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Growth rate of the linear Richtmyer-Meshkov instability when a shock is reflected
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~Received 27 December 2000; published 12 April 2001!

An analytic model is presented to calculate the growth rate of the linear Richtmyer-Meshkov instability in
the shock-reflected case. The model allows us to calculate the asymptotic contact surface perturbation velocity
for any value of the incident shock intensity, arbitrary fluids compressibilities, and for any density ratio at the
interface. The growth rate comes out as the solution of a system of two coupled functional equations and is
expressed formally as an infinite series. The distinguishing feature of the procedure shown here is the high
speed of convergence of the intermediate calculations. There is excellent agreement with previous linear
simulations and experiments done in shock tubes.
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I. INTRODUCTION

The so-called Richtmyer-Meshkov~RM! instability @1,2#
develops when a plane shock collides with a corrugated
terface separating two different fluids. A shock is alwa
transmitted and another shock or a rarefaction can be
flected back in the first fluid@3–5#. In this work, we concen-
trate only on the case in which a shock is reflected~see Refs.
@3,4# to see which initial conditions should apply in order f
a shock or a rarefaction to be reflected after the ‘‘incid
shock-interface’’ interaction!. Once the transmitted and re
flected fronts have been formed and have started to sep
from the contact surface att501, the initial corrugation of
the interface will begin to grow and the shock fronts will b
deformed. As they move into the fluids, they leave dens
and vorticity perturbations behind them@4–7#. The interface
velocity perturbations show damped oscillations, and wh
the fronts are far enough, the contact surface will reac
constant perturbed asymptotic velocity, which we call t
asymptotic growth rate@3–5#.

The precise determination of the asymptotic growth rat
a problem of fundamental importance in different fields
research, as in shock tube flows@7,8# and in inertial confine-
ment fusion~ICF! @4–7#. Particularly in ICF, the growth of
initial corrugations induced by the passage of shock wave
a major obstacle to the achievement of the proper condit
for fuel ignition at the end of the target implosion@5,9#. It is
therefore easy to see the importance of understanding
physical mechanisms that drive or that could even stop
growth of this instability@3–7,9#. Quite recently, scientists
working in this field have arrived at a general consensus a
the role that the vorticity generated by the shocks plays in
perturbation field evolution@5,7#. The linear theory predic-
tions ~essentially series expansions in terms of some
equate functions! agree with numerical simulations, despi
the fact that former calculations overestimated the earlier
perimental results in shock tubes@2,7,8#. Recently, a series
of experiments with laser irradiation of solid foils has be
performed@10#. In that way, the use of diaphragms to sep
rate the fluids is avoided. The solids are quickly ionized a
can be considered as ideal gases allowing the use of sim
analytical models. The agreement of the experiments w
the linear theory is satisfactory for the shots in which t
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initial corrugation is sufficiently smaller than the corrugatio
wavelength. However, in these experiments a rarefaction
stead of a shock wave is reflected back in the denser
dium. It would be desirable for similar experiments for th
shock-reflected case to be performed in the near future.

The analytical approaches to obtaining the asympto
growth rate up to now have been of two different kinds. O
the one side, we have rigorous linear theory in the form
series expansions, e.g., in terms of inverse powers of
Laplace variable ‘‘s’’ as in Fraley @11#, in powers of time
@4#, or in terms of Bessel functions@6,12#. The inherent dis-
advantage in this method is that in order to obtain the gro
rate with two or three significant digits, the series defini
the velocity perturbation at the interface should cont
many terms. Depending on the initial parameters of b
fluids and on the incident shock intensity, the number co
be larger than 50. Associated with the tedious task of solv
hundreds of linear systems of equations, there is the prob
of round-off error accumulation. To avoid it and obta
enough accuracy, we should start the calculations with hi
precision arithmetics~above 70 digits@4#!. The reason for
such a huge number of coefficients is clear from the phys
of the problem: these expansions are describing in detai
the sound-wave reverberations between the fronts and
interface. To keep track of the complete evolution far in
the asymptotic stage, we need to follow all those reflectio
and refractions between the contact surface and the sho
However, as we will see in the course of the work, in ord
to know the asymptotic perturbed velocity we can avoid su
a fine description by using an iterative process that will d
mand many fewer calculations. The expansions dicus
above could be truncated and only the first term could
retained in order to get a simple formula. However, the tru
cation is not trivial at all, and the price we pay is that t
analytical formula so obtained will not be valid in the hig
compression limit. In fact, for stronger shocks or high
compressible fluids, or for a high-density contrast at the
terface, the transmitted shock will take longer to separ
from the interface than the reflected shock does@11,13#. This
fact reinforces the importance of the sound-wave reflecti
addressed above. As the transmitted front ‘‘sees’’ the in
face for a longer time, we cannot escape the need to desc
that interaction, and therefore we cannot truncate the se
©2001 The American Physical Society03-1
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J. G. WOUCHUK PHYSICAL REVIEW E 63 056303
with just the first term. If we do so, we lose information th
is relevant to the growth-rate calculation. Then we are i
trap: we cannot avoid calculating more and more terms as
approach the high compression limit, and this is becaus
the approach used, which needs an exact description of w
happens at any time differential in order to reach
asymptotic stage. There is one possible way of getting ou
the trap, which will be explained in the rest of the work.

As for the other kind of approach, it has been based
modifications of the known impulsive formula of Richtmy
@1,9#. In order to comment upon it, let us consider Fig. 1. A
incident shock coming from the right inside fluid ‘‘b’’ hits
the interface atx50 and the transmitted and reflected fron
are formed att501. The incident shock velocity is2ui x̂
~not shown! and has left fluid ‘‘b’’ moving with velocity
2v1x̂. The interface acquires a velocity2v i x̂. The transmit-
ted front moves with velocity2utx̂ and the reflected shoc
speed is1urx̂. These velocities are measured in the labo
tory reference frame. We assume that the contact surface
an initial corrugation of the formc0 cosky, before the shock-
interface interaction. Here,k52p/l is the perturbation
wave number andl is the perturbation wavelength. We a
sume thatc0!l and therefore the linear theory is app
cable.

According to the Richtmyer ~R! prescription, the
asymptotic growth ratedv i

` can be calculated as

dv i
`5

ra f2rb f

ra f1rb f
kc0 fv i , ~1!

whererm f is the shocked density of fluid ‘‘m’’ ~‘‘ m’’ can be
‘‘ a’’ or ‘‘ b’’ ! andc0 f5c0(ui2v i)/ui is the shocked value
of the interface corrugation att501.

