PHYSICAL REVIEW E, VOLUME 63, 056304
Effect of viscosity in the dynamics of two point vortices: Exact results
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An exact, unstationary, two-dimensional solution of the Navier-Stokes equations for the flow generated by
two point vortices is obtained. The viscosityis introduced as a Brownian motion in the Hamiltonian
dynamics of point vortices. The point vortices execute a stochastic motion whose probability density can be
computed from a Fokker-Planck equation, equivalent to the original Navier-Stokes equation. The derived
solution describes, in particular, the merging process of two Lamb vortices, and the development of the
characteristic spiral structure in the topology of the vorticity. The viscous effects are thoroughly investigated
by an asymptotic analysis of the solution. In particular, the selection mechanism of a specific pattern among the
infinity satisfying thevy=0 (Euler equation is discussed.
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. INTRODUCTION value of the vorticityw=V Xv. In two-dimensional flows,
the vorticity vector is in the direction perpendicular to the
Vortex interaction is a central issue in two-dimensionalflow plane. Units are such that the constant fluid density is
fluid turbulencg 1-3]. The basic mechanism, the collision of equal to 1. Solutions of this equation are smooth fields of the
two localized vortices, was studied extensively, mainly usingvorticity. To work with singular distribution of vorticity, it is
numerical simulation$4,5], in an attempt to understand the more appropriate to introduce a weak form of the Navier-
dynamics of coherent structures. Asymptotic analysis als@tokes equatiofiEg. (1.1)],
contributed to the study of the motion of vortices in a two- d
dimensional potential flow, and the results were used to de- —w(f)=w(v- Vi) + va(V3f), (1.2
sign efficient numerical schemes and describe the merging dt
process[6,7]. A fundamentgl point about vorte_x intergctions for any smooth functionf, where by definition w,(f)
is the appearance of a spiral structure, evolving rapidly and- r ,qxq(x,t)f(x). One should note that a weak solution
contributing to the generation of small scales. The spirafgq. (1.2)] of the Navier-Stokes equation is not necessarily a
structure is often invoked to explain the statistical propertiesolution of Eq.(1.1) that is to say a strong solution. Never-
of turbulence[8-12. In this paper we show that using a theless, Eq(1.2) is valid in a more general space of func-
stochastic representation of the Navier-Stokes equations, it tfons than the usual orl€q. (1.1)], and allows one to deal
possible to find the exact solution for the interaction of twowith singular vorticity distributions rigorously. An important
vortices in the limit of vanishing core size. The role of the result follows from this approach in the case, whexéf ) is
viscosity and the detailed description of the spiral structureessentially bounded and integrable: one can associate a sto-
are thoroughly investigated. chastic processx(t;xg) with any weak solution of the
In Euler flows, point vortices follow the fluid streamlines. Navier-Stokes equations,(f ) defined by a Langevin equa-
This is no longer the case in viscous flows where, indeed, théon [13]
viscosity perturbs this characteristedvective behavior. To d
. L . - - X(t)
give a more precise idea of the influence of viscosity on the R
vortices, let us introduce the Navier-Stokes equation for the dt
vorticity in two-dimensional flowR?,

=V[x(t),t]+ 2vb(1), (1.9

5 w(f ):j dXow(Xo,0) & F(x(t;%0))], (1.9
E—I—V-V)wzvvzw, (1.1

wherew(Xo,0) is the initial vorticity field,b is a white noise
(the derivative of a Wiener processnd&(f) is the expected
which can be completed with the incompressibility conditionvalue of the stochastic proces$x(t;x)). By definition,
V.v=0. We note thatv is the kinematic viscosityy & f(x(t;xp))]=/dx P(x,t;%o)f(X), where P(x,t;xo) is the
=v(x,t) is the velocity field, andv= w(x,t) is the algebraic transition probability, that is, the probability for a particle,
evolving according to proce<&.3), and initially at position
Xo, to be at positiorx at timet. Equation(1.3) clearly shows
*Electronic address: agullo@up.univ-mrs.fr that the viscosity prevents the advection of particles along
"Electronic address: verga@marius.univ-mrs.fr the field lines by imposing a stochastic perturbation. Indeed,
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in the absence of viscosity, E(lL.3) represents the motion of discussed in Sec. IV. The paper ends with a concluding sec-
a fluid particle in the so called Lagrange representation ofion (Sec. VI, where in particular we discuss the physical

fluid motion. significance of the solution.
The stochastic equatidiEq. (1.3)] is not very useful in
this form, because to determine the fluid particle trajectory II. DYNAMICS OF POINT VORTICES

X(t) one needs to determine the velocity fig(c,t) which is , , ) ,
itself a solution of the Navier-Stokes equation. However, in Let. us recall .the bas[c properties of point vortices before
the special case where the vorticity is concentrated in pointsl:f)CUSIng on their behavior in a viscous medium.
an explicit form of the stochastic equation of motion for
these “point vortices” can be found. A. Euler dynamics of point vortices

In the absence of viscosity, the Navier-Stokes equation We consider a vorticity field initially concentrated in a
reduces to a Euler equation. A weak version of the Eulefinite number of points;, i {1,...N} in a two-dimensional
equation has been extensively studied since the 19th centurggpmain D that we choose to be the plane, for the sake of
after the work by Kelvin[14], in the special case of the simplicity (D=R?). Denoting §(x) the Dirac measure at
motion of point vortices. Chorin pointed out that this ap- point x, one writes the vorticity field
proach can also be used for viscous flows. Its goal was to
design efficient algorithms to compute turbulent flo\s].
Chorin proposed adding noise terms to the Hamiltonian mo-
tion equation for point vortices in order to take the viscosity
into account. The deterministic motion equations of pointEach terml’; 8(x—X;) represents a point vortélabeled byi)
vortices thus becomstochasticequations. In a more rigor- with circulationI';# 0. The circulation can be defined by the
ous approach, it can be shown that when the number of voidentity I';= [ cv, whereC is any path surrounding the vor-
tices tends to infinity, this stochastic system converges to &Xi (and only this ong One can verify that the localization
smooth solution of the(strong Navier-Stokes equations Of the vorticity distribution is conserved in time,
[13,16): the spatial distribution of point vortices approach the
vorticity of a Navier-Stokes fluid. In this paper we show that
this approach is also useful to obtain some theoretical insight
into the dynamics of a few vortices, and to understand the
influence of viscosity on the motion and interaction of vor-with x;(0)=x;, which justifies the name of a field of point
tices. vorticesw(x,t). Indeed, by inserting E¢2.2) into the mo-

