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Effect of viscosity in the dynamics of two point vortices: Exact results
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Universitéde Provence,
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An exact, unstationary, two-dimensional solution of the Navier-Stokes equations for the flow generated by
two point vortices is obtained. The viscosityn is introduced as a Brownian motion in the Hamiltonian
dynamics of point vortices. The point vortices execute a stochastic motion whose probability density can be
computed from a Fokker-Planck equation, equivalent to the original Navier-Stokes equation. The derived
solution describes, in particular, the merging process of two Lamb vortices, and the development of the
characteristic spiral structure in the topology of the vorticity. The viscous effects are thoroughly investigated
by an asymptotic analysis of the solution. In particular, the selection mechanism of a specific pattern among the
infinity satisfying then50 ~Euler! equation is discussed.
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I. INTRODUCTION

Vortex interaction is a central issue in two-dimension
fluid turbulence@1–3#. The basic mechanism, the collision
two localized vortices, was studied extensively, mainly us
numerical simulations@4,5#, in an attempt to understand th
dynamics of coherent structures. Asymptotic analysis a
contributed to the study of the motion of vortices in a tw
dimensional potential flow, and the results were used to
sign efficient numerical schemes and describe the mer
process@6,7#. A fundamental point about vortex interaction
is the appearance of a spiral structure, evolving rapidly
contributing to the generation of small scales. The sp
structure is often invoked to explain the statistical proper
of turbulence@8–12#. In this paper we show that using
stochastic representation of the Navier-Stokes equations,
possible to find the exact solution for the interaction of tw
vortices in the limit of vanishing core size. The role of th
viscosity and the detailed description of the spiral struct
are thoroughly investigated.

In Euler flows, point vortices follow the fluid streamline
This is no longer the case in viscous flows where, indeed,
viscosity perturbs this characteristic~advective! behavior. To
give a more precise idea of the influence of viscosity on
vortices, let us introduce the Navier-Stokes equation for
vorticity in two-dimensional flowR2,

S ]

]t
1v•“ Dv5n“2v, ~1.1!

which can be completed with the incompressibility conditi
“•v50. We note thatn is the kinematic viscosity,v
5v(x,t) is the velocity field, andv5v(x,t) is the algebraic
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value of the vorticityv5“3v. In two-dimensional flows,
the vorticity vector is in the direction perpendicular to th
flow plane. Units are such that the constant fluid density
equal to 1. Solutions of this equation are smooth fields of
vorticity. To work with singular distribution of vorticity, it is
more appropriate to introduce a weak form of the Navi
Stokes equation@Eq. ~1.1!#,

d

dt
v t~ f !5v t~v•“ f !1nv t~“

2f !, ~1.2!

for any smooth functionf, where by definition v t( f )
5*R2dxv(x,t) f (x). One should note that a weak solutio
@Eq. ~1.2!# of the Navier-Stokes equation is not necessaril
solution of Eq.~1.1! that is to say a strong solution. Neve
theless, Eq.~1.2! is valid in a more general space of fun
tions than the usual one@Eq. ~1.1!#, and allows one to dea
with singular vorticity distributions rigorously. An importan
result follows from this approach in the case, wherev t( f ) is
essentially bounded and integrable: one can associate a
chastic processx(t;x0) with any weak solution of the
Navier-Stokes equationsv t( f ) defined by a Langevin equa
tion @13#

dx~ t !

dt
5v@x~ t !,t#1A2nb~ t !, ~1.3!

v t~ f !5E dx0v~x0,0!E@ f „x~ t;x0!…#, ~1.4!

wherev(x0,0) is the initial vorticity field,b is a white noise
~the derivative of a Wiener process! andE( f ) is the expected
value of the stochastic processf „x(t;x0)…. By definition,
E@ f „x(t;x0)…#5*dx P(x,t;x0) f (x), where P(x,t;x0) is the
transition probability, that is, the probability for a particl
evolving according to process~1.3!, and initially at position
x0 , to be at positionx at timet. Equation~1.3! clearly shows
that the viscosity prevents the advection of particles alo
the field lines by imposing a stochastic perturbation. Inde
©2001 The American Physical Society04-1
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OLIVIER AGULLO AND ALBERTO VERGA PHYSICAL REVIEW E 63 056304
in the absence of viscosity, Eq.~1.3! represents the motion o
a fluid particle in the so called Lagrange representation
fluid motion.

The stochastic equation@Eq. ~1.3!# is not very useful in
this form, because to determine the fluid particle traject
x(t) one needs to determine the velocity fieldv(x,t) which is
itself a solution of the Navier-Stokes equation. However,
the special case where the vorticity is concentrated in poi
an explicit form of the stochastic equation of motion f
these ‘‘point vortices’’ can be found.

In the absence of viscosity, the Navier-Stokes equa
reduces to a Euler equation. A weak version of the Eu
equation has been extensively studied since the 19th cen
after the work by Kelvin@14#, in the special case of th
motion of point vortices. Chorin pointed out that this a
proach can also be used for viscous flows. Its goal wa
design efficient algorithms to compute turbulent flows@15#.
Chorin proposed adding noise terms to the Hamiltonian m
tion equation for point vortices in order to take the viscos
into account. The deterministic motion equations of po
vortices thus becomestochasticequations. In a more rigor
ous approach, it can be shown that when the number of
tices tends to infinity, this stochastic system converges
smooth solution of the~strong! Navier-Stokes equation
@13,16#: the spatial distribution of point vortices approach t
vorticity of a Navier-Stokes fluid. In this paper we show th
this approach is also useful to obtain some theoretical ins
into the dynamics of a few vortices, and to understand
influence of viscosity on the motion and interaction of vo
tices.

A particular solution of the weak Navier-Stokes equati
is the Lamb vortex@17#. It is a point vortex that, under th
effect of the viscosity, spreads in space. The Navier-Sto
equation reduces in this case to a heat equation, and
vorticity distribution is Gaussian. Clearly, from a stochas
point of view, the point vortex trajectory is one of a Brow
ian motion: the mean and standard deviations of the vo
position coincide with the moments of the Gaussian distri
tion. The vorticity is then directly related to the probabili
distribution of the point vortex position. Moreover, except
time t50 ~corresponding to the initial condition!, the solu-
tion is also a strong solution of the Navier-Stokes equatio
We will see that to study the interaction of a finite numb
~greater than one! of point vortices in a viscous medium, th
links with the Navier-Stokes equations must be weaker
make a proper discussion, it is necessary to introduce a
chastic formalism. This will be presented in detail in Sec.

The main objective of this paper is the study~part of these
results have been presented in a letter@18#! of a system of
two point vortices in a viscous medium, an obvious gener
zation of the Lamb problem. We will see that in such a ca
an exact solution can be found. In Sec. II a stochastic
malism is introduced, and a relation between the Nav
Stokes equation and a Fokker-Planck equation describing
probability distribution of point vortices is established. T
specific case of two vortices is solved in Sec. III. T
asymptotic properties of the solution at weak viscosity
05630
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discussed in Sec. IV. The paper ends with a concluding s
tion ~Sec. VI!, where in particular we discuss the physic
significance of the solution.

II. DYNAMICS OF POINT VORTICES

Let us recall the basic properties of point vortices befo
focusing on their behavior in a viscous medium.

