(2)=c?ko(2)/ wg. (7b)
respectively, Eq(6) reduces to

4 wi(z) r2
V24— 2

—_— ——+2i
3 Rm o

[ a)a

Y @ g2 77z

,ako( i a) 5 . 52
—HE 1_WE’ +Vg (Z)yg (Z)W

2 2

(z)[on |a
- w‘éz (n—o—% a(r,z,7)=0, ®)

where yy=(1—g5) "2 is the relativistic factor associated
with the group velocity 8,=v4/c, and the small term pro-
portional to#?/9z> has been neglected. In E®), the group
velocity dispersion(GVD) is represented by terms propor-
tional to 9°/d7% and higher orderr derivatives, introduced
through theg?/ 9rdz term[31].

lll. PULSE PROPAGATION IN A UNIFORM
PLASMA CHANNEL

We first consider the dynamics of a laser pulse propaga
ing in an untapered plasma channel. For a uniform channdl

the envelope and wakefield density equations become

Vf+f2—2§§—+2iko 1+I—i)—a
re ¢ RS, Kovg d7) 02
2 2 2
+v§27§2%—%<i—:—% a(r,z,7)=0,
(93
A 5
(F+wp n——ZV la(r,z,7)|%, (9b)
where
o= wol (w5 +4c?/rf) 2 (10

In the broad beam limitr(;>L, whereL is the pulse length
V?=4?9z°=c"29°/ 972, and Eq.(9b) becomes

2
J 2

on 1 % al?
a2

o3 92 (D

In addition, for a short pulsd, <\, we find from Eq.(11)
that 8n/ny=|a|?/4. In these limits the nonlinear terms, i.e.,
wakefield and relativistic terms, in E(Qa) cancel32]. This

relativistic focusing in Ref[32].

Pulse length envelope equation, pulse spreading, and. chirping

In the long pulse >\ ), broad beamr(e>L) limit it
follows from Eq. (10 that | on/ng|
~O[(\p/L)% (Np/ro)?]]al?<al? In this limit 6n/ny can
be neglected. For a matched beam, irgs(ZCRchlwp)l’2
=const[see Eq.22)], and\/L<1, Eq.(9a) reduces to

. 2
2i 9 wp

2
(%— 807 m|a(0,z,r)|2 a(0,2,7)=0,
(12)
where
1 wi+4c?/r]
Bo=— kové'ys = cwp ) ' (13

is the GVD parameter. Note tha}, is always negative for a
plasma. Equatior{12) is identical in form to the conven-
tional paraxial wave equation containing a nonlinear focus-
ing term, with the transverse coordinate replaced witAn
equation describing the evolution of the pulse duratigfz)
can be obtained from Eq13) by takinga(0,z,7) to have a
Gaussian longitudinal profile, e§<p72/7§(z)], where L
=c7y(0). Substituting this profile into Eq12) and expand-
ing the nonlinear term, exp 27%/73(2)|~1—2+/74(2), and
matching 7% terms, yields the following equation for the
pulse duration:

o) 1 1+ "122)| =0, (14
&22 - TS(Z) Sgr(BZ)E O( ) - Y ( )
whereTy(Z) = 79(2)/ 79(0) is the normalized pulse duration,

Z=12lZsp is the normalized propagation distancégzp
=75(0)/(2|B,]) is the well known[31,33 dispersion dis-
tance (equivalent to a longitudinal Rayleigh lengthl
=c(E-E)/4m=c(mcwy/e)?|al?/8m is the peak laser inten-
sity along thez axis,

l=|1+ 4c” Po (15)
¢ r%wg WCZTS(O)

is a critical intensity, andP,=m?c®/|e|?=8.71GW. A
matched pulse in the longitudinal directionTy/dZ=0, T,

=1) or soliton can exist only fo3,<0 andl=I.. The
variation of laser pulse duration has also been studied by
others[34]. For short, broad pulses the nonlinear terms can
be neglected, and only the GVD term remains. In this limit
the envelope equation reduces to

P 2 9
ar* By 0z

a(z,7)=0, (16)

which is identical in form to the standard paraxial wave

implies that the Raman and modulation instability cancelequation. For an initially Gaussian pulse, the longitudinal
each other out in these limits. The possibility that short laseevolution is given by 31]
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1 72
a(Z, 1) =ay——exp — w———=—=-|exdix(Z,7)],

RN~ |~ o i s |z 7, T,
2 . ~—
where To(Z)=(1+2?)*2 is the normalized pulse duration g G g N

and g

front back
1
x(z,7)=sgn B )( —Z—+—tan1(Z)),
? (2) 2 0 T (time) —~

is the phase. The frequency chirp associated with the pulse is FIG. 2. Schematic diagram of the axial profile of the initial laser
given by[31] pulse.