A particular solution of the weak Navier-Stokes equationmentum Euler equatiofi.l), and using the divergence free
is the Lamb vortef17]. It is a point vortex that, under the constraint on the velocity field, one obtains
effect of the viscosity, spreads in space. The Navier-Stokes
equation reduces in this case to a heat equation, and the
vorticity distribution is Gaussian. Clearly, from a stochastic
point of view, the point vortex trajectory is one of a Brown-
ian mOtion: the mean and Standard deViationS Of the VOI’te]q we make the hypothesis that Vortices are never in con-
position coincide with the moments of the Gaussian distributact at timet;, by integration on balls of radii small enough
tion. The vorticity is then directly related to the probability (inferior to the smallest distance between two vorticasd
distribution of the point vortex position. Moreover, except atcentered at points¢(t), one obtains that, for any time
time t=0 (corresponding to the initial conditionthe solu-  smaller thart;,
tion is also a strong solution of the Navier-Stokes equations.
We will see that to study the interaction of a finite number
(greater than oneof point vortices in a viscous medium, the GO =vx, ). (2.4
links with the Navier-Stokes equations must be weaker; to
make a proper discussion, it is necessary to introduce a stiote that, for some particular initial conditions, collapse of
chastic formalism. This will be presented in detail in Sec. Il.several vortices can appear in a finite tiffe,19,2Q. Of

The main objective of this paper is the stughart of these  course, Eqs(2.3) and (2.4) are no longer valid after such a
results have been presented in a lefts8]) of a system of collapse. We see from E@.4) that the point vortices follow
two point vortices in a viscous medium, an obvious generalithe field lines of the fluid, and that vorticity cannot be cre-
zation of the Lamb problem. We will see that in such a caseited or destroyed during the time evolutiGn conformity
an exact solution can be found. In Sec. Il a stochastic forwith Helmholtz laws[21]).
malism is introduced, and a relation between the Navier- Using the Biot-Savart law, one can retrieve the velocity
Stokes equation and a Fokker-Planck equation describing tHteld from the vorticity field,
probability distribution of point vortices is established. The .
specific case of two vortices is solved in Sec. lll. The _ 1 (x=r") / /

; . . ) : V(Xx,t)= - o(x',t)dr’, (2.5

asymptotic properties of the solution at weak viscosity are |

N
w(x)=2, I'8(x—x) att=0. (2.2
i=1

N
w(x,t)=21 L;8(x(t) —x), (2.2

N d
O=Zl Ti| = g +V0i.) V() =x). (2.3

27 ] [x—x
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where L refers to a rotation of angle-#/2 in the counter-
clockwise direction: X,y)*=(—v,x). In the case of a set of
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whereV={v(x;,t)} is a vector whose components are the
velocities of the point vortices, ariy is the gradient opera-

point vortices, this last equality reduces to the simple exprestor in X space. Obviously solving E42.11) is equivalent to

sion

N
v(x,t):Zl LK (x—x;(1)), (2.6)

where by definitionK (x) = (1/27)x*/|x|? (x#0) is the de-
rivative of the Laplacian Green functidnp to a rotationin
the plane(v is zero at the infinity. Clearly this implies a
divergence of the velocity field at point vortex positions
[|v(xi,t)]=+]. A more rigorous derivatioi16] shows
that in fact the last equation is correct if we g€{0)=0.

This condition simply means that a point vortex does no
move under the effect of its self-rotation. Combination of

identities(2.4) and(2.6) gives a set of differential equations
which determines the evolution of the point vortex positions

N

p)

INEL

&(Xj_xi)L
27T |Xj_Xi|2 ’

d
qxin= @7

In the special case of only two vorticell€2), one obtains

d Ty og—x)t 28
&Xi_E—ZIXJ—XJ EEP (2.9

Indicesi andj can take values 1 and 2. A straightforward

computation allows us to verify that the distance between the

two vortices r =|x;—X,|, and the mass centevl=I";x;
+1I',x,, are first integrals of motion; their time derivatives

are zeroir=0 andM =0. If we do not consider the trivial
casel';I',r=0 and introducd’=TI";+1',, we obtain

d
dt™

r

Zwrljrz(rxj_M)i,

(2.9

which is the equation of a rotatgfor I'#0), with rotation
frequencyl'T';/47?T';r?. As a consequence, eithEris zero

and the trajectories of vortices are two parallel straight lines,
or it is different from zero and the trajectories are concentric

circles of centeM/T".

It is interesting to note that a probabilistic interpretation

of the point vortex dynamics of the Euler equation is pos

sible. Let us introduce the probability transition density of a

system ofN vortices,

N
P<x,t>=i1]1 8(x; = X(t;Xo1))s (2.10

whereX={x;} is the point vortex configuration phase space,

andx(t;Xg;) is a solution of the motion equatid2.7) with
the initial conditionXy={xc;}. The meaning of E¢2.10 is

t

solving (for a system of point vorticeghe Euler equation: in
both cases one must solve the vortex motion equati®s.
However, the interpretation of the results is different. In the
Euler approach the knowledge of the vortex trajectories al-
lows one to find the vorticity field at time In the probabi-
listic approach, one finds the probability that at timée
vortices are at a positiod. As this probability is 1 ifX is on

the vortex trajectory, the two solutions are trivially equiva-
lent. Note, however, tha& depends on R+ 1 variablegthe
vortex positions and timeand its evolution equation is lin-
ear, at variance to the original problem in which the vorticity
is a function of only three variabldgshe two spatial coordi-
nates and timeand satisfies a nonlinear equation. We see in

.Sec. Il B that the relation between the two approaches in the

case of a viscous fluid is complicated by the fact that the
vorticity itself becomes a stochastic process.

B. Point vortices in a viscous medium

Let us now consider, in the spirit of relatigh.3), a set of
N point vortices defining a vorticity field

N
w(x,t)=Zl T} 8(x—xi(1)), (212

and let us assume that their velocities are no longer exactly
equal to the fluid velocity generated by the other 1 vor-
tices at the positions they occupss in Eq.(2.4)], but are in

addition perturbed by independent white noises
{by(1),....bn(1)}:
d N
Sx(0= 2 TKOG) =X (1) +V2vby(1).
dt i=1j#]
(2.13

The white noised;(t) are random functions, invariant with
respect to time translations; their mean value vanishes,
(b;)(t)=0, and their cross correlation functions satisfy
(bio(t)bgi(t"))=6j6,56(t—1"), where a stands for the
spatial coordinatéx,y).

The coefficient of the white noise term&v is the same
for all vortices, it is independent of Equations(2.12) and
(2.13 show that the velocity of each vortex is the sum of two
terms: the fluid velocityw(x;(t),t) at the vortex position, and

simple: the probability that the vortex follows the trajectory & stochastic perturbation proportional to the fluid viscosity

given by Eq.(2.7) is 1. The equation of the probability den-
sity conservation in the vortex phase spaces

P
— P+Vx-VP=0, (2.10)

To understand the origin of the viscous term we need to
establish a link between this stochastic equation and the
original Navier-Stokes equation. In order to establish this
relation we start by computing the derivative of the vorticity

[Eqg. (2.12],
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N
d dx;
Sexb= -2 e

. (1) - Vi 6(x—xi(t))

M =

I\T;K

L (Xj=%;) -V, 8(x—X;)

i

N
+\/Z-Zl L'ib;- VyS(x—x)
N N

:'21 FjK(Xj_X)'El [V, 8(x—x;)
1= i=

N
+20V - >, Tibi8(x—x;)
i=1

—v(x,1)- Vo(xt) + 20V, [b(t) o(x,1)],

(2.19

where, by definitionb=(b,,...,by). This equation shows

PHYSICAL REVIEW E 63 056304

where we used the identity

Jd
b,

d
S(X—x)= Jz_ydt(si,-W (X=X,

which is a consequence of the Langevin equati®i3. A
rigorous derivation of these relations using functional inte-
grals can be found in Ref23]. Combining Eqs(2.14) and
(2.15, one obtains the following result.

