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Spectrum of anisotropic exponents in hydrodynamic systems with pressure
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We discuss the scaling exponents characterizing the power-law behavior of the anisotropic components of
correlation functions in turbulent systems with pressure. The anisotropic components are conveniently labeled
by the angular momentum index of the irreducible representation of the @Dsymmetry group. Such
exponents govern the rate of decay of anisotropy with decreasing scales. It is a fundamental question whether
they ever increase as increases, or they are bounded from above. The equations of motion in systems with
pressure contain nonlocal integrals over all space. One could argue that the requirement of convergence of
these integrals bounds the exponents from above. It is shown here on the basis of a solvablghmbtiietar
pressure model)’ that this is not necessarily the case. The model introduced here is of a passive vector
advection by a rapidly varying velocity field. The advected vector field is divergent free and the equation
contains a pressure term that maintains this condition. The zero modes of the second-order correlation function
are found in all the sectors of the symmetry group. We show that the spectrum of scaling exponents can
increase with/” without bounds while preserving finite integrals. The conclusion is that contributions from
higher and higher anisotropic sectors can disappear faster and faster upon decreasing the scales also in systems
with pressure.
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I. INTRODUCTION bulence also indicate that anisotropic sectors possess larger
scaling exponents than the isotropic se¢®+4]. However,

Turbulent flows are often forced in an anisotropic fashion.to date, the exponents fof>2 were not determined with
The anisotropy has a significant effect on a variety of measufficient accuracy. We thus do not know whether the higher
sured turbulence characteristics. We are interested in the e$ectors are characterized by an ever increasing exponents or
fect of anisotropy on statistical quantities, especially the lowWhether the exponentsaturate This issue is theoretically
order structure functions of velocity differences across auzzling because of the effects of pressure. The inversion of
scaleR. In perfectly isotropic systems, such objects are exthe pressure in terms of the Green’s function of the Laplacian
pected to display pure scaling behavior in the limit of highoperator introduces integrals over the domain of turbulence.
Reynolds number. We have suggested recéiilyhat in the ~ These integrals manifest the nonlocality of the problem and
presence of anisotropy, the structure functions are no longeére present in both the dynamical equation, and in the equa-
pure power laws. Instead, components of the structure fundions for the correlation functions. When considering a spa-
tions that belong to different irreducible representati@es-  tially homogeneous turbulence, the turbulent domain is usu-
tors) of the SA3) group possess different scaling exponentsally taken to be infinite. The physical boundary conditions at
Each of these sectors is characterized by the angular momegcaleL are mimicked by employing a homogeneous forcing
tum indices/” and m. By projecting the structure function that acts at that scale. In this case, the integrals that result
onto the different sectors, we could meas{2e4] the uni-  from the pressure term are over &ft and their convergence
versal scaling exponents in each sector separately. has to be guaranteed. The question that we want to address in

The spectrum of anisotropic exponents is particularly acthis paper is the following: does the requirement of the con-
cessible inlinear problems like passive scal@f] and pas- vergence of the integrals necessarily bound the spectrum of
sively advected magnetic field$]. In both models, the the scaling exponents from above? Since the correlation
equations of motion are isotropic and as a result the exisfunctions appear in the integrand, an unbounded spectrum
tence of universal anisotropic exponents can be pr¢vgd).  implies a rapidly increasing integrand as a function of the
Additionally the isotropy of the equations implies that the length scale. On the face of it, at some point the integrals
scaling exponents depend of but not onm. One of the must diverge in the infrared. It would appear therefore that
important results of the analysis is that the discrete spectrur@ither there must be a limit to the magnitude of the scaling
of anisotropic exponents is strictly increasing as a function oeXxponents or that the integrals converge due to an infrared
/. This explains the isotropization of the statistics as smalleerossover in the correlation functions. The latter scenario
and smaller scales are observed. Since the scaling exponef®@ks physically reasonable, yet in the presence of pressure
{ appear in power laws of the typeR(L)¢ with L being integrals, seems to break scale invariance in the inertial
some typical outer scale ariR<L, the larger is the expo- range. To demonstrate that, consider a typical integral term
nent, the faster is the decay of the contribution as the $eale Of the form,
diminishes. Therefore the gap between the leading, isotropic
exponent and the next available exponent governs the rate of
isotropization.