Sw=—dxlaT=2sgn B,)Z[ 7 73(0)TX(Z2)], (17

where 8,<0 for a plasma. The frequency chirp varies lin-
early along the pulse and increases linearly with propagation
distance.

whereN/L<1 is the expansion parameter. A sufficient num-
ber of terms is kept to insure convergence; in the following
illustrationsN=4 is used. Nonparaxial contributions to the
In this section we present numerical solutions of E§a)  wave operator have been considered by others in numerical
and (9b), illustrating the characteristics of long and short simulationg11,36. The spatial profile of the electric field at
pulses propagating in a plasma chanfitd-17,33. The z=0 is specified, and then propagated forward using a semi-
channel radius is chosen such that it is initially matched tdmplicit split-step method 31]. Linear terms in the wave
the part of the pulse containing the maximum power, i.e.equation representing GVD and transverse focusing effects
Rnw=2Zr/V1—PI/P,, whereP is the peak laser power and are advanced in Fourier space. Consequently, the electric
Pp[G\/\/]=17.4(>\p/)\)2 is the relativistic self-focusing field must satisfy periodic axial and transverse boundary
power[see Eq.22) and Ref[14]]. Equations(9a) and (9b) conditions. The remaining terms are handled in configuration
are solved numerically on a Cartesiény,? grid. It is nu-  (x,y,2 space by finite differencing th&Jr and higher order
merically expedient to transform away the cross derivativederivatives. The equation for the density perturbation is
termin Eq.(9a). To this end Eq(9a) is written in the form of ~ solved at every step assuming th#t and its temporal de-
a generalized nonlinear Sclidinger equation by expanding rivatives are zero before the pulse.

IV. SIMULATION OF PULSE PROPAGATION IN
CHANNELS

the operator The initial pulse profile is shown in Fig. 2, and is given by
|
sin(77/2T,), 0<7<T,
a(r,0,r)=agexp(—r?/rd) 1, T <7<To+T,

COi'ﬂ'(T_TO_Tr)/ZTr)y T0+Tr<T<T0+2Tr,

where T, is the rise and decay time, arid, specifies the absence of channel guiding. In the examples considered in
duration of the flat portion of the pulse this paper the laser power is chosen to be small compared
with P, to avoid nonlinear focusing effec{d9]. The rise
time is chosen so that a large density perturbation is gener-
Long pulse ated and seeds the Raman instability. The growth rate of the
In this example the pulse duration is57,, wherer,  conventional forward Raman instability[37] is I
=27l w, is the plasma periodTo=57,, T,=7,/2). The =(a0w,2))/(2\/§w0) which corresponds to agfolding length
ambient plasma density is taken to bhg=1.24x10%¥cm3  of ~Z for these parameters.
(Ap=30um). The laser pulse has a wavelengtk1 um Figures 3 and 4 show tha|? and én/n, profile along a
and an initial spot size of 17.4m, corresponding to a Ray- planar cut through the center of the pulse=(0) atz=0 and
leigh length of 0.1 cm. The initial peak intensity is taken to z=5.52. The pulse undergoes a Raman instability and is
be 1=3.4x 10" W/cn? (a,=0.5). The critical power for modulated at a period of 7,. The profiles of the original
relativistic self-focusing id>,=15TW, while the peak laser pulse and wakefield are highly distorted as a result of this
power is 1.5 TW. Since the pulse power is well beldy, instability. Toward the back of the pulse, where the intensity
the pulse would diffract within a few Rayleigh lengths in the is largest, some transverse self-focusing occurs, as shown in
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2=0 z2=0

FIG. 4. Surface plots of the normalized density perturbation
én/ng atz=0 andz=5.52y, corresponding to the pulse shown in

FIG. 3. Surface plots of the normalized intensity|? Fig. 3.