Proposition 1 A vorticity field of the form of Eq.(2.12),
with the vortex trajectories satisfying the Langevin equation
(2.13 is a stochastic solution of the following weak Navier-
Stokes equation:

<%w(x,t) +v(x,t)- Vw(X,t)> =1(V2w0(Xx,1)).
(2.16

clearly that the vorticity of the system evolves according to a

stochastic differential equation and the vorticity field at time

t depends on the set of random noigkés),0<s<t}.

Therefore, we established the link between the stochastic
equation[Eq. (2.13] describing the trajectories of the point

Let us compute the stochastic mean of the last term in E¢/Ortices and théweak form of thg Navier-Stokes equation

(2.14). The distribution of any white noisbk; is Gaussian

2.16. We conclude that the parameterintroduced in the

with mean zero. Dimensional analysis indicates that the vari-@ngevin equations, can effectively be identified with the

anceco? of a white noise is proportional to the inverse of a
time. In fact, the white nois®; is defined from a Wiener
processW(t), with dW(t)2=dt, and it is such thadw

=b;dt. This last equality must be understood in the sense o

the Ito stochastic calculus lign, o( AW(t)?—At)=0 [22]. It

viscosity. Instead of solving the stochastic dynamics by in-
tegration of the Langevin equatior2.13 and averaging
over different realizations of the noise, one can introduce a
fFokker-Planck equatiof22] for the transition probabilitya
generalization of Eq(2.11)],

follows that the variance of each component of the white

noise b;, is formally given by o?(t)=1/(2dt) when dt
—0.

J
EP"‘V)(VP: VAXp, (217)

We can now compute the stochastic mean of identity

(2.14), using a Gaussian probability distribution for the white
noise with varianceo®> and zero mean. We note that
=(X1,Xo), and{A);., (A);, and(A), the stochastic mean
on random process;,, b;, andb, respectively. We obtain

(V- [bi 8(x—x)1)i

o (b +b7p)1202
- [ dba [ anS o ——

270

d 1%
X bila—xlﬁ(X—Xi)'Fbiza—Xzb‘(X—Xi))
e bAl2e? 5 4
=—0o? | dbj;—= 5— — S(x—X;
| [ v o g 0 i

e—bi22/20'2 (9 (9
~0? fdb- 58X~ X))
7 2 V2ma? dbip 9%, I

i1

d

2

Jd
__ 2
=—0 dt\/ZVQZl <‘9Xa >

Xa
(V

2

5(x—xi)>

1/2
= ) (V28(x—x)))i (2.15

which gives a complete statistical description of the system
evolution. Therefore, the problem is reduced to finding, from
Eq. (2.17), the distribution probability of the point vortex
positions. In Sec. Il we give the explicit form of E(R.17),

and we compute the distributidd in the case of two vorti-
ces.

It is important to compare this result with the theorem of
Marchioro and Pulvirenti13], which is valid in the case of
an infinite set of point vortices. Their statement is the fol-
lowing: ConsiderN vortices with circulationl’;=T'/N (I"
being fixed satisfying, at t=0, limy_ .on=0
eL;NL.(R?). The solution of the Navier-Stokes equation
with initial data w is then, in the weak sense, equal to
limy_ 4 oy at timest=0.

The Marchioro-Pulvirenti theorem shows that a continu-
ous vorticity field solution of the Navier-Stokes equation can
be approached by using a very large number of interacting
point vortices. Chorin was the first to use this technique to
compute numerically the evolution of a vorticity field in a
viscous mediunj15].

When the number of vortices remains finite, we have a
stochastic description of the dynamigs. In particular the
nonlinearity is in general such thatv(x,t)-Vw(x,t))
#(v(x,1))- V{w(x,t)), and no deterministic solution of the
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Navier-Stokes equation is available in contrast to the case of

a system of an infinite number of vortices. Nevertheless, ob- <w>(X-t)=FJ PL(Xg,1) 8(X—Xg)dXo=T"P(X,1),

taining a solution of such finite point vortex systems supplies “ 3.3

a way to understand and illustrate the basic mechanisms in- '

volving the viscosity; this will be done in the simplest case inwhich gives the well-known Lamb vortejd 7]. In this case

the next sections. Moreover, a solution for a small number ofhe role of the viscosity is simply related to the diffusion of

interacting vortices can describe some limiting cases of nonthe initially concentrated vorticity, and the vortex size grows

discrete vorticity fields on interesting time scal@4,25. as\t. We will see that, for the two vortices, basic mecha-
nisms induced by the viscosity appear.

[ll. EXACT SOLUTION FOR THE INTERACTION OF
TWO POINT VORTICES IN A VISCOUS FLUID B. Probability density of two corotating point vortices
We now investigate the evolution of a system of two point
vortices. We look for a solution of Eq$2.12 and(2.13 in
ﬁe special casbl=2. In the light of the results for the case

We consider two vortices with circulatiods; andT',,
initially separated by a distaneg, in a fluid of viscosityv.
Hereafter, we analyze this system in the simplest case, wh
both circulations are equal. Using these three parameters, t
only dimensional parameters of the problem, one can for
two characteristic times; the viscous tirhg~r3/v and the

=1, we can interpret Eq$2.12 and(2.13 as describing
he interaction of two Lamb vortices. Therefore, the vorticity
ield evolves according to a stochastic process depending on
o 2 the pathgx;(t),x,(t)}. In order to describe this system one
rotation time of the vortex pairty~rg/I" (we note thafl must determine the probability distribution of the vortex po-

=I";+1',). The ratio of these two characteristic times givessitionsP(xl X,,t), and then solve the Fokker-Planck equa-
the only nondimensional parameter of the problem, the Rey; Y

d ber Rel/v. B £ th ol hﬁon it satisfies. As the vortex trajectories are stochastic, the
nolds number Rel/v. Because of the presence of a length,ngiion probability in this framework becomes the basic
scale(the initial distance o), in general one does not expect

quantity from which one may calculate other physical quan-

the evolution of the system to be self-similar. However, evenieq a5 for instance, the mean vorticity distributian [see
in the case where a stochastic perturbation is present, tl]gq_ (3.5)], or the characteristic merging time.

motion equations are invariant under the transformations WhenI',=T',, the noise terms in the Langevin equations
t_>_0‘2t andx— ax. This means that a scaling- Vtis com- for r=x;—x, and M=(I'/2)(x,+Xx,) are independent be-
patible with both the deterministic and random parts of the,5;se

vortex motion. In the inviscid case, another behavior com-
patible with the system’s dimensions is possible: the trivial r r ., )

x~r, scaling for which the distance between the two vorti- <§(bi—b2)(b1+ ba) | ()= 5 [{b1)(t) —(b2)(1)]=0.