A. Euler dynamics of point vortices

We consider a vorticity field initially concentrated in
finite number of pointsxi , i P$1,...,N% in a two-dimensional
domain D that we choose to be the plane, for the sake
simplicity (D5R2). Denoting d(x) the Dirac measure a
point x, one writes the vorticity field

v~x!5(
i 51

N

G id~x2xi ! at t50. ~2.1!

Each termG id(x2xi) represents a point vortex~labeled byi!
with circulationG iÞ0. The circulation can be defined by th
identity G i5*Cv, whereC is any path surrounding the vor
tex i ~and only this one!. One can verify that the localization
of the vorticity distribution is conserved in time,

v~x,t !5(
i 51

N

G id„xi~ t !2x…, ~2.2!

with xi(0)5xi , which justifies the name of a field of poin
vorticesv(x,t). Indeed, by inserting Eq.~2.2! into the mo-
mentum Euler equation~1.1!, and using the divergence fre
constraint on the velocity field, one obtains

05(
i 51

N

G i H 2
d

dt
xi~ t !1v~xi ,t !J ¹xd„xi~ t !2x…. ~2.3!

If we make the hypothesis thatN vortices are never in con
tact at timet f , by integration on balls of radii small enoug
~inferior to the smallest distance between two vortices! and
centered at pointsxi(t), one obtains that, for any time
smaller thant f ,

d

dt
xi~ t !5v~xi ,t !. ~2.4!

Note that, for some particular initial conditions, collapse
several vortices can appear in a finite time@16,19,20#. Of
course, Eqs.~2.3! and ~2.4! are no longer valid after such
collapse. We see from Eq.~2.4! that the point vortices follow
the field lines of the fluid, and that vorticity cannot be cr
ated or destroyed during the time evolution~in conformity
with Helmholtz laws@21#!.

Using the Biot-Savart law, one can retrieve the veloc
field from the vorticity field,

v~x,t !5
1

2p E ~x2r 8!'

ux2x8u2
v~x8,t !dr 8, ~2.5!
4-2
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where' refers to a rotation of angle1p/2 in the counter-
clockwise direction: (x,y)'5(2y,x). In the case of a set o
point vortices, this last equality reduces to the simple exp
sion

v~x,t !5(
i 51

N

G iK „x2xi~ t !…, ~2.6!

where by definitionK (x)5(1/2p)x'/uxu2 (xÞ0) is the de-
rivative of the Laplacian Green function~up to a rotation! in
the plane~v is zero at the infinity!. Clearly this implies a
divergence of the velocity field at point vortex positio
@ uv(xi ,t)u51`#. A more rigorous derivation@16# shows
that in fact the last equation is correct if we putK (0)50.
This condition simply means that a point vortex does
move under the effect of its self-rotation. Combination
identities~2.4! and~2.6! gives a set of differential equation
which determines the evolution of the point vortex positio

d

dt
xi~ t !5 (

j , j Þ i

N
G j

2p

~xj2xi !
'

uxj2xi u2
. ~2.7!

In the special case of only two vortices (N52), one obtains

d

dt
xi5

G j

2p

~xj2xi !
'

uxj2xi u2
, iÞ j . ~2.8!

Indices i and j can take values 1 and 2. A straightforwa
computation allows us to verify that the distance between
two vortices r 5ux12x2u, and the mass centerM5G1x1
1G2x2 , are first integrals of motion; their time derivative
are zero:ṙ 50 andṀ50. If we do not consider the trivia
caseG1G2r 50 and introduceG5G11G2 , we obtain

d

dt
xj5

G i

2pG j r
2 ~Gxj2M !', ~2.9!

which is the equation of a rotator~for GÞ0), with rotation
frequencyGG i /4p2G j r

2. As a consequence, eitherG is zero
and the trajectories of vortices are two parallel straight lin
or it is different from zero and the trajectories are concen
circles of centerM /G.

It is interesting to note that a probabilistic interpretati
of the point vortex dynamics of the Euler equation is po
sible. Let us introduce the probability transition density o
system ofN vortices,

P~X,t !5)
i 51

N

d„xi2x~ t;x0i !…, ~2.10!

whereX5$xi% is the point vortex configuration phase spac
andx(t;x0i) is a solution of the motion equation~2.7! with
the initial conditionX05$x0i%. The meaning of Eq.~2.10! is
simple: the probability that the vortex follows the trajecto
given by Eq.~2.7! is 1. The equation of the probability den
sity conservation in the vortex phase spaceX is

]

]t
P1“X•VP50, ~2.11!
05630
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where V5$v(xi ,t)% is a vector whose components are t
velocities of the point vortices, and“X is the gradient opera
tor in X space. Obviously solving Eq.~2.11! is equivalent to
solving~for a system of point vortices! the Euler equation: in
both cases one must solve the vortex motion equations~2.7!.
However, the interpretation of the results is different. In t
Euler approach the knowledge of the vortex trajectories
lows one to find the vorticity field at timet. In the probabi-
listic approach, one finds the probability that at timet the
vortices are at a positionX. As this probability is 1 ifX is on
the vortex trajectory, the two solutions are trivially equiv
lent. Note, however, thatP depends on 2N11 variables~the
vortex positions and time! and its evolution equation is lin
ear, at variance to the original problem in which the vortic
is a function of only three variables~the two spatial coordi-
nates and time! and satisfies a nonlinear equation. We see
Sec. II B that the relation between the two approaches in
case of a viscous fluid is complicated by the fact that
vorticity itself becomes a stochastic process.

B. Point vortices in a viscous medium

Let us now consider, in the spirit of relation~1.3!, a set of
N point vortices defining a vorticity field

v~x,t !5(
i 51

N

G id„x2xi~ t !…, ~2.12!

and let us assume that their velocities are no longer exa
equal to the fluid velocity generated by the otherN21 vor-
tices at the positions they occupy@as in Eq.~2.4!#, but are in
addition perturbed by independent white nois
$b1(t),...,bN(t)%:

d

dt
xj~ t !5 (

i 51,iÞ j

N

G iK „xj~ t !2xi~ t !…1A2nbj~ t !.

~2.13!

The white noisesbj (t) are random functions, invariant with
respect to time translations; their mean value vanish
^bi&(t)50, and their cross correlation functions satis
^bia(t)bb j (t8)&5d i j dabd(t2t8), where a stands for the
spatial coordinate~x,y!.

The coefficient of the white noise termsA2n is the same
for all vortices, it is independent ofi. Equations~2.12! and
~2.13! show that the velocity of each vortex is the sum of tw
terms: the fluid velocityv„xi(t),t… at the vortex position, and
a stochastic perturbation proportional to the fluid viscosityn.
To understand the origin of the viscous term we need
establish a link between this stochastic equation and
original Navier-Stokes equation. In order to establish t
relation we start by computing the derivative of the vortic
@Eq. ~2.12!#,
4-3
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]

]t
v~x,t !52(

i 51

N

G i

dxi

dt
~ t !•“xi

d„x2xi~ t !…

5 (
i , j 51

N

G iG jK ~xj2xi !•“xd~x2xi !

1A2n(
i 51

N

G ibi•“xd~x2xi !

5(
j 51

N

G jK ~xj2x!•(
i 51

N

G i“xd~x2xi !

1A2n“x•(
i 51

N

G ibid~x2xi !