Experiments and simulations on Navier-StokBS) tur- f dy G(r=y)C(y). 1.9)
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Here G(r) = — 1/(4m|r|) is the infinite domain Green func- Il. LINEAR PRESSURE MODEL

tion of the Laplacian operator and(r) is some statistical A. Model

object, which is expected to be scale invariant in the inertial _

range. If C(r) has an infrared crossover at scdle(or The linear pressure model captures some of the aspects of

the pressure term in Navier-Stokes turbulence while being a
linear and therefore, much simpler problem. The nonlinearity
of the Navier-Stokes equation is replaced by an advecting
efield w(x,t) and an advected fieldx,t). The advecting field

equivalently, the integral has an infrared cutoff at sdale
then the above expression will not be a pure power law of
not even inside the inertial range. Then how is it possibl

that such an expression will cancel out a local ternCef) w(x,t) is taken with known dynamics and statistics. Both

as is required by the typical equations of motion? fi : . ) X
. : . . iel r med incompressible. Th ion of motion
This puzzle has led in the past to the introduction of the, elds are assumed incompressible € equation of motio

concept of “window of locality” [9,12]. The window of lo- for the vector field“(x.t) is

cality is the range for the scaling exponents in which no A +WH v+ I*p— kv =19, 2.1
divergence occurs even if the cross-over lergik taken to

infinity. For these exponents, integrals of tygg.1l) are du*=0, (2.2
dominated by the range of integratigr=r and are therefore

termed “local.” In a “local” theory no infrared cutoff is d w*=0. (2.3
called for.

In this paper we show that scaling behavior of the corredn this equationf(x,t) is a divergencefree forcing term and
lation functions together with finite integrals over an infinite « iS the viscosity. The domain of the system is taken to be
domaindo notnecessarily imply a bounded spectrum of an-infinite. Following Kraichnan's model for passive scaléf,
isotropic exponents. Our strategy in this paper is to come up/@ choose the advecting fiela(x,t) to be a white-noise
with a tractable example oflmear model with pressure, see Gaussian process with a correlation function that is given by
Eq. (2.1). We refer to this model as the “linear pressure , . ,
model.” We approach the solutions of this model in two St — DN =(w(x+ 1 t)wi(x,b)), 24
steps. First we distill yet another, simpler, exactly solvable
model, which still poses the riddle of the Navier-Stokes
problem. The exact solution reveals that the spectrum of
scaling exponents is unbounded and the convergence of the =Dré
integrals is nevertheless not compromised. In the second step
we find the scaling exponents of the “zero modd4'0,11]
of the linear pressure model and use the conclusions of théhe forcingf(x,t) is also taken to be a Gaussian white noise
simpler model to relate them to the full solution. We showprocess. Its correlation function is
that also in this case the spectrum does not saturate in the
anisotropic sectors. FeB(r/L) s(t—t")=(f*(x+r, 1) fA(x,t")). 2.7

The linear pressure model and its simplified version re- _ . S .
veal two mechanisms that allow an unbounded spectrum o-Fhe forcing is responsible for injecting energy and anisot-
scaling exponents. First, a careful analysis of the window Ogopy to the system at an outer scaleWe choose the tensor

. aﬁ . . . . . _
locality in the anisotropic sectors shows that it widens’as .unctlor)dFI (x) to be analylnc_ InX, anisotropic, and vam_sh
increases. We always have a leading scaling exponent WithiIng rapidly for [x/>1. Analyticity is an important require-