ces remains constant. In the pure viscous case, a diffusive

behavior is found with a normal scaling- yt, which also is  Hence the two vortex transition probabiliB(x; ,X,,t) turns
the expected scaling for very long times. The problem is taout to be the product of the probability distributions of the
find a solution matching these two different regimes. center of mass Py and of the vortex distance
P, P(X{,X,t)=Py(M,t)P(r,t). The knowledge of these
probabilities allows the computation of the observed vortic-

_ ) ity evolution by direct integration:
In order to illustrate the stochastic approach to the Navier-

Stokes dynamics, we start with the case of one isolated vor-
tex. The vorticity isw(x,t) =T 8(x—xg(t)), and the vortex
motion equation simply reduces to a Brownian motion

A. Lamb vortex

<a)>(x,t)=f P(X1,Xo,t) 0(X,t;X1,X5)dX,dX%,  (3.4)

Xo(t)=\2vb(t). The transition probabilityP=P(x,,t|0)

then satisfies a Fokker-Planck equation, which is in this case =(T'/2) | [Py, ) +P(y,xt)]dy.

a pure diffusion equatiofwithout advection term (3.5
d Using Eq.(2.13 we immediately find that the center of
i P=VAP, P(x0,t0)=4(xo), (3-D massM follows a Brownian motion,

d
assuming initially that the vortex is at the origin. The solu- &M(t)zr\/;B(t), (3.6
tion of the diffusion equatio®= P, reads
whereB=[b,(t) +b,(t)]/2"? is a unit variance white noise.
Therefore,P,, is a Gaussian probability distribution:

— _ 2
PL(XOit) At eXF( |X0| /4Vt), (32) 1 M2
PM:ZWFZV'[ ex%_ 2vlet| .7
which is the usual Gaussian distribution. In addition, the vor-
ticity can be obtained using, Moreover, the distance satisfies the Langevin equation
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g =K (r)+2\wb(t 3.8 o AL ANEA N A
gir(O=TKI)+2yvb(1), (3.8 clvat " T r v g

(3.13
where b(t)=[by(t) —b,(t)]/2Y? is still a white noise. The

Fokker-Planck equation associated with E8) is [26] T_he _rig.ht hand side is indgp_end_ent a@f and the left hand
side is independent aft. This implies that the two terms are

P equal to a constant, say;, which gives the two equations
EPr(r,t)z =TV -[P.(r,t)K(r)]+2vAP.(r,t).

3.9 i f Lo f—N.f=0

(3.9 Fr Ay 1f=0,

We introduce the polar coordinates (r, 6), then the veloc- ) . 1 (3.19
ity kernel is writtenK (r)=&,/27r. We also introduce the a_zGJr - iGJr )\—zlG: —iG.

following units:r 4, the initial vortex distance, for the length; or ror r vd dt

and 2rr3/T for the time. The Reynolds number is thus Re
=I'/47rv. In addition, we suppose&,#0; otherwise we
would just obtain a Lamb vortex of circulatioR. In the
following (r,t,») will stand for the nondimensional quanti-
ties where the new is 1/Re. Using these notations we re- 1 ([ 14 N\ 9

write the last equation in the form W(a? + T + FZ) g(r)= vh—(t) ﬁh(t)_)\z’

- (3.1
— 255 P 0.0+ vAP(r,0,0),

It is even possible to get a separate variables solutioGfor
InsertingG(r,t) =g(r)h(t) into the above equation, we ob-
tain

J
at Pr(r,6,0)= where\, is another undetermined constant. From the second

(3.10  equality one obtainh=e*2"!. The linearity of Eq.(3.10
. o _ implies that the more general solution that we can deduce is
whereA is the Laplacian in polar coordinates:

Ae &2 19 1 9 L P(r,ﬂ,t)=fd)\1d)\2 a()\l,Az)exsz)\l(a)g)\l)\z(r)!
IARE T (319 (316

. . _— where we explicitly write the parameter dependencg afd
It is remarkable that an equation similar to H§.10 ap- f, and the copmplei functioa:gx C—Cis topbe detergmined

peared, in a completely different context, as the equation fog X : T .
. T ) y imposing the initial conditiofEqg. (3.12]. Note that Eq.
the vorticity of a spiraling shedsee Eq(30) of Lundgren’s (3.16 may be a generator of the set of solutions of cléds

paper on strained spiral vortices and turbulefg. How- or of any other functional space. In fact, by determining now

ever, although the vortex sheet equation with viscous correcs; . .
tions of Lundgren and the Fokker-Planck equation for th(gthe Green function of the Fokker-Planck equation, we are

distance between two point vortices are formally similar showing that this ifortunately the case. By definition the

) o " Y 'Green function satisfies the initial conditipEg. (3.12)]. In
they differ by the initial condition and the normalization con- ) . -~
straint that the transition probability must satisfy and that doordedr tto m?tch Elqt(&tlhg) V\ll'tht EQ. (3;'.12) aEf t'?et_to’ |VIZ(|E
not apply to the vorticity. This analogy will prove useful in neg ok_re ormu afe,ih 'S asl_tequa on. By denotig
discussing the intermediate time asymptotics of the merginé‘n making use ot the equality

procesgsee Sec. |V beloy +o

expliz cog a)):I 2 i'3(2)expil@), (3.1

C. Computation of the distance probability distribution

We now compute the solution of E¢3.10 with initial ~ wherez=k|r—r,| and « is the angle k,r —r,), we obtain
conditions, given in polar coordinateB,(r,6,0)= 5(r —1,0
— 6p), which means that the initial distance between the two S(r—rtg)= 12 f dk exp(ik-[r—ro])
vortices is 1 and the initial inclination of the vortex pair is 4
0y. The Fokker-Planck equation being invariant by rotation,

. . L. 1 +oo 2m

one can choosé,=0 without loss of generality. The initial — _Zf dk k exp(ik|r —ro|cosa)
condition can then be written 41 Jo 0

= — 1 +o0
P(r,0,00=56(r—1,6). (3.12 :ﬂfo dk kdy(K|r —ro)). (3.18
Let us look for functions with separate variables belonging to
the kernel of the Fokker-Planck operator, such tiat The Bessel functiod, can be rewritten in a form where the
=G(r,t)f(0). By inserting functionss andf and multiply-  polar coordinate variablesand 6 are separated. By using a
ing Eq.(3.10 by r?/(Gf), we obtain an identity whereand ~ Bessel function developmefi27], we can finally write the
G are separated: initial condition as
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5 _ 2 fﬂodk Jo(kro)Jo(k P.(r,0,)=G 1+2m§ T P T R Y
(r ro)—ﬂ . o(krg)Jo(kr) (r,0,1)=G(r,1) = o 20t ol 20t 8 |
+oo (3.29
+2p§l Jp(kro)dp(krjcogpd)|. (3.19  where the radial part of the distribution is
. . . 1 r’+1 r
The form of this last expression clearly indicates what to do G(r,t)= exp — lol =—/|. (3.2
now. Indeed, Bessel functior, are a subset of the set of 4ot 4rt 20t

SO",J“O”S{QM'M'("LM) € CX . With )\1<0’)\2.<0 aNnd \ve now check that the solution four&q. (3.24] indeed
by introducingR=r ||, from Eq.(3.15 we obtain a new  gatisfies the initial condition. An important property of the
equation forg=gxl'k2: Bessel functions ,(x) is that they are all equivalent in the
limit x— +90, independently of the order. Formally, if we

2 . . .
take as their common limity, we can write

19 A4
ﬁg(RHﬁﬁg(R)Jr

- &7 |9(R)=0. (320

Its general solution is a linear combination of the first kind

Bessel functions with order parametéi 4], which gives the expected limjEq. (3.12] ast—0.