52v~x,t !•“v~x,t !1A2n“x•@bO ~ t !v~x,t !#,

~2.14!
where, by definition,bO5(b1 ,...,bN). This equation shows
clearly that the vorticity of the system evolves according t
stochastic differential equation and the vorticity field at tim
t depends on the set of random noises$bO (s),0<s,t%.

Let us compute the stochastic mean of the last term in
~2.14!. The distribution of any white noisebi is Gaussian
with mean zero. Dimensional analysis indicates that the v
ances2 of a white noise is proportional to the inverse of
time. In fact, the white noisebi is defined from a Wiener
processW(t), with dW(t)25dt, and it is such thatdW
5bidt. This last equality must be understood in the sense
the Ito stochastic calculus limDt→0^DW(t)22Dt&50 @22#. It
follows that the variance of each component of the wh
noise bia is formally given by s2(t)51/(2dt) when dt
→0.

We can now compute the stochastic mean of iden
~2.14!, using a Gaussian probability distribution for the wh
noise with variances2 and zero mean. We note thatx
5(x1 ,x2), and ^A& ia , ^A& i , and ^A&, the stochastic mean
on random processbia , bi , andbO , respectively. We obtain

^“x•@bid~x2xi !#& i

5E dbi1E dbi2

e2~bi1
2

1bi2
2

!/2s2

2ps2

3S bi1

]

]x1
d~x2xi !1bi2

]

]x2
d~x2xi ! D

52s2K E dbi1

e2bi1
2 /2s2

A2ps2

]

]bi1

]

]x1
d~x2xi !L

i2

2s2K E dbi2

e2bi2
2 /2s2

A2ps2

]

]bi2

]

]x2
d~x2xi !L

i1

52s2dtA2n (
a51

2 K ]

]xa

]

]xa
d~x2xi !L

i

5S n

2D 1/2

^“x
2d~x2xi !& i ~2.15!
05630
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where we used the identity

]

]bj a
d~x2xi !5A2ndtd i j

]

]xa
d~x2xi !,

which is a consequence of the Langevin equation~3.13!. A
rigorous derivation of these relations using functional in
grals can be found in Ref.@23#. Combining Eqs.~2.14! and
~2.15!, one obtains the following result.

Proposition 1. A vorticity field of the form of Eq.~2.12!,
with the vortex trajectories satisfying the Langevin equat
~2.13! is a stochastic solution of the following weak Navie
Stokes equation:

K ]

]t
v~x,t !1v~x,t !•¹v~x,t !L 5n^¹2v~x,t !&.

~2.16!

Therefore, we established the link between the stocha
equation@Eq. ~2.13!# describing the trajectories of the poin
vortices and the~weak form of the! Navier-Stokes equation
~2.16!. We conclude that the parametern, introduced in the
Langevin equations, can effectively be identified with t
viscosity. Instead of solving the stochastic dynamics by
tegration of the Langevin equations~2.13! and averaging
over different realizations of the noise, one can introduc
Fokker-Planck equation@22# for the transition probability@a
generalization of Eq.~2.11!#,

]

]t
P1“X•VP5nDXP, ~2.17!

which gives a complete statistical description of the syst
evolution. Therefore, the problem is reduced to finding, fro
Eq. ~2.17!, the distribution probability of the point vortex
positions. In Sec. III we give the explicit form of Eq.~2.17!,
and we compute the distributionP in the case of two vorti-
ces.

It is important to compare this result with the theorem
Marchioro and Pulvirenti@13#, which is valid in the case of
an infinite set of point vortices. Their statement is the f
lowing: ConsiderN vortices with circulationG i5G/N ~G
being fixed! satisfying, at t50, limN→1` vN5v̄
PL1ùL`(R2). The solution of the Navier-Stokes equatio
with initial data v̄ is then, in the weak sense, equal
limN→1` vN at timest>0.

The Marchioro-Pulvirenti theorem shows that a contin
ous vorticity field solution of the Navier-Stokes equation c
be approached by using a very large number of interac
point vortices. Chorin was the first to use this technique
compute numerically the evolution of a vorticity field in
viscous medium@15#.

When the number of vortices remains finite, we have
stochastic description of the dynamics~1!. In particular the
nonlinearity is in general such that̂v(x,t)•“v(x,t)&
Þ^v(x,t)&•“^v(x,t)&, and no deterministic solution of th
4-4
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Navier-Stokes equation is available in contrast to the cas
a system of an infinite number of vortices. Nevertheless,
taining a solution of such finite point vortex systems supp
a way to understand and illustrate the basic mechanism
volving the viscosity; this will be done in the simplest case
the next sections. Moreover, a solution for a small numbe
interacting vortices can describe some limiting cases of n
discrete vorticity fields on interesting time scales@24,25#.

III. EXACT SOLUTION FOR THE INTERACTION OF
TWO POINT VORTICES IN A VISCOUS FLUID

We consider two vortices with circulationsG1 and G2 ,
initially separated by a distancer 0 , in a fluid of viscosityn.
Hereafter, we analyze this system in the simplest case, w
both circulations are equal. Using these three parameters
only dimensional parameters of the problem, one can fo
two characteristic times; the viscous timetn;r 0

2/n and the
rotation time of the vortex pair,tG;r 0

2/G ~we note thatG
5G11G2). The ratio of these two characteristic times giv
the only nondimensional parameter of the problem, the R
nolds number Re;G/n. Because of the presence of a leng
scale~the initial distancer 0), in general one does not expe
the evolution of the system to be self-similar. However, ev
in the case where a stochastic perturbation is present,
motion equations are invariant under the transformati
t→a2t andx→ax. This means that a scalingx;At is com-
patible with both the deterministic and random parts of
vortex motion. In the inviscid case, another behavior co
patible with the system’s dimensions is possible: the triv
x;r 0 scaling for which the distance between the two vo
ces remains constant. In the pure viscous case, a diffu
behavior is found with a normal scalingx;At, which also is
the expected scaling for very long times. The problem is
find a solution matching these two different regimes.

A. Lamb vortex

In order to illustrate the stochastic approach to the Nav
Stokes dynamics, we start with the case of one isolated
tex. The vorticity isv(x,t)5Gd„x2x0(t)…, and the vortex
motion equation simply reduces to a Brownian moti
ẋ0(t)5A2nb(t). The transition probabilityP5P(x0 ,tu0)
then satisfies a Fokker-Planck equation, which is in this c
a pure diffusion equation~without advection term!

]

]t
P5nDP, P~x0 ,tu0!5d~x0!, ~3.1!

assuming initially that the vortex is at the origin. The so
tion of the diffusion equationP5PL reads

PL~x0 ,t !5
1

4pnt
exp~2uxou2/4nt !, ~3.2!

which is the usual Gaussian distribution. In addition, the v
ticity can be obtained using,
05630
of
-

s
in-

f
n-

en
the
m

y-

n
he
s

e
-
l
-
ve

o

r-
r-

se

-

-

^v&~x,t !5GE
V

PL~x0 ,t !d~x2x0!dx05GPL~x,t !,

~3.3!

which gives the well-known Lamb vortex@17#. In this case
the role of the viscosity is simply related to the diffusion
the initially concentrated vorticity, and the vortex size grow
asAt. We will see that, for the two vortices, basic mech
nisms induced by the viscosity appear.

