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Growth rate of the linear Richtmyer-Meshkov instability when a shock is reflected
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An analytic model is presented to calculate the growth rate of the linear Richtmyer-Meshkov instability in
the shock-reflected case. The model allows us to calculate the asymptotic contact surface perturbation velocity
for any value of the incident shock intensity, arbitrary fluids compressibilities, and for any density ratio at the
interface. The growth rate comes out as the solution of a system of two coupled functional equations and is
expressed formally as an infinite series. The distinguishing feature of the procedure shown here is the high
speed of convergence of the intermediate calculations. There is excellent agreement with previous linear
simulations and experiments done in shock tubes.
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[. INTRODUCTION initial corrugation is sufficiently smaller than the corrugation
wavelength. However, in these experiments a rarefaction in-
The so-called Richtmyer-Meshkad®RM) instability [1,2]  stead of a shock wave is reflected back in the denser me-
develops when a plane shock collides with a corrugated indium. It would be desirable for similar experiments for the
terface separating two different fluids. A shock is alwaysshock-reflected case to be performed in the near future.
transmitted and another shock or a rarefaction can be re- The analytical approaches to obtaining the asymptotic
flected back in the first fluifi3—5]. In this work, we concen- growth rate up to now have been of two different kinds. On
trate only on the case in which a shock is refledek Refs. the one side, we have rigorous linear theory in the form of
[3,4] to see which initial conditions should apply in order for series expansions, e.g., in terms of inverse powers of the
a shock or a rarefaction to be reflected after the “incident_aplace variable $” as in Fraley[11], in powers of time
shock-interface” interaction Once the transmitted and re- [4], or in terms of Bessel functiori§,12]. The inherent dis-
flected fronts have been formed and have started to separadvantage in this method is that in order to obtain the growth
from the contact surface a0+, the initial corrugation of rate with two or three significant digits, the series defining
the interface will begin to grow and the shock fronts will be the velocity perturbation at the interface should contain
deformed. As they move into the fluids, they leave densitymany terms. Depending on the initial parameters of both
and vorticity perturbations behind thg@—7]. The interface  fluids and on the incident shock intensity, the number could
velocity perturbations show damped oscillations, and whetbe larger than 50. Associated with the tedious task of solving
the fronts are far enough, the contact surface will reach &undreds of linear systems of equations, there is the problem
constant perturbed asymptotic velocity, which we call theof round-off error accumulation. To avoid it and obtain
asymptotic growth rat€3—5]. enough accuracy, we should start the calculations with high-
The precise determination of the asymptotic growth rate igprecision arithmeticgabove 70 digit§4]). The reason for
a problem of fundamental importance in different fields ofsuch a huge number of coefficients is clear from the physics
research, as in shock tube flop&8] and in inertial confine-  of the problem: these expansions are describing in detail all
ment fusion(ICF) [4-7]. Particularly in ICF, the growth of the sound-wave reverberations between the fronts and the
initial corrugations induced by the passage of shock waves imterface. To keep track of the complete evolution far into
a major obstacle to the achievement of the proper conditionthe asymptotic stage, we need to follow all those reflections
for fuel ignition at the end of the target implosifh,9]. Itis  and refractions between the contact surface and the shocks.
therefore easy to see the importance of understanding thdowever, as we will see in the course of the work, in order
physical mechanisms that drive or that could even stop th& know the asymptotic perturbed velocity we can avoid such
growth of this instability[3—7,9. Quite recently, scientists a fine description by using an iterative process that will de-
working in this field have arrived at a general consensus as tmand many fewer calculations. The expansions dicussed
the role that the vorticity generated by the shocks plays in thabove could be truncated and only the first term could be
perturbation field evolutio5,7]. The linear theory predic- retained in order to get a simple formula. However, the trun-
tions (essentially series expansions in terms of some adeation is not trivial at all, and the price we pay is that the
equate functionsagree with numerical simulations, despite analytical formula so obtained will not be valid in the high
the fact that former calculations overestimated the earlier excompression limit. In fact, for stronger shocks or highly
perimental results in shock tubg®,7,8. Recently, a series compressible fluids, or for a high-density contrast at the in-
of experiments with laser irradiation of solid foils has beenterface, the transmitted shock will take longer to separate
performed[10]. In that way, the use of diaphragms to sepa-from the interface than the reflected shock ddes13. This
rate the fluids is avoided. The solids are quickly ionized andact reinforces the importance of the sound-wave reflections
can be considered as ideal gases allowing the use of simpéaldressed above. As the transmitted front “sees” the inter-
analytical models. The agreement of the experiments witliace for a longer time, we cannot escape the need to describe
the linear theory is satisfactory for the shots in which thethat interaction, and therefore we cannot truncate the series
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g%r}tfzc;e that the agreement is good for wea_k incide_nt shqcks and
_ when the fluids are not very compressible at either side of the
Poo 1 Py Py ! By, contact surface. However, there are_exceptions in_which ei-
ul v, ' u, ther theR or the VMG prescriptions give a good estimate of
- - > the growth rate, but it is impossible to knowatpriori [5].
\ ‘.471 Besides, there are situations in which the asymptotic growth
; / equals zero and we say that the instability has Heeren
. out [3,5,14. Unfortunately, the previous formulas do not
transmitted V% lront predict correctly the freezi-out sﬁuations. As studied in Ref.

[14], an accurate determination of freeze-out in the weak

FIG. 1. Perturbed interface separating two different fluids afterincident shock limit can be done on the basis of the analyti-
the interaction with an incident shock. For explanation of the sym-cal expression for the growth rate derived by Frajéy].
bols, see the text of the paper. However, the discussion is not valid at high compressions

because his analytical formula is valid in the weak shock

with just the first term. If we do so, we lose information that |imit.
is relevant to the growth-rate calculation. Then we are in a Summing up, the analytical methods discussed above
trap: we cannot avoid calculating more and more terms as Wgose different difficulties in the calculation of the growth rate
approach the high compression limit, and this is because Gbr arbitrary values of the initial fluid parameters and inci-
the approach used, which needs an exact description of whgknt shock strength. The traditional series expansions in-
happens at any time differential in order to reach theyglve a large number of coupled linear equations with the
asymptotic stage. There is one possible way of getting out oforresponding problem of handling numerical rounding er-
the trap, which will be explained in the rest of the work.  rors. Any analytical formula obtained from the truncation of

As for the other kind of approach, it has been based ofhpse expansions will be strictly valid in the weak incident
modifications of the known impulSive formula of RiChtmyer shock limit. The same th|ng happens with the heuristica”y
[1,9]. In order to comment upon it, let us consider Fig. 1. Anderived formulas based on an impulsive description. Then, it
incident shock coming from the right inside fluidb” hits s straightforward to recognize the importance of an analyti-
the interface ak=0 and the transmitted and reflected fronts cal procedure that gives us the asymptotic growth rate with-
are formed at=0+. The incident shock velocity is-u;x  out the mentioned problems.
(not shown and has left fluid ‘b” moving with velocity In fact, as has been shown in Rg6] and discussed in

—v,x. The interface acquires a velocityv;x. The transmit-  Ref. [5], the growth rate can be exactly expressed in the
ted front moves with velocity- ut§< and the reflected shock following form:

speed is+ u,x. These velocities are measured in the labora-
tory reference frame. We assume that the contact surface has dvi=
an initial corrugation of the forng, cosky, before the shock- Pait Poi Pait Poi
interface interaction. Herek=27x/\ is the perturbation
wave number and is the perturbation wavelength. We as-
sume thatyy<\ and therefore the linear theory is appli-
cable.