In conclusion, the vorticity field associated with Eq.
=C.J oD+ CaN D), (3.2 (3.24 and the Gaussian distributiddy, of Eq. (3.2) is the
9(r)=Cad (T D) +Co Nexul o). (323 exact solution of the stochastic two-dimensional Navier-

. . Stokes equation. The proof that E@®.24) is effectively a
whereC, andC, are th? Integration constants, So we have ©hormalized positive probability distribution is deferred to
choose between two kinds of solutions formally equal to Edgec. v

(3.19 att=0: either we may decide to have an integer pa-
rameter in the ordep of the Bessel,(6)(p=V[\1[), orwe  pjanck equation3.10, and gives the temporal evolution of

may decide to solve\ for cosine functions q@([with p e distance between the two initial point vortices. Of course,
=(1=V1+4[\[)/2eN]. One can verify that in the first the limiting case Re1/»=0, that is to say when the two
case we obtain solutions satisfying the initial condition buty,qrtex system is dominated by viscosity, gives=p, and
that are not derivable along=0. The second case leads t0 a the solution becomeB, (r —ry,t). The evolution of the dis-

Equation (3.24) is the Green function of the Fokker-

solution of the form tance reduces therefore to a Brownian motion, as one could
also derive directly using the Langevin equation without the
P(r,0,t)= iz elpd velocity term. N . _ _
215y The probabilityG(r,t) is the axisymmetric part oP,,

. and can also be obtained as the solution of the heat equation,
- —\2ut with the initial condition a distribution of the vorticity alon
. f hadhoe 72 J“P(Azr)J”p()\er)' a ring. This characterizes the diffusion of the radialydistangce.
It is worth noting that this axisymmetric part becomes as-

(322 ymptotically dominant in the limit of long time$— + o

[1,.(0)=6y,, the Kroneckers], demonstrating that the final

state of the system is isotropic. Therefore, solutiBr24)

describes the change in the topology of the flow: the initial

state of two localized vortices evolve to an axisymmetric

structure.

where {u, e C:ul=ip/v+p? Ru,<0peN} is the set of
constants\; we choose(fR stands for the real partin di-
mensional variables we have the expressiqazlfJ
=il'p/(4mv)+p?, and in the limitl' -0, we att=0 we
exactly obtain expressio(8.19. We will verify that in the
casel'# 0, the initial condition is also verified. Expression

(3.22 can be integrated using the formy@7] IV. ASYMPTOTIC ANALYSIS OF THE PROBABILITY

DISTRIBUTION

e 20 General formula3.24) is quite abstract and, because of
f e 77 Jy(ax)d,(Bx)x dx the Bessel functions of complex order, its numerical evalua-
tion is not easy. However, some useful information can be
obtained in the limit of small viscosity using asymptotic ex-
' pansions. The difference between Euler=0) and Navier-
Stokes ¢=0%) equations can be studied in detail from ex-
Ry>—1]argp|<m/4,a>0,8>0, (3.23  pression(3.10. Whenv is zero, the solution of E¢3.8), in
polar coordinates, is

1 a’+ B2
= 2—p28X - —4P2

ap
"\ 2p?

wherea=r, B=ro=1, y=p,, p>=vt, andx=X\,. |, are
modified Bessel functions. The general solution is finally

d
written as a7t (4.0

=L G
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where (16,) is the initial distance, and corresponds to aThis development is valid when the argumenkad between

rotation of periodT=2. A probability distribution associ- — /2 and+ /2 and in particular when is positive, forx
ated with this deterministic motion is large(going to infinity). However, one should note that such
an expansion is divergent in the usual sense of the term. The
P,(r,0,t)=56(r—1,6—t—80,). (4.2 equality written in Eq(4.6) is to be understood in the formal

series sense. In fact, the coefficient series is itself divergent,
This is of course a solution to Eq3.10, with »=0. An  because wheg— +«, the main contribution td’q, , is
important question arises about the influence of the viscosity.
First, we note that the argument of the angular Dirac function Mo (2i—1)2 q!
may be rewritten in the forn®—tf(r)— 6y, wheref is an Ly~ WNM(M)QT)Q’
arbitrary function satisfying(1)=1. Second, for any arbi- a
trary small viscosity(in fact, v—07) under the effect of
diffusion, theé§ functions in Eq.(4.2) will spread out. There-
fore, the actual distand@n the probabilistic sengeéetween
the vortices will be slightly different fronry=1, which

4.9

where f(u) does not depend org. It follows that
limg_ g ,=f(n) x>, so that the divergence is very
strong. The convergence is, as stated by Poin@8kin the
raises the problem of the choice bfThis is precisely the as'tronomerjs sense and not in_ the geometrician’s. Actually,
role of the viscosity, which will select a particular formff ~ thiS €xpansion converges, whers not too smallfor a fixed

compatible with the Navier-Stokes equation, as we show bet Valu®, exponentially close td ,(x), with the condition
low. that the summation is stopped at a well chosen index

q(x,u). Indeed, the first terms of the serigg , decreases to

0 (in absolute valugbecause of the denominatet. This is

called a “quasisummation to the smaller term.” In practice,
After a factorization of the radial part, an asymptotic ex-a convenient choice of index is the one where the summation

pansion in powers oft of Eq. (3.24 can be obtained: I’y ., ceases to be a decreasing functiorgowhich numeri-

cally gives results of the precision machine order. So it

would be more judicious to write

A. Weak viscosity development

—+ oo

P(r,a,t)ze(r,t)Zo VPOt ), (4.3

do=min{qeN,|Tq ()T, (X)|<1}, (4.9

. q-1lu
with

X Yo

fﬂpozl (4.4) l.(X)= \/mqgo (=1)g ().