=|eE/mcwo|? on a planar cut through the center of the laser pulse

(y=0) atz=0 andz=5.5Zy. The parameters ar€=57,, T,  the pulse of the normalized intensity z0 andz=30Zy.

=72, Mp=1.24x10%cm™®  (A,=30um), N=1um, ro  The pulse undergoes significant longitudinal compression

=17.1um, anda,=0.5. and intensity gain due to modulation instability. The pulse
compresses by a factor ef2, while the intensity increases

Fig. 3(b). The wakefield amplitude shown in Figls} varies |,y 2 4. After a distancez=30Z5, the assumption that

within the pulse and has transverse structure. After propagafa|2<1, which underlies the propagation equation is vio-

ing.5.§R, the normalized pulse intensity a_nd density Pertur|ated. Forz<30Zg, the present simulation reproduces the

bation are large 'enough that the assumptions underlymg tr}‘:ésults of an earlier 2D axis-symmetric simulation that is not

governing equations|&|<1,6n/ny,<1) are no longer valid. limited to |a|?<1.

. . 2 . _
Figure 5 shows profiles d|” and the density perturba The observed pulse compression and intensity gain are

tion along the pulse axis as a function of propagation dis- ; : . . .
tance. The modulations travel backwards in the group Veloc@ccompanled by an increase in the wakefield amplitude and

- . X . by the generation of low frequency components within the
ity frame. Figure %) is a shaded contour plot of the on-axis 4 ; .
density fluctuation as a function efandz. The amplitude of pulse. Figure 7 shows the ampliiude of the density perturba-

. L . : : ' -axis atz=0 (dashed curvyeand z=30Zy (solid
the density perturbation increases with propagation dlstanctéOn on-axis atz= ; ; R
as the pulse is self-modulated. It should be noted that théuwe' The wakefield density perturbatiofn/n, increases

wakefield has a phase velocity that is slower than the grou ue to the pulse distortion. Unlike in the previous example of
velocity of the pulsd38,39 aman instability for a long pulse, no slippage of the wake

relative to the pulse occurs. Figure 8 shows the Fourier trans-
form of the electric field on axis initially and after propagat-
ing 30Zg. The spectrum broadens fromwg to ~6w,,

In this example the pulse duration is7,, (To=0, T, while the dominant frequency component shifts downward
=7,/2). Figure 6 shows a planar cut through the center oby ~3w,.

Short pulse
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a)

T/Tp

FIG. 5. Normalized on-axisr0) intensity (a) and density
perturbation(b) as a function ofr/ 7, and the normalized propaga-
tion distancez/Zy.

fro;hEgoygj)ngyncinng%iﬂﬁgo;:nizﬁc?:iltlé?y||2):fgriceogrir?ﬁat FIG. 6. Surface plots of the normalized intengy? on a planar
does no.t t d it turbati dh . c¥t through the center of the laser pulsg=0) at z=0 andz
generate a densily perturbation and nence, 1S ngSOZR. The parameters areTo=0, T,=7,/2, ng=1.24
Raman unstable. The MI is unstable in the range of wave, ;g8 -3 (Ap=30um), A=1 um, ro=17.1zm, anda,=0.5.
numbers betweerk=0 and k=Kk,,,=aowo/v2C with the

maximum growth rate of'y = wjag/8wo occurring fork  ithin the pulse tends to cancel the relativistic effects so that
=Kmax/V2[37]. A short pulse of length <\, is not unstable  {he pulse is stable to both modulation and Raman instabili-
to Raman instability. However, it has an effective wave NnUM+jes |n this parameter regime, group velocity dispersion can
berk==/L and is subject to a modulation instability when pe minimized by making the dispersion lengteyp
L>m/Knax. FoOr parameters of the simulationL

=21m/Kmay, SO that the effective wave number of the pulse
is within the linearly unstable range and the maximum
growth rate of the conventional MI corresponds to an
e-folding length of 2. Longitudinal compression and an
increase in intensity of short pulses have also been reported
by others[34].