According to the Richtmyer(R) prescription, the
asymptotic growth ratév;” can be calculated as

— pardvd.t ppidvd Fa—puiF
PafOUya™ Pbf yb+paf a~ PbfFb 3)

Whereﬁvgm is the tangential velocity at the interface in fluid
“m” just after shock-interface interaction at&=0+. The
termsF, and F, represent the sonic interactigimportant
for t>0+) between the shock fronts and the contact surface.
They can be written as integrals of the pressure perturbations
along the shock front trajectori¢s,6] or can also be seen as
averaged measures of the vorticity field left by the corru-
=——Kiyptvi, (1)  gated fronts in the interior of the fluid§]. Equation(3) is an

Pai ™ Por exact result, valid in linear theory, and derived from first

wherep,; is the shocked density of fluidt” (“m” canbe  Principles(5,6]. . _ .

“a” or “ b") and i = (Ui —v;)/u; is the shocked value The first term on the right-hand side of E®) is due to

of the interface corrugation at=0+ . the deposition of vorticity at the interface,tat 0+. It is the
Quite recently, another heuristic approach has been pchnly important term in the limit of weak incident shocks, as

posed, also based on an impulsive md@! We call it the will be shown later. It can be calculated immediately, with-

Vandenboomgaerde-igler-Gauthie VMG) formula, and it out any knowledge of the instability evolution for-0+. It

% Paf™ Pbf
5Ui a

can be written as is noted that it is obtained without any ad hoc assumption
and without the need to resort to an impulsive formulation.
. 1 pat—pos P20~ Pbo Retaining only the first term in Ed3) is also equivalent to
v ) Paf+pbfk¢0f+ Pao+ Pbo kifo|vi, 2 neglecting the vorticity generated by the shocks inside the
fluids. It gives results similar to the impulsive prescriptions
wherep, is the preshock mass density of fluiah.” for very weak incident shocks.
The degree of agreement of Eq4) and (2) with the The second term to the right in E(B) comes into play for

linear simulations and linear theory expansions has beestronger shocks or highly compressible fluids, as well as
studied in detail in former workg3—5,9. The conclusion is when there is significant vorticity generation by the de-

056303-2



GROWTH RATE OF THE LINEAR RICHTMYER-MESHKOV . .. PHYSICAL REVIEW B3 056303

formed fronts in the bulk of the fluids. It is also important in A. Shock driven by a corrugated piston
situations in which freeze-out occurs. It describes the inter-
action of the shock fronts with the corrugated interface. We _ ) S )
see that they resume the information of the sound wave re- We .con3|der a shock wave moving o the nght in fluid
verberations discussed before, and they do that in a quiteP,” With speedU, as measured in a frame at which the left

economical way. Previous analytical formulas could not takeP/Ston surface is at rest. The shock front wascat0 at t
into account the role played by the parametégsand Fy, =0+. We do not specify the boundary conditions at the

and this fact could explain their partial failure at higher com-p'Ston for the moment. Depending on the boundary'condl-
pressions. However, as discussed in RR8F, there was not tions we choose there, we can study different situations of

an easy and straightforward method of calculating them umi\nterest[16]. The fluid ahead ?f the Sh_OCk s assu.med to be
now. The only thing that could be done was to estimate thenh®mogeneous and moves with velocityox entering the
with the linear theory expansions addressed before. Som%—hof:k' Its density ahead of the shockpig, and its value
times only a small number of terms was enough, but this facpehind the shock ig,. The sound speed of the fluid be-
depended on the combination of initial parameters and th&V

procedure was not at all easy to handle, precluding the dire%e piston and the shock front, we use the following coordi-

use of Eqg.(3). In this work, we show an exact analytical . ) iy
procedure with which to calculate the sonic interaction pa_nate transformation, suggested by Briscoe and Kqi

rametersk, and F, and hence to calculate the growth rate
dv; . The sonic parametefs,, come out as the solution of a
system of two coupled functional equations. The details of
solving this system in exact analytical terms are explained in

full detail, so that the_ inte_rested_ reader cou_ld_app_ly _thel'he piston surface has coordinate=0 and the shock coor-
method to any other situation of interest. A distinguishingyinate is defined by8, = tanh6,=U, /c,;. It is not difficult to

feature of the method developed here is the high speed Qfee that the pressure perturbations satisfy the linear wave
convergence of the iterations involved. The physical reasongquation in the space<96,< 6, [12,15:

for this will be explained during the work.

1. Boundary conditions at the shock and basic equations

een the piston and the shockdgs .
To study the perturbation field in the space delimited by

M COSh0b= kaft, (4)

I, Sinh6,=Kkx. (5)

The present work is structured as follows. In Sec. I, we 2
. . o . J . ~ Jd (1 o0 .
present the model. We subdivide it into two main subsec- rb—zépb+—5pb+rb5pb=7 ——aépb , (6
tions. In Sec. Il A, only one fluid is considered with a corru- ary o 90p \ Ty 90

gated shock moving to the right with a rippled interface at .

x=0. This case allows us to lay out the basic notation and tavhere 6p,= ppiCpsUgdp,. The velocityu, is for the mo-
clearly describe the mathematical model to be used in th&ent an arbitrary characteristic velocity of the unperturbed
next subsection. Depending on the boundary conditions imflow. It could be the sound speed of the shocked flud or
posed at the left surface, we can study different related proghe incident shock velocity. In Sec. Ill, we will usgy=u;
lems: the growth of perturbations for the case in which a(the incident shock spegth order to compare with the re-
shock hits a corrugated rigid wdll5] or even the symmetri- sults of Yanget al. [3].

