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Statistics of Fourier modes in a turbulent flow
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Fourier series are often used to discuss the properties of a homogeneous turbulent field. We investigate the
statistics of Fourier modes of the turbulent velocity field and of a passive scalar. The statistics of individual
Fourier modes is known to be Gaussian when the size of the syistsnmuch larger that the integral
(correlation sizely. The case where the integral size is of the order of the systenisidg, is studied by
direct numerical simulations in the range2R, <80. At a givenR, , we find that the probabilities of large
fluctuations become larger when the wave number increases, in qualitative agreement with the notion of
intermittency. As the Reynolds number increases, however, the probability density functions become closer to
Gaussian, in sharp contrast with the behavior of velocity increments. We also show that in a simple model of
cascade, the Fourier series decomposition is not appropriate to capture intermittency effects. Last, we discuss
other issues related to our results.
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[. INTRODUCTION interaction added to complex geometry or incompressibility

Fully developed turbulence in fluids exhibits a number ofconstraints ink space, it seems rather hard to analyze their

unusual propertie$1—3]. Despite much theoretical effort, Statistical properties. Even in a strongly decimated approxi-

small-scale intermittency remains a challenging problemmation, such as the shell models of turbulence, basic diffi-

One of the main observations is that, as one considergulties remain, namely the presence of both dissipation and
smaller and smaller scales in the flow, the probability distri-strong nonlinearity. In fact, it is only in the inviscid and

bution functions(PDF’s) of the velocity increments, denoted unforced case that success in using nﬂ(]E,t) variables has
here asAu(r)=[u(r)—u(0)], develop wider and wider been achieved to describe the energy equipartition state
tails. Equivalently the dimensionless momentS,(r)  (Boltzmann-Gibbs equilibrium for the cutoff Euler dynam-
=([Au(r)I*M/{[Au(r)]*", grow whenr decreaseB4]. An cs) [13,14.
even more pronounced effect is found in the related problem The first and easiest step is to investigate ¢geal-time
of a passive scalar mixed by a turbulent flgs). univariatestatistics of the Fourier amplitudes. It is natural to
These observations are at odds with the results of thargue that the Fourier modes, which result from some vol-
Kolmogorov 1941 theory6] (in short, K41, which would  ume average, are not well suited for describing intermit-
predict that theS,(r) are all independent af in the inertial  tency, which is a spotty phenomenon. However, this argu-
range of scales. A number of phenomenological models haveent does not hold in the far-dissipation range where strong
been proposed to describe this effett-3]. So far, analytic intermittency of the Fourier modes is expected, see below.
calculations have been possible only in simplified models ofAs a consequence of the lack of space localization of the
passive scalar advectigi—9]. Fourier representation, individual Fourier modes suffer from
Experimentally, most of the work has been devoted to thea spatial central limit effect: for a homogeneous velocity
velocity scalar differences and its moments. One may howfield with finite correlation length, confined in a cubic box
ever ask more general questions about KApoint correla-  of sizeL with periodic boundary conditions, it is well known
tion function: (u(X;)u(X,) . . .u(Xy)), or about its Fourier that the univariate distribution of individual inertial Fourier
analog:(0(d;)0(dy) . . . a(qy)) (with the condition thag, component shquld be asymp_totic_ally_ normal in _the Ii_mit
+a2+ o +aN:5 when the flow is homogeneduDue to lo/L—0, even if the velocity field is highly intermittent in

the recent development of ultrasound scattering experimen rgﬁlr?:i‘tl fhpeﬁiln?]élst :ts ;n fﬁgtsatopzxgicﬂ?g dcﬁft(; Or;geoﬁgr']_
[10], it is now possible to directly obtain information on the PP 9 9

Fourier components of the vorticity field and of the tempera-dorn fields(see Ref[16], and also Refl17] in the case of

ture field, hence on a passive scalar field. cosmological density fieldsTo illustrate this point, we use a

Early closure attempts of the Navier-Stokes equationé)ne-dmensmnadlD) notation for the sake of simplicity. Let

were formulated in Fourier spa¢&l,17], since it is usual to Us expand the velocity field in a Fourier series

use the Fourier representation to investigate correlation func-

tions when the problem is homogeneous. Indeed the Navier- u(x,t)=2 ack,p)etkx, (1.2)
Stokes equations can be readily written in terms of the Fou- k

rier amplitudes&(lz,t). Amplitudesfﬁ(lz,t) play the role of .
elementary dynamical variables of a kind of infinite-body Thent(k,t) reads
problem. Coupling among them results from the nonlinearity 1
of the Navier-Stokes equations through a complex web of N _ _f —ik-x

triadic interactions. Due to the infinite number of modes in 0k, L) © u(x.tdx. (1.2
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Consider a Fourier mode(k,t) with k>2=/l,. ForL suffi-  and we briefly recall its main features. We use a pseudospec-
ciently large, it is possible to divide the segment of size tral, fully dealiased code. The solution is time stepped by a
into subsegments of a size multiple ofrk and large com-  leap-frog algorithm, second order in time. A homogeneous,
pared tol . Then using Eq(1.2), G(k,t) can be rewritten as isotropic, steady state is obtained by imposing a conservative
a sum of very many weakly correlated and identically dis-dynamics in the low wave-number modds<(1.5). We also
tributed terms. For an energy cascade of a fixed size, assurgerform DNS of incompressible Navier-Stokes equations
ing the velocity field to satisfy certain mixing conditions ith hyperviscosity ¢ 1)"1pV?" (h=2 andh=8).

(roughly speaking, the correlations are supposed to decrease The yvelocity and scalar field being homogeneous, the sta-
fast enough the central limit theorem can thus be applied toyistics of Fourier components is phase invariant. In particu-
the real or imaginary part_of any |nert_|al or dlss[pgtlve F_ou'lar, the real and imaginary parts of these quantities have the
{_lcer %?Tﬁg?ggfn;g;e.m:qﬁglry’ Ita?tpplzsécr)l thri%(())lpr;{w;[fgsd- same distribution; their odd order cross correlation are zero
ICS Imaginary part properly z lj;9<Re(~)pIm(-)q)=0 if p+q odd], but the real and imagi-

Nevertheless, because of intermittency, it is hard to estimal fy parts are not strictly independefindeed we expect
how the convergence to Gaussian statistics depends on t gry parts ictly P P
their statistical coupling to be very weak, see Sec. IV C

wave number. NN
This trivial central limit effect seems in fact independent Because of incompressibilityj(k) may be represented in

of the detailed dynamlCElS] Hence, when the correlation terms of its projections on two units Vectog(ﬁ) and

length is of the order of the domain extension, like in direct._ SN A .
numerical simulation§DNS) or in some laboratory experi- é (k) such thatk,e"(k),& (k)) forms an orthogonal basis.