(4.10

and A rigorous theory about asymptotic divergent series was de-
veloped quite recently by Rami®9]. The main theorem
states that a formal series solution of a differential equation
f P,=0, n=1. (4.5  (with analytic coefficients, which is our cass the(Gevrey
o asymptotics of an exact solution of the differential equation.
Identity (4.10 is a particular case of this theorem.
In the case we are interested in, we havex=r/2vt and
= pp. We now focus on finding the dominant terms in the
Fq,ﬂ(x) of sum(6.6), in the limit v— 0. We note that it is not

In fact, in this section we compute the first two terms of the
series. By construction, the asymptotic expansieq. (4.3)]
is done in such a way to obtain a better understanding of th
nonisotropic part of the probability distribution, which is in : X
fact the n?athgmatically (E)omplex gart of the expression. correct to_ keep qnly the term with the onvest orderzin

We start by presenting the order zero term computatiorpecause in the highest 9“’6“ Bessel funct|blpps$p—>+oc)
Po, and verify that this is the theta elliptic functiof(n these are no longer dominant. As a consequence, we have to

=0). We make use of a Bessel function expangian keep the p_olynomial c_ontributions with the highest degree in
p. In fact, in the identity

er
(X)= =2, (=1) (), (4.9 148 1\2
T 2mxd=o o T, (0= r_q,Hl pzvt-i—ipt—(j— 5) vt|,
where (4.11)
Fo(x)=1, TIq (X the dominant term whem is small isipt, except when the
) 5 ) integerp is large. In this last casg?vt is dominant. The
_ (4p = 1)---(4p"—[29—1]%) third term (—3)2wt is, in a first approximation, negligible
q!(8x)4 ' in all cases under the condition that the quasisummation sat-
isfiesq3v<1. The larger ix=X, the better this is verified.
ge N*. 4.7 Finally, we can write
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1 (p?vt+ipt\d (—14p?)3!23(2i—1)? times the zero order term
Fq,u(ﬂ:a(—) : (412 (4u%8x)%q!. As before, noting thai2=o(p2,p/v), we

' keep the dominant term atsmall andp large, and neglect
By introducing this approximation into E¢4.6) we obtain a  the divergent part irg (which will allow us to compute the
rapidly converging seriefwith a general term 1), ,].  infinite sum). Therefore, we can write

We can then extend the summation to infinity, which gives

r

4p2\9 [vtp?  pt\d
+ oo . —_— | = | — (417)
1 p?rt+ipt)d 8x> ( r r)’
71 _ = R
101001,(0= 2, .
) 1 iv 1 iv () 418
i —n=———————=——+0(v), .
:ex;{_w . (413 4Iu2 4p (1—|Vp) 4p
i=q 1
Now we just have to sum the termgllﬂpeprpa). By us- E (2i —1)2=§q(4q2—1). (4.19
ing the canonical transformatior&$ 0) =0
, )\ 12 , , Approximation(4.18 breaks down whep is of order equal
S(e, )= >, e " *2'””¢=(—) > e (mlom=9) or larger tharw™ 2, but in this case we obtain a term of order
meZ €/ neZ v? which is negligible. Hence we obtain
(4.19
; 2\ q 3
with e=wt/r and 2m¢=—t/r + 6, we finally obtain an ap- qiT, = M) _|,,i+|,, q +0o(v)
proximation of Eq.(3.24), e r 12p 3

(4.20

P.(r,0,t)~G(r,t)®(r,0,t), v»—0, (4.15 o
To complete the estimation df,(x), we make use of the

where the asymmetric part of the right-hand term of Eg.dentities
(4.19 is the theta function27],

e q te q

ar\12 7 , , > qx—|=xex, > q3x—|=(x3+3x2+x)ex,
Po:e(r,e,t): _) z e—(ﬂ' r/vt)(p—(1/2m)[ 60— (t/r)]) ) gq=0 g q=0 q:

2vt)] s

(4.1  to obtain

The function© is a solution of the one-dimensional heat expx) —ipt—vtp?
equation on the circle. In the present context, it describes the I, (X)= —e p{ )
development of a spiral structure we will c&8lltriggered by ° V2mX
the interaction of the vortices. We note that the spiral stretch- 2 i3
ing (dispersion of the angular part of the probability distri- x[1+ v|——ip ——p?s—=|+0o( y)]_
bution) increases aswhile the diffusion goes as’? so that ar T 3r
the development of the spiral structure is faster than the ra- (4.2
dial diffusion.

A noteworthy point in the asymptotic estimatiqieq. ~ We just have to insert Eq4.21) into the general expression
(4.16)] is that we still obtain a probability distribution. In- Eg. (3.24) to obtainP,. Collecting all the terms, we finally
deed, an easy computation allows to verify E4.4), and obtain
positivity is obvious. This calculation is interesting because
of the role played by the large order Bessel functiops+(  Po(r,0,t)+ vP4(r,6,t)

+): they determine the “nonzero viscosity” properties of 5 +oo
the solution. They allow a quantification of the thickening of _ o —p2utir o _
the spiralS at small times. The other Bessel functions give Or.6.1) 2Vr2pzl pe sin(pLo=t/r])

geometrical properties of the solution, the=0" limit [see .
Eq. (4.24]. 2 pPutir _
In the same way as thedependence of the functidh is * 3r pe P " codp[ t/r])}. (4.22
associated with the spiral thickness where the distribution is
concentrated, the order correctionsP,(v) do not modify  Note that the correction does not diverge in the lithit—
the geometrical properties of the distributiéspiral struc-  +9° because of the exponentials in su@2. It is straight-
ture), and thev dependence remains related to the effect offorward to see that the mean of the correction is zero, as
thickening. stated in Eq(4.5). It is also interesting to see that the cor-
This can be verified by computing the order one correc+ection P, is still localized on the spirab. Indeed, in the
tion P; (n=1). In Eq.(4.6), the terms of higher order are limit v—0, the correction becomes a sum of derivatives of
(i) the first order term in (4%/8x)%q!, and (i) the delta functions(S):
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2t? 2t3 1
P.(r,0,t)= 3 o' (6—tlr)+ 3?5”(6—t/r). (4.23

Therefore, we have obtained the first terms of a polynomial
development in powers af of a multipolar nature. The co-
efficients of this development are functions of space and time 0.6
whose support is geometrically concentrated on the spiral, in
the limit of time scales small compared with the viscous
time. The spreading of the probability in the angular direc- 0.4
tion has a characteristic scale-t of the ballistic type. The
spreading process is then dominated by kinematic effects,

related to the deterministic rotation of the vortex pair. 0.2
As mentioned abovéSec. Il B) Lundgren[8] analyzed
an equation similar to Eq3.10 in his study of stretched 0
vortex spirals. He found an intermediate asymptotic regime, 0.1 0.2 0.3 0.4 0.5
between the “ballistic” and the “viscous” regimes, charac- 2vt

terized by a time scale, ~1/v*® (or I'r /r3~(T'/v)*? in . . N
dimensional variablgs This intermediate regime appears for F_IG. 1. Evolution of the distance between the two probability
times in the range & vt <~ 18 (in a first approximation ~ maximar(t).
The main consequence of the existence of this regime is that . . "
the harmonics of the angular probability distribution decayéf.hat thFe d|stan|<|:(? betweenhthe vortices goes to zerdimita
faster than the radial distributiofthe axisymmetric part of Ime. -or small imes we have
::hoigrsocfllglhty distribution diffuse with a characteristic vis- rp~1—wt/2, (4.26

the almost constant distance behavior expected for small vis-

B. Description of the merging process cosity. For times approachirtg= 1/4v the distance collapses

In the limit v=07, Eq.(4.16) gives the angular probabil- following the power law

ity distribution rpmfz(l_@t)m, (4.27
O(r,0,1)=46(6—t/r), (4.24 which satisfies the scaling~ \t common to the determinis-

tic and diffusive regimes. We see that K4.25 satisfies the

which corresponds to a concentration of the probability on geqyirement stated above, that the solution must match the
spiral(in the original unit$ S: 6— 6(r) =T't/2zror, centered  yeterministic scaling with the viscous one.