cal Riemann problerfi5]. In Sec. II B, the model is applied We have found it convenient to define the following aux-
to the more complicated situation in which a shock collidesiliary function:

with the surface separating two fluids. The basic equations

are obtained and the functional equations are solved. In Sec. A

[ll, we present comparisons with recent numerical simula- 5hb:a (9_9b5pb' (7)
tions and experiments in shock tubes. A final discussion of

the results and the physics underlying the model is given ifkor any quantitydé,(6,.rp,), we define its Laplace trans-
Sec. IV. form by

Il. CONSTRUCTION OF THE MODEL ODy( 0y ,Sp) = fo eXP( —Splp) Op( Oy, rp)dry,. (8

In this section, we develop the model that allows us to
calculate the growth rate of the RM instability. We divide it According to Eq. (8) and changing to the variable,
into two main subsections. In Sec. Il A, the simpler problem=sinhg,, the former Eqs(6) and(7) can be rewritten as
of a single shock traveling in one fluid driven by a corru-
gated piston is addressed. This problem will help us to dis- d d
play the basic notation and prepare the building blocks upon @(Cosmﬁpra—%mb:O’ (€)
which to construct the frame for the RM instability problem.
In Sec. IIB, the RM problem is fully discussed and an ex- P 3
plicit analytical procedure for the growth rate evaluation is — 8Hy,+ — (coshq,dP,) =0. (10)
presented. 0y a0
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Changing to the variableg, + 6, andqg,— 6, we can easily K+ Bf
find a first integral of the above system of differential equa- Xo= Q5 (20
tions: rPr
and
SHp(6p 0yt 6p) +coshdy+ 6) SPp(Op Ao+ Op)
~Fi(ap), (11 =[P 21
b2 \dp
f Ppf

— 0Hp( 60y ,qp— Op) +costidy— Op) SPy( Oy ,dp— Op)
_F 12 The derivative in Eq(21) is evaluated along the Hugoniot
= Fo2(db), (12) curve at the final state of fluidb.” For an ideal gas with

. isentropic exponeny,,, it is
for some unknown functionk,; andF,. We see that the P ponent,

left-hand sides of the preceding equations do not depend on 1 Pbs po1 [ Yo+ 1\ 12
the coordinated,,. Thus, we can write o= Z(yb— 1)2(1+Zr)m 1- oo\ 701 | ° (22)
r
F1(0b) = SHpi(qp) + cosha, SPi(ay), (13 wherez, = (p,—p1)/p; is the shock intensity of the reflected

front. The pressure, is the pressure behind it, apd is the
Fp2(dp) = — 0Hpi(dp) + coshap oPpi(dp), (14 pressure ahead of it.
Before closing this subsection, it will be useful for future
where 6Py;(dp) = 6Pp(6,=0.0p) and SHpi(dy) =5Hp(6  discussion to note that the value 6P,(6, ,q,=0) can be
=0,qp) are the pressure perturbations at the left piston surgg|culated exactly. In fact, if we take the lingjt— 0 in Egs.

face. _ (17)—(19), we get the following result:
We can write Eqs(11)—(14) as

oH b( 0b qb+ Hb)‘f'COS['(qb"r‘ Gb) 5Pb( ﬁb qb+ 0b) 5Pb( ar !qb:O): — lim abZ(qb)
: : ap—0%b1(0p)
= 0Hy,i(dp) +coshq, 6Pyi(qp), (15 ,
1-p8
— 2500 sinhg . = Cr Pot
— 0Hp( 0y, dp— 6) +cosi gy — Op) OP( Oy, dp— 6) a 26besmh6r,3r Ky — 8% Pbf
= — 0Hy,i(qp) + coshq, 6Pyi(dp) - (16) (23

It is at this point that we can distinguish different cases. As 3. Asymptotic properties of the velocity perturbation field

far as the coordinat#, is concerned, it is arbitrary in the We write the velocity perturbations in the forrdv,
preceding two equations. We have to write boundary condi=y,su cosky for the normal velocity perturbations and
tions at the shock front and at the piston surface. From thgvy=u050 sinky for the tangential velocity perturbations.

linearized Rankine-Hugoniot conditions at the shock frontgesides, the vorticity generated by the shocks at the position
we can relateSHy, with 6Py, This will be done in the next (x y) can be written a$6,12]

paragraph. By imposing appropriate functions &i,; and

6Py, we can model different situation§,16]. Swp(X,Y) =kuggp(kx)sinky, (29
2. Boundary conditions at the shock front where the functiorg,, is given by
It can be seen after some tedious algebra that the linear- R kx
ized Rankine-Hugoniot conditions can be put in the form gb(kx)=Qb5pb<0,,rb=W), (25
[1,6,12 r
with
OHp( 0y ,0p) = apa(dp) SPu( 0 ,dp) + apa(dp),  (17)
1 2\
where Qp=— ﬁ( — %) U—O. (26)
r r r
2
1 (G) = — X Sinha, — Eﬁ K= Br Pof 1 That is, the vorticity at the positionx(y) is the vorticity
b1{Gp) = = Xp SIMNGp™ 5 7 1— B2 pou Sinhqy’ generated by the rippled shock front at the instant of time

(18  to(X)=x/U, when it arrived at that point.
It is not difficult to see thatbu and Sv satisfy the inho-

o Sinho, mogeneous wave equations:
h2(0p) =~ 5besinhqb’ 19 92 92
ou— Su+ du=gp(kx), (27)
with 3(keprt)2 (k)2 gn(kx)
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52 52 (6?—1)8U— g du(x=0)—u’ (x=0)

=—Qpsinh6,6Py( 6, ,sp=0csinhg,). (31

d
d(kepit)? ov = a(kx)2 v+ dv ==~ gp(kX). (28)

In the asymptotic limit (— o) when the partial time deriva- For simplicity, from now on we will write SP,(6,,Sp)
tives vanish, the last two equations can be written = 6P,(sp). The quantitysu(x=0) is the asymptotic normal
velocity at the piston surface and we callit;” . The quan-

d? tity su’(x=0) is equal to minus the asymptotic tangential
d(kx)zéu—5u— ~o(kx), 29 velocity at the piston:— 5v;°b (because of the asymptotic
incompressibility of the perturbation velocity figld
g2 d If we do a similar manipulation in Eq30), we can recast
——6v—56v=——0p(kx). (30 the preceding two equations in the form
d(kx)2 degb( ) p g q

Let us concentrate on E¢R9). If we multiply both members — s5j( ) = o 6vi — 8vyp— 2y SINh6; 5Py (S, = o sinh ;) ,
by exp(—okx) and integrate between=kx<<w, we are o?-1
Laplace-transforming that equation and we obtain (32

08V ,— 8v; + Qo sinh 6, 5P (s, = o sinh6,) — Oy sinh 6, 5p,(0+)