- . . .. This decomposition allows us to carry out statistics on
ments, one may expect intermittency corrections for indi-

vidual Fourier components. The purpose of this paper is té~ (k) =U(k) - &~ (k). Because of isotropyj " (k) andd ™ (K)
investigate this issue, and in particular to compare with rehave the same statistics. Using again isotropy, the PDF’s of
cent experimental resulfslO]. Naively, one would expect the real and imaginary parts @(E) and gr(lz) were accu-
that the statistical properties (E]‘(IZ,t) are similar to the mulated over thin shells of wave vectdks whereK —1/2
properties ofAu(r) for r~1/k. A recent study seems to <|k|<K + 1/2 for a number of values &. We consider also
support this claim[19]. Our own numerical results are in the statistics of 9(K)| and|fi(|2)| to take into account the

sharp contrast with this expectation, as we will explain inCou ling between components and between real and imaai-
Sec. Il. In qualitative agreement with the experimental re- piing P 9

. L - nary parts. We estimated the various PDF's by a histogram
sults [10], we foy nd very little variation of the statistical binr>1/ir5)g procedure. The statistics were accum{Jlated oger a
properties of thel(k,t) through inertial scales. In Sec. lll, sampling timeTs. In terms of the(large scalgeddy turnover
we consider an intermittent velocity field resulting from a tjme To=lo/(u2)*2 the sampling timé was always larger
simple wavelet cascade, and show that the statistics of Foynan 13, . Even so, it should be noted that, especially for
rier modes is almost insensitive to intermittency in the sensg,y wave numbers, despite accumulation in thirshells
that the distribution ofi(k) depends very weakly ok The  mch less data are collected in the statistics of a Fourier

last section is devoted to discussion. There we address thgmponent than in the statistics of differences in real space,
question of sweeping effects as far as Fourier modes arghich are computed at each grid point.

concerned, and also the link with some simplified dynamical Fqr our runs with Newtonian dissipation, the Reynolds
models of turbulence such as the so-called shell models Humber, based on the Taylor scalex I\
tree models, and last, the possiblity of looking simulta-E[<u2>/<(& u,)2)1¥, was varied in the range 20R, < 80:
neously at several wave numbers to take into account weal o erandtlxnfjmber is kept unity.

coupling between Fourier modes and to measure intermit- We used hyperviscous DNS in order to qualitatively dis-

tency. criminate between inertial and dissipative dynamics. The nu-
merical integration requires very little modifications. For hy-
Il. NAVIER-STOKES AND PASSIVE SCALAR DYNAMICS perviscous runs, the Reynolds number is not well defined
(see however Ref21] for a proposdl In Table I, we give
) ) ) ~ the hyperviscous indek and the wave numbeky corre-
We have simulated numerically the incompressiblesponding to the maximum of the dissipation spectrum.
Navier-Stokes equations along with the passive scalar To measure the numerical resolution of the small scales in
equation: Newtonian runs, one usually computes the prodygt,,
wherekay is the largest wave number ang= (v%/¢)¥* is

A. Numerical methods

a0+ (0-V)a=—Vp+vV7y, 2D the Kolmogorov scales being the rate of dissipation of ki-
R netic energy per unit mass. We maintairiggh,7=1.5. By
-u=0, (2.2 analogy, one may equilibrate a turnover time with a hyper-
viscous dissipation time to define the analog of the Kolmog-
3,0+ (G-V) 0= kV?26. (2.3 orov scaley,=(»%¢)¥?""1) depending on the power of

the hyperviscous dissipation. However, the corresponding
The spatial domain is a cubic box with a periodicity lengthvalues of the produdk,,.,7, have not been documented in
equal to 27. Our code has been described elsewhed, the literature to estimate the resolution of the small scales.
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TABLE I. A list of our NS runs with parameters.

Run no. Ry Pr N h ky I5 4 Kmax? T/ Te
NS1 20.0 1 40 1 2 1.7 1.1 2.3 1507.0
NS2 40.0 1 64 1 4 15 1.0 1.8 103.0
NS3 80.0 1 128 1 9 1.3 1.0 15 13.0
NS4 64 2 13 1.2 53.0
NS5 64 8 25 1.2 50.0
Here, we insisted that the value of the dissipation spectrum, C. Results at higherR,

k?"E(K), for the largest available wave number in the simu- |, Figs. 10)-1(d) and 1e)—1(f), we present the same

. 0 ; )
lation, was less thar-7% of its maximum value. study at, respectivelyR, ~40 andR, ~80. As it is the case

We stress that the forcing scheme has been unchang% R, ~ 20, the Fourier modes of the velocity and scalar fields

in our various runs. We computed the integral scales of the o .
velocity and scalar field, defined asi=(m/2)1/ present the same qualitative behavior. For each Reynolds

<U)2<>fk_1Eu(k) dk and |gE ’7T(1/< 02>)fk_lE0(k) dk. Be- number_,) the PDE’S of R@(E)]/(Rq: b(lZ)]2>l/2 and
tween our various runs, we g~ 1.5 and é~1.0. With our ~ RE[0* (k) 1/(Re[0* (k) ]*)*”* become wider when the wave
box sizeL=2s and because of periodicity, we expect anhumber increases. But remarkably, this effect is reduced as
weak central limit effect on the individual Fourier modes. the Reynolds numbers is increased. R{~80, the PDF’s
Table | shows a list of our runs with the sampling timesare very close to Gaussian; in particular, the widening effect

and parameters that permit us to judge the quality of thés clearly much weaker than for the velocity differences.
resolution. We show in Figs. @&-3d) the PDF's of