: Ment. It means thaE“A(x) can be expanded for sma| as

the wmdow of locality. Second, there is a more subtlea power series in“; as a result its leading contribution in the
mechanism that comes to play when subleading exponents tor i tional ta’ -2 ai by %P’ Y (X
exist outside the window of locality. In these cases we shom{osggeoir:ztptﬁgﬂ;'?ﬁs Ie(z\ din7 ?:I(\)/rftrr]ibgtion 'i(he ; gzgl)(;)ér can
that there exist counter-terms in the exact solufioat the 9 ’

zero modes!that maintain the locality of the integrals. The consult the general discussion of the construction of the ir-
y y grais. reducible representations in R¢L]. All other analytic con-

bottom line is that in these models_ the anisotropic exponentg;y, iong contain less derivatives and are therefore of higher

are unbounded from above leading to a fast decay of th%rder inx

anisotropic contributions in the inertial range. In order to derive the statistical equations of the correla-
In Sec. Il we introduce the linear pressure model andiqn function of v(x,t), we need a version of Eq2.1)

derive the equations for the two-point correlation function.ithout the pressure term. Following the standard treatment

We arrive at the form containing the dangerous integrals angf the pressure term in Navier-Stokes equation, we take the
discuss again the fundamental riddle. In Sec. Ill we construcgivergence of Eq(2.1) and arrive at

a simpler, exactly solvable model with the same riddle. In

Sec. IV we display the exact solution of the model and dis- 3,0, ,WHv"+ #*p=0. (2.9
cuss the windows of locality and the existence of an un-

bounded spectrum. In Sec. V we go back to the linear presthe Laplace equation is now inverted using the Green
sure model and offer a solution of its zero modes. Section Vfunction of infinite domain with zero-at-infinity boundary
offers a summary and a discussion. conditions,

K*A(r)=D*A(r)—D*A(0) (2.5

(é+2)8"P—¢

(2.6

rerf
r2 |
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can the integral converge in the infrared? One possibility is
p(x)= —f dy G(X—=y)d,d,w*(y)v"(y), (2.9  that the scaling exponent 34(r) is sufficiently low, mak-
ing the integral convergent. The other possibility is that the
correlation function is scale invariant only in the inertial
(2.10 range and vanishes quickly after that, which is equivalent to
the introduction of an infrared cutoff. However, the integral
With this expression fop(x), Eq.(2.1) can be rewritten as terms in the equation probe the correlation function through-
out the entire space. Therefore, a crossover behavior of the
A0 “(X,t) +WH(X,1) 3,0 “(X,t) (2.11 correlation function at the outer scdleseems to contradict a
pure scaling behavior of the correlation function in the iner-
tial range itself. This in turn implies the saturation of the
_‘7(ax)f dy G(x—y)d,d,w (y)v"(y) (212 anisotropic scaling exponents.
To proceed, we use the fact that the figl¢ix,t), as well
— k0 U(x,t) = FUx,1). as the forcing, are Gaussian white noises. This enables us to
expressT*A(r) and the correlation of the force in terms of
C%(r) andF*A(r). In Appendix A we use the well-known

method of Gaussian integration by pdrt§] that leads to the
The statistical object that we are interested in is the twofinal equations,

point correlation function of the field“(x),

G(X)E—W.

B. Equations for the second-order correlation function

CB(r)=(v¥(x+)vA(x)). (2.13 GHCP(r)=TP(r)+TP(—r)
We find its equation of motion in two steps. First, we take _ 989 Tav
the time derivative ofC*#(r) using Eq.(2.11), J dy G(r=y)a"d, T(y)
0t(v“(x+r)vB(X)>+(v“(X+r)W“(X)&Mvﬁ(X)) (2.14 _f dy G(—r—y)a%a,TA(y)
(P OOWH(X+T) 3,0 (X+T)) (2.19 +2K2CB(r) + F(r), (2.18

—<v“(X+r)&("’x)f dy G(x—y)%&VW"(y)v”(y)> 1
T(r)= = 5K*"9,3,C(r)

—<vB(X)0&+r)f dyG(X+r—y)&MaVW“(y)v”<y)>
— k(0¥ (X+ 1) FP0A(X)) — k(vP(X) PP *(x+T))

={v*(x+1)fA(x))+{(vP(x)F“(Xx+T)).