V(o) =T (33
|
whereéf)r(0+) is the value of the shock pressure perturba- apo(Qp) + apa(qp+26,)
tion att=0+. In the cases of interest in this work, its value N1 (0p) = coshqp— apy(qp) (36)
is 0[1,3,4,6.
Once the shock has traveled a distance that is large com- ap1(gp+26,) +coshq,+26,)
pared with the corrugation wavelength, the pressure pertur- Ap2(dp) = 37

bations will become negligible. We therefore require vanish- CoSNGl, ~ o (Go)

ing of the velocity perturbations at—<. We thus deduce The functional equation displayed in E@5) can be rewrit-
from either of the preceding two equations ten in operator form afl7,1§

v~ Suy= 0y sinh6, 5P (s,=sinhd,).  (34) 8P (Ap) =Np1(db) + Np2(0p) €2 P06P (qp),  (38)

) . whereDy=d/dq,. The exponential factor in the preceding
We see that the tangential and normal velocities at the lefqyation should be understood as a translation operator act-

boundary are not independent, but are related through th@q on the function to its right, shifting its argument in the
time history of the pressure perturbations at the shock frong,qunt 2, [17,18.

sincet=0+ up tot=c0. That is, their difference is a func- A formal solution is obtained at once,
tion of the compressibility of the fluid and of the shock
strength. If we want to know about any one of them, we must P (Ay)=[1— Np2(0p) €2 P6] "IN p1(qp)- (39

get the value obP, and evaluate it af,= 6, . _

We study two different cases, one in which the normalAfter a Taylor expansion, we get
velocity is zero at the piston surface at all timagigid wall)
and another case in which we cause the pressure perturba- _ .
tions to vanish at the pistaisymmetrical Riemann problem 5Pf_)‘b1(q'3)+j§1 Moa(Qo+ 2] af)lﬂo Mo2(Gpt216;).

(40)

0 j—1

4. Shock reflection from a corrugated rigid wall
It is easy to prove that the above function satisfies the pre-
ceding functional equation. Evaluating?, at q,=46,, we
get the asymptotic tangential velocity at the piston surface
using Eq.(34), because the normal velocity is zero there.
However, before doing that, we note that a faster evaluation
of §P, can be done solving E@35) by iteration with a good
8P (db) = Ap1(dp) + Ap2(ap) OP(Ap+26,), (35 choice for the starting function.

We consider Eq(35) in the limit q,> 6, . We get in this

with way an approximate solution, which we cal!’! . This ap-

If we imposedH,;=0, we can model the reflection of an
incident shock from a sinusoidally corrugated rigid wall at
x=0 [15].

After some algebra, we get
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proximate function is obtained by neglecting,2compared 0
to qp, inside the argument 0P, in Eq. (35). However, we

do not neglect it inside the arguments of the functiags,

as this improves the overall convergence. The approximate 0.2
function with which we start the iteration is '

IIIIIIIlIIIIlIIII TT‘\TTT

Ll

IIII|IIII|IIII|IIII|HH“HT

Ap1(p)
ol =—— > 41
" T NpalGy) “ 04
We can easily check that this function has the correct value =4 |~~~ linear theor
atq,=0. In fact, we take the limig,— 0 in the above func- 0.6 y

tion and verify thatoP!% (q,=0)= 6P,(q,=0) as given in

o b b b b |

EQ(23) klllllllllllIII|IIII|IIIIlllllllll
Once we have the initial trial function, we build the itera- 0 1 2 3
tion sequence: q,
SPIM(Gp) = Np1(Gp) + Ap2(ap) P H(gp+26,). FIG. 2. Laplace transform of the shock front pressure perturba-
(42) tions for reflection at a rigid wall. For details, see the text of the
. paper.
Therefore, we can write
n -1 either for the single shock moving into only one fluid or for
SP=Np1+ im | > [ Apa(ap+2j6,) [T Npalap+21 m} the more complicated case of two shocks moving in different
n—eo\j=1 =0 fluids (the RM instability problem

n In Fig. 2, we show the results for a plane shock that has
+TT +216.)8P (g +2n6.) | 43 been reflected at a S|r_1u50|dally rippled wall. The_ gas is air
|1:[o 02(Go ) OP (A ) “3 (va=1.4) and the incident shock Mach number is 10. The
_ _ _ . _ dotted line is the starting functiodP!”! and the solid line is
Equation(43) is a solution of the functional equation, be- the linear theory prediction, which agrees with the second
cause the last term tends to zero for any valugpfn the jterated functionsP!?!. The normalizing speed here ig

limit n—co. _ _ ___=u;. For the tangential velocity at the piston, we gt}
The advantage of using the sequence of iterated functions 0.451%yu;, calculated either from Eq(34) (using n

[0] [n] i i . h . :
6Pr, ...,0P™, ... is the high speed of convergence that_ 5 i the iteration sequenger from the linear theory ex-
can be obtained. There are physical reasons for this. In fac&ansions{lZ].
c

as we have shown before and because of the way in whi
we constructed the starting functiofP[®! satisfies the func-
tional equation in the limig,> 6, and also has the correct ) ) N
value atg,=0. But, these limits correspond to the limig Let us consider now a different bpundary cpnqmon at the
=» ands,=0 in the Laplace variable. We know from the left surface. We requwéPbi:O, that is, the vanishing of the
theory of the Laplace transformation that these limits arg’ressure perturbations themselves rather than the pressure
equivalent to the limits—0+ andt—o. Let us say it in gradient atx=0. It is clear that the normal velocity will
other words: the starting function we are using conveys exad€ach a final asymptotic value in this case. However, the
physical information of the shock front pressure perturba®iston tangential velocity perturbation will always stay at its
tions both at early and large times. The iteration proces#Nitial value dv,= dvy,. This idealized situation could cor-
actually smoothes the difference between the successive itespond, as discussed in R¢g], to the collision of two
eration functions and the true solution to the functional equaidentical foils with an initial corrugation at the surface of
tion in such a way as to properly satisfy the boundary concontact and represents another case of the perturbed sym-
ditions at the shock and at the piston surface. Taking thes@etrical Riemann problem in gas dynami&s. The only

facts into account, it is natural to foresee that the iteratiormathematical difference in this case is the difference in the
process should be quite fast. To accelerate convergence, theundary condition on the piston surface. After some alge-
nature of the functional equation itself is helpful. Indeed, thebra, it can be seen that the functiong, , should be changed
essence of solving the functional equation is to evaluate thBy

iterated sequence of approximate functions at successively

shifted values of their argumentterms like 3 6, , for in- B

stancg. If we pay attention to the fact that the initial trial Np1(Gp) = abZ(qb)+ab2(qb+20r), (44)
function and the chain of iterated functions behave as decay- cosha,— a1 (dp)

ing exponentials at large values of their arguments, we see

that the corresponding correction terms will be smaller and

smaller as we go deeper in the iteration chain. This peculiar- Apa(Qp) = —
ity will be confirmed later on when we discuss the results, coshg,— ap1(dp)

5. Perturbed symmetrical Riemann problem

ap1(dp+26,)+coshq,+26,)

(45)
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1 ﬂtz) Vi
ey o
and
1/d
w5 - (49
Cat P Paf

and the last derivative is taken along the Hugoniot adiabat.
The expression of the parametey for an ideal gas with

isentropic exponeny, is
+1\1?
Ya ” . (50

Ya—1

1 Paf
= 2 (ya- DH1+z)2
4(73 t paO

Kt

1— 2
Paf

Pao (

The quantityz,= (p>— pg)/ Py is the transmitted shock inten-

tions for the perturbed symmetrical Riemann problem. For detailsSIty: With p, the pressure behind the transmitted front pgd

see the text of the paper.