0.4

pulse profile

V. GeV ELECTRON ACCELERATION IN A
PLASMA CHANNEL

- _ _ 0 05 1 15 2 25 3

To utilize laser pulses for electron acceleration or radia- T/,
tion generation, it is necessary to propagate intense pulses P
many Rayleigh lengths in plasma without disruption. This  FIG. 7. Wakefield density variatio@n/n, and z=0 (dashed
can be accomplished by propagating a short pulse in 8urve and z=30Zy (solid curve associated with the laser pulse
plasma channel. When the pulse length is shorter than shown in Fig. 6. The intensity profile of the pulsezat 30Z shows
plasma wavelength, the density perturbation generatethe location of the pulse relative to the wake.
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0.5 P z2=0
04 z=0 0
: [
03] #=302Zr N '.
la| NN
02 L
! 1
U 1
-10 3 0 5 10

FIG. 8. On-axis electric-field spectrumzt0 and 3@y, asso-
ciated with the laser pulse shown in Fig. 6.

=l w§/ (w5 +4c?/r§)]L2N (L is the pulse lengthmuch
larger than the Rayleigh length. The effect is that the pulse
can propagate undistorted over the long distances required
for accelerator applications. Assuming that the pulse propa-
gates undisrupted, the acceleration distance is limited by the
dephasing length. 4~ yé)\p, where yy= wolx/wzp-i— 4c2/r02.

The electron energy gain iAW=«|eE,jLy, Where E,,
=|on/ng|Eyp/(1+8c%rjw}), a=3 accounts for dephasing
(slippage and transverse focusing requirements, dfg

= wpmd/|e| is the wavebreaking field. An additional limita-
tion on the acceleration distance in the channel-guided
LWFA is the pulse energy depletion Ilengthl,
E|a|2(("0/wp)z(Ewb/EzO)zL-

An example of the extended propagation of a short pulse
in a plasma channel is shown in Fig. 9. The parameters are
np=1.1x10"cm™® (Ap,=100um), A=2mclwo=1pum,
ro=70um, and a;=0.6; crp=L=37um is the pulse
length; Zg=1.5¢cm; P,=174TW is the critical power for
relativistic focusing[18]; P=38 TW is the peak laser pulse
power;Ly=557R; Zgyp=230WR; andL.=86%y. Figure
9 shows the laser intensity and corresponding density pertur-
bation on a planar cut through the center of the pulse at
=0 and atz=53Zy. Little distortion of the pulse or the o ]
wake is observed over this distance. In this example the peak FIG- 9. Surface plots of the normalized intensfiaf” and den-
wakefield is|E,o/Ey,|~0.1, the peak perturbed density is sity perturbationén/ny on a planar cut through the center of the
|6n/ng|~0.15 and the estimated energy gain sw  Puls€ forh=1um, A;=100um, andro=70um, at(a z=0 and
= aleE,|L4=0.9GeV. In the following section, we show (_bz) 125:532R’ where |a(z=0)|fz=0-36 and [ n(z=0)/No| max
how tapering the plasma channel can increase this energy
gain.

sn w0 ¢

o2 ¢ w2 P

(19
VI. LWFA IN A TAPERED PLASMA CHANNEL

In this section the wakefield generated by a laser pulse id© solve forE, in Eg. (18), it is necessary to obtain the
tapered plasma channel is analyzed. For this purpose the oRormalized field amplitude(r,z,7) in a tapered channel.
axis accelerating wakefield within and behind the laser pulsd his is accomplished by using a WKB solution of H&).
is obtained. The normalized electric field associated with théNeglecting nonlinear terms, GVD, and terms of oriiéc 7,

wakefield, from Eq(2), is given by Eq. (8) simplifies to
. , 4 )2 2 g oke(2)
By, o E___ % 2y > (18 Vﬁr—g— 2 R +2iko(2) - +i— —la(r,z,7)
o2 twp(2)Ep= 4wp—(o)wp(2) la(r,z,7)[*, (18) c
=0. (20)

whereEp= Ep/Ewb, Ewb=(mc/|e|)wp(0) is the wavebreak- For a matched laser pulse, i.e., a spot sgz@édependent of
ing field, and the perturbed plasma density, from &), is z, having a Gaussian radial profile
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a(r,z,7)=A(z,7)exp —r?rd), (22)

we find that the channel radius is given by
Ren(2)= rz—g w”c( 2 (22)

The envelope equation f&(z,7) becomes

2ko(2) g ;%2 A(z,7)=0, (23)