atr=0 and spreading in time. The emergence of this spiral |, order to obtain a representation of the dynamics of the
structure(decreasing as fl) is the result of a selection by the gystem, we combine the results on the behavior of the axi-
viscosity [selection off(x) =1/x] coupled with the rotation symmetric part of the probability distribution with the angu-
effect (I'#0). Therefore, the viscosity is not only important g part. The two asymptotic regimes, whetgare given by

for its effect on diffusion and topology change, but also ingqs (4.2 and(4.27), respectively correspond to two spiral

selecting a particular.spirall structure. The particular form offymg (following the maximum of the distance probability
f, at least for small viscosity, may be related to the consergistribution):

vation of the angular velocity ,=r §=T"/2zr,. Expression

(4.16 adds a “Gaussian thickness” to the spiral structure. _ 1 4.9
Of course, if we set=0 for the radial and nonradial parts of r= 0’ (4.28
P,, we obtain the expected limit: the evolution of the dis- 1+ 2

tance between two point vortic¢gg. (4.2)].
In addition the probability distribution on the spiral struc- which is valid forr~1: and
ture follows the lawG(r,t) and has a sharp maximum at
rp(t), the solution of the implicit equatiofreturning to di- r~2v0—(2v0)%+1, (4.29
mensionless quantitigs
which is valid forr~0. These expressions show clearly the

M structure of the vortex spiral trajectories-r () as a func-
|1(2—Vt) tion of the Reynolds number i/
rp=———<=L (4.25 Let us discuss a specific case. The actual distribution is
|O(r_p) obtained from the product of the spi@hnd the radial struc-
2vt ture. The thickness of the radial probability maximum is

given by (vt)*2, and is narrow in the limit of small viscosity.
For t=0, r, is equal to 1 and decreases to zero as timeéDepending on the position of this peak on the spiral, differ-
grows. In Fig. 1 we plot ,=r,(t). The important point is ent behaviors may be obtained, as can be seen by a detailed
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Time = 1 After this transitory periodr, quickly decreases and at
t=12.5,r,~0.09: the spiral is tightly bounded aroungl[as

can also be seen from formu(d.29], and becomes similar

to circles. At this time the angular isotropy is fully devel-
oped,O is almost uniform in the region where the probabil-
ity is concentrated, showing the disappearance of the spiral
arms, and the merging is ending. Finally,~0, and the
further evolution is purely diffusive.

One may distinguish two different regimes of the merging
process. One is dominated by rotation, and the other is domi-
nated by viscosity. The distinction between these two re-
gimes depends on the values of the Reynolds number 1/
[also see Eq(4.28)]. Let us compute the spiral steyr for
short times. Using(t) ~t/r(t) andr(t)~1—»t/2, one ob-
tainsAr~7rv/(1+ 7v). Therefore, whenn— oo the spiral is
initially very close to a circléthe deterministic motion and
the probability distribution will concentrate in a ring. In the
opposite limit v—0, the spiral step tends to 1, the initial
distance between the vortices, and the probability will
quickly concentrate on the center: the two vortices merge
before completing a rotation.

An intuitive visualization of the merging process is pro-

vided by the evolution of the probability distribution. Instead
-2 Timeg 12.5 2 of using an exact formula, this distribution can be computed
> by numerically integrating the Langevin equation for a large
number of independent particles, initially placed at a distance
r(0)=ry=1. Plotting the histogram of their positions at dif-
ferent times, one obtains a representation of the mean vortic-
ity distribution. Figure 3 illustrates the two regimes of the
merging process, in Fig.(& we show the two vortex merg-
ing with the parameters used in Fig. 2. We see that before
merging the two vortices form a ring structueot perfectly
| circulan which progressively shrinks into the center. In Fig.
_D | 3(b) we show the limit of small Reynolds numbewe take
-2 0 2 1/v=8), when there is no formation of the ring before the
. ) » . vortex merge. In this case the vortices collide following an

FIG. 2. Representation of the maximum probability position asyney spiral trajectory. Another interesting effect observable
the intersection of the spirs and the circle of radius,. The 1o cases is the differential rotation of the vortex distri-
233:'33;;;":@ dlzirié/; Z?’eg?hetsin?erftr_ :10 g%' g';% 2262' O?; bution. Indeed, the central parts of the vortices have different

o P 7" orientations than their periphery, showing that the spiral tra-
solid circle:r=ry=1; dotted line:6= 6. ) . 2 .

jectory is not followed at constant velocity; when the vorti-

study of the spiral structure. In Fig. 2 the spi&dk plotted at ces approach each other, they accelerate.

three different times. We choose the Reynolds number Re The asymptotic reginjlelsdiscovgrlcfzd by Lundg[Shis rel-
~1/»=50 in such a way as to observe the merging of twoevantin the time range™ ““<t<»~ < The nonaxisymmet-

vortices during a valid approximation time. At the beginning, ric structure of the distance between vortices probability den-

t=1, the distance distribution is closely concentrated aroun ':]Y dec:iljyst.m a time mucg shortelrt hthtz;n :che wicousftltrr?e.
(10581 the o vorices ave mualy roted by [ /IO = 1 esorience i e omaten of e
6,~ /3 but their distance is practically the initial ofieee 9 Y PP P

; : diffusion dominated regime. For i# 50 the time interval is
formula (4.28)]. The vortices are still clearly separated. The . T .
coupling effects between rotation and diffusion are still neg- € (3'7’7); thj@ax'm‘im radial diffusion can be estlTated
ligible. Therefore, at short times the vorticity distribution 8 _ Ar=2yvt~»="~0.7,  while  for ~ 1b=8,

corresponds to two well separated Lamb vortices subject the (2:2.8), it becomedr~1.2—larger than the initial vor-
rotation '+ 0). tex distance. These values are consistent with the simulations

At time t=10, r ,~0.59 andd,~4/3. The distance dis- in Fig. 3, and agree with the prediction of a faster decay of

tribution is essentially concentrated on the spiral with radiafl® Nonaxisymmetric harmonics.
valuesr e[r,—(vt) Y2+ (v1)¥?], that is to say angular
valuesfe[27+1.6m,107+ 1.57]: this corresponds to the
development and stretching of vortex arms, which wind
around the other vortex. Here each arm winds the other vor- First we show that solutio3.24) is defined in the sense
tex on several rotations. that this is a normallyfand therefore simpjyconvergent se-

V. PROBABILISTIC NATURE OF THE EXACT
SOLUTION
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t=1.2 t=5.0

t=0.63 t=1.26

-1 -05 0 05 1 -1 05 0 05 1

(b)
FIG. 3. Histogram of the vortex positions computed from the Langevin equations of the two point vortex system. Levels grow from black

to white and from white to gray@ N=100 000 pairs of vortices @t=1.2, 5, 10, and 13 for 2= 50. (b) N=200 000 pairs of vortices at
t=0.63, 1.26, 1.88, and 3.14 fori% 8.