Quite recently, another heuristic approach has been
posed, also based on an impulsive model@9#. We call it the
Vandenboomgaerde-Mu¨gler-Gauthier~VMG! formula, and it
can be written as

dv i
`5

1

2 S ra f2rb f

ra f1rb f
kc0 f1

ra02rb0

ra01rb0
kc0D v i , ~2!

whererm0 is the preshock mass density of fluid ‘‘m.’’
The degree of agreement of Eqs.~1! and ~2! with the

linear simulations and linear theory expansions has b
studied in detail in former works@3–5,9#. The conclusion is

FIG. 1. Perturbed interface separating two different fluids a
the interaction with an incident shock. For explanation of the sy
bols, see the text of the paper.
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that the agreement is good for weak incident shocks
when the fluids are not very compressible at either side of
contact surface. However, there are exceptions in which
ther theR or the VMG prescriptions give a good estimate
the growth rate, but it is impossible to know ita priori @5#.
Besides, there are situations in which the asymptotic gro
equals zero and we say that the instability has beenfrozen
out @3,5,14#. Unfortunately, the previous formulas do n
predict correctly the freeze-out situations. As studied in R
@14#, an accurate determination of freeze-out in the we
incident shock limit can be done on the basis of the anal
cal expression for the growth rate derived by Fraley@11#.
However, the discussion is not valid at high compressio
because his analytical formula is valid in the weak sho
limit.

Summing up, the analytical methods discussed ab
pose different difficulties in the calculation of the growth ra
for arbitrary values of the initial fluid parameters and inc
dent shock strength. The traditional series expansions
volve a large number of coupled linear equations with
corresponding problem of handling numerical rounding
rors. Any analytical formula obtained from the truncation
those expansions will be strictly valid in the weak incide
shock limit. The same thing happens with the heuristica
derived formulas based on an impulsive description. Then
is straightforward to recognize the importance of an anal
cal procedure that gives us the asymptotic growth rate w
out the mentioned problems.

In fact, as has been shown in Ref.@6# and discussed in
Ref. @5#, the growth rate can be exactly expressed in
following form:

dv i
`5

2ra fdvya
0 1rb fdvyb

0

ra f1rb f
1

ra fFa2rb fFb

ra f1rb f
, ~3!

wheredvym
0 is the tangential velocity at the interface in flu

‘‘ m’’ just after shock-interface interaction att501. The
termsFa and Fb represent the sonic interaction~important
for t.01) between the shock fronts and the contact surfa
They can be written as integrals of the pressure perturbat
along the shock front trajectories@5,6# or can also be seen a
averaged measures of the vorticity field left by the cor
gated fronts in the interior of the fluids@6#. Equation~3! is an
exact result, valid in linear theory, and derived from fir
principles@5,6#.

The first term on the right-hand side of Eq.~3! is due to
the deposition of vorticity at the interface, att501. It is the
only important term in the limit of weak incident shocks,
will be shown later. It can be calculated immediately, wit
out any knowledge of the instability evolution fort.01. It
is noted that it is obtained without any ad hoc assumpt
and without the need to resort to an impulsive formulatio
Retaining only the first term in Eq.~3! is also equivalent to
neglecting the vorticity generated by the shocks inside
fluids. It gives results similar to the impulsive prescriptio
for very weak incident shocks.

The second term to the right in Eq.~3! comes into play for
stronger shocks or highly compressible fluids, as well
when there is significant vorticity generation by the d

r
-
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GROWTH RATE OF THE LINEAR RICHTMYER-MESHKOV . . . PHYSICAL REVIEW E63 056303
formed fronts in the bulk of the fluids. It is also important
situations in which freeze-out occurs. It describes the in
action of the shock fronts with the corrugated interface. W
see that they resume the information of the sound wave
verberations discussed before, and they do that in a q
economical way. Previous analytical formulas could not ta
into account the role played by the parametersFa and Fb ,
and this fact could explain their partial failure at higher co
pressions. However, as discussed in Ref.@5#, there was not
an easy and straightforward method of calculating them u
now. The only thing that could be done was to estimate th
with the linear theory expansions addressed before. So
times only a small number of terms was enough, but this
depended on the combination of initial parameters and
procedure was not at all easy to handle, precluding the di
use of Eq.~3!. In this work, we show an exact analytic
procedure with which to calculate the sonic interaction
rametersFa and Fb and hence to calculate the growth ra
dv i

` . The sonic parametersFm come out as the solution of
system of two coupled functional equations. The details
solving this system in exact analytical terms are explaine
full detail, so that the interested reader could apply
method to any other situation of interest. A distinguishi
feature of the method developed here is the high spee
convergence of the iterations involved. The physical reas
for this will be explained during the work.

The present work is structured as follows. In Sec. II,
present the model. We subdivide it into two main subs
tions. In Sec. II A, only one fluid is considered with a corr
gated shock moving to the right with a rippled interface
x50. This case allows us to lay out the basic notation and
clearly describe the mathematical model to be used in
next subsection. Depending on the boundary conditions
posed at the left surface, we can study different related p
lems: the growth of perturbations for the case in which
shock hits a corrugated rigid wall@15# or even the symmetri-
cal Riemann problem@5#. In Sec. II B, the model is applied
to the more complicated situation in which a shock collid
with the surface separating two fluids. The basic equati
are obtained and the functional equations are solved. In
III, we present comparisons with recent numerical simu
tions and experiments in shock tubes. A final discussion
the results and the physics underlying the model is given
Sec. IV.

II. CONSTRUCTION OF THE MODEL

In this section, we develop the model that allows us
calculate the growth rate of the RM instability. We divide
into two main subsections. In Sec. II A, the simpler proble
of a single shock traveling in one fluid driven by a corr
gated piston is addressed. This problem will help us to d
play the basic notation and prepare the building blocks u
which to construct the frame for the RM instability problem
In Sec. II B, the RM problem is fully discussed and an e
plicit analytical procedure for the growth rate evaluation
presented.
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A. Shock driven by a corrugated piston

1. Boundary conditions at the shock and basic equations

We consider a shock wave moving to the right in flu
‘‘ b,’’ with speedUr as measured in a frame at which the le
piston surface is at rest. The shock front was atx50 at t
501. We do not specify the boundary conditions at t
piston for the moment. Depending on the boundary con
tions we choose there, we can study different situations
interest@16#. The fluid ahead of the shock is assumed to
homogeneous and moves with velocity2v0x̂ entering the
shock. Its density ahead of the shock isrb1 and its value
behind the shock isrb f . The sound speed of the fluid be
tween the piston and the shock iscb f .

To study the perturbation field in the space delimited
the piston and the shock front, we use the following coor
nate transformation, suggested by Briscoe and Kovitz@15#:

r b coshub5kcb ft, ~4!

r b sinhub5kx. ~5!