1
+370 | ay G-y LK )9,0,07()]

- %f dy G(y)#°a,[K*"(y),d,C*(r=y)].
To simplify the equations we define an auxiliary function
Taﬁ(r) (219)

TA(r)= 0D (v (x+ 1 )WH(x)vA(x)). (2.1  These equations have to be supplemented with two more

. . L . equations that follow directly from the definition 6#(r),
Using this definition and the space homogeneity of the sta-

tistics, we arrive after some algebraic manipulation to the

following equation: 9,C*(r)=0, (2.20
atC”B(r)—T“ﬁ(r)—Tﬁa(—r)wLf dy G(r—y)aPa,T*"(y) C*P(r)=CPe(—r). (2.29
+f dy G(—r—y)d%d,TP"(y) — 2k3*C*~(r) The first equation follows from the incompressibility con-
straint of the vector fieldv(x,t), while the latter follows
= (0U(x+ 1) FAX)) + (0P () FA(x+T)). 2.17 from space homogeneity.

Finally, we note that Eq92.18 and(2.19 can be inter-

The last equation is identical to the equation for thepreted in a transparent way, utilizing two projection opera-
second-order correlation function in the usual Navier-Stoke$ors that maintain the right-hand sidBHS) of Eq. (2.18
turbu'ence provided thaWM is rep'aced W|thl)’u' in Eq diVergencefree in both indices. To define them, Iet us con-
(2.16. Indeed, the vexing problem that we face is beingsider a tensor fielcK*A(r) that vanishes sufficiently fast at
made very clear: if the triple correlation function has a powerinfinity. Then the two projection operatof, and Py are
law dependence onwith an arbitrarily large exponent, how defined by
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A. Definition of the toy model

D XB(r)=X2B(r)— g% — B
PLXEA(N)=XEA(r) a(’)f dy G(r=y)a,X*(y), In the toy model, we are looking for a “correlation func-
(222 tion” C%(r) whose equations of motion are

- 0.C4(r)y=—K**(r)a,9,C%r)—dg,
PRX“B(r)EX“B(r)—aﬁ)f dy G(r —y)a,Xa(y). & (N3, 3,C51) =iy

(2.23 X f dxG(r —x)d,K*"(%)d,d,C7(X)

We observe thaP, X*# andPxX*# are divergencefree in the + kPCHr)+Fa(r/L) 3.0
left and right indices, respectively. Using these operators we ’ '
can rewrite Eqs(2.18 and(2.19 in the form 4,C%(r)=0. (3.2

GHCP(r)=PrT*A(r) + PrTP*(—1)+2kd°C*A(r) HereF¢(x) is a one-index analog of the correlation function
+FeB(r) (2.24 of th_e origina_l fc_)rceS:“ﬁ(x)._Accord@ng_ly, we take it ani_so—
’ tropic, analytic inx® and rapidly vanishing fopx|>1. As in
1 the previous model, also here analyticity requires that the
TeB(r)=— Ef)LKWgMaVCaB(r) leading contribution for small|x| is proportional to
9°X”Y ;m(X) in the/ sector. Accordingly it is of ordex” 1.
The toy model is simpler than the linear pressure model in
- %f dy G(y)a%a,[K*"(y)d,3,C*(r—y)]. two aspects: First, the correlation functi@f(r) has one
index instead of two and therefore can be represented by a
(2.29 smaller number of scalar functions. Second, the unpleasant
nontrivial term of the linear pressure model is absent. This
will allow us to solve the model exactly for every valuef4f
Nevertheless, the toy model confronts us with the same con-
ceptual problems that exist in the linear pressure model and
4h NS turbulence: can a scale invariant solution in the inertial
tt%mge with a crossover to a decaying solution at stalbe
consistent with the integral term? If not, is there a saturation
of the anisotropic exponents?
Equation 3.1 can be rewritten in terms of a new projection