The procedure to construct the functional equation and th
iteration sequence of approximate solutions is the same as
discussed before. We do not repeat those calculations agai

Instead, in Fig. 3 we consider a shock moving into a gas wit

vp=1.1 and the fluid entering the shock moves with a veloc

ity vo= —100b1§<, wherec,; is the sound speed of the fluid

in front of the shock. We show the approximate function
5P with dotted lines. The solid line corresponds to the
linear theory prediction, which coincides with the iterated

function SPI* . The asymptotic growth rate derived from Eq.
(34 (with n=4 in the iteration sequengeis &v;
=0.45K v, Which agrees with the linear theory predic-
tion.

Another boundary condition could be imposed on the pis
ton surface ak=0. For example, we could have an expo-

nentially time-varying pressure perturbation, as discussed
Velikovich et al. [16]. Also, we could consider the leakage

f he left pi [ a rippl hock dri
of mass at the left piston to model a rippled shock driven biﬁo not apply for shocks of finite intensity and the sonic pa-

ablation[16,19,2Q. However, this task exceeds the scope o
the present paper and will not be considered here.

B. Richtmyer-Meshkov (RM) instability problem

1. Formulation of the functional equations

the pressure ahead of it.

It is adequate to briefly discuss here the limit of very
\éveak incident shocks. It can be seen after some straightfor-
Vard algebra that in the weak shock limit, the quantifies
nd (), are of second order in the corresponding shock in-
ensities ¢, and z,, respectively. This explains why the
ulk vorticity is not significant for the growth rate calcula-
tion in this limit. Let us consider the parametey: the quan-
tity sinh 6, scales like 12> for very small values of,. The
guantity (), scales Iikeztz, as can easily be seen from Eq.
(48), and the quantityP,(q,= — 6;) scales likez>?, always
for very weak incident shocks. It is clear that by taking all
these scalings into account in the definitionFQf[Eq. (47)],
we get a dependence of the foffig~ zf‘. Similar reasonings
hold for the symmetrical paramet&, on the other side of
the contact surfacet,~z>. Therefore, for very weak inci-

dent shocks, the sonic parameters can be safely neglected
When compared to the initial shear velocities at the interface
(dvy, and dv)y), as these tangential velocities are of first
rder in the shock intensity. Obviously, these considerations

rameters could not be neglected in the general case.

We can take Eq946) and (47) as the formal definitions
of the sonic parametefs,,. We thus see that the normal and
tangential velocities at both sides of the interface are related
to each other through the compressible evolution of the
shock front pressure perturbations in the whole time interval

We refer the reader again to Fig. 1. To get the growth rat®+ <t<. And here we should note that thanks to the spe-

at x=0, we have at our disposal E(34) and its partner
equation in fluid ‘a:”

_5UTC+ 5U;cb: Fb:Qb Sinh9r5Pr(qb= ﬁr), (46)
5UTO+ 5U§,ca=|:a=—QaSInhatﬁpt(qa:—at), (47)

where 8= —tanhé,=(u—v;)/cy;; and c,s is the final sound

cific form of the parameter§,,, we are able to conserve
thought and effort. Actually, the sonic parameters as defined
above are just integrals of the time-oscillating shock front
pressure perturbations. Due to this simple fact, we will dis-
pense with describing the exact details of these oscillations
in the real physical space. The price we pay for that simpli-
fication is that we must work within the parameters of the
abstract quantities), and q,, thus losing, perhaps, some
intuition in the process. However, it is important to realize
that in order to arrive at the asymptotic growth rate, we ac-

speed of fluid ‘a.” (Remember that the transmitted shock tyally need less detailed information than the former studies

coordinate ¢, is negative because the positi&edirection
points inside fluid ‘b.” ) Besides,

using series expansions might have indicated. Of course, that
information still exists inside the integralee are not delet-
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ing it from the problem but we will find the way to do those wheredH ;= 6H,(6,=0) andSP4 = 5P,(6,=0). Further-
integrals without the explicit calculation of the real shock more, the continuity of pressure and normal acceleration at
pressure perturbations in the time domain. We just need tthe contact surface are written as
take a smooth average of these pressure perturbations in the _
space defined by the variableg and q,. The associated OHai(da) = OHpi(C), (57
fgnctions ©P, and 6P,) in these abstrgct spaces do not os- PatOP4i(0a) = PoiSPpi(ap), (58)
cillate. At most, they decay exponentially at large values of
the corresponding variables. As we will see later on, thes#here c,¢sinhg,=cyssinhg,. Besides, the linearized
facts together with a good choice of the iteration scheme wilRankine-Hugoniot condition at the transmitted front reads
lead us to a quite fast calculation technique. _

Before solving for the functiongP, and SP,, we note OHa(t,0a) = @1(Ga) OPa( 61, Ga) + @a2(0a). - (59
that we need an additional equation, since we still have threehere
unknown velocities(namely, év;", dvy,, and dvy). This )
additional equation comes from the integration in time of the _ - E ﬁ K~ Bi Paf 1

; ; @41(0p) = Xa SinhQg, + : , (60)

tangential momentum conservation at the contact surface, re- 2 ki 1— B2 pao SiNNd,
quiring pressure continuity during the whole instability evo-

lution [6,12), sinhé
@a(0a) = = S0y (61
fw 9 . J Ga
paf—évyadtzf pbf—b‘vybdt. (51) Where
o+ ot o+ ot ) Kt+:8t2
We get X" 20
w 0. - 0 Combining Egs.(15), (16), (17), (53), (54), and (59), we
Pat(8Vya= 00 ya) = ppi( S0y = Suyp). 52 arrive at the following system of four coupled functional
equations:
Combining Eqs(46), (47), and(52), we finally arrive at Eq. g
3, coshgp+ 6,) 77r+(qb+ 0;) 6P (dp+ 0,) + apa(dp+ ;)
5vm:_Paf5U§)a+be5USb+ patFa—ppiFp = OHpi(p) +COSNA OPi( ), (62)
I Pait Pt Partppr cosiigy,— 6,) 7, (dp— 6,) 0P (Qp— 6;) + aa2(dp— 6;)
We still need the quantitiessP,(q,=6,) and 6P(q,= = 0Hpi(dp) —cosha,6Pyi(dp), (63