B. Probability density of two corotating point vortices

We now investigate the evolution of a system of two po
vortices. We look for a solution of Eqs.~2.12! and~2.13! in
the special caseN52. In the light of the results for the cas
N51, we can interpret Eqs.~2.12! and ~2.13! as describing
the interaction of two Lamb vortices. Therefore, the vortic
field evolves according to a stochastic process dependin
the paths$x1(t),x2(t)%. In order to describe this system on
must determine the probability distribution of the vortex p
sitions P(x1 ,x2 ,t), and then solve the Fokker-Planck equ
tion it satisfies. As the vortex trajectories are stochastic,
transition probability in this framework becomes the ba
quantity from which one may calculate other physical qua
tities as, for instance, the mean vorticity distribution^v& @see
Eq. ~3.5!#, or the characteristic merging time.

WhenG15G2 , the noise terms in the Langevin equatio
for r5x12x2 and M5(G/2)(x11x2) are independent be
cause

K G

2
~bi2b2!~b11b2!L ~ t !5

G

2
@^b1

2&~ t !2^b2
2&~ t !#50.

Hence the two vortex transition probabilityP(x1 ,x2 ,t) turns
out to be the product of the probability distributions of th
center of mass PM and of the vortex distance
Pr :P(x1 ,x2 ,t)5PM(M ,t)Pr(r ,t). The knowledge of these
probabilities allows the computation of the observed vort
ity evolution by direct integration:

^v&~x,t !5E P~x1 ,x2 ,t !v~x,t;x1 ,x2!dx1dx2 ~3.4!

5~G/2!E @P~x,y,t !1P~y,x,t !#dy.

~3.5!

Using Eq.~2.13! we immediately find that the center o
massM follows a Brownian motion,

d

dt
M ~ t !5GAnB~ t !, ~3.6!

whereB5@b1(t)1b2(t)#/21/2 is a unit variance white noise
Therefore,PM is a Gaussian probability distribution:

PM5
1

2pG2nt
expF2

M2

2nG2t G . ~3.7!

Moreover, the distancer satisfies the Langevin equation
4-5
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d

dt
r ~ t !5GK ~r !12Anb~ t !, ~3.8!

where b(t)5@b1(t)2b2(t)#/21/2 is still a white noise. The
Fokker-Planck equation associated with Eq.~3.8! is @26#

]

]t
Pr~r ,t !52G“•@Pr~r ,t !K ~r !#12nDPr~r ,t !.

~3.9!

We introduce the polar coordinatesr5(r ,u), then the veloc-
ity kernel is writtenK (r )5êu/2pr . We also introduce the
following units:r 0 , the initial vortex distance, for the length
and 2pr 0

2/G for the time. The Reynolds number is thus R
5G/4pn. In addition, we supposer 0Þ0; otherwise we
would just obtain a Lamb vortex of circulationG. In the
following (r ,t,n) will stand for the nondimensional quant
ties where the newn is 1/Re. Using these notations we r
write the last equation in the form

]

]t
Pr~r ,u,t !52

1

r 2

]

]u
Pr~r ,u,t !1nDPr~r ,u,t !,

~3.10!

whereD is the Laplacian in polar coordinates:

D5
]2

]r 2 1
1

r

]

]r
1

1

r 2

]

]u2 . ~3.11!

It is remarkable that an equation similar to Eq.~3.10! ap-
peared, in a completely different context, as the equation
the vorticity of a spiraling sheet@see Eq.~30! of Lundgren’s
paper on strained spiral vortices and turbulence@8##. How-
ever, although the vortex sheet equation with viscous cor
tions of Lundgren and the Fokker-Planck equation for
distance between two point vortices are formally simil
they differ by the initial condition and the normalization co
straint that the transition probability must satisfy and that
not apply to the vorticity. This analogy will prove useful i
discussing the intermediate time asymptotics of the merg
process~see Sec. IV below!.

C. Computation of the distance probability distribution

We now compute the solution of Eq.~3.10! with initial
conditions, given in polar coordinates,Pr(r ,u,0)5d(r 21,u
2u0), which means that the initial distance between the t
vortices is 1 and the initial inclination of the vortex pair
u0. The Fokker-Planck equation being invariant by rotatio
one can chooseu050 without loss of generality. The initia
condition can then be written

P~r ,u,0!5d~r 21,u!. ~3.12!

Let us look for functions with separate variables belonging
the kernel of the Fokker-Planck operator, such thatP
5G(r ,t) f (u). By inserting functionsG and f and multiply-
ing Eq.~3.10! by r 2/(G f ), we obtain an identity wheref and
G are separated:
05630
r

c-
e
,

o

g

o

,

o

1

G S r 2

n

]

]t
2r 2

]2

]r 22r
]

]r DG5
1

f S 2
1

n

]

]u
1

]

]u2D f .

~3.13!

The right hand side is independent ofu, and the left hand
side is independent ofr,t. This implies that the two terms ar
equal to a constant, sayl1 , which gives the two equations

]

]u2 f 2
1

n

]

]u
f 2l1f 50,

~3.14!
]2

]r 2 G1
1

r

]

]r
G1

l1

r 2 G5
1

n]

]

]t
G.

It is even possible to get a separate variables solution foG.
InsertingG(r ,t)5g(r )h(t) into the above equation, we ob
tain

1

g~r ! S ]2

]r 2 1
1

r

]

]r
1

l1

r 2 Dg~r !5
1

nh~ t !

]

]t
h~ t !5l2 ,

~3.15!

wherel2 is another undetermined constant. From the sec
equality one obtainsh5el2nt. The linearity of Eq.~3.10!
implies that the more general solution that we can deduc

P~r ,u,t !5E dl1dl2 a~l1 ,l2!el2nt f l1
~u!gl1l2

~r !,

~3.16!

where we explicitly write the parameter dependence ofg and
f, and the complex functiona:C3C→C is to be determined
by imposing the initial condition@Eq. ~3.12!#. Note that Eq.
~3.16! may be a generator of the set of solutions of classC2

or of any other functional space. In fact, by determining n
the Green function of the Fokker-Planck equation, we
showing that this is~fortunately! the case. By definition the
Green function satisfies the initial condition@Eq. ~3.12!#. In
order to match Eq.~3.16! with Eq. ~3.12! at time t50, we
need to reformulate this last equation. By denotingk5uku
and making use of the equality

exp„iz cos~u!…5 (
l 52`

1`

i lJl~z!exp~ i l a!, ~3.17!

wherez5kur2r0u anda is the angle (k,r2r0), we obtain

d~r2r0!5
1

4p2 E dk exp~ ik•@r2r0# !

5
1

4p2 E
0

1`

dkE
0

2p

k exp~ ikur2r0ucosa!

5
1

2p E
0

1`

dk kJ0~kur2r0u!. ~3.18!

The Bessel functionJ0 can be rewritten in a form where th
polar coordinate variablesr andu are separated. By using
Bessel function development@27#, we can finally write the
initial condition as
4-6
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d~r2r0!5
1

2p E
0

1`

dk kFJ0~kr0!J0~kr !

12(
p51

1`

Jp~kr0!Jp~kr !cos~pu!G . ~3.19!

The form of this last expression clearly indicates what to
now. Indeed, Bessel functionsJp are a subset of the set o
solutions $gl1 ,l2

,(l1 ,l2)PC3C%. With l1,0,l2,0 and

by introducingR5rAul2u, from Eq.~3.15! we obtain a new
equation forg5gl1 ,l2

:

]2

]R2 g~R!1
1

R

]

]R
g~R!1F12

ul1u
R2 Gg~R!50. ~3.20!