1B(K) /(| 9(K) |2 Y2 and [G(K)|/(|G(K)|2)¥2 obtained atR,
B. Results at(very) low R, ~80 in semilog and log-log coordinates. As before, a very
weak evolution through the scales is observed. Assuming the

root-mean-squaréms) vaiues are shown in Figs(d and real and imaginary parts af(k) to be Gaussian and inde-

1(b), for several values of the wave numbérandR, ~ 20. perjdtint, A'té ;Sm stra|ghtforwa_1rd_ to check _ tha
At R,~20, there is no basis for an inertial range cascade:|9(|§)|/<|9_(k)] ) . should be d|str|but(§d acgordmg to the
since the velocity and scalar spectra are falling off roughlyRayleigh distribution P(2)=2Z exp(-Z°) defined for Z
exponentially, see Fig. 2. Thus, the intermittent behavior of=0. Similarly, with the additional hypothesis éf" (k) and
the PDF’s seems at first surprising. 0~ (k) being independeng=|t(k)|/(|G(k)|?)*? should be
In fact, the behavior of the PDF’s cannot be related t0y;stripyuted according to the distribution P(Z)
inertial intermittency but rather to dissipative intermittencyISZs exp(—27?) defined forZ=0. The agreement with the
[22]. The far-dissipation range has been predicted to display,;q anove distributions is only good for very small deviation

strong intermittengy even at_Iow Reynolds numbers; o Z—0), see Figs. @) and 3d). The deviations observed at
physical grounds, if the velocity spectrum decreases fastq rger values ofZ are related to the deviations from the

I?:rgeﬂgce)sgl(;/algr}\pe)l\ilf?ég rg;r;ute 2”%“5“0&5: Srgggllgtigﬁ Gaussian distribution observed at large values of
n— - - Yo% % at(k Ot (k

simulation of the dissipation range Bj,~ 15 has confirmed Re 0(k)]/<_Re[ Q(k)]z>1/2 and Réu—(k)]/(Re[,u—_(k)]2>_1’2. .
that dissipative intermittency is associated with gentle spatial?Ut there is still a good collapse of the PDF’s in the inertial
variation of large-scale structufg4]. Frisch and Morf gave
more systematic and generic argumef2§]. From a dy-
namical point of view, the zero fixed point of the linearized
dynamics may also play an important role in the occurenc
of dissipative burst§26]. Due to the sharp decay of the
velocity spectrum in our simulation &, ~20, even if we do
not have a clear dissipation range, we believe that the prev
ous explanation applies.

The arguments referred to above suggest that the intermi
tency of thel(k) should growwithout limit as knp—«, at
any finite Reynolds number. The behavior of the Fourier PN
components is therefore different from the behavior of the—p/2z,={,— p/2{,, so the quantitieli(k) |/(|d(k)|?)*2 [or
velocity differences; at finite Reynolds number, wher0,  Re 0* (k) ]/(R4 0™ (k)]3)*] and Au(r)/(Au(r)?)*? should
all the moments of the distribution afu(r) are bounded present the same multiscaling. The possibility of determining
from above by the moments of the distribution of the gradi-accurate exponents from our numerics is somewhat question-
ents, which are finite. able. But clearly, at our highest Reynolds numBgr- 80,

The PDF's of Rg#(k)], Rg0*(K)], in units of their

In Ref. [19] and in the case of Navier-StokgdNS)
dynamics, it has been argued on the basis of DNS with a
é343 resolution that scaling exponents of longitudinal
increments and individual Fourier modes, respectively,
{p and z,,, should only differ by a linear “phase-space”
factor: z,= ¢, + 3p/2. We already stressed that the statistics
of individual Fourier components are always plagued by
[:_entral limit effect, and thus are very unlikely to be
universal, due to the strong influence of the raktidL.
More significantly, the above relation implies that,
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FIG. 1. PDF’s of REA(K)] and RE0™ (k)] normalized by their rms value. Gaussian PDF of variance unity is shown for comparison
in dashed line(a) and (b): R,~20 (run NSJ, k=3;6;9;12;15;18(c) and(d): R,~40 (run NS2, k=5;10;15;20;25;29(e) and (f): R,
~80 (run NS3, k=11;17;23;29;35;41;47;53;59. The flatndss=(Re[ 0" (k) ]*)/(Rd 0 (K)]?)? of the modek~ 10 steadily decreases
when the Reynolds number increasesRat- 20, F,_4=5.0, atR, ~40, F\_,,=3.5, and aR, ~80, F,_,,=3.1.

the evolution through the scales of our PDF’s cannot suppomolds numbers. The recent ultrasound scattering experiments
the heuristic ansatz proposed[it9]. [10] performed in a turbulent jet in airR;=0.7), weakly

As our results show a systematic evolution with the Rey-heated so that the temperature fluctuations act as a passive
nolds number, one may wonder what happens at higher Regcalar, provide a clue as to what may happenRAE 64,
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statistical measurements of the Fourier components of the
temperature field agree qualitatively with our numerical re-
sults. We note that this agreement between the numerical and
experimental results provides a partial validation of the ul-
trasound scattering method. In a different configuration and
at higher Reynolds numbe[&7], the inertial PDF's have a
non-Gaussian shape, with seemingly exponential tails. How-
ever, once renormalized in rms units, only a slight intermit-
tent evolution is observed in the inertial range. The experi-
mental results should be interpreted with caution, since in the
latter configuration, a much poorer spectral resolution is
achieved due to the size of the fl¢@7]. As a result, it is not
clear whether the Fourier components are genuinely mea-
sured. In any event, we have to distinguish between the
shapeof the PDF’s and theievolutionthrough scalesgscal-

ing). One may naturally suspect the large scales of the flow
to be responsible for the form of the PDF’s. In our simula-
tions, the forcing modes are very close to Gaussian. We note
also that the large scales determine the rifih and so the

rier components observed experimentally and numerically at
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FIG. 3. PDFs of |9(K)|/(|8(K)ADY¥ and [G(K)|/(|G(K)DY2 at R,~80 (un NS3. Wave numbers are k
=11;17;23;29;35;41;47;53;59a) and (b) PDF P(Z)=2Z exp(—Z?) is shown for comparison in dashed ling) and (d) PDF P(Z)