— 6;). The next task will be to formulate the corresponding N
coupled functional equations for the pressure perturbations C0SMda® 60) 7t (Gat 61) OP(Qat 60) + aaa(dat 60)
OP(Gp) and oP(da). = 6Hai(Ga) +COSNAL5P4i(da), (64)
For fluid “a,” the same reasonings as in the preceding
subsection apply. That is, we will arrive at a system of equa-  cosiq,— ;) 7; (Qa— 6;) SP(a— 6;) + @ao(qa— 6y)
tions similar to Egs(11) and (12):
= 6H,i(da) —coshg,6P4i(qa), (65)

OHa(0a,Gat )+ COSHAat ) OPa( bz Ga't fa) where 77 =[apy(dp)/coshg]=1 and ;" =[ @ay(a)/

=Fa1(da), (53  coshop]*+1. _ o
From the preceding equations it can be seen &fa(q,
— SH (0, ,Ga— 02) + COSHTa— 0) SP( O, a 62) —Q)— —I|mqbﬁo[ab2/ab1] and similarly 6P,(q,=0)=
- I|mqa4,0[aa2/aal].
=Fa2(0a), (54) The task of solving Eqs(62)—(65) is by far more com-
] _ plicated than that of solving the equivalent functional equa-
where the function ,; andF,, have to be determined. tjon for only one shock, as we did in E(B5). The difficulty

As the right-hand sides of the preceding equations ar@es in the fact thatd, and ¢, appear both adding and sub-
independent ob,, we can evaluate the preceding equationsracting inside the unknown pressure functions. If we, for
at ,=0 (the contact surfageand write a system similar to example, make the transformatiog— q,+ 6, in Eq. (63),
Eqgs.(15) and(16): the variableg, should be changed accordingly to the corre-

sponding new value given by
OHa(0a,0at 0a) + COSHOa+ 05) 6Pa(6a,0at 0a)

. Caf .
= 6H,i(ga) +coshg,0P4i(da), (55 afCSInf(C—MS|nr(qb+ 0,) ],
— SH,(0,,0a— 04) +COSHUa— 0,) SP4( 04 ,0a— 62) which evidently complicates the desired iteration sequence.
A similar difficulty arises if we make the transformatiogp
= —6H,;(q,) +coshg,5P,i(q,), (56)  —q,— 6; in Eq. (64). The solution consists in rewriting the
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former system in a more tractable form, reminiscent of Eq. SHpi(0p=0)= 8H,i(g,=0)=— 6v7, (74)
(35). The best option that we have found is to express the
Rankine-Hugoniot conditions at the shocks and the boundary
conditions at the contact surface, in terms of the previously
defined functiond=,,; andF . = paiOP L (Q=0)

In fact, going back to Eqg11), (12), and/or Eqs(53) and PafoFailla '
(54), we can see that the pressure perturbations in fluid
can be written as

PbtOPbi(Up=0)= pyi( S0, 0 I) = pat(Suya— vy,
(75

After some algebra, we arrive at the desired relationships:

Fmi(dm= 0m) + Fm2(dp+ On) Fa= 1+—4(u‘_v‘)(1——'8‘2)_1 _1[500 —2F(—26,)]
SP( Oy, G) =~ L T (66) v, P va~ 2Fa(=2600],
coshg, 7
5Hm(0m1qm):Fbl(Qm_ gm)_FmZ(Qm'l' 9m)- (67) 4(Ui+Ur) r2 -1 o
b= |1 —— |17 [6vyh—2Fp2(26;)].
The linearized Rankine-Hugoniot conditions at the shocks T r 7

can be recast in the form
Thus, to get the growth rate, we have to solve FQr (0,
Fa2(da) =-26,) and F,(q,=26,) and substitute them into Egs.
0 _. i _ (76) and(77) and go to Eq(3). We show how to solve the
_ O0yaSINNG—sini(da— ) 7 (da— 6)Fa1(da—260)  functional equations in the following subsection.

sinh(ga— 6)) ;" (Ga— 6,) '

2. Solution of the functional equations

68
(68 By looking at Egs(72) and(73), we realize that the sys-
tem can be rewritten in matrix form. Actually, let us define
Fb1(dp)
, : —2(A—1)/(A+1)? 4A/(A+1)?
vy, sinh g, —sinh(ap+ 6,) 7, (dp+ 6;) Fpa(ap+26;) R= ( M ) ( ) ,
= - - , 4A/(A+1)2 2A(A—1)/(A+1)2
Sln“qb—'— or)ﬂr (qb+0r) (78)
(69)
(ﬁaze*ZHtDa 0
and the boundary conditions at the interface can be written as =R 0 b2 Ps )" (79
2F po(dp) —(A—1)F,1(0a) Therefore, Eqs(72) and(73) can be set in the form
FaZ(Qa) = A + 1 ’ (70)
F=R®d,+TF, (80

2A A—
Fos(ap) = a9 B D) 7 whereF= (Fau(da) Foal@), Po=(dr, ).

The matrixT must be understood as an operator acting on
the vectorF. Let us define€E,=R®,. Then, Eq.(80) can be

whereA = (p,+ coshap)/(pps cOSha). solved by iteration in the usual way:
After some straightforward algebra, E488)—(71) can be
reduced to the system Flnl ==+ TR 11, (81)

$azFar(da) + Fpa(dp) = par+ PacFar(da—26,), (720 provided we have an initial function with which to start the
iteration process. We try the same procedure as we did to

Fa1(Qa) + dpaFpo(0p) = dp1+ droFpa(dy+26,), (73)  solve the single shock problem in the preceding subsection.
We consider the original functional equation system in the

where the functions ., , by, and ¢, are straightforward limit of very large q,,, values, neglecting the shogk coordi—_
combinations of the functions.*, andA and are written in nates inside the arguments of the unknown functions. In this
r,t

the Appendix. We can see that the preceding system of fundvay, we arrive at a simple linear algebraic system in the

tional equations, despite still having coupled unknown funC_unknown functions. But we do not neglect the front coordi-

tions, is easier to solve by the iterative procedure than thgates inside the arguments of thefunctions, because this

previous system of four equations. The new unknown funcimProves the convergence velocity of the iteration process.