Its general solution is a linear combination of the first ki
Bessel functions with order parameterAul1u,

g~r !5C1JAul1u~rAul2u!1C2NAul1u~rAul2u!, ~3.21!

whereC1 andC2 are the integration constants. So we have
choose between two kinds of solutions formally equal to E
~3.19! at t50: either we may decide to have an integer p
rameter in the orderp of the BesselJp(u)(p5Aul1u), or we
may decide to solve for cosine functions cos(pu) @with p
5(16A114ul1u)/2PN#. One can verify that in the firs
case we obtain solutions satisfying the initial condition b
that are not derivable alongu50. The second case leads to
solution of the form

P~r ,u,t !5
1

2p (
pPZ

eipu

3E
0

1`

l2dl2e2l2
2ntJmp

~l2r !Jmp
~l2r 0!,

~3.22!

where $mpPC:mp
25 ip/n1p2,Rmp<0,pPN% is the set of

constantsl1 we choose~R stands for the real part!. In di-
mensional variables we have the expressionmp

2

5 iGp/(4pn)1p2, and in the limitG→0, we at t50 we
exactly obtain expression~3.19!. We will verify that in the
caseGÞ0, the initial condition is also verified. Expressio
~3.22! can be integrated using the formula@27#

E
0

1`

e2r2x2
Jg~ax!Jg~bx!x dx

5
1

2r2 expS 2
a21b2

4r2 D I gS ab

2r2D ,

Rg.21,uargru,p/4,a.0,b.0, ~3.23!

wherea5r , b5r 051, g5mp , r25vt, andx5l2 . I g are
modified Bessel functions. The general solution is fina
written as
05630
o

o
.
-

t

Pr~r ,u,t !5G~r ,t !F112R(
p51

1`

I 0
21S r

2nt D I mpS r

2nt DeipuG ,

~3.24!

where the radial part of the distribution is

G~r ,t !5
1

4pnt
expS 2

r 211

4nt D I 0S r

2nt D . ~3.25!

We now check that the solution found@Eq. ~3.24!# indeed
satisfies the initial condition. An important property of th
Bessel functionsI m(x) is that they are all equivalent in th
limit x→1`, independently of the orderm. Formally, if we
take as their common limitI 0 , we can write

Pr~r ,u,t !;G~r ,t !d~u!, ~ t→0!, ~3.26!

which gives the expected limit@Eq. ~3.12!# as t→0.
In conclusion, the vorticity field associated with E

~3.24! and the Gaussian distributionPM of Eq. ~3.2! is the
exact solution of the stochastic two-dimensional Navi
Stokes equation. The proof that Eq.~3.24! is effectively a
normalized positive probability distribution is deferred
Sec. V.

Equation ~3.24! is the Green function of the Fokker
Planck equation~3.10!, and gives the temporal evolution o
the distance between the two initial point vortices. Of cour
the limiting case Re51/n50, that is to say when the two
vortex system is dominated by viscosity, givesmp5p, and
the solution becomesPL(r2r0 ,t). The evolution of the dis-
tance reduces therefore to a Brownian motion, as one co
also derive directly using the Langevin equation without t
velocity term.

The probabilityG(r ,t) is the axisymmetric part ofPr ,
and can also be obtained as the solution of the heat equa
with the initial condition a distribution of the vorticity along
a ring. This characterizes the diffusion of the radial distan
It is worth noting that this axisymmetric part becomes a
ymptotically dominant in the limit of long timest→1`
@ I m(0)5d0,m , the Kroneckerd#, demonstrating that the fina
state of the system is isotropic. Therefore, solution~3.24!
describes the change in the topology of the flow: the ini
state of two localized vortices evolve to an axisymmet
structure.

IV. ASYMPTOTIC ANALYSIS OF THE PROBABILITY
DISTRIBUTION

General formula~3.24! is quite abstract and, because
the Bessel functions of complex order, its numerical eval
tion is not easy. However, some useful information can
obtained in the limit of small viscosity using asymptotic e
pansions. The difference between Euler (n50) and Navier-
Stokes (n501) equations can be studied in detail from e
pression~3.10!. Whenn is zero, the solution of Eq.~3.8!, in
polar coordinates, is

r 51,
d

dt
u51, ~4.1!
4-7
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where (1,u0) is the initial distance, and corresponds to
rotation of periodT52p. A probability distribution associ-
ated with this deterministic motion is

Pr~r ,u,t !5d~r 21,u2t2u0!. ~4.2!

This is of course a solution to Eq.~3.10!, with n50. An
important question arises about the influence of the viscos
First, we note that the argument of the angular Dirac funct
may be rewritten in the formu2t f (r )2u0 , where f is an
arbitrary function satisfyingf (1)51. Second, for any arbi
trary small viscosity~in fact, n→01) under the effect of
diffusion, thed functions in Eq.~4.2! will spread out. There-
fore, the actual distance~in the probabilistic sense! between
the vortices will be slightly different fromr 051, which
raises the problem of the choice off. This is precisely the
role of the viscosity, which will select a particular form off,
compatible with the Navier-Stokes equation, as we show
low.

A. Weak viscosity development

After a factorization of the radial part, an asymptotic e
pansion in powers ofnt of Eq. ~3.24! can be obtained:

P~r ,u,t !5G~r ,t ! (
n50

1`

nntnPn~r ,u,t;n!, ~4.3!

with

E
V

P051 ~4.4!

and

E
V

Pn50, n>1. ~4.5!

In fact, in this section we compute the first two terms of t
series. By construction, the asymptotic expansion@Eq. ~4.3!#
is done in such a way to obtain a better understanding of
nonisotropic part of the probability distribution, which is
fact the mathematically complex part of the expression.

We start by presenting the order zero term computa
P0 , and verify that this is the theta elliptic functionU(n
50). We make use of a Bessel function expansion@27#

I m~x!5
ex

A2px
(
q50

1`

~21!qGq,m~x!, ~4.6!

where

G0~x!51, Gq,m~x!

5
~4m221!¯~4m22@2q21#2!

q! ~8x!q ,

qPN* . ~4.7!
05630
y.
n

e-

-

e

n

This development is valid when the argument ofx is between
2p/2 and1p/2 and in particular whenx is positive, forx
large~going to infinity!. However, one should note that suc
an expansion is divergent in the usual sense of the term.
equality written in Eq.~4.6! is to be understood in the forma
series sense. In fact, the coefficient series is itself diverg
because whenq→1`, the main contribution toGq,m is

Gq,m; f ~m!
) i 51

q ~2i 21!2

q! ~8x!q ;4 f ~m!
q!

~8x!q , ~4.8!

where f (m) does not depend onq. It follows that
limq→1` Gq,m5 f (m)3`, so that the divergence is ver
strong. The convergence is, as stated by Poincare´ @28#, in the
astronomer’s sense and not in the geometrician’s. Actua
this expansion converges, whenx is not too small~for a fixed
m value!, exponentially close toI m(x), with the condition
that the summation is stopped at a well chosen ind
q(x,m). Indeed, the first terms of the seriesGq,m decreases to
0 ~in absolute value! because of the denominatorxq. This is
called a ‘‘quasisummation to the smaller term.’’ In practic
a convenient choice of index is the one where the summa
Gq,m ceases to be a decreasing function ofq, which numeri-
cally gives results of the precision machine order. So
would be more judicious to write

q05min$qPN,uGq,m~x!/Gq21,m~x!u<1%, ~4.9!