=873 exp(~2Z?) is shown for comparison in dashed line.
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10° — : : : : demonstrate that the Fourier transform of the synthetic ve-
locity field does not exhibit any particular intermittency, as a
result of a “hidden” spatial central limit effect. We shall
—~ discuss the validity of this approach. We note that similar
o 1wy computations have already been done for the wavelet analy-
'§ sis of a probabilistic wavelet cascaf29].
5 Following Benziet al. [28], we consideru(x) given by
2, 107l the following wavelet decomposition
[5)
Qﬁ + oo + o
& ux)= > X an ¥ (x), (3.
10_6_ n=-—w J:—C}O
where
-10 .
V(X)) =2"20 ((2"x— ), (3.2
10° and ¥, is the mother wavelet, with zero mean, localized
both in space and scale. For the discrete case Withdints
xs=s(1/2V) in the interval[0,1], we have
- N—1 2"-1
o 107
= Ux)= 2 2 anWn(Xo). (33
o — —
v n=0 j=0
g
=3 107 The coefficientse, ; are defined using the following multi-
&9 plicative process:
N’
A aopzzly (3-4
107
Ant15= €nt1,3Wne1,21@nj» (3.5
-10
Ant12+1= €n+1,5+ 1 Wnt 1,9+ 1%n,j - (3.6

+
Re[u™(k)])/o , : ,
The €,; are independent random variables eqttdl with

FIG. 4. PDF’s of RE(*(K)] normalized by their rms valug, ~ Probability 1/2 (this simplifying choice will be discussed
for hyperviscous NS runs. Gaussian PDF of variance unity is showiaten. The random multiplier$V,, ; are independent positive
for comparison in dashed linéa) Hyperviscous indesh=2 (run ~ Variables, with the same distributid?(W).

NS4, k=5;10;15;20;25;29.(b) Hyperviscous indexhr=8 (run It is easy to show that|a, ;|P)=(WP)", where the aver-
NS5. k=5;10;15;20;25;29. age is performed over the ensemble of the realizations of the
_ ) ) . _multiplicative process. Denoting,= —logW"), we have

our highest available Reynolds numbers is very suggestlve<|an'.|p>:27gp<|anil’.| Py=2""%p The scaling exponents,

_ Due to the limited inertial range available in our simula- are chosen to give intermittent multiscaling. Note that in this
tions, we reconsider the problem with a hyperviscous damp-

ing (—1)"1yV2"_In Figs. 4a)—4(b), we present the results mg?he;,rLezaL is fixed, and y~L since there is only a single
of 64° hyperviscous runs with=2 andh=8. Again we find Y-

S . Taking the discrete Fourier transform of E&.3), G(k
that the PDF’s of R@i~(k)) are very close to Gaussian, all g HG-3, a(k)

reads
the way down to the dissipative scale. In particular for
=8, it is clearly seen that the PDF’s of R (k)) almost N-12"-1 .
collapse to a Gaussian shape ket 25. A clear, albeit small (k)= Z E an V¥, ;(K). (3.7
n=0 j=0

deviation can be seen fér=29>ky=25.

Our numerical results demonstrate that as long as the non- ) - ) .
linear term dominates, the distribution of Fourier modes isVe remind that thel' ;(k) are localized irk space. More-
essentially Gaussian. As soon as viscous processes becomer, at fixedn, the W, ;(k) differ only by a(deterministig

important, the complex interplay between nonlinearity andphase terr’r[\if ‘(k):e—ikj/zf\i, (K)]. Therefore, we fur-
dissipation results in larger fluctuations of the Fourier modestper simplify b;’lconsidering onnIS? ’

IIl. LACK OF INTERMITTENCY OF FOURIER MODES 2"-1
IN A SIMPLE MODEL OF CASCADE Si=2 an;- (3.9
=0

In this section, we consider a simple 1D wavelet cascade
that allows us to generate multiaffine velocity fie]@8]. We = We expecti(k) andS, to have the same relative scaling.
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We note that the sum in E3.8) is over 2' terms. If one (a? a? V—(a? )
intends to invoke the central limit theorem f8f; (properly noo_ 1 Mt " oo (3.14)
renormalizegl the crucial point is the spatial correlations of ol (ap Y—(a? )?

the a, ;. For the multiplicative process considered here, one
may expect the spatial correlations of thg; to decrease Using KFlJz’ Eq. (3.13 can be rewritten as follows:
only slowly through the scales, while thg, ; become more

intermittent. So there is no hope for a direct application of (Sﬁ} 1 <a4 )_3<a2 )2

the central limit theorem as—oo. Instead, we have to com- =3+l Vs

pute the moments d,, which involve naturally the spatial (Sh)? 2" (af )?

correlations of thea,, ;. Therefore, we stress that the rel- 4 2 \2

evance of this approach relies on the capacity of the models n i 2 n o (ap ) —(ap ) (3.19
(3.49—(3.6) to describe the spatial correlations of thg; for 22n 15, Il <aﬁ )2 '

a 1D spatial section in true 3D turbulengete that we deal
here with 1D Fourier transforin Experimental tests have The second term of the right-hand side of E8.15 corre-
been made in Ref[30] for the space-scale correlations sponds to the case of independen; (with respect to the
(@n, j,@n, j,), Where wn =3 In aﬁ’j—éln aﬁj>. A qualita-  spatialj index. The 2' number of terms in the sum &,

tive agreement has been found with the mod8lg)—(3.6), ~ competes with the increased intermittency of #g; asn

with some additional featuréa better agreement is obtained — . Assuming 6<2{,—{,<1, we get

for a nonscale-invariant cascade, see R8&f]). Unfortu-

nately the previous test does not probe the space-scale phase 1 (aﬁy_}—S(aﬁ'}Z 2087 fn_3
correlations of the wavelet coefficients, i.e. thg;/|an | on (a2 )2 = %

correlations. Though the sign of a wavelet coefficient is -

function of the wavelet basis functions and oscillates ~2(5=4~1N_,0 asn_w. (3.16

strongly with the spatial position, such correlations have

physical meaning and are involved in thg ; correlations.  The eyaluation of the third term of E¢3.15 is more deli-
In our simple model, ther, ;/|ay,| are linked to thee,;  cate We observe that0K! . <1 andK] | =KJ . . But

product of the ancestors, tle ; being random independent o e T J2:)1 .
multipliers equal to+ 1 with probability 1/2 the multivariate statistics of the, ; is not homogeneous in