9z 9z

with the solution

Az, 7)=Ao(7)[ ko(0)/ko(2)]*2 (24)

Using Eq.(21) together with Eq(24), the normalized axial
electric field, within the laser pulse is given by

B wp(2) Kko(0) ¢
4wp(0) Ko(2) v4(2)

dJ|

wheredl/ 9, has been approximated byy

Ep,z(r =0.z,7)=

T 9AS(T')

o7 sifwp(2)(7' —7)]d7’,

(29

o ‘917, The axial
solution of Eq.(25) together with the appropriate continuity
conditions at the back of the pulses 7o. The laser pulse is
taken to have the envelope
Ao(7)=agsin(m /1), (26)
for O=<7=<17,, and zero otherwise. Note that the front of the
pulse is atr=0 while the back of the pulse is located at
= 14. Substituting Eq(26) into (25), the axial component of
the wakefield within the pulse @7<r7g) is

EpAr=0z7)=—Eq(2){siMwp(2)7]
—(wp(2) Tol27)SIN(27 7] 70) },

(279
and behind the pulseré& 1) is
Epo(r=02z,7)=—2Ey(2)Sin(w,(2) 7/2)
X €0 wp(2)(7— 70/2)], (27b

where

a5 wp(2) ko(0) © (2! 70)?
8 wy(0) ko(2) v4(2) [wi(2)— (2 70)?]"

(28)

Eo(2)=

The phase of the axial component of the wakefield behind

the laser pulse ig/(z,7) = w,(2) (7— 7¢/2). In the laboratory
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d ’
20=""2" 02, (29
J J
K(Z'T)E_<E_ 2 B E) W(z,7)
B wp(2) B dwp(2) B )
- (1 2 ()| @b

respectively. Using Eq$29), the standard definition for the
phase velocityyy,, yields

O(z,7)
Vph(zv T)= K(z,7)
_ vy(2)
{1-[dwp(2)]9Z][ v4(2) wp(2) [(T— Tol2)}

(30

Expressions similar to Eq$29) and (30) were applied by
Bulanov et al. [23] to examine the variation of the phase
velocity for a particular density profile. Here we make use of
Egs.(29) and(30) to determine the precise form of the den-
sity tapering required to achieve optimal acceleration. The
wavelength associated with the wakefield Is,(z,7)
=2mw/K(z,7), whereK is given by Eq.(29b), and is a func-
tion of z and r for a tapered plasma density. The phase ve-
fbcity of the wakefield increase@ecreasgswith distance
from behind the pulse for an increasifdecreasingplasma
density. The location behind the pulse,, for which the
phase velocity equals the speed of light in vacuum is given

by
B 1w,23+ 2¢? ( &Inwp)+ro a1
D=zt /T |t B

In generalr, is a function ofz and 7, and as the laser pulse
propagates the location behind the pulse for whigh=c,

i.e., the luminous point, moves relative to the back of the
pulse. The existence of a luminous point behind the laser
pulse was noted in an earlier wakefield simulatjda].

For the luminous point to remain fixed relative to the
wakefield, sayN plasma wavelengths behind the pulse, the
plasma density taper must satisfy

divy 1 92=(@5/2mN)[ (71 o IN) a5+ 1], (32
wherew,= wy(2)/ wg, N=27Clwy, andz=2z/Zg.

The solid curve in Fig. 10 shows the numerical solution of
Eqg. (32) for N=1.5, and with the same parameters used in
Fig. 9. In Fig. 10, the plasma period is normalized to the
initial pulse duration. To facilitate the fully numerical solu-
tion of Egs.(2) and(8), an analytical form fow(2) is used;

|

4

wp(z)zwp(O)exp( le a2

frame the frequency and wave number associated with thehere«; are the fitting constants. The dashed curve in Fig.

phase of the accelerating wave are

10 represents a best fit to the numerical solution using the
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0.9
0.8
0.7
0.6
0.5
0.4

wp(2)70/ (2)

0 10 20 30 40 50
Z/ZR

FIG. 10. Solution of Eq(32) showing the normalized plasma
frequency as a function a/Zg, for N=1.5,r,=0.7\,, wo/wy,
=100, a,=0.6, andc7y=0.37\,. The dashed curve denotes the
analytic form forw, used in the numerical simulations discussed in
the text.