The piston surface has coordinateu i50 and the shock coor
dinate is defined byb r5tanhur5Ur /cbf . It is not difficult to
see that the pressure perturbations satisfy the linear w
equation in the space 0<ub<u r @12,15#:

r b

]2

]r b
2
d p̂b1

]

]r b
d p̂b1r bd p̂b5

]

]ub
S 1

r b

]

]ub
d p̂bD , ~6!

where dpb5rb fcb fu0d p̂b . The velocity u0 is for the mo-
ment an arbitrary characteristic velocity of the unperturb
flow. It could be the sound speed of the shocked fluid ‘‘b’’ or
the incident shock velocity. In Sec. III, we will useu05ui
~the incident shock speed! in order to compare with the re
sults of Yanget al. @3#.

We have found it convenient to define the following au
iliary function:

dhb5
1

r b

]

]ub
d p̂b. ~7!

For any quantitydfb(ub ,r b), we define its Laplace trans
form by

dFb~ub ,sb!5E
0

`

exp~2sbr b!dfb~ub ,r b!drb. ~8!

According to Eq. ~8! and changing to the variablesb
5sinhqb , the former Eqs.~6! and ~7! can be rewritten as

]

]qb
~coshqbdPb!1

]

]ub
dHb50, ~9!

]

]qb
dHb1

]

]ub
~coshqbdPb!50. ~10!
3-3
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J. G. WOUCHUK PHYSICAL REVIEW E 63 056303
Changing to the variablesqb1ub andqb2ub , we can easily
find a first integral of the above system of differential equ
tions:

dHb~ub ,qb1ub!1cosh~qb1ub!dPb~ub ,qb1ub!

5Fb1~qb!, ~11!

2dHb~ub ,qb2ub!1cosh~qb2ub!dPb~ub ,qb2ub!

5Fb2~qb!, ~12!

for some unknown functionsFb1 and Fb2. We see that the
left-hand sides of the preceding equations do not depen
the coordinateub . Thus, we can write

Fb1~qb!5dHbi~qb!1coshqbdPbi~qb!, ~13!

Fb2~qb!52dHbi~qb!1coshqbdPbi~qb!, ~14!

where dPbi(qb)5dPb(ub50,qb) and dHbi(qb)5dHb(ub
50,qb) are the pressure perturbations at the left piston s
face.

We can write Eqs.~11!–~14! as

dHb~ub ,qb1ub!1cosh~qb1ub!dPb~ub ,qb1ub!

5dHbi~qb!1coshqbdPbi~qb!, ~15!

2dHb~ub ,qb2ub!1cosh~qb2ub!dPb~ub ,qb2ub!

52dHbi~qb!1coshqbdPbi~qb!. ~16!

It is at this point that we can distinguish different cases.
far as the coordinateub is concerned, it is arbitrary in the
preceding two equations. We have to write boundary con
tions at the shock front and at the piston surface. From
linearized Rankine-Hugoniot conditions at the shock fro
we can relatedHb with dPb . This will be done in the next
paragraph. By imposing appropriate functions fordHbi and
dPbi , we can model different situations@5,16#.

2. Boundary conditions at the shock front

It can be seen after some tedious algebra that the lin
ized Rankine-Hugoniot conditions can be put in the fo
@1,6,12#

dHb~u r ,qb!5ab1~qb!dPb~u r ,qb!1ab2~qb!, ~17!

where

ab1~qb!52xb sinhqb2
1

2

b r

k r

k r2b r
2

12b r
2

rb f

rb1

1

sinhqb
,

~18!

ab2~qb!52dvyb
0 sinhu r

sinhqb
, ~19!

with
05630
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k r1b r

2

2k rb r
, ~20!

and

k r5
1

cb f
2 S dp

dr D
rb f

. ~21!

The derivative in Eq.~21! is evaluated along the Hugonio
curve at the final state of fluid ‘‘b.’’ For an ideal gas with
isentropic exponentgb , it is

1

k r
5

1

4
~gb21!2~11zr !

rb f

rb1
F12

rb1

rb f
S gb11

gb21D G2

, ~22!

wherezr5(p22p1)/p1 is the shock intensity of the reflecte
front. The pressurep2 is the pressure behind it, andp1 is the
pressure ahead of it.

Before closing this subsection, it will be useful for futu
discussion to note that the value ofdPb(u r ,qb50) can be
calculated exactly. In fact, if we take the limitqb→0 in Eqs.
~17!–~19!, we get the following result:

dPb~u r ,qb50!52 lim
qb→0

ab2~qb!

ab1~qb!

52dvyb
0 sinhu r

k r

b r

12b r
2

k r2b r
2

rb1

rb f
.

~23!

3. Asymptotic properties of the velocity perturbation field

We write the velocity perturbations in the formdvx
5u0du cosky for the normal velocity perturbations an
dvy5u0dv sinky for the tangential velocity perturbations
Besides, the vorticity generated by the shocks at the posi
(x,y) can be written as@6,12#

dvb~x,y!5ku0gb~kx!sinky, ~24!

where the functiongb is given by

gb~kx!5Vbd p̂bS u r ,r b5
kx

sinhu r
D , ~25!

with

Vb52
1

2b r
S 12

b r
2

k r
D v0

Ur
. ~26!

That is, the vorticity at the position (x,y) is the vorticity
generated by the rippled shock front at the instant of ti
t0(x)5x/Ur when it arrived at that point.

It is not difficult to see thatdu and dv satisfy the inho-
mogeneous wave equations:

]2

]~kcb ft !
2
du2

]2

]~kx!2
du1du5gb~kx!, ~27!
3-4
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]2

]~kcb ft !
2
dv2

]2

]~kx!2
dv1dv52

]

]kx
gb~kx!. ~28!

In the asymptotic limit (t→`) when the partial time deriva
tives vanish, the last two equations can be written

d2

d~kx!2
du2du52gb~kx!, ~29!

d2

d~kx!2
dv2dv5

d

dkx
gb~kx!. ~30!

Let us concentrate on Eq.~29!. If we multiply both members
by exp(2skx) and integrate between 0<kx,`, we are
Laplace-transforming that equation and we obtain
a
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~s221!dU2sdu~x50!2du8~x50!

52Vb sinhu rdPb~u r ,sb5s sinhu r !. ~31!

For simplicity, from now on we will writedPb(u r ,sb)
5dPr(sb). The quantitydu(x50) is the asymptotic norma
velocity at the piston surface and we call itdv i

` . The quan-
tity du8(x50) is equal to minus the asymptotic tangent
velocity at the piston:2dvyb

` ~because of the asymptoti
incompressibility of the perturbation velocity field!.

If we do a similar manipulation in Eq.~30!, we can recast
the preceding two equations in the form

dU~s!5
sdv i

`2dvyb
` 2Vb sinhu rdPr~sb5s sinhu r !

s221
,

~32!
dV~s!5
sdvyb

` 2dv i
`1Vbs sinhu rdPr~sb5s sinhu r !2Vb sinhu rd p̂r~01 !

s221
, ~33!
g
act-
e

re-

ce
re.
tion
whered p̂r(01) is the value of the shock pressure perturb
tion at t501. In the cases of interest in this work, its valu
is 0 @1,3,4,6#.