- il n n
In the following, we will focus on the flatness &, to 'S SPatialj index, and we may haVKj1v12¢Kjl+s’j2+j5'
estimate the intermittency di(k). For n=1, observe that Nevertheless, one may show thf ; <Kg; _; for j,

(Sn)=0 since(ap, ;)=0. It is easy to obtain the second mo- =j,. This allows us to obtain the following inequalities:
ment of S, :

<Sﬁ>=$<aﬁ,;>+j; (anj @) (3.9 i, iz T, T
1712 on_yg
<2 > Koi_i.<2/2"> Kq:. (3.17
=2n<a§'_>+j§#:j <€n,j1><Wn,j1><En,j2><Wn,j2> j1<i2 127 =1 !
1 2

X{ @1 (112, ¥n- 1112} 1) (3.10 Denoting (,j) the first common ancestor ofn(j;) and
(n,j2), Kj‘lv]z takes the form
where [x] denotes the integer part of=0. As (e, ;)=0,
. . . _A 4 -n 2
nondiagonal terms disappear: ) (W?)2(n ”)<aﬁj)—<W2)2(” n)<aﬁj>2

(S)=2%a2 ). (311 W] )~ (WEEO )

(3.18

Similar computations for the fourth moment 8f give
4 2 \2
<aﬁ'j>/<aﬁ'j> -1

—_ony/ 4 2 2 = 3.1
(S=2an) 3, 2 (o) (12 WA a1
Then, we obtain the flatness 8f 2(20- )N _ 1
=, (3.20
2 2 (2= Lgn
<Sﬁ> _i <aﬁ'_> 3 <a“111a”v1'2> (3.13) 2iezmean—1

22 on/ 21\2 ' oon & 2 \2 N
(S 2%(an )" 207l (eq ) Therefore, at fixed nK, ; depends only on the level of

To take into account the correlations among tifg terms, ~ the first common ancestor ofi(j;) and (0,j2). Using Eq.
we introduce (3.20, we evaluates?_7 'Ky,
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2"—1 n

-1
1
n___ - A(20-4) 1 yx2n—1-q
2 Ko g an g & (2112
(3.21)
2n—1 1_2(2§2—§4—1)n 1—2-n
T o@—tn_ 1\ 1_2@L-2-1) 1-1/2)°
(3.22

Thus, the following bound holds for the third term of Eq.
(3.19

(e )—(af )?

(e )

|

3
0<— > K" .
22nil*i2 Jul2
6 2n—1 1_2(2{2—§4—1)n
=

on 2@l _q

1—2(28-84—1)

_1—2—”)<a‘n‘,.>—<aﬁ,.>2 323
1-1/2 <aﬁ’.>2

6 2n—1
$——

on 2(28=4n_q

1-2@& & bn q_p-n

X 1—2(28—84—1) B 1-1/2

X (2(2627 ban— 1) (3.29
=0(1) as n—co, (3.25

Finally, under the hypothesis<02¢,— {,<1, we get for the
flatness ofS,

(s
(s)?

(3.26

=3+0(1) as n—o,

Clearly, for such a cascade, a limited intermittency of th
individual Fourier modes is expected @as- .

The previouse, ; play the role of an approximate random-
phase for the “eddies’@, j, which leads to important sim-
plifications. In the following, we consider the opposiso
unphysical casee,, j=+1. Since now «,, ;)>0, we intro-
duce the centered variableg, ;=a, ;—(a,;) and S;=S,

—(Sy)=2jay ;- We compute the second and fourth momen

of S/:

<Sr'12>:2n<ar'1,2.>+j§ <ar,1,j1ar,1,j2>, (3.27

1#i2
(SH=2"aphy+3 > (apf e y+4 2 (afd ap;)
i, 1 N i, 1 N

! ! ! !
+ 2 Aapjen,angan,)- (3.28
J1:12:13:14
N{i1.i2.i3.i4}=3

€
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P(_Sn’ /o)
S

P(Re[u(®)]/0)

2 0. 2
Re[uk))/c

FIG. 5. PDF's ofS] and R@O(IZ)] normalized by their rms
valueso for the multiplicative cascade of Sec. lll. Gaussian PDF
of variance unity is shown for comparison in dashed li(&.
n=4,... ,9.(b) k=11x2", n=0,...,5.

The sum in the last term of E€3.28) is over sets containing
more than three different indices. In the last term of Eg.
(3.28 the sum is over-n* terms instead of-n? terms for
the two previous sums. Therefore, the asymptotic behavior
of (S/*)/{S}?)? is not obvious. Since the last term of Eq.
(3.28 is not easy to evaluate analytically, we perform nu-
merical simulations. The distribution of lgQV) is taken as a
Gaussian with meanm=-0.4—1/2 and variance o
=0.038, in order to mimic the multiscaling dfu(r) in true
turbulence. We took 2 points withN= 10, which enabled us
tto carry out 16 realizations of the multiplicative process. To
have access ta(x) from the coeffcientsy, ;, we used the
discrete wavelet transform froif81] (pyramidal algorithm
[32]). We chose the 20-tap wavelet of Daubechija$],
which is an orthonormal periodic wavelet basis. Then we
obtained thel(k) by a simple fast Fourier transform. In Fig.
5(a), we show the PDF's 08//(S/%)*2 for n=4, ...,9. We
present the same results in Fighpfor Re(li(k)) with k
=11x2" andn=0, ... ,5(this choice ofk corresponds ap-
proximately to the maximum of the spectral supports of the
W, j(x), which eliminates spectral overlgpsin the two
cases, it is hard to see any reliable evolution through the
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scales. The shape difference between the PDF'Sjodnd  exchangesetween the modé& and its many neighboring