analytic form. To provide guiding, the plasma channel radius
varies as indicated by E@22).
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Ep,z(O, 2,T)

I I
03 02 01 0 01 02 03

(@ S0 ‘
40
ND: 30
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0
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The plasma density in Fig. 10 increases such that, after a

distance of ~50Zg, the short pulse requirementry

<2m/w,) breaks down and pulse distortion occurs as shown
in Fig. 11. The curves in Fig. 11 represent the scaled on-axis

laser intensity az=0 andz=527 resulting from a numeri-

cal solution of Egs(2) and(8). The pulse distortion shown
in Fig. 11 is not described by the WKB solution given by

®) 50 ™
40
. No: 30 y
S~
N 20
10
0

125 15

0 025 05 0.75 1
7¢/Apo

FIG. 12. (a) Normalized on-axis longitudinal electric field as a

Egs.(21) and(24), and is similar to that shown in Fig. 6 in function of the propagation distana&Z and timec/\ ,, obtained

which =27/ w, .

The energy gain of a test particle in the wake of the lasefpo
pulse (> 1) is obtained by solving the following coupled

equations for the relativistic factor and the wake phas#
at the position of the patrticle,

‘;_“ZV — 2Eo(2)siN wy(2) o/2]cosV, (333
wy(2) (7 1 1
vop| 422
20t ¢ J'Zodz{ T Ao (33b)

wherez, is the initial position of the particle.

using the analytic modelb) The full numerical simulation. Here
=\, (z=0). The parameters are the same as used in Fig. 11.
The white, dashed curve in par(@ denotes the trajectory of a test
particle injected into the luminous part of the wake.

lytical solution given by Eqs(273a, (27b), and (28). The
white dashed curve denotes the trajectory of a test particle
obtained from solving Eq$33) with the analytic wakefields.
The patrticle is injected into the luminous part of the wake
and remains in an accelerating and focusing region. Rapel
shows the longitudinal electric field resulting from the full
numerical calculation. Initially Z/Zg=<20), oscillations oc-
cur due to the slight mismatch between the laser pulse and
the channel. The luminous accelerating region, however, is

Figure 12 shows the normalized on-axis longitudinal elecyeserved and evolves in a manner similar to the analytic

tric field, Epl (r=02z,7), as a function ofrc/\, (z=0) and
scaled propagation distaneéZg. Panel(a) shows the ana-

0.5

Z=52ZR—>

S

0 01 02 03 04 05
TC//\’,O

FIG. 11. Numerical simulations showing the on-axis profiles of

the scaled intensity at=0 (dashed curveand z=52Zy (solid

model.
The solid curve in Fig. 13 shows the test particle energy

~ 4

5

~ 3 tapered channel

E’D (10 =5.1)

g2

g untapered channel

S =

}S v T _/— \(70 47)

8 - -~

m - T~ >~

910 30 30 40 30

Z/ZR

FIG. 13. The solid curve denotes the electron energy vs propa-

curve for a pulse propagating in a tapered channel in which thegation distance for the test particle trajectory shown in Figail2
plasma frequency is given by the dashed curve in Fig. 10. The othéFhe dashed curve shows the energy obtained using an untapered

parameters are the same as for Fig. 9.

channel.
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as a function of propagation distance corresponding to the
trajectory in Fig. 12a). The dashed curve shows the solution
obtained for an untapered channel. The predicted energy gain
of 4 GeV is four times larger than the gain obtained using an
untapered channel. Note also the dephasing length is larger
in the tapered channel.

In an experimental realization of a tapered plasma channel 1 [ |
the density can be tailored to closely follow the analytical = Vll Vzl v,
form given by Eq.(32), with small variations due to voltage
jitter, noise, etc. To quantify the role of the density variations
we have investigated the effects of density profile perturba-
tions on the energy gain. As an example we assume that the 3xigv _|
plasma frequency is given by (2) = w,o(2)| + & sin@L,)],
wherewpo(2) is a solution of Eq(32), ande andL, are the 2%1019 _|
amplitude and scale length of the perturbation, respectively.
For the example shown in Fig. 11, we find that, #0<0.1 10t0_|
and for a broad range df,(L4/100<L,<100.4), the en- Axial position (cm)

ergy gain is not significantly diminishe@d-3.5 Ge\j. T T 5!
2 3.5

| Axis plasma
density (cm™®)