I m~x!5
ex

A2px
(
q50

q0

~21!qGq,m~x!. ~4.10!

A rigorous theory about asymptotic divergent series was
veloped quite recently by Ramis@29#. The main theorem
states that a formal series solution of a differential equat
~with analytic coefficients, which is our case! is the~Gevrey!
asymptotics of an exact solution of the differential equatio
Identity ~4.10! is a particular case of this theorem.

In the case we are interested in, we havex5 x̄5r /2nt and
m5mp . We now focus on finding the dominant terms in th
Gq,m(x) of sum~6.6!, in the limit n→0. We note that it is not
correct to keep only the term with the lowest order inn,
because in the highest order Bessel functionsI mp

(p→1`)
these are no longer dominant. As a consequence, we ha
keep the polynomial contributions with the highest degree
p. In fact, in the identity

q!Gq,m~ x̄!5
1

r q )
j 51

q Fp2nt1 ipt2S j 2
1

2D 2

nt G ,
~4.11!

the dominant term whenn is small is ipt, except when the
integerp is large. In this last case,p2nt is dominant. The
third term (j 2 1

2 )2nt is, in a first approximation, negligible
in all cases under the condition that the quasisummation
isfiesq0

2n!1. The larger isx5 x̄, the better this is verified
Finally, we can write
4-8
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Gq,m~ x̄!5
1

q! S p2nt1 ipt

r D q

. ~4.12!

By introducing this approximation into Eq.~4.6! we obtain a
rapidly converging series@with a general term (21)qGq,m#.
We can then extend the summation to infinity, which giv

I 0
21~ x̄!I mp

~ x̄!5 (
q50

1`
1

q! S 2
p2nt1 ipt

r D q

5expS 2
p2nt1 ipt

r D . ~4.13!

Now we just have to sum the termsI 0
21I mp

exp(ipu). By us-

ing the canonical transformation (e.0)

S~e,f!5 (
mPZ

e2en212ipnf5S p

e D 1/2

(
nPZ

e2~p2/e!~n2f!2
,

~4.14!

with e5nt/r and 2pf52t/r 1u, we finally obtain an ap-
proximation of Eq.~3.24!,

Pr~r ,u,t !;G~r ,t !Q~r ,u,t !, n→0, ~4.15!

where the asymmetric part of the right-hand term of E
~4.15! is the theta function@27#,

P05U~r ,u,t !5S pr

2nt D
1/2

(
p52`

1`

e2~p2r /nt !„p2~1/2p!@u2~ t/r !#…2.

~4.16!

The functionU is a solution of the one-dimensional he
equation on the circle. In the present context, it describes
development of a spiral structure we will callS, triggered by
the interaction of the vortices. We note that the spiral stret
ing ~dispersion of the angular part of the probability dist
bution! increases ast while the diffusion goes ast1/2, so that
the development of the spiral structure is faster than the
dial diffusion.

A noteworthy point in the asymptotic estimation@Eq.
~4.16!# is that we still obtain a probability distribution. In
deed, an easy computation allows to verify Eq.~4.4!, and
positivity is obvious. This calculation is interesting becau
of the role played by the large order Bessel functions (p→
1`): they determine the ‘‘nonzero viscosity’’ properties
the solution. They allow a quantification of the thickening
the spiralS at small times. The other Bessel functions gi
geometrical properties of the solution, then501 limit @see
Eq. ~4.24!#.

In the same way as then dependence of the functionQ is
associated with the spiral thickness where the distributio
concentrated, the ordern correctionsPn(n) do not modify
the geometrical properties of the distribution~spiral struc-
ture!, and then dependence remains related to the effect
thickening.

This can be verified by computing the order one corr
tion P1 (n51). In Eq. ~4.6!, the terms of higher order ar
~i! the first order term in (4m2/8x̄)q/q!, and ~ii !
05630
.

e

-

a-

e

f

is

f

-

(21/4m2)S i 50
i 5q(2i 21)2 times the zero order term

(4m2/8x̄)q/q!. As before, noting thatm25o(p2,p/n), we
keep the dominant term atn small andp large, and neglect
the divergent part inq ~which will allow us to compute the
infinite sum!. Therefore, we can write

S 4m2

8x̄ D q

5S ntp2

r
1 i

pt

r D q

, ~4.17!

1

4m2 52
in

4p

1

~12 inp!
52

in

4p
1o~n!, ~4.18!

(
i 50

i 5q

~2i 21!25
1

3
q~4q221!. ~4.19!

Approximation~4.18! breaks down whenp is of order equal
or larger thann21, but in this case we obtain a term of ord
n2 which is negligible. Hence we obtain

q!Gq,m5S ipt1ntp2

r D qF12 in
q

12p
1 in

q3

3p
1o~n!G .

~4.20!

To complete the estimation ofI m( x̄), we make use of the
identities

(
q50

1`

q
xq

q!
5xex, (

q50

1`

q3
xq

q!
5~x313x21x!ex,

to obtain

I mp
~ x̄!5

exp~ x̄!

A2p x̄
expS 2 ipt2ntp2

r D
3H 11nF t

4r
2 ip

t2

r 22p2
t3

3r 3G1o~n!J .

~4.21!

We just have to insert Eq.~4.21! into the general expressio
Eq. ~3.24! to obtainP1 . Collecting all the terms, we finally
obtain

P0~r ,u,t !1nP1~r ,u,t !

5U~r ,u,t !22n
t2

r 2 (
p51

1` Fpe2p2nt/r sin~p@u2t/r # !

1
t

3r
p2e2p2nt/r cos~p@u2t/r # !G . ~4.22!

Note that the correction does not diverge in the limitt/r→
1` because of the exponentials in sums~4.22!. It is straight-
forward to see that the mean of the correction is zero,
stated in Eq.~4.5!. It is also interesting to see that the co
rection P1 is still localized on the spiralS. Indeed, in the
limit n→0, the correction becomes a sum of derivatives
the delta functiond(S):
4-9
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P1~r ,u,t !5
2t2

r 2 d8~u2t/r !1
2t3

3r 3 d9~u2t/r !. ~4.23!

Therefore, we have obtained the first terms of a polynom
development in powers ofn of a multipolar nature. The co
efficients of this development are functions of space and t
whose support is geometrically concentrated on the spira
the limit of time scales small compared with the visco
time. The spreading of the probability in the angular dire
tion has a characteristic scaler;t of the ballistic type. The
spreading process is then dominated by kinematic effe
related to the deterministic rotation of the vortex pair.

As mentioned above~Sec. III B! Lundgren@8# analyzed
an equation similar to Eq.~3.10! in his study of stretched
vortex spirals. He found an intermediate asymptotic regim
between the ‘‘ballistic’’ and the ‘‘viscous’’ regimes, chara
terized by a time scaletL;1/n1/3 ~or GtL /r 0

2;(G/n)1/3 in
dimensional variables!. This intermediate regime appears f
times in the range 1!n1/3t!n21/6 ~in a first approximation!.
The main consequence of the existence of this regime is
the harmonics of the angular probability distribution dec
faster than the radial distribution~the axisymmetric part of
the probability distribution diffuse with a characteristic vi
cous scale!.