+ oo
ries. Then we verify that this is effectively a probability dis- o R o
tribution. lo| 51 +29‘ipzl Luol 5501 €77 =10l 57
Concerning the convergence, it is sufficient to show that o
+ —~ ~ r
when p? @, |wpl 'p, and therefore}lﬂp(x)| Io(x) for 2> » (_) ' 5.1
any positivex. By noting that p=1 | Hel 20t
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the normal convergence is a direct consequence of the comvith the propertiesi) p~|u,|<p and (i) argu, which are
vergence of the positive series bounded and converge to 0. They imply that cosfgjigcon-

verges to 1, and fop large enough,
+ oo

Io(x)+2pgllp(x)=ex;Xx) for x>0. (5.2 | wolcogargu ) — 1+1n| w1

~p[Inp—1]cogarguy)>pinp/2 (5.7
The conservation of the total probability with the time comes

from (see formula 6.633 in Ref27)) and
tw [2m |F(Mp)| ~ \/Zell’vp‘cos(argup)[_1+|n|/upu_|Mp‘5in(argup)arg/’«p
f f P(r,0,t)rdrde p— -+
r=0J6=0
>gPInp/2 (5.9
=92 i d 1 —(r*+1)/4n i .
—em) A A o| 5% It follows that lim, ...|T'(u,)|=+%=, and for p large
enough,
=1, 5.3
(5.3 1 x\ke
. : I, (X) ~ = |<|x*p|
because the nonzero Fourier modest(Q) vanish after the Mp Ip|— 4o I'(up)\ 2
angular integration. Note that the Fokker-Planck equation
(3.9 implies the conservation of the measuf®(r,t)dr =exp(|,up|cos(arg,up)|n|,up|)sxp’2. (5.9

with time. The integral we computed in E¢(.3) is just a

verification of this property. Its numerical value, 1, agreesBY applying the series functions proposition stated above to

with the initial condition which trivially satisfieg P(r,0)dr ~ relations (5.9, we can conclude thaﬁgflllﬂp(X)l con-
=1. verges. This result implies th&tis positive at large times. It
Now, to complete, we check th& is positive every- follows that Eq.(3.24) is a probability distribution.
where. By constructiorR is real. Moreover i is positive at One may also note that the asymptotic regirhe: (+ )
a strictly positive timet;, then it is positive at any time,. is purely diffusive(diffusion of the radial distance between
Indeed, the same similarity ratid(2»t) appears in all the the two vorticey because
Fourier components of solutio3.24), and therefore L
vy [T
noon P(r,6,t) e |0(2vt)’ (5.10
V(t,>0), V(r,>0), 3(r1>0).m—m. (5.9

which corresponds to the solution of a diffusion equation

with initially, the probability concentrated in a ring of

Now, by using that ,(0)=0 for any nonzero subscript, in ;
radius 1.

the limit t— + (for a fixed positiorr) we find that the only

dominant mode is the zero one, which is strictly positive
[15(0)=1]. To proceed to a rigorous derivation of this last VI. CONCLUSION
point, we use a general property of series functions which

states that, given two positive function sefiég(x)]n., and dynamics of a finite humber of point vortices in a viscous

[9n(X)]nei (I countable, medium. Point vortices are well-studied solutions of Euler

(!.) V‘;ne II’ l'fmx—'o fn(x) =0, white noise perturbations into a point vortex Euler velocity
(i) Vnel, ”(X);Og”(x)' field with a variance proportional to the viscosity itself. We

In this paper, we have investigated some aspects of the

equations. Viscosity is introduced by inserting independent

have shown that the dynamics is a solution, in stochastic
then lim_o =,f,(X)=0=lim, .o =, f,(x)=0. means, of the Navier-Stokes equations. It can be character-

To show that Eq(3.24 is positive in this limit, we just ized by computing the probability distribution of their posi-

have to verify that> I, ()| goes to zero whex—0. tions, which satisfy a Fokker-Planck equation.
p=1l"kp In order to study the impact of the viscosity on the dy-
We have the relation y p y y

1 (x| trivial case, which allowed us to describe the nondiffusive
L, ~ (_) , (5.5 effects of the viscosity. The natural candidate was the system
Pyo F'(pp) \ 2 composed by two Lamb vortices. We analytically computed

the probability distribution function solution of the Fokker-

namics of point vortices, we focused on the simplest non-

whereI is the gamma function. Let us now combine the Planck equation in the special case where the two vortices

Stirling formula have the same circulation. We verified that it is effectively a
positive probability distribution.

I'(a) ~ \2mexd—a+(a—1/2)Ina] (5.6 This allowed us to show and describe in detail the merg-

]+ ing process of the two Lamb vortices. This merging is a
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nondiffusive viscous effect, and corresponds to a modificaterestingly, on thenitial distance between the two vortices.
tion of the topology of the system. We also obtained that, inThe interplay of the two behaviors appears clearly in the
the limit vt/r3—0, the distribution of the distance between expression of the fusion timéhe time for whichr,=0)

the two vortices is concentrated on a spiral structure. Thisvhen written in terms of the dimensional variablés
characterizes the selection process, by viscosity, of a particu:(rg/g,,)_ The typical diffusion time igré/y, and one sees
lar solution among an infinity of candidates:at 0. Anim-  that the kinematic effect appears through the value of the
portant point in our asymptotic development is that it pre-nymerical constant 1/8, which gives a fusion time much
serves the probabilistic character of the full solution,gmaller than the diffusive one.

allowing a consistent interpretation of the analytical results. According to the value of the Reynolds number, we found
We also showed that corrections to the main contribution, ify,q regimes of fusion of the two Lamb vortices. On the one
such a limit, are multipolar and preserve the topological Nahand, when kinematic effects are dominant, the merging pro-
ture (spiral geometry of the selected solution. In fact, the -ess evolves through two stages: in the first one, angular
sharp maximum of the distribution is located on this spiralgjfusion dominates, and a ring is formed; in the second one,
structure. After a transitory regimemerging process this  this ring shrinks toward the center, rapidly losing its asym-
maximum decreases exponentially to zero and angular isofpetric features. On the other hand, when the viscous effects
ropy follows. The asymptotic regimé-{-=) is purely diffu-  are dominant, the vortice@n the sense of the averaged vor-
sive and axisymmetric. We compared these asymptotic rejcity given by the probability distributionremain relatively
sults with the exact ones using direct numerical simulationggcalized around two peaks, which directly collide to form a
of the original Langevin equations. We verified, in particular, ynique structure. This single peaked structure evolves rap-
that the finite merging time of the two vortices, predictedig|y to an axisymmetric one: a final Gaussian vortex, which
analytically, corresponds to the one obtained in the simulags an asymptotic state independent of the initial condition and

tions. _ . _ ~ parameter values.
The complexity of the merging process manifests itself in

an exact solutiofEq. (3.24)] by the presence and the com-
bination of two time scalings: a purely diffusive one, where
lengths scale as~ \/»t; and a kinematic one, where lengths
scale ag ~TI'/ryt. At variance to the diffusive law, the kine- We acknowledge interesting discussions with P.-H. Cha-
matic relation depends on the total circulation, and more invanis, S. Le Dizs, T. Leweke, and M. Rossi.
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