Once the shock has traveled a distance that is large c
pared with the corrugation wavelength, the pressure per
bations will become negligible. We therefore require vani
ing of the velocity perturbations atx→`. We thus deduce
from either of the preceding two equations

dv i
`2dvyb

` 5Vb sinhu rdPr~sb5sinhu r !. ~34!

We see that the tangential and normal velocities at the
boundary are not independent, but are related through
time history of the pressure perturbations at the shock fr
sincet501 up to t5`. That is, their difference is a func
tion of the compressibility of the fluid and of the shoc
strength. If we want to know about any one of them, we m
get the value ofdPr and evaluate it atqb5u r .

We study two different cases, one in which the norm
velocity is zero at the piston surface at all times~a rigid wall!
and another case in which we cause the pressure pertu
tions to vanish at the piston~symmetrical Riemann problem!.

4. Shock reflection from a corrugated rigid wall

If we imposedHbi50, we can model the reflection of a
incident shock from a sinusoidally corrugated rigid wall
x50 @15#.

After some algebra, we get

dPr~qb!5lb1~qb!1lb2~qb!dPr~qb12u r !, ~35!

with
-

m-
r-
-

ft
he
nt

t

l

ba-

t

lb1~qb!5
ab2~qb!1ab2~qb12u r !

coshqb2ab1~qb!
, ~36!

lb2~qb!5
ab1~qb12u r !1cosh~qb12u r !

coshqb2ab1~qb!
. ~37!

The functional equation displayed in Eq.~35! can be rewrit-
ten in operator form as@17,18#

dPr~qb!5lb1~qb!1lb2~qb!e2urDbdPr~qb!, ~38!

whereDb5d/dqb . The exponential factor in the precedin
equation should be understood as a translation operator
ing on the function to its right, shifting its argument in th
amount 2u r @17,18#.

A formal solution is obtained at once,

dPr~qb!5@12lb2~qb!e2urDb#21lb1~qb!. ~39!

After a Taylor expansion, we get

dPr5lb1~qb!1(
j 51

`

lb1~qb12 j u r !)
l 50

j 21

lb2~qb12lu r !.

~40!

It is easy to prove that the above function satisfies the p
ceding functional equation. EvaluatingdPr at qb5u r , we
get the asymptotic tangential velocity at the piston surfa
using Eq.~34!, because the normal velocity is zero the
However, before doing that, we note that a faster evalua
of dPr can be done solving Eq.~35! by iteration with a good
choice for the starting function.

We consider Eq.~35! in the limit qb@u r . We get in this
way an approximate solution, which we calldPr

[0] . This ap-
3-5
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proximate function is obtained by neglecting 2u r compared
to qb inside the argument ofdPr in Eq. ~35!. However, we
do not neglect it inside the arguments of the functionslb1,2
as this improves the overall convergence. The approxim
function with which we start the iteration is

dPr
[0]5

lb1~qb!

12lb2~qb!
. ~41!

We can easily check that this function has the correct va
at qb50. In fact, we take the limitqb→0 in the above func-
tion and verify thatdPr

[0] (qb50)5dPr(qb50) as given in
Eq. ~23!.

Once we have the initial trial function, we build the iter
tion sequence:

dPr
[n]~qb!5lb1~qb!1lb2~qb!dPr

[n21]~qb12u r !.
~42!

Therefore, we can write

dPr5lb11 lim
n→`

S (
j 51

n Flb1~qb12 j u r !)
l 50

j 21

lb2~qb12lu r !G
1)

l 50

n

lb2~qb12lu r !dPr
[0]~qb12nu r !D . ~43!

Equation~43! is a solution of the functional equation, be
cause the last term tends to zero for any value ofqb in the
limit n→`.

The advantage of using the sequence of iterated funct
dPr

[0] , . . . ,dPr
[n] , . . . is the high speed of convergence th

can be obtained. There are physical reasons for this. In
as we have shown before and because of the way in w
we constructed the starting function,dPr

[0] satisfies the func-
tional equation in the limitqb@u r and also has the correc
value atqb50. But, these limits correspond to the limitssb
5` and sb50 in the Laplace variable. We know from th
theory of the Laplace transformation that these limits
equivalent to the limitst→01 and t→`. Let us say it in
other words: the starting function we are using conveys ex
physical information of the shock front pressure pertur
tions both at early and large times. The iteration proc
actually smoothes the difference between the successiv
eration functions and the true solution to the functional eq
tion in such a way as to properly satisfy the boundary c
ditions at the shock and at the piston surface. Taking th
facts into account, it is natural to foresee that the iterat
process should be quite fast. To accelerate convergence
nature of the functional equation itself is helpful. Indeed,
essence of solving the functional equation is to evaluate
iterated sequence of approximate functions at success
shifted values of their arguments~terms like 2j u r , for in-
stance!. If we pay attention to the fact that the initial tria
function and the chain of iterated functions behave as de
ing exponentials at large values of their arguments, we
that the corresponding correction terms will be smaller a
smaller as we go deeper in the iteration chain. This pecu
ity will be confirmed later on when we discuss the resu
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either for the single shock moving into only one fluid or f
the more complicated case of two shocks moving in differ
fluids ~the RM instability problem!.

In Fig. 2, we show the results for a plane shock that h
been reflected at a sinusoidally rippled wall. The gas is
(gair51.4) and the incident shock Mach number is 10. T
dotted line is the starting functiondPr

[0] and the solid line is
the linear theory prediction, which agrees with the seco
iterated functiondPr

[2] . The normalizing speed here isu0

5ui . For the tangential velocity at the piston, we getdvyb
`

50.4519kc0ui , calculated either from Eq.~34! ~using n
52 in the iteration sequence! or from the linear theory ex-
pansions@12#.

5. Perturbed symmetrical Riemann problem

Let us consider now a different boundary condition at t
left surface. We requiredPbi50, that is, the vanishing of the
pressure perturbations themselves rather than the pres
gradient atx50. It is clear that the normal velocity wil
reach a final asymptotic value in this case. However,
piston tangential velocity perturbation will always stay at
initial value dvyb

` 5dvyb
0 . This idealized situation could cor

respond, as discussed in Ref.@5#, to the collision of two
identical foils with an initial corrugation at the surface
contact and represents another case of the perturbed
metrical Riemann problem in gas dynamics@5#. The only
mathematical difference in this case is the difference in
boundary condition on the piston surface. After some al
bra, it can be seen that the functionslb1,2 should be changed
by

lb1~qb!5
2ab2~qb!1ab2~qb12u r !

coshqb2ab1~qb!
, ~44!

lb2~qb!52
ab1~qb12u r !1cosh~qb12u r !

coshqb2ab1~qb!
. ~45!