B. Description of the merging process

In the limit n501, Eq. ~4.16! gives the angular probabil
ity distribution

U~r ,u,t !5d~u2t/r !, ~4.24!

which corresponds to a concentration of the probability o
spiral ~in the original units! S:u→u(r )5Gt/2pr 0r , centered
at r 50 and spreading in time. The emergence of this sp
structure~decreasing as 1/r ) is the result of a selection by th
viscosity @selection off (x)51/x] coupled with the rotation
effect (GÞ0). Therefore, the viscosity is not only importa
for its effect on diffusion and topology change, but also
selecting a particular spiral structure. The particular form
f, at least for small viscosity, may be related to the cons
vation of the angular velocityvu5r u̇5G/2pr 0 . Expression
~4.16! adds a ‘‘Gaussian thickness’’ to the spiral structu
Of course, if we setn50 for the radial and nonradial parts o
Pr , we obtain the expected limit: the evolution of the d
tance between two point vortices@Eq. ~4.2!#.

In addition the probability distribution on the spiral stru
ture follows the lawG(r ,t) and has a sharp maximum
r p(t), the solution of the implicit equation~returning to di-
mensionless quantities!

r p5

I 1S r p

2nt D
I 0S r p

2nt D
<1. ~4.25!

For t50, r p is equal to 1 and decreases to zero as ti
grows. In Fig. 1 we plotr p5r p(t). The important point is
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that the distance between the vortices goes to zero in afinite
time. For small times we have

r p'12nt/2, ~4.26!

the almost constant distance behavior expected for small
cosity. For times approachingt'1/4n the distance collapse
following the power law

r p'&~124nt !1/2, ~4.27!

which satisfies the scalingx;At common to the determinis
tic and diffusive regimes. We see that Eq.~4.25! satisfies the
requirement stated above, that the solution must match
deterministic scaling with the viscous one.

In order to obtain a representation of the dynamics of
system, we combine the results on the behavior of the
symmetric part of the probability distribution with the ang
lar part. The two asymptotic regimes, wherer p are given by
Eqs.~4.26! and~4.27!, respectively correspond to two spira
forms ~following the maximum of the distance probabilit
distribution!:

r'
1

11
nu

2

, ~4.28!

which is valid for r'1; and

r'2nu2A~2nu!211, ~4.29!

which is valid for r'0. These expressions show clearly t
structure of the vortex spiral trajectoriesr 5r (u) as a func-
tion of the Reynolds number 1/n.

Let us discuss a specific case. The actual distribution
obtained from the product of the spiralSand the radial struc-
ture. The thickness of the radial probability maximum
given by (nt)1/2, and is narrow in the limit of small viscosity
Depending on the position of this peak on the spiral, diff
ent behaviors may be obtained, as can be seen by a det

FIG. 1. Evolution of the distance between the two probabil
maximar p(t).
4-10
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study of the spiral structure. In Fig. 2 the spiralS is plotted at
three different times. We choose the Reynolds number
51/n550 in such a way as to observe the merging of t
vortices during a valid approximation time. At the beginnin
t51, the distance distribution is closely concentrated aro
r p(1);0.98;1: the two vortices have mutually rotated b
up;p/3 but their distance is practically the initial one@see
formula ~4.28!#. The vortices are still clearly separated. T
coupling effects between rotation and diffusion are still ne
ligible. Therefore, at short times the vorticity distributio
corresponds to two well separated Lamb vortices subjec
rotation (GÞ0).

At time t510, r p;0.59 andup;4p/3. The distance dis-
tribution is essentially concentrated on the spiral with rad
values r P@r p2(nt)1/2,r p1(nt)1/2#, that is to say angula
valuesuP@2p11.6p,10p11.5p#: this corresponds to the
development and stretching of vortex arms, which wi
around the other vortex. Here each arm winds the other
tex on several rotations.

FIG. 2. Representation of the maximum probability position
the intersection of the spiralS and the circle of radiusr p . The
Reynolds number is 1/n550; times aret51, 10, and 12.5. The
radius of the dotted circle at each time:r 5r p50.98, 0.59, and 0.09
solid circle: r 5r 051; dotted line:u5up .
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After this transitory period,r p quickly decreases and a
t512.5,r p;0.09: the spiral is tightly bounded aroundr p @as
can also be seen from formula~4.29!#, and becomes simila
to circles. At this time the angular isotropy is fully deve
oped,U is almost uniform in the region where the probab
ity is concentrated, showing the disappearance of the sp
arms, and the merging is ending. Finally,r p;0, and the
further evolution is purely diffusive.

One may distinguish two different regimes of the mergi
process. One is dominated by rotation, and the other is do
nated by viscosity. The distinction between these two
gimes depends on the values of the Reynolds numbern
@also see Eq.~4.28!#. Let us compute the spiral stepDr for
short times. Usingu(t)'t/r (t) and r (t)'12nt/2, one ob-
tainsDr'pn/(11pn). Therefore, whenn→` the spiral is
initially very close to a circle~the deterministic motion!, and
the probability distribution will concentrate in a ring. In th
opposite limit n→0, the spiral step tends to 1, the initia
distance between the vortices, and the probability w
quickly concentrate on the center: the two vortices me
before completing a rotation.

An intuitive visualization of the merging process is pr
vided by the evolution of the probability distribution. Instea
of using an exact formula, this distribution can be compu
by numerically integrating the Langevin equation for a lar
number of independent particles, initially placed at a dista
r (0)5r 051. Plotting the histogram of their positions at di
ferent times, one obtains a representation of the mean vo
ity distribution. Figure 3 illustrates the two regimes of th
merging process, in Fig. 3~a! we show the two vortex merg
ing with the parameters used in Fig. 2. We see that be
merging the two vortices form a ring structure~not perfectly
circular! which progressively shrinks into the center. In Fi
3~b! we show the limit of small Reynolds number~we take
1/n58), when there is no formation of the ring before th
vortex merge. In this case the vortices collide following
open spiral trajectory. Another interesting effect observa
in both cases is the differential rotation of the vortex dist
bution. Indeed, the central parts of the vortices have differ
orientations than their periphery, showing that the spiral t
jectory is not followed at constant velocity; when the vor
ces approach each other, they accelerate.

The asymptotic regime discovered by Lundgren@8# is rel-
evant in the time rangen21/3!t!n21/2. The nonaxisymmet-
ric structure of the distance between vortices probability d
sity decays in a time much shorter than the viscous tim
This prediction is in accordance with the formation of t
‘‘ring’’ vorticity distribution before the appearance of a pur
diffusion dominated regime. For 1/n550 the time interval is
tP(3.7,7), the~maximum! radial diffusion can be estimate
as Dr 52Ant;n1/4'0.7, while for 1/n58,
tP(2,2.8), it becomesDr'1.2—larger than the initial vor-
tex distance. These values are consistent with the simulat
in Fig. 3, and agree with the prediction of a faster decay
the nonaxisymmetric harmonics.

V. PROBABILISTIC NATURE OF THE EXACT
SOLUTION

First we show that solution~3.24! is defined in the sense
that this is a normally~and therefore simply! convergent se-

s
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FIG. 3. Histogram of the vortex positions computed from the Langevin equations of the two point vortex system. Levels grow fro
to white and from white to gray.~a! N5100 000 pairs of vortices att51.2, 5, 10, and 13 for 1/n550. ~b! N5200 000 pairs of vortices a
t50.63, 1.26, 1.88, and 3.14 for 1/n58.
s-

ha
ries. Then we verify that this is effectively a probability di
tribution.