Re(li(k)) is due to the phase factors of thien,j(k). These modes k+q), via the mixing action of the energy contain-
numerical results demonstrate that, even in the absence ofigy range (|~ 1/1,<|K|), such an approximation leads to
spatial phase decorrelation in the multiplicative process, the bable | fluctuat faHR D) th ing i
intermittency of thei(k) is reducedthough we cannot make Improbabie farge fluctuations ai(k,t); the sweeping time
; 1/vgk being smaller than the local turnover time of the cas-
any asymptotic statement q “13-23 \when koo th id o
We believe that despite its caricatural simplicity, the 397~ ¢ » when k—co, the rapid energy mixing

simple model we considered sheds some light on the bas{ddY bypas§ the anomalous cascade fluctuations fanthe
vidual Fourier modes. Note also that a lateral energy ex-

mechanism, which reduces the intermittency of the indi- h betw b ¢ v th itud
vidual Fourier modes. The main finding is that the decreas&"ange between wave numbers of nearly the same magnitude
ill not contribute to the energy cascade.

of spatial correlations with the step of the cascade, albeit’ In fact. the ab tis likelv to b .
small, competes with the increasing intermittency through,[h n fact, the ad‘t’v? arglj(‘l;;nen IS Ihey g te wrong ;mce
the scales to give rise to a reduced intermittency forlifie €re 1S no need to invokenergy exchangsetween modes

via a kind of spatial central limit effect. The previous model to explain their fast decorrelation. We illustrate this point

has the advantage to make possible some easy analytical aW&h a random Galilean transformation, following an argu-

numerical investigation. But we do not expect our qualitativeTenEprfsentEd '3 R:?[BS]' EJrlder a»GahIean trahsformatmn
conclusion to depend on the existence of an exact multipliX’ =x+Vt and 0'(x’,t)=U(x,))+V, the Fourier modes
cativ_e cascade or on the space dimen_sion_. Additionaly wa(ﬁ,t) are transformed inmf,f(ﬁyt):e*ik-thj(E,t)jL 5&,6\7-
considered the 1D Burgers model, which is a well-knownrperefore, ik 0, we have for the temporal autocorrelation
case of extreme intermittency: DNS withsafunction corre-  ,nction
lated in time forcing at the largest scales gave us again very
weak intermittency for the inertiali(k) (but with sub- SR OV SR VR — (R iK-VES 2 1y
. _ ) ) u’(k,0)- 0’ (k,t)*)=(0(k,0)-e"™ 'a(k,t)*). (4.1

Gaussian statistics, results not showrinally, we point out (0" (k,0)- 0" (k,)*) ={0(k,0) (kD7) @D
that in true turbulent dynamics, we expect the above- - -

. . Suppose now thaV is random characteristic of the large-
mentioned decorrelation process through the scales to be T o S
only an inertial feature. The strong dissipative synchronizaScalé velocity field, and to simplify further supposeis a
tion observed in numerical simulation of tree modE34] centered Gaussian vector, independent of the small scales
comfort us in this idea. Also such a breakdown of the deco{k<1/lo). Then
rrelation process in the dissipation range would be compat-, | _ .
ible with the dissipative intermittency of the(k) as kz (G’(k,O)~G’(k,t)*>=(e'k'V‘)\7(G(k,O)-ﬁ(k,t)*>k<l,|0 4.2)

—»00,
=~ 1/2 k2<V2>t2<fj(|Z,O) . LA])(R,I)* >k<l/|01

4.3

IV. DISCUSSION
A. Fourier modes and sweeping effect

It is tempting to relate the lack of large fluctuations of where (- )y and (- )x<u1, denote, respectively, the average

Fourier modes in the inertial range to their fast decorrelation - > .

: . ; over the realizations of th¥ process and over the realiza-

due to sweeping effect. The idea that the Fourier modes _ “ LA
decorrelate faster than predicted by standard cascade ardipns of the small-scale dynamics.(ifi(k,0)- G(K,t)* Jx<1,

ments has been proposed by Kraichnan in the context of thig characteristic of the inertial dynamics, it is then expected

Direct Interaction ApproximatioiDIA) [35]. There, it was to scale with the local turnover time of the cascade, and the

shown with systematic arguments that the time decorrelatiowhole correlation function is thus dominated by the

of an inertial Fourier modei(K.t) is of the order of Wk,  €XP(~2K{V)t’) term ast— +o. This simple argument sug-

wherev, is the rms of velocity fluctuationgu?)*2 There is gests that it is the random nature of the phase induced by the
now almost no doubt that it is effectively the case for true/age-scale sweeping that is the primary process in the deco-

turbulence(see e.g., Ref[36] and references therginFor rrelation of the Fourier modes, so that the sweeping effect

the small scales of the real-space velocity field, the sweepin as no dynamjcal link with the weak intermittency of the
dividual Fourier modes.

decorrelation is essentially a kinematic effect which can b
thought of as a random Galilean transformat{@Y] (see
also Ref.[1], Secs. 6.2.5 and 7);3the small structures are B. Fourier modes and shell and tree models

swept past fixed points almost as a whole by the random | recent years, the so-called shell models and tree models
energetic large-scale motions, and so there is only little €ng¢ 1,rhulence have received considerable intef&sl. In
ergy redistribution between small and large scales. In Lapaticular, it is well-known that for certain values of its pa-
grangian coordinates, the sweeping effect is eliminated ang 1aters the Gledzer-Ohkitani-Yama@@OY) shell model

H 2/3. -1/ !
the expected turnover timer{-r““s ®) should be(at least  reproduces very well the exponents of the structure functions
approximatively recovered. But as far as the decorrelationeasyred in real flows. These toy models can be regarded as
of a given inertial Fourier modé(k,t) is concerned, if one simplified and phenomenological mode decompositions that
interprets the sweeping effect as being due to rawidrgy  share the main symmetries and structural properties of the
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NS equations. The Fourier representation is indeed only af the global energy transfer suggests that pulses transporting
particular complete functional basis. We discuss briefly som@anomalous fluctuations are destroyed by “intersubsystems
properties of these simplified dynamical models with regardnixing” by “mixing among other subsystems” wheiN

to the influence of the density and type of nonlinear cou-—«, thus restoring K41 scaling in the limit. On the crude

pling. level of our analogy, it seems possible that a similar mecha-
The so-called reduced wave-vector set approximatiomism is at work in the REWA model.
(REWA, see e.g. Ref[40]) model consits in solving the It is worth noting that the same tendency toward a less