FIG. 2. Laplace transform of the shock front pressure pertur
tions for reflection at a rigid wall. For details, see the text of t
paper.
3-6
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The procedure to construct the functional equation and
iteration sequence of approximate solutions is the sam
discussed before. We do not repeat those calculations a
Instead, in Fig. 3 we consider a shock moving into a gas w
gb51.1 and the fluid entering the shock moves with a vel
ity v05210cb1x̂, wherecb1 is the sound speed of the flui
in front of the shock. We show the approximate functi
dPr

[0] with dotted lines. The solid line corresponds to t
linear theory prediction, which coincides with the iterat
functiondPr

[4] . The asymptotic growth rate derived from E
~34! ~with n54 in the iteration sequence! is dv i

`

50.452kc0v0, which agrees with the linear theory predi
tion.

Another boundary condition could be imposed on the p
ton surface atx50. For example, we could have an exp
nentially time-varying pressure perturbation, as discusse
Velikovich et al. @16#. Also, we could consider the leakag
of mass at the left piston to model a rippled shock driven
ablation@16,19,20#. However, this task exceeds the scope
the present paper and will not be considered here.

B. Richtmyer-Meshkov „RM … instability problem

1. Formulation of the functional equations

We refer the reader again to Fig. 1. To get the growth r
at x50, we have at our disposal Eq.~34! and its partner
equation in fluid ‘‘a:’’

2dv i
`1dvyb

` 5Fb5Vb sinhu rdPr~qb5u r !, ~46!

dv i
`1dvya

` 5Fa52Va sinhu tdPt~qa52u t!, ~47!

where b t52tanhut5(ut2vi)/caf and ca f is the final sound
speed of fluid ‘‘a.’’ ~Remember that the transmitted sho
coordinateu t is negative because the positivex̂ direction
points inside fluid ‘‘b.’’ ! Besides,

FIG. 3. Laplace transform of the shock front pressure pertur
tions for the perturbed symmetrical Riemann problem. For deta
see the text of the paper.
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Va52
1

2b t
S 12

b t
2

k t
D v i

ut2v i
~48!

and

k t5
1

ca f
2 S dp

dr D
ra f

, ~49!

and the last derivative is taken along the Hugoniot adiab
The expression of the parameterk t for an ideal gas with
isentropic exponentga is

1

k t
5

1

4
~ga21!2~11zt!

ra f

ra0
F12

ra0

ra f
S ga11

ga21D G2

. ~50!

The quantityzt5(p22p0)/p0 is the transmitted shock inten
sity, with p2 the pressure behind the transmitted front andp0
the pressure ahead of it.

It is adequate to briefly discuss here the limit of ve
weak incident shocks. It can be seen after some straigh
ward algebra that in the weak shock limit, the quantitiesVa
and Vb are of second order in the corresponding shock
tensities (zt and zr , respectively!. This explains why the
bulk vorticity is not significant for the growth rate calcula
tion in this limit. Let us consider the parameterFa : the quan-
tity sinhut scales like 1/zt

1/2 for very small values ofzt . The
quantity Va scales likezt

2 , as can easily be seen from E
~48!, and the quantitydPt(qa52u t) scales likezt

3/2, always
for very weak incident shocks. It is clear that by taking
these scalings into account in the definition ofFa @Eq. ~47!#,
we get a dependence of the formFa;zt

3 . Similar reasonings
hold for the symmetrical parameterFb on the other side of
the contact surface:Fb;zr

3 . Therefore, for very weak inci-
dent shocks, the sonic parameters can be safely negle
when compared to the initial shear velocities at the interf
(dvya

0 and dvyb
0 ), as these tangential velocities are of fir

order in the shock intensity. Obviously, these considerati
do not apply for shocks of finite intensity and the sonic p
rameters could not be neglected in the general case.

We can take Eqs.~46! and ~47! as the formal definitions
of the sonic parametersFm . We thus see that the normal an
tangential velocities at both sides of the interface are rela
to each other through the compressible evolution of
shock front pressure perturbations in the whole time inter
01<t,`. And here we should note that thanks to the sp
cific form of the parametersFm , we are able to conserv
thought and effort. Actually, the sonic parameters as defi
above are just integrals of the time-oscillating shock fro
pressure perturbations. Due to this simple fact, we will d
pense with describing the exact details of these oscillati
in the real physical space. The price we pay for that sim
fication is that we must work within the parameters of t
abstract quantitiesqa and qb , thus losing, perhaps, som
intuition in the process. However, it is important to reali
that in order to arrive at the asymptotic growth rate, we
tually need less detailed information than the former stud
using series expansions might have indicated. Of course,
information still exists inside the integrals~we are not delet-

-
s,
3-7
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ing it from the problem! but we will find the way to do those
integrals without the explicit calculation of the real sho
pressure perturbations in the time domain. We just nee
take a smooth average of these pressure perturbations i
space defined by the variablesqa and qb . The associated
functions (dPr anddPt) in these abstract spaces do not o
cillate. At most, they decay exponentially at large values
the corresponding variables. As we will see later on, th
facts together with a good choice of the iteration scheme
lead us to a quite fast calculation technique.

Before solving for the functionsdPr and dPt , we note
that we need an additional equation, since we still have th
unknown velocities~namely, dv i

` , dvya
` , and dvyb

` ). This
additional equation comes from the integration in time of
tangential momentum conservation at the contact surface
quiring pressure continuity during the whole instability ev
lution @6,12#,

E
01

`

ra f

]

]t
dvyadt5E

01

`

rb f

]

]t
dvybdt. ~51!

We get

ra f~dvya
` 2dvya

0 !5rb f~dvyb
` 2dvyb

0 !. ~52!

Combining Eqs.~46!, ~47!, and~52!, we finally arrive at Eq.
~3!,

dv i
`5

2ra fdvya
0 1rb fdvyb

0

ra f1rb f
1

ra fFa2rb fFb

ra f1rb f
.

We still need the quantitiesdPr(qb5u r) and dPt(qa5
2u t). The next task will be to formulate the correspondi
coupled functional equations for the pressure perturbat
dPr(qb) anddPt(qa).

For fluid ‘‘a,’’ the same reasonings as in the precedi
subsection apply. That is, we will arrive at a system of eq
tions similar to Eqs.~11! and ~12!:

dHa~ua ,qa1ua!1cosh~qa1ua!dPa~ua ,qa1ua!

5Fa1~qa!, ~53!

2dHa~ua ,qa2ua!1cosh~qa2ua!dPa~ua ,qa2ua!

5Fa2~qa!, ~54!

where the functionsFa1 andFa2 have to be determined.
As the right-hand sides of the preceding equations

independent ofua , we can evaluate the preceding equatio
at ua50 ~the contact surface! and write a system similar to
Eqs.~15! and ~16!:

dHa~ua ,qa1ua!1cosh~qa1ua!dPa~ua ,qa1ua!