Concerning the convergence, it is sufficient to show t
when p→1`, umpu;p, and thereforeuI mp

(x)u;I p(x) for
any positivex. By noting that
05630
t

UI 0S r

2nt D12R(
p51

1`

I mpS r

2nt DeipuU<UI 0S r

2nt D U
12(

p51

1` UI mpS r

2nt D U, ~5.1!
4-12
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the normal convergence is a direct consequence of the
vergence of the positive series

I 0~x!12(
p51

1`

I p~x!5exp~x! for x.0. ~5.2!

The conservation of the total probability with the time com
from ~see formula 6.633 in Ref.@27#!

E
r 50

1`E
u50

2p

P~r ,u,t !r dr du

52pE
r 50

1`

r dr
1

4pnt
e2~r 211!/4ntI 0S r

2nt D
51, ~5.3!

because the nonzero Fourier modes (pÞ0) vanish after the
angular integration. Note that the Fokker-Planck equat
~3.9! implies the conservation of the measure*P(r ,t)dr
with time. The integral we computed in Eq.~5.3! is just a
verification of this property. Its numerical value, 1, agre
with the initial condition which trivially satisfies*P(r ,0)dr
51.

Now, to complete, we check thatP is positive every-
where. By construction,P is real. Moreover ifP is positive at
a strictly positive timet1 , then it is positive at any timet2 .
Indeed, the same similarity ratior /(2nt) appears in all the
Fourier components of solution~3.24!, and therefore

;~ t2.0!, ;~r 2.0!, '~r 1.0!:
r 1

2nt1
5

r 2

2nt2
. ~5.4!

Now, by using thatI m(0)50 for any nonzero subscriptm, in
the limit t→1` ~for a fixed positionr! we find that the only
dominant mode is the zero one, which is strictly positi
@ I 0(0)51#. To proceed to a rigorous derivation of this la
point, we use a general property of series functions wh
states that, given two positive function series@ f n(x)#nPI and
@gn(x)#nPI ~I countable!,

~i! ;nPI , limx→0 f n(x)50,
~ii ! ;nPI , f n(x) ;

x50
gn(x),

then limx→0 (nf n(x)50⇒ limx→0 (n f n(x)50.
To show that Eq.~3.24! is positive in this limit, we just

have to verify that(p51
1` uI mp

(x)u goes to zero whenx→0.
We have the relation

I mp
;

x→0

1

G~mp! S x

2D mp

, ~5.5!

where G is the gamma function. Let us now combine t
Stirling formula

G~a! ;
uau→1`

A2p exp@2a1~a21/2!ln a# ~5.6!
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with the properties~i! p;umpu<p and ~ii ! argmp which are
bounded and converge to 0. They imply that cos(argmp) con-
verges to 1, and forp large enough,

umpucos~argmp!@211 lnumpu#

;p@ ln p21#cos~argmp!.p ln p/2 ~5.7!

and

uG~mp!u ;
p→1`

A2peumpucos~argup!@211 lnumpu#2umpusin~argup!argmp

.ep ln p/2. ~5.8!

It follows that limp→1`uG(mp)u51`, and for p large
enough,

I mp
~x! ;

upu→1`
U 1

G~mp! S x

2D mpU<uxmpu

5exp~ umpucos~argmp!lnumpu!<xp/2. ~5.9!

By applying the series functions proposition stated above
relations ~5.9!, we can conclude that(p51

1` uI mp
(x)u con-

verges. This result implies thatP is positive at large times. It
follows that Eq.~3.24! is a probability distribution.

One may also note that the asymptotic regime (t→1`)
is purely diffusive~diffusion of the radial distance betwee
the two vortices! because

P~r ,u,t !;
1

4pnt
e~r 211!/4ntI 0S r

2nt D , ~5.10!

which corresponds to the solution of a diffusion equati
with initially, the probability concentrated in a ring o
radius 1.

VI. CONCLUSION

In this paper, we have investigated some aspects of
dynamics of a finite number of point vortices in a visco
medium. Point vortices are well-studied solutions of Eu
equations. Viscosity is introduced by inserting independ
white noise perturbations into a point vortex Euler veloc
field with a variance proportional to the viscosity itself. W
have shown that the dynamics is a solution, in stocha
means, of the Navier-Stokes equations. It can be chara
ized by computing the probability distribution of their pos
tions, which satisfy a Fokker-Planck equation.

In order to study the impact of the viscosity on the d
namics of point vortices, we focused on the simplest n
trivial case, which allowed us to describe the nondiffusi
effects of the viscosity. The natural candidate was the sys
composed by two Lamb vortices. We analytically comput
the probability distribution function solution of the Fokke
Planck equation in the special case where the two vort
have the same circulation. We verified that it is effectively
positive probability distribution.

This allowed us to show and describe in detail the me
ing process of the two Lamb vortices. This merging is
4-13
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nondiffusive viscous effect, and corresponds to a modifi
tion of the topology of the system. We also obtained that
the limit nt/r 0

2→0, the distribution of the distance betwee
the two vortices is concentrated on a spiral structure. T
characterizes the selection process, by viscosity, of a par
lar solution among an infinity of candidates atn50. An im-
portant point in our asymptotic development is that it p
serves the probabilistic character of the full solutio
allowing a consistent interpretation of the analytical resu
We also showed that corrections to the main contribution
such a limit, are multipolar and preserve the topological
ture ~spiral geometry! of the selected solution. In fact, th
sharp maximum of the distribution is located on this spi
structure. After a transitory regime~merging process!, this
maximum decreases exponentially to zero and angular
ropy follows. The asymptotic regime (t→`) is purely diffu-
sive and axisymmetric. We compared these asymptotic
sults with the exact ones using direct numerical simulati
of the original Langevin equations. We verified, in particul
that the finite merging time of the two vortices, predict
analytically, corresponds to the one obtained in the simu
tions.

The complexity of the merging process manifests itself
an exact solution@Eq. ~3.24!# by the presence and the com
bination of two time scalings: a purely diffusive one, whe
lengths scale asr;Ant; and a kinematic one, where length
scale asr;G/r 0t. At variance to the diffusive law, the kine
matic relation depends on the total circulation, and more
ss

-

u-
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terestingly, on theinitial distance between the two vortice
The interplay of the two behaviors appears clearly in
expression of the fusion time~the time for whichr p50)
when written in terms of the dimensional variablest f

5(r 0
2/8n). The typical diffusion time isr 0

2/n, and one sees
that the kinematic effect appears through the value of
numerical constant 1/8, which gives a fusion time mu
smaller than the diffusive one.

According to the value of the Reynolds number, we fou
two regimes of fusion of the two Lamb vortices. On the o
hand, when kinematic effects are dominant, the merging p
cess evolves through two stages: in the first one, ang
diffusion dominates, and a ring is formed; in the second o
this ring shrinks toward the center, rapidly losing its asy
metric features. On the other hand, when the viscous eff
are dominant, the vortices~in the sense of the averaged vo
ticity given by the probability distribution! remain relatively
localized around two peaks, which directly collide to form
unique structure. This single peaked structure evolves
idly to an axisymmetric one: a final Gaussian vortex, whi
is an asymptotic state independent of the initial condition a
parameter values.
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