incompressible NS equations on a geometrically scaling sulintermittent regime when increasing the number of coupling
set/C of wave vectors in Fourier spack’=U K, with IC, has also been observed in the so-called tree models of turbu-
=2"K, and Ko={*k&:a=1,... N}. Each of the wave- lence[34]. At the difference of the REWA model, the tree

vectors shellC, represents an octave of wave numbers. Thdnodels take into account the scale densification. The pos-
nonlinear term is restricted to neighboring shells, thus locapible choice of nonlinear interactions are phenomenologi-
in k space. Numerical simulations showed that the REWACally motivated by requiring a certain degree of locality, both
model displays only weak intermittency, whatever the choicdn Fourier and real space. Using different sets of nonlinear
of the variables[G(k), Au(r), or the shell energyE, interactions(conserving energylike and helicitylike quanti-

noe . . ties), it was shown that the presence of horizontal coupling
— = 1 2 ’
=Zker,|U(K)[7]. This feature has been attributed to the ¢ " gpatial coupling at a given schleesults in a weaker
wave-vectors mode representation that does not take into agtermittency. In fact, at a given analyzing scale of the tur-

count the scale densificatigr0]. It has also been observed pylent velocity field, the only way energy localization could
that increasing the numb&¥ of modes in each shell results pe avoided is by a strong energy mixing in spité].

in weaker intermittency(measurements done for the shell Byt what is the relationship to the NS equations, where an
energies [41]. We propose the following interpretation of infinite number of triadic interactions is involved? Our nu-
this effect, which is also linked with the absence of scalemerical results show that as far as individual Fourier modes
densification. We introduce the short-hand notatiégf:  are concerned, even whég~L, only a weak intermittency

is observed. This strongly indicates that shell or tree vari-
l@bles should not be assimilated with Fourier modes but are
rather akin to wavelets coefficients as originally and usually
argued(see e.g., Refd.47,34). It is as if, in a statistical

- R PN sense, simple dynamical models were able to take into ac-
[a+v(kp)?]ag=—TI(kS)e 2 (ikP-ap)ay, count the net effect of complex phase coupling and incom-

EZ”ES and ﬁﬁzﬁ(ﬁﬁ,t). Latin superscripts label shells
while Greek superscripts label subsystems. The REW.
equations may be written under the form:

Ef:'gg“l'w pressibility or geometry constraints knspace. Since when
|';n,r’{|‘<F§ lo/L—0, the spectral density of modes is increased, and one

ll-n|<R may want to link the spatial central limit effect for the indi-

(4.4 vidual Fourier modes with an increase of nonlinear coupling.

Due to the way the Fourier modes become more dense and to

. ) . the unchanged intermittency of the real-space turbulent fields
Wherefl(kn) denotes the projector on the plane perpendicuy,hen l,/L—0, the mechanism at work in NS is certainly
lar to k. Thus one may like interpreting the REWA model different than in REWA or tree models. It is just tempting to
as describing a set dfl subsystemsi,(x,t)=3,(ekr*Ge  say thatas,/L—0, the fluctuations of an individual Fourier
+c.c.) in interaction mode is the sum of many excitations, which are nearly sta-
tistically independent, see the next section.

One of the major conclusions of this paper is that the
statistical properties of the Fourier modes in turbulent flows
have nothing to do with the variables used in shell model.
The latter are akin to wavelet coefficients, and allow to probe
more directly intermittency effects.

Let us remark that due to the incompressibility, parallel wave
vectors cannot interact, so there are no “internal” interac- C. Multi-k correlations
tions for any subsystem. Further, since the NS equations are

invariant under rotationgfor L—«), the N directions of . ; o - .
L . Gaussian in the limitly/L—0, intermittency should be
spacexky, and so theN subsystems, should play approxi- viewed as a collective phenomenakirspace. So one may

mately the same role folc, well chosen. Therefore the na- look at lator€ (K (K hich wrall
ture of the nonlinear energy exchanges in the REWA modelPOK at correlatorgi(ky) . . . U(kp)), which appear naturally

is fundamentally different from what happens in NS turpy-" Fourier expression of(Au)?), with the hoﬁpe of taklng
lence, and is rather reminiscent of the spherical shell model§ito account phase coupling between modegH(: - - +k,
introduced by Eyink42]. A salient feature of shell models is =0 is required when the flow is homogenepus

the existence of coherent solitonlike structures that run down We first refer to the “weak dependence principle”
the cascad@43,44. In the case of the spherical shell model (WDP) introduced in the context of the DIE35] in order to
studied in Ref[45], the PDF of the instantaneous exponentdiscuss qualitatively this issue. Let us briefly recall the weak-

ﬁtﬁa(i,t)=ﬁ2 PRI(g V)0, ]+ »V20,(X,1). (4.5
Y

As inertial Fourier components become individually

056313-10



STATISTICS OF FOURIER MODES IN A TURBULENT FLOW PHYSICAL REVIEW B3 056313

coupling argument due to Kraichnan. Taking cyclic bound- <0(|21)0(|22)0(|23)0(|24)>
ary conditions on a box of side the incompressible Navier-
Stokes equations may be written in the Fourier = Ok, +kyOky kL O(K1) U(K) ) (O(K3) T (ky) )
representation under the form R R R R
+ 6%,y 06,k 0K (ka) Y0 Kp) O(Ky))
(k) (K)=—TI(K)e >, [iK-G(p)]d(q), (4.6 00,4k, 1, kD) Bk (A(K) D kg))
p+qg=k
+ E(IZ11|221|231E4)1 (47)

wherell(k) denotes the projector on the plane perpendiculawhere
to k. Consider a wave vectde with k’ # +k, and suppose