tions areF 5, andF,. We need to relate the sonic interaction We get for the functiorFy,,

parameters-, andF,, with these unknown functions. In or-

der to get that relationship, we combine E@), (47), (66), Fl9(q,)= bar~ p1(Paz~ Pa2) _ (82)
and (67) and use the results 1-(bp3— ¢p2) (Paz— Pa2)
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As for the starting function to be used in placerdf] , it is 0.8 11—
much better to go back to theriginal functional equations o (a),-” ]
system and gefl9 from Eq. (73): ‘E 0.25 a ',." =
0 0] [0] 2 0.2 E ~° (b} —~

FE = do1— doaFh) (G0 + dooF [J (0 +26,). (83 2 - T
There is an important reason for doing so. In the preceding % 0.15 = ,." (c) &
equation, we are taking advantage of the fact that the func- & o4 E 7 2
tion F[Y is being evaluated at the corresponding value,pf g E ]
and also atg,+26,. If we realize that in general the re- 8 005F 3
flected shock front is rather weak, even for very strong inci- C .
dent shocks, we can deduce that the shock front coordinate T

o

0.2 0.4 0.6 0.8
incident shock intensity (s)

pry

0, will be large. This means that we are evaluath?@ at
large values of its argument. Taking into account that the
le,zf'-fnCtionS behave as 'decaying exponentials, we can €as- FIG. 4. Asymptotic growth rateSv;” as a function of the inci-
ily realize that the correcting terms added by the successivgent shock intensity for the gases airsSFhe fluid parameters are
iterations will be smaller and smaller. That is, in reflecting y,=1.0935y,=1.4;R,=>5.1. The curvda) is the prediction of the
through the contact surface into fluidb" [by means of Eq. VMG model[9]. The curve(b) corresponds to the impulsive model
(73), as we did beforg we are taking advantage of the fact of Richtmyer[1] and the curve(c) is obtained with Eq(3). The
that the shifts inside the trial functions are quite substantiatriangles are the simulation results of Yaegal. [3].
in fluid “b.”
; 0] — (gl0] E[0] .

Let us further def'”ed I=(Fa ,Fbz). Then, a formal o (n=0), we get for the growth rate the value 0.129,
solution to the original system of functional equations can be?/vhich differs by less than 20% from the exact valuéich
writien as is 0.115. The impulsive models give for this case a differ-

0 e
F= lim (Bg+ TEo+ T2Eg+ T3E+ - - + T 1) ence on the order of 100%R(prescription or more (VMG

e mode).
Next, in Table |, we also compare with the predictions of
X Eq+ TFOl), (84)  Yanget al.[3]. We have used only the starting functions for

the majority of the cases indicated there, except those
We have obtained the solution to the perturbation problemmarked with one asterisikvhich means thah=1 was used
Using either Eqs(81) or (84), we can get the sonic param- in the iteration sequengeor with two asterisks if=2).
eters and finally calculate the growth rate. The very interestHigher iteration steps were needed for very strong incident
ing property of the method just outlined is that the conver-shocks and very compressible fluids at either side of the con-
gence speed is very high, and with a couple of iterations weact surface. An amazing result is the fact that we can repro-
can cover the relevant regions of the initial space of physicaduce the indirect phase inversion observed in dasewith

parameters already studied in the literature. just the starting function, even though it corresponds to a
very strong incident shock.
. RESULTS The fact that a negative growth rate can be detected for

some combinations of the initial parameters is an indication
of the possibility of freeze-out. Indeed, if we increase
Let us consider a shock coming from air and impingingslightly the value of the initial density ratio at the interface,
upon a corrugated surface that separates it frogy BAFig.  we find that the growth rate should change sign somewhere
4, we show the growth ratén units ofkiou;, as will be all  in the interval 1.133 0% p,0/ppo<1.13308. The accurate
the growth rates in this subsectjoms a function of the inci- determination of the initial conditions that may result in the
dent shock intensity[defined as in Ref.[3]: s=(p, Iinstability freeze-out could be very useful to the research
—po)/p1]. The gases parameters argy=1.4, vysg, community in ICF[5]. However, an exhaustive study of the

=1.0935, an(bSF6/pair=5-1- We also plot the predictions of parameter space searching for freeze-out conditions on the

Egs.(1) and(2). The triangles indicate the simulation results gfj ;rﬁf\s grﬁ,)jlrll‘:'j ﬁmgg}:gg }/:/)?I:hbeeﬁﬂgefhe scope of the
taken from Yanget al. [3]. We see very good agreement

between the numerical results and the prediction of (Bjy.
even in the high compression limit. Unfortunately, the im-
pulsive formulas separate from the exact result at relatively Quite recently{21], a set of experiments in a shock tube
low Mach numbers {1.5). In applying Eq(3) to infer the  for the case in which a shock reflects back in the lighter fluid
results presented in Fig. 4, we have used in general the stattas been performed. The light gas was &hd the heavier

ing functions. Only in the strong shock limis¥0.8) have gas Sk (we consider the properties of,No be the same as

we begun to increase the value of the iteration index For  those of air as far as our model is concemeélfeak shock
very strong shocksst~1), we have usedi=3 to get three waves were generated with Maeli.10. The novelty of
significative digits. However, even using the starting func-these experiments was the absence of a plastic membrane in

A. Comparison with previous simulations

B. Comparison with recent experiments in shock tubes
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TABLE |. Asymptotic growth rate as given by E(3) and the  ordep interface displacement. That is, their value corre-
numerical simulations of Yangt al. [3]. The left column is the sponds to the quantitg ¥, /dX;, whereW; is the corruga-

incident shock intensitydefined in the tejt the top row is the tjgn amplitude at the contact surface axdis actuallyv;t in

preshock density ratio. The upper number in each entry is the resugur notation. For their experimental conditons—Mach
given by Eq.(3) and the lower one is the result shown in Table 1 of

Yang et al.[3]. The two adiabatic exponents ai@ y,=y,=1.1, ~1.10 and kiyp~0.13—they obtained d¥;/dX;)expt
= _ _ ~0.0875:0.0078.

(b) ¥a=pb=3.0, and(c) y,=3.0,y,=1.5. . : - . . .

Our irrotational predictior{the first term in Eq.(3)] is
(dW; /dXi)io=~0.0834. This value is in quite good agree-
ment with their experimental result. If we calculate the sonic
s 11 2.0 4.0 8.0 16.0 interaction parameters for both gases and use the complete
Eqg. (3), we obtain @W;/dX;)gq (3y~0.0824, a value that
cannot be distinguished from the experimental one within the
1.0 0.00402 0.0312* 0.0639** 0.0933** 0.114** measurement uncertainty. There is a small difference be-

J

0.0040  0.031 0.064 0.094 0.11 tween the irrotational approximation and the complete Eq.