On the other hand, there seems to be no way to eliminate tHEP€rator?, which projects a vectax“(r) on its divergence-

last integral in Eq(2.25 and therefore we shall refer to it as 7€ Part

the “nontrivial integral.” Only for é&=0 and&=2 it trivial- N - , " > a

izes: the integral vanishes wheér=0 and is proportional to oHC=—PK*9,9,C]+ ka“C +F, 33
C*A(r) when é=2. Unfortunately, in these extreme cases

also the projection operator trivializes and the effect of theWhere
pressure cannot be adequately assessed. We prefer to study

the problem for a generic valugfor which the incompress- ﬁxa(r)zxa(r)—aﬂf dy G(r—y)d,X*(y). (3.9
ibility constraint and the pressure terms are nontrivial.

We deal with this problem head-on in Sec. V. Due to the
nontrivial in;egral, we will not be able to provide a full so-
lfl;tr'gré;fn(g: so( rvzle w;uﬁglﬁkcg ttgitﬁ?jr;amn?gga t';g\t/\/:f\;g:asanapla}cian_operator and then turni_n_g it into a set of decoupled
exact solution in order to understand in detail the issues a?DE s using the S(8) decomposition.

hand. In the next section we therefore consider a simplified As in the linear pressure model, the nonlocality of the

model of the linear pressure model, yet posing much of thénro!elctlon _oper?t_or can be removed by considering a differ-
same riddle. ential version of it

The projection in Eq(2.25 guarantees that“A(r) is diver-
gencefree in its left index while the projection in E§.24)
guarantees divergence freedom in the right index.

Not all the terms in these equations are of the same n
ture. The integrals due to the projection operator are easy
deal with by applying a Laplacian on them. For example,

PPRTB(r)=d*TB(r)— k3, T"(r). (2.26)

We shall solve this integro-differential equation by first
turning it into a partial differential equatiofi’DE) using the

PPTr)=3?T*(r)— %9, TH(r). (3.5
I1l. AN EXACTLY SOLVABLE TOY MODEL
In stationary conditio,C“=0 and therefore the differential

w truct a t del that inspired by E@s1 d L~
€ construct a toy model that inspired by E18 an form of the toy model is given by

(2.19 for the correlation function in the linear pressure
model. Within this model we demonstrate the strategy of

25 v @
dealing with the nonlocal pressure term. Since it is a simpli- ITPLKH(r)d,9,C%(r)]
fication of the statistical equation. of the Iingar pressure =aZK“”(r)ﬁM(?VC“(r)—a“aTK“V(r)aM&VCT(r)
model, the toy model has no obvious underlying dynamical
equation. = Kkd?9°C+ 9%F*, (3.6)
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3,C%(r)=0. (3.77  ashort calculation yields

We have reached a linear PDE of order four. This PDE will RCe(r)=K*"(r)a,9,C%r)
be solved by exploiting its symmetries, i.e., isotropy and mev
parity conservation, as demonstrated in the next subsection.

/

=Dx¢| 2¢] +2(2+g)——(2+g)(/+1)
B. The SQO(3) decomposition
Equation 3.6 and the incompressibility conditionGsf(r) Cif ) n P %
are both isotropic and parity conserving. Therefore, if we X(/+2) r2 Ar(r) +Dx¢| 2¢;2(2+¢) r
expandC«(r) in terms of spherical vectors with a definite
behavior under rotations and under reflections, we would get Cy - Co| o
a set of decoupled ODE's for their coefficients. +2(2+8) — —2(2+§)/(/=1) | AZ(1).
For each sector/A,m), />0 of SO(3) we have three r r
spherical vectors (3.10
AL(N)=r"""ta"D (1), Therefore, in matrix notation, the Kraichnan operator can
. be written as
AS(N=T7""10%D (1),
A .[Cy ; 1 (o 1 0\(c;
Ag(r)Er_’/e"‘“VrMaV(I)/m(r). (38) K c, =2Dr 0 1 +2D(2+§) 0 1 Cé