5dHai~qa!1coshqadPai~qa!, ~55!

2dHa~ua ,qa2ua!1cosh~qa2ua!dPa~ua ,qa2ua!

52dHai~qa!1coshqadPai~qa!, ~56!
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wheredHai5dHa(ua50) anddPai5dPa(ua50). Further-
more, the continuity of pressure and normal acceleration
the contact surface are written as

dHai~qa!5dHbi~qb!, ~57!

ra fdPai~qa!5rb fdPbi~qb!, ~58!

where ca f sinhqa5cbf sinhqb . Besides, the linearized
Rankine-Hugoniot condition at the transmitted front read

dHa~u t ,qa!5aa1~qa!dPa~u t ,qa!1aa2~qa!, ~59!

where

aa1~qb!5xa sinhqa1
1

2

b t

k t

k t2b t
2

12b t
2

ra f

ra0

1

sinhqa
, ~60!

aa2~qa!52dvya
0 sinhu t

sinhqa
, ~61!

where

xa5
k t1b t

2

2k tb t
.

Combining Eqs.~15!, ~16!, ~17!, ~53!, ~54!, and ~59!, we
arrive at the following system of four coupled function
equations:

cosh~qb1u r !h r
1~qb1u r !dPr~qb1u r !1ab2~qb1u r !

5dHbi~qb!1coshqbdPbi~qb!, ~62!

cosh~qb2u r !h r
2~qb2u r !dPr~qb2u r !1aa2~qb2u r !

5dHbi~qb!2coshqbdPbi~qb!, ~63!

cosh~qa1u t!h t
1~qa1u t!dPt~qa1u t!1aa2~qa1u t!

5dHai~qa!1coshqadPai~qa!, ~64!

cosh~qa2u t!h t
2~qa2u t!dPt~qa2u t!1aa2~qa2u t!

5dHai~qa!2coshqadPai~qa!, ~65!

where h r
65@ab1(qb)/coshqb#61 and h t

65@aa1(qa)/
coshqa#61.

From the preceding equations it can be seen thatdPr(qb
50)52 limqb→0@ab2 /ab1# and similarly dPt(qa50)5
2 limqa→0@aa2 /aa1#.

The task of solving Eqs.~62!–~65! is by far more com-
plicated than that of solving the equivalent functional equ
tion for only one shock, as we did in Eq.~35!. The difficulty
lies in the fact thatu r and u t appear both adding and sub
tracting inside the unknown pressure functions. If we,
example, make the transformationqb→qb1u r in Eq. ~63!,
the variableqa should be changed accordingly to the corr
sponding new value given by

arcsinhS ca f

cb f
sinh~qb1u r ! D ,

which evidently complicates the desired iteration sequen
A similar difficulty arises if we make the transformationqa
→qa2u t in Eq. ~64!. The solution consists in rewriting th
3-8
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former system in a more tractable form, reminiscent of E
~35!. The best option that we have found is to express
Rankine-Hugoniot conditions at the shocks and the bound
conditions at the contact surface, in terms of the previou
defined functionsFm1 andFm2.

In fact, going back to Eqs.~11!, ~12!, and/or Eqs.~53! and
~54!, we can see that the pressure perturbations in fluid ‘‘m’’
can be written as

dPm~um ,qm!5
Fm1~qm2um!1Fm2~qb1um!

coshqm
, ~66!

dHm~um ,qm!5Fb1~qm2um!2Fm2~qm1um!. ~67!

The linearized Rankine-Hugoniot conditions at the sho
can be recast in the form

Fa2~qa!

5
dvya

0 sinhu t2sinh~qa2u t!h t
2~qa2u t!Fa1~qa22u t!

sinh~qa2u t!h t
1~qa2u t!

,

~68!

Fb1~qb!

5
dvyb

0 sinhu r2sinh~qb1u r !h r
1~qb1u r !Fb2~qb12u r !

sinh~qb1u r !h r
2~qb1u r !

,

~69!

and the boundary conditions at the interface can be writte

Fa2~qa!5
2Fb2~qb!2~D21!Fa1~qa!

D11
, ~70!

Fb1~qb!5
2DFa1~qa!1~D21!Fb2~qb!

D11
, ~71!

whereD5(ra f coshqb)/(rbf coshqa).
After some straightforward algebra, Eqs.~68!–~71! can be

reduced to the system

fa3Fa1~qa!1Fb2~qb!5fa11fa2Fa1~qa22u t!, ~72!

Fa1~qa!1fb3Fb2~qb!5fb11fb2Fb2~qb12u r !, ~73!

where the functionsfm1 ,fm2, andfm3 are straightforward
combinations of the functionsh r ,t

6 andD and are written in
the Appendix. We can see that the preceding system of fu
tional equations, despite still having coupled unknown fu
tions, is easier to solve by the iterative procedure than
previous system of four equations. The new unknown fu
tions areFa1 andFb2. We need to relate the sonic interactio
parametersFa andFb with these unknown functions. In or
der to get that relationship, we combine Eqs.~46!, ~47!, ~66!,
and ~67! and use the results
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dHbi~qb50!5dHai~qa50!52dv i
`, ~74!

rb fdPbi~qb50!5rb f~dvyb
` 2dvyb

0 !5ra f~dvya
` 2dvya

0 !

5ra fdPai~qa50!. ~75!

After some algebra, we arrive at the desired relationship

Fa5F11
4~ut2v i !

v i
S 12

b t
2

k t
D 21G21

@dvya
0 22Fa1~22u t!#,

~76!

Fb5F11
4~ui1v r !

v12v i
S 12

b r
2

k r
D 21G21

@dvyb
0 22Fb2~2u r !#.

~77!

Thus, to get the growth rate, we have to solve forFa1(qa
522u t) and Fb2(qb52u r) and substitute them into Eqs
~76! and ~77! and go to Eq.~3!. We show how to solve the
functional equations in the following subsection.

2. Solution of the functional equations

By looking at Eqs.~72! and~73!, we realize that the sys
tem can be rewritten in matrix form. Actually, let us defin

R5S 22~D21!/~D11!2 4D/~D11!2

4D/~D11!2 2D~D21!/~D11!2D ,

~78!

T5R•S fa2e22u tDa 0

0 fb2e2urDb
D . ~79!

Therefore, Eqs.~72! and ~73! can be set in the form

F5RF01TF, ~80!

whereF5„Fa1(qa),Fb2(qb)…, F05(fa1 ,fb1).
The matrixT must be understood as an operator acting

the vectorF. Let us defineJ05RF0. Then, Eq.~80! can be
solved by iteration in the usual way:

F[n]5J01TF[n21], ~81!

provided we have an initial function with which to start th
iteration process. We try the same procedure as we di
solve the single shock problem in the preceding subsect
We consider the original functional equation system in
limit of very large qm values, neglecting the shock coord
nates inside the arguments of the unknown functions. In
way, we arrive at a simple linear algebraic system in
unknown functions. But we do not neglect the front coor
nates inside the arguments of thef functions, because this
improves the convergence velocity of the iteration proce
We get for the functionFb2,

Fb2
[0]~qb!5

fa12fb1~fa32fa2!