FIG. 14. A segmented capillary discharge that produces an axial
variation in the plasma density. The top portion of the figure illus-
Capillary discharges are ideally suited for generating varirates the configuration for a three-stage segmented capillary. A
able density plasma channels. In its simplest form, the devicgpical axial plasma density profile is shown at the bottom portion
consists of a thin hollow cylinder of insulating material such of the figure forV,<V,<V;.
as polyethylene with high voltage electrodes at the ends, and
a plasma column is produced from wall material when an f the ol density. R back ided
appropriate voltage pulse is applied. Capillary dischargeéure. 0 the p asma ensﬂy. aman backscatter provided an
have been used extensively to generate plasma columns wiﬂgd't'onal density dlggnostllc. ! )
the on-axis density minimum required for optical guiding of The top part of Fig. 14 illustrates the configuration for a

intense laser pulses. High efficiency transmission over distré€ stage segmented capillary. A typical axial plasma den-

tances of several centimeters was demonstrated in sever@ly Profile is shown in the bottom portion of the figure for a
experiment§25-27, with guided laser spot sizes of 20—30 case withV;<<V,<V;. The plasma density is expected to be
um. Hydrodynamic simulations of capillary dischardeég]  approximately constant in each segment, as shown in the
indicate that the on-axis p|asma densn'a/increases with the figure. Since the capillary diameter remains the same in each
discharge currerity or voltageVy and scales aB; °, where ~ segment, the guided laser spot size should be nearly constant
R, is the radius of the capillary. This suggests that plasmahroughout the capillary, thus preserving the high intensity
density can be varied by changing the channel radius or digequired for wakefield generation.
charge current or voltage along the capillary. Control of the
plasma density by tapering the channel radius was demon-
strated in Ref[27]. Plasma densities at each end of the cap-
illary were deduced from interferometry measurements. A ) ) )
2-cm-long capillary with diameter tapered from 300 to 500 This paper presents an analysis of intense laser pulse
um showed a factor of 2 drop in the on-axis plasma densityPropagation in a plasma channel. The results of this study are
A similar capillary with a 500—140@:m taper exhibited a relevant to a number of areas including laser wakefield ac-
density reduction of more than an order of magnitude, withceleration and x-ray laser development. The analysis is based
N, going from 16°to 8x 10" cm 3. Results were consistent on a coupled pair of equations for the laser and the plasma
with one-dimensional hydrodynamic simulations. electric fields and includes the effects of 3D and nonparaxial
Other experiments demonstrated an alternative approagtropagation, group velocity dispersion, relativistic mass
that produces an axial variation in the channel density byariation, and a tapered plasma channel. It is shown that
varying the discharge curremy. This is accomplished by propagation of short and long pulses can be markedly differ-
dividing the capillary into separate segments, each connectezht. For a pulse that is long compared to a plasma wave-
to a separate capacitor that can be charged to a differeféngth, Raman, and modulational instability lead to pulse
voltage. An experimental demonstration of the segmentetireakup and disruption after a few Rayleigh ranges. On the
capillary technique was carried out using a three stage, 0.%ther hand, for pulses that are short compared to a plasma
mm-diameter capillary and a Ti sapphire laser at 800 nmwavelength, extended propagation is demonstrated. It is
producing 40 mJ in a 160-fs-long pulse with a pulse repetishown that for broad, short pulses the Raman and modula-
tion rate of 10 Hz. The group velocity of the laser pulsetional instability terms in the wave equation cancel out. In
propagating through a single stage of the capillary was meathis limit, laser propagation of a laser pulse is only limited by
sured using an autocorrelator, thus providing a direct meapulse dispersion. For an up-tapered plasma channel it is

Realization of tapered plasma channels

VII. CONCLUSIONS
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shown that the phase velocity of the wakefield behind theelative to the untapered channel, and larger energy gains are
laser pulse increases with distance from the back of th@chieved.

pulse. Several wavelengths behind the pulse the wake phase

velocity can equal the speed of light vacuum. Finally, wake- AU LS SIS

fields in a tapered plasma have been numerically simulated. This work was supported by the Department of Energy
In a tapered channel, the dephasing distance is increasaahd the Office of Naval Research.
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