(3) (less than 5% This difference, impossible to discern

0.5 0.0151  0.0929  0.141 0.150 0.135  with experimental measurement, is mainly due to thg,SF
0.015 0.093 0.14 0.15 0.13 which is very compressible. Before closing the discussion,

we must note that our results are only exact for a sharp
0.05 0.00207 0.0123  0.0179 0.0183 0.016 interface. The authors of the experiment have taken into ac-
0.0021 0.012 0.018 0.018 0.016 count that the experimental interface could be diffuse rather
(@ than strictly sharp. Unfortunately, a self-consistent theory of
the Richtmyer-Meshkov instability for diffuse interfaces
1.0 0.0141 0.0893 0.141* 0.156* 0.144* does not yet exist to our knOWledge. Nevertheless, we can
0.014 0.089 0.14 0.16 0.14 follow the same strategy as used by Jones and Jacobs and
modify Eq.(3) with the growth reduction factaiGRF used
in that work[21]. The authors modified the Richtmyer im-
pulsive formula for a diffuse interface by solving an eigen-
value equation. For the conditions of their experiments, they
have obtained GRF1.17. Using this value, we get
(dW; /dXi)iror~0.0713 within the irrotational approximation
and @V¥;/dX)gq. (3y=0.0705 including the sonic param-

0.5 0.00818 0.0492 0.0723 0.0746 0.0657
0.0081 0.049 0.072 0.075 0.065

0.05 0.0078 0.00464 0.00674 0.00685 0.00596
0.0078 0.0046 0.0067 0.0068 0.0060

®) eters in both gases. We see that considering the growth re-

duction factor, we underestimate the observed asymptotic

10 -0.00383 0.0711 0.143 0.187* 0.197* growth rate by an amount that goes beyond the experimental
—0.0038 0071 014 0.19 0.20 uncertainty. Summing up, the theoretical predictions of our

model seem to be in good agreement with these experiments
0.5 0.00402 0.00643 0.101 0.107 0.0958 considering a sharp interface instead of a diffuse one. We
0.0040  0.0064  0.10 0.11 0.095 also see, in agreement with our expectations, that the role
played by the vorticity deposited ahead of the contact sur-
0.05 0.00120 0.00736 0.0104 0.0104 0.0089 face, in the bulk of the SfFand N, gases, is not very impor-
0.0012  0.0073  0.010 0.010 0.0089 tant due to the low intensity of the incident shock.

(©

IV. FINAL DISCUSSION

order to separate the gases before the shock traversed theBefore closing the work, it is important to make some
interface. They produced a nearly flat interface by causindprief remarks on the high speed of convergence seen in the
the two gases to collide and by providing slots for the fluidscalculations. As mentioned before, there are two main rea-
to escape through the tube walls. For details of the experisons. One is the fact that we are taking advantage of the
mental conditions, we refer the reader to the original workrelative “weakness” of the reflected shock. This causes the
[21]. reflected shock parametéy to be in general larger than 1.
As the experiments involved only weak shocks, the roleBesides, the sound speed of the fluid™is in general larger
of the sonic parameters is not very important in this casethan the sound speed in fluida:” Any time we reflect the
Only the initial circulation deposited by the fronts at the interesting quantitiefike the functionF 4;) to the other side
interface att=0+ is enough to get an estimate of the of the contact surface through E3.3), we gain a large shift
asymptotic growth rate. Anyway, it is worthwhile to attempt in the iteration process. This shift, being substantial on side
a comparison between their results and the prediction of oufb,” accelerates considerably the overall convergence, be-
Eq. (3). cause the correcting terms added at each successive step will
They have presented their measurements for the growthe smaller, due to the monotonicity property of the trial func-
rate as the slope of the corrugation amplitude vefgeso- tions at large values of their arguments. Physically, we are
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exploiting the fact that in the space between the reflected To summarize, we have presented an analytical model
shock and the contact surface, there are fewer sound-wavbkat correctly calculates the asymptotic growth rate of the
reverberations than on the other side. The reason is alwayRichtmyer-Meshkov instability for the case of a reflected
the same. The reflected front travels at almost the shockeshock. It takes into account the vorticity deposited initially
speed of sound of fluidB.” Therefore, any pressure pertur- by the deformed fronts at the contact surface and also suc-
bation emanating from the interface will barely arrive at theceeds in describing the later sonic interaction between the
shock, because they go at almost the same sfpiggdThis  fronts and the interface. This interaction is important in the
phenomenon does not happen on sidge™‘except for very  strong shock limit, that is, in the limit of high compressions.
weak shocks. Then, the advantage of reflecting the unknowmhe model can be extended to deal with different situations
function F,; into the fluid with higher sound velocity is evi- that go beyond the classical Richtmyer-Meshkov problem:
dent. time-varying externally imposed pressure perturbations at
However, as we have already discussed when studyinthe left boundary, etc. The model can be used in the search of
the single perturbed shock, the most powerful reason is ththe initial preshock conditions that could result in the freeze-
special choice we have made of the starting function. out of the velocity perturbations. Good agreement with pre-

In fact, it is not difficult to arrive, within the framework of vious numerical and experimental work has been shown.

the model, at the following relationship for the reflected
shock front pressure perturbatiofsee Eqs(23), (66), and

(69)]:

ACKNOWLEDGMENTS

This work has received partial support from PB970571

and FTN2000-2048-C03-02 of Ministerio de Educacion y

2F[J(apt 6y)
(PN, _o=(8P,)q —o— lim ————=. (85
o b gqp—0 uh (qb)

It is easy to see that the functions diverge in the limit
dp,— 0. Then, unless we choose fB}J a divergent function

at q,=6,, regardless of the starting function we use, the
corresponding initial guess for the shock front pressure per-
turbations will always start from the correct valueggt=0.

This last fact is very useful, because it provides us with a
great range of starting functions from which to choose. We
just use the one that behaves correctly in the opposite limit:
gp> 6, . Physically, we are starting the calculations with a
trial function that behaves correctly at early and large times.
The subsequent iteration process fills the gap between both
ends in order to satisfy the boundary conditions at both
shocks and at the interface. The immediate advantage of the
technique used is the reduction in the number of terms that
must be retained to get a specified accuracy. To get three
significant digits, the traditional series expansions could re-
quire hundreds of termgl6] and starting the calculations
with high-precision arithmetic. In our case, we need at most
a couple of iterations and we have no need of a huge number
of digits to avoid round-off errorf4,11,14.

b1

Ciencia, Spain.
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A+1 8vY), sinh o,

¢ = - )
al 2 sinh(gy— 6;) 77t+(qa_ 6

A+1 7]t_(qa_ Ht)

Par=— :
: 2 5l (02— 6)
1-A
¢a3 2 ’
A+1 vy, sinho,

© 2A sinHgy+6,) 7 (Gp+6,)

_A+1 g (At 6r)
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