12~fb32fb2!~fa32fa2!
. ~82!
3-9
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As for the starting function to be used in place ofFa1
[0] , it is

much better to go back to theoriginal functional equations
system and getFa1

[0] from Eq. ~73!:

Fa1
[0]5fb12fb3Fb2

[0]~qb!1fb2Fb2
[0]~qb12u r !. ~83!

There is an important reason for doing so. In the preced
equation, we are taking advantage of the fact that the fu
tion Fb2

[0] is being evaluated at the corresponding value ofqb

and also atqb12u r . If we realize that in general the re
flected shock front is rather weak, even for very strong in
dent shocks, we can deduce that the shock front coordi
u r will be large. This means that we are evaluatingFb2

[0] at
large values of its argument. Taking into account that
Fm1,2 functions behave as decaying exponentials, we can
ily realize that the correcting terms added by the succes
iterations will be smaller and smaller. That is, in reflecti
through the contact surface into fluid ‘‘b’’ @by means of Eq.
~73!, as we did before#, we are taking advantage of the fa
that the shifts inside the trial functions are quite substan
in fluid ‘‘ b.’’

Let us further defineF[0]5(Fa1
[0] ,Fb2

[0] ). Then, a formal
solution to the original system of functional equations can
written as

F5 lim
n→`

~J01TJ01T2J01T3J01•••1T(n21)

3J01TnF[0] !. ~84!

We have obtained the solution to the perturbation proble
Using either Eqs.~81! or ~84!, we can get the sonic param
eters and finally calculate the growth rate. The very intere
ing property of the method just outlined is that the conv
gence speed is very high, and with a couple of iterations
can cover the relevant regions of the initial space of phys
parameters already studied in the literature.

III. RESULTS

A. Comparison with previous simulations

Let us consider a shock coming from air and impingi
upon a corrugated surface that separates it from SF6. In Fig.
4, we show the growth rate~in units ofkc0ui , as will be all
the growth rates in this subsection! as a function of the inci-
dent shock intensity@defined as in Ref.@3#: s5(p1
2p0)/p1#. The gases parameters aregair51.4, gSF6

51.0935, andrSF6
/rair55.1. We also plot the predictions o

Eqs.~1! and~2!. The triangles indicate the simulation resu
taken from Yanget al. @3#. We see very good agreeme
between the numerical results and the prediction of Eq.~3!
even in the high compression limit. Unfortunately, the im
pulsive formulas separate from the exact result at relativ
low Mach numbers (;1.5). In applying Eq.~3! to infer the
results presented in Fig. 4, we have used in general the s
ing functions. Only in the strong shock limit (s.0.8) have
we begun to increase the value of the iteration index (n). For
very strong shocks (s;1), we have usedn53 to get three
significative digits. However, even using the starting fun
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tion (n50), we get for the growth rate the value 0.12
which differs by less than 20% from the exact value~which
is 0.115!. The impulsive models give for this case a diffe
ence on the order of 100% (R prescription! or more~VMG
model!.

Next, in Table I, we also compare with the predictions
Yanget al. @3#. We have used only the starting functions f
the majority of the cases indicated there, except th
marked with one asterisk~which means thatn51 was used
in the iteration sequence! or with two asterisks (n52).
Higher iteration steps were needed for very strong incid
shocks and very compressible fluids at either side of the c
tact surface. An amazing result is the fact that we can rep
duce the indirect phase inversion observed in case~c!, with
just the starting function, even though it corresponds to
very strong incident shock.

The fact that a negative growth rate can be detected
some combinations of the initial parameters is an indicat
of the possibility of freeze-out. Indeed, if we increa
slightly the value of the initial density ratio at the interfac
we find that the growth rate should change sign somewh
in the interval 1.133 07,ra0 /rb0,1.133 08. The accurate
determination of the initial conditions that may result in t
instability freeze-out could be very useful to the resea
community in ICF@5#. However, an exhaustive study of th
parameter space searching for freeze-out conditions on
basis of Eq.~3! is something well beyond the scope of th
present work and will be left for the future.

B. Comparison with recent experiments in shock tubes

Quite recently@21#, a set of experiments in a shock tub
for the case in which a shock reflects back in the lighter fl
has been performed. The light gas was N2 and the heavier
gas SF6 ~we consider the properties of N2 to be the same as
those of air as far as our model is concerned!. Weak shock
waves were generated with Mach;1.10. The novelty of
these experiments was the absence of a plastic membra

FIG. 4. Asymptotic growth ratedv i
` as a function of the inci-

dent shock intensity for the gases air-SF6. The fluid parameters are
ga51.0935,gb51.4,R055.1. The curve~a! is the prediction of the
VMG model @9#. The curve~b! corresponds to the impulsive mode
of Richtmyer @1# and the curve~c! is obtained with Eq.~3!. The
triangles are the simulation results of Yanget al. @3#.
3-10
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order to separate the gases before the shock traverse
interface. They produced a nearly flat interface by caus
the two gases to collide and by providing slots for the flu
to escape through the tube walls. For details of the exp
mental conditions, we refer the reader to the original wo
@21#.

As the experiments involved only weak shocks, the r
of the sonic parameters is not very important in this ca
Only the initial circulation deposited by the fronts at th
interface at t501 is enough to get an estimate of th
asymptotic growth rate. Anyway, it is worthwhile to attemp
a comparison between their results and the prediction of
Eq. ~3!.

They have presented their measurements for the gro
rate as the slope of the corrugation amplitude versus~zero-

TABLE I. Asymptotic growth rate as given by Eq.~3! and the
numerical simulations of Yanget al. @3#. The left column is the
incident shock intensity~defined in the text!, the top row is the
preshock density ratio. The upper number in each entry is the re
given by Eq.~3! and the lower one is the result shown in Table 1
Yang et al. @3#. The two adiabatic exponents are~a! ga5gb51.1,
~b! ga5gb53.0, and~c! ga53.0,gb51.5.

ra0 /rb0

s 1.1 2.0 4.0 8.0 16.0

1.0 0.004 02 0.0312* 0.0639** 0.0933** 0.114**
0.0040 0.031 0.064 0.094 0.11

0.5 0.0151 0.0929 0.141 0.150 0.135
0.015 0.093 0.14 0.15 0.13

0.05 0.002 07 0.0123 0.0179 0.0183 0.016
0.0021 0.012 0.018 0.018 0.016

~a!