. s e s, L 6(E1,|22,|Z3,|24)
the statistical dependence betweHik) andd(k’) being in-

duced wholly by the nonlinear term #.6). We see that the 1
~ o , =— d3x; d3x, d3x; d3x
wave vectork’ appears only twice in the convolution, once |12 1 2 3 4
asp and once as, thus making a very weak contribution to i Qs . . . .
the sum. As the spectral density of Fourier modes increases X ettty (X)) u(Xo) U(X3) U(Xa) Ve,
whenL — o0, the WDP postulates that the normalized Fourier (4.8

modesti(K)/(|t(k)|?)*?andu(k’)/(|a(k")|?)"? become sta- L _
tistically independentin the limit L—oo (I, is supposed and (U(X)u(Xz)u(Xs)(xs))c is the cumulant of
fixed). Note that the WDP does not differentiate the interactu(X;)u(X)u(xg)u(x,)). If 1o is kept fixed, one infers that
ing variables on a statistical level, and is defined in terms of18]
a limiting process. In the case of the random coupling model I I
[48], the WDP applied to a finite number of individual vari- €(ky Kz, k3, k) N(Ky Kz, K3, Kg) =0 as L—eo,
ables is an exact result when their total number increases to (4.9
infinity. But in the case of the NS equations at small but
finite 15/L ratio, due to the influence of intermittency, one
may expect the Fourier modes to be correlated with a  Afk, Kk,,Ks,Ky)
strength depending on the wave numbers they invéive
shall go back to this point later (0(ky) DY 0(ko) |2 Y| 0(Kg) | 2Y Y [ T1(Kg)| 2 Y2

A Fourier mode being a complex quantity, its statistics 4.10
should be understood as the joint statistics of its real and
imaginary parts. In fact, supposing(k=0)=0, R4 (k)] The WDP applied to ({i(ky)0(Ky)0(Ks)0(Kg))/
and Infi(k)] are not directly connected by the nonlinear M(Ki,Kz,Ks,ks) leads directly to the same result, except
term of Eq.(4.6). Invoking the WDP, we infer that their when the correlatioq0(k)G(k,)0(ks)U(k,)) collapses in
statistical dependence is very weak, infinitely weak in thethe fourth moment of aingle mode,(|ti(k)|%).
limit L —2= (I, fixed). The same reasoning may be applied to  since(Au(r)*) has an anomalous scaling behavior, and
the components of the vectﬁ(lZ).

Finally, if in addition we take into account the central (A y(r)4)= > (ek17—1)
limit effect on the individual Fourier modes, we have the Ky +Ko+Ka+kg=0
conclusion that the joint PDF afi(k) and tG(k’) becomes o T T I S
Gaussian in the IimiJ[O/LHO, as Eh()e produ(ct ())f univariate XX (€T =1) (8(ky) O(kp)O(ks) O(Ks))
PDF’s of independent Gaussian random variables. The above (4.11
arguments apply by extension to diryite number of modes.
Even whenly~L, based on our numerical results on the
univariate statistics of Fourier modes and due to the huge
number of modes in interaction, we expect that inertial mul-
tivariate statistics of a f_|n|t¢ number of Fourier modes could XX (ekaT— 1) 6(|21,|22J23,|24), (4.12
only be close to Gaussian in turbulent homogeneous flows at
finite Reynolds number. However, we expect the differencgy,o 6(|21,|22’l23,|z4) term has to embody the anomalous scal-

wit?hGa\L/vaDs:;anity to increase tWit_r;hthe scales. o based ing. What is unclear to us is whether this scaling depends on
© 'S In agreement WIth an approach based on 4o geometry of th&; . For instance, whek; = —k,=Ks=

r—§pace cumula_nt expansion ¢i(k,) . . .u(kp2>.QFor sim- —K,=K. Eq.(4.7) degenerates into
plicity, we consider the case=4. We denotdi(k) a com-
ponent of the vectoti(k). It is straightforward to show that (a(k)|[*=2(|t(k)|?)?+ e(k, —k,k,— k). (4.13

where

=3(Au(nA2+ X (e

Ky +Kp+Kgt+ky=0
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N-points real-space statistics contain indeed the correla-
tions among Fourier modes and are easier to handle experi-
mentaly or analytically. We note that in the context of the
weak wave turbulence theopt9], a (k,w) formalism is ex-
plicitely involved, and a joint Gaussian approximation is
used to derive the so-called Kolmogorov-Zakharov finite flux
solutions. In order to test the validity of the latter approxi-
mation, some kinds of real-space structure functions seem to
us better suited than univaridtespace statistical tests like in
Ref. [50].

(ol Y/ (@l -2

V. CONCLUSION

|
0

—
(=)

10 20 31‘; 40 30 60 The main result of this paper is to show by DNS that even
whenly~L, the individual Fourier modes are only weakly
FIG. 6. (|0 (k)|*/{|0*(k)|?)>—2 vsk in semilogarithmic co-  intermittent at high enough Reynolds numbers. Our results
ordinates for our run NS3R, ~80). are in qualitative agreement with recent ultrasound scattering
experiment$10], but disagree with the numerical results ob-
If e(k,—k,k,—K) has an anomalous scaling, it should betained in Ref[19]. _ .
observable or(lG(IZ)|4)/<|0(IZ)|2>2 as k—oo, in an infinite Using a S|mpl_e model of cascade_deflned on a dyadic
Reynolds number situation. Observe that this does not OCClﬁIructure[28], we |_Ilust_rated how a spatial o_lecorrelanon_ pro-
in the simple synthetic wavelet cascade we considered iffeSS through the |neft|a| sm_:ales may explain the wgak inertial
Sec. IV. For our NS simulation &, ~80 (run NS3, we intermittency of thel(k); in true turbulent dynamics, we

X - hi lati k in the dissi-
oresent in Fig. 6 the behavior 6fti(K)|*)/(|a(K)|%)2— 2 vs expect this decorrelation process to breakdown in the dissi

Ki i di We ob laht i | pation range, thus allowing the known dissipative intermit-
in semilog coordinates. We observe a slight increase, ¢ Oncy of theti(k) asky— o,
to an exponential behavior.

Last i th f | ing i We then addressed our results on a more general ground.
ast, assuming the presence ot an anomalous scaling INgye giscussed our findings with regard to the temporal auto-

fixed not degeneratedk();<j<4 geometry k;+Kk,+Ks+Ks  correlation function of theli(k), and also with regard to

=0 and Eii iEj), we have some simplified mode decomposition approaches to turbu-
R . . . lence. Last, we discusséespace inertial multivariate statis-
(O(Nkp) O(NK) O(NK3)T(NKg)) tics, with arguments indicating that the latter is also plagued

(OOK) [V (MK |2 YK |0 Kg) 2Y VA G(NK4) [2) 2 by an influence of théy/L ratio.

—00 as A—o, (4.14
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