1.0 0.0141 0.0893 0.141* 0.156* 0.144*
0.014 0.089 0.14 0.16 0.14

0.5 0.008 18 0.0492 0.0723 0.0746 0.0657
0.0081 0.049 0.072 0.075 0.065

0.05 0.0078 0.004 64 0.006 74 0.006 85 0.005
0.0078 0.0046 0.0067 0.0068 0.0060

~b!

1.0 20.003 83 0.0711 0.143 0.187* 0.197*
20.0038 0.071 0.14 0.19 0.20

0.5 0.004 02 0.006 43 0.101 0.107 0.0958
0.0040 0.0064 0.10 0.11 0.095

0.05 0.001 20 0.007 36 0.0104 0.0104 0.0089
0.0012 0.0073 0.010 0.010 0.0089

~c!
05630
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order! interface displacement. That is, their value cor
sponds to the quantitydC i /dXi , whereC i is the corruga-
tion amplitude at the contact surface andXi is actuallyv i t in
our notation. For their experimental conditions—Ma
'1.10 and kc0'0.13–they obtained (dC i /dXi)expt

'0.087560.0078.
Our irrotational prediction@the first term in Eq.~3!# is

(dC i /dXi) irrot'0.0834. This value is in quite good agre
ment with their experimental result. If we calculate the so
interaction parameters for both gases and use the com
Eq. ~3!, we obtain (dC i /dXi)Eq. (3)'0.0824, a value tha
cannot be distinguished from the experimental one within
measurement uncertainty. There is a small difference
tween the irrotational approximation and the complete E
~3! ~less than 5%!. This difference, impossible to discer
with experimental measurement, is mainly due to the S6,
which is very compressible. Before closing the discussi
we must note that our results are only exact for a sh
interface. The authors of the experiment have taken into
count that the experimental interface could be diffuse rat
than strictly sharp. Unfortunately, a self-consistent theory
the Richtmyer-Meshkov instability for diffuse interface
does not yet exist to our knowledge. Nevertheless, we
follow the same strategy as used by Jones and Jacobs
modify Eq. ~3! with the growth reduction factor~GRF! used
in that work @21#. The authors modified the Richtmyer im
pulsive formula for a diffuse interface by solving an eige
value equation. For the conditions of their experiments, th
have obtained GRF'1.17. Using this value, we ge
(dC i /dXi) irrot'0.0713 within the irrotational approximatio
and (dC i /dXi)Eq. (3)'0.0705 including the sonic param
eters in both gases. We see that considering the growth
duction factor, we underestimate the observed asympt
growth rate by an amount that goes beyond the experime
uncertainty. Summing up, the theoretical predictions of o
model seem to be in good agreement with these experim
considering a sharp interface instead of a diffuse one.
also see, in agreement with our expectations, that the
played by the vorticity deposited ahead of the contact s
face, in the bulk of the SF6 and N2 gases, is not very impor
tant due to the low intensity of the incident shock.

IV. FINAL DISCUSSION

Before closing the work, it is important to make som
brief remarks on the high speed of convergence seen in
calculations. As mentioned before, there are two main r
sons. One is the fact that we are taking advantage of
relative ‘‘weakness’’ of the reflected shock. This causes
reflected shock parameteru r to be in general larger than 1
Besides, the sound speed of the fluid ‘‘b’’ is in general larger
than the sound speed in fluid ‘‘a.’’ Any time we reflect the
interesting quantities~like the functionFa1) to the other side
of the contact surface through Eq.~73!, we gain a large shift
in the iteration process. This shift, being substantial on s
‘‘ b,’’ accelerates considerably the overall convergence,
cause the correcting terms added at each successive ste
be smaller, due to the monotonicity property of the trial fun
tions at large values of their arguments. Physically, we

ult
f
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exploiting the fact that in the space between the reflec
shock and the contact surface, there are fewer sound-w
reverberations than on the other side. The reason is alw
the same. The reflected front travels at almost the shoc
speed of sound of fluid ‘‘b.’’ Therefore, any pressure pertu
bation emanating from the interface will barely arrive at t
shock, because they go at almost the same speed@11#. This
phenomenon does not happen on side ‘‘a,’’ except for very
weak shocks. Then, the advantage of reflecting the unkn
functionFa1 into the fluid with higher sound velocity is evi
dent.

However, as we have already discussed when stud
the single perturbed shock, the most powerful reason is
special choice we have made of the starting function.

In fact, it is not difficult to arrive, within the framework o
the model, at the following relationship for the reflect
shock front pressure perturbations@see Eqs.~23!, ~66!, and
~69!#:

~dPr
[0] !qb505~dPr !qb502 lim

qb→0

2Fb2
[0]~qb1u r !

h r
2~qb!

. ~85!

It is easy to see that the functionsh r
6 diverge in the limit

qb→0. Then, unless we choose forFb2
[0] a divergent function

at qb5u r , regardless of the starting function we use, t
corresponding initial guess for the shock front pressure p
turbations will always start from the correct value atqb50.
This last fact is very useful, because it provides us with
great range of starting functions from which to choose. W
just use the one that behaves correctly in the opposite li
qb@u r . Physically, we are starting the calculations with
trial function that behaves correctly at early and large tim
The subsequent iteration process fills the gap between
ends in order to satisfy the boundary conditions at b
shocks and at the interface. The immediate advantage o
technique used is the reduction in the number of terms
must be retained to get a specified accuracy. To get th
significant digits, the traditional series expansions could
quire hundreds of terms@16# and starting the calculation
with high-precision arithmetic. In our case, we need at m
a couple of iterations and we have no need of a huge num
of digits to avoid round-off errors@4,11,16#.
r,
N.
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To summarize, we have presented an analytical mo
that correctly calculates the asymptotic growth rate of
Richtmyer-Meshkov instability for the case of a reflect
shock. It takes into account the vorticity deposited initia
by the deformed fronts at the contact surface and also
ceeds in describing the later sonic interaction between
fronts and the interface. This interaction is important in t
strong shock limit, that is, in the limit of high compression
The model can be extended to deal with different situatio
that go beyond the classical Richtmyer-Meshkov proble
time-varying externally imposed pressure perturbations
the left boundary, etc. The model can be used in the searc
the initial preshock conditions that could result in the free
out of the velocity perturbations. Good agreement with p
vious numerical and experimental work has been shown
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APPENDIX: AUXILIARY FUNCTIONS fm,1,2,3

fa15
D11

2

dvya
0 sinhu t

sinh~qa2u t!h t
1~qa2u t!

,

fa252
D11

2

h t
2~qa2u t!

h t
1~qa2u t!

,

fa35
12D

2
,

fb15
D11

2D

dvyb
0 sinhu r

sinh~qb1u r !h t
2~qb1u r !

,

fb252
D11

2D

h r
1~qb1u r !

h r
2~qb1u r !

,

fb35
D21

2D
.

.
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