Here® ,(r)=r"Y (), and seg1] for further details. The
first two spherical vectors have a different parity than the
third vector, hence the equations for their coefficients are
decoupled from the equation for the third coefficient. In the
following, we shall consider the equations for the first two =riK,
coefficients only as they have a richer structure and larger
resemblance to the linear pressure model. Finally, note that
the isotropic sector, i.e4 =0, is identically zero. To see
why, notice that in this special sector there is only one Let

spherical vectorAf(f)—r e, Hence the isotropic part of

C“(r) is given byc(r)r *r c(r) being some scalar func- T(r) =ty (NAX(T) +to(r)AL(T) (3.12
tion of r. But then the mcompressibility conditiai3.2) im-

plies thatc(r)~r ~2, which has a UV divergence. We there-

fore conclude that(r)=0 and restrict our calculation to and applying a Laplacian t5T¢, we get

/>0.

By expandingC“(r) in terms of the spherical vecto#ds;, .
andA,, we obtain a set of ODERlecoupled in the {,m) JPPT =
labeld for the scalar functions that are the coefficients of
these vectors in the expansion. The equations for these coef- t
ficients can thus be written in terms of matrices and column —/(/=1)(/+ 1)_2 Al
vectors. To simplify the calculations, we find the matrix r
forms of the Kraichnan operator and of the Laplacian of the

— §-2
D(2+é)r ) /-

!

(/+ D)(/+2) 0 )(cl)
)

”

+rét K,

Frét2g (Cl) (3.11)
0 CZ . .

2 C2

2. The matrix form of the Laplacian of the projection operator

!

L . .u
=/t +/—+/(2/ )T—/(/Jrl)—2
r

projection operator separately, and only then combine the = t_1+(2_/) '[_Z}Aa_ (3.13
two results to one. 2y rj?
1. The matrix form of the Kraichnan operator Hence in matrix notation,

To obtain the matrix of the Kraichnan operator in the

basis ofA; andA,, we expandC“(r) 2A(t1> 0o —/ t{) 1( /(20— 1)) (ti)
a = +—
o e t,) \0 1 /\ty) rl-1  2-/ ]t
CH(r)=ca(NAT(F) +ca(NAS(T). (3.9 ? ? ?

. I . A+ A=D1 [

Using the basic identities of thé ,,,(r) functions(see[1]), - 0 0 ‘
r 2

&ZCD r :0, " ’
/m( ) tl 1 tl 1 tl
=Py| [+ 7P| |+ Pl |- (3.14
2

rluay,q)/m(r):/q)/m(r)! tg r té r2
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C. The matrix form of the toy model analytic and must therefore also scale like * for smallr,

Now that the matrix forms of the Kraichnan operator andinstead of scaling like” %, which could be the naive di-
of the Laplacian of the projection operator have been foundmensional guess.
we can combine these two results to find the matrix form of To proceed we restrict ourselves to finding the solution in
the left-hand sideLHS) of Eq. (3.6). To this aim let us the inertial range and beyond. In these ranges the dissipative

define term xd%9°C%(r) is negligible and can be omitted, thus
reaching the following equation for the column vector
t .[C C1,Cp):
( I)ZIC( l) (315) ( 1 2)
t; C2 (4) 3 (2)
eyl L e L e
and from Eqgs(3.11) and(3.14) we get T e 23 e 2\ e
(4) (3) (2) (1)
~~[C1 Ci Ci Ci Ci C1 p1
P*PK =rfM +ré7IM +ré2M +ré3M +ré4M ( ):( ) 3.2
(Cz) 4( 0(24) 3 C(23) 2 C(22) 1 C(21) 0 c, 0, (3.20
s c(V cany [ ©2 Finally, also the incompressibility constrairt,C*(r)
+reTeMy oD e ) (3.1 =0 can be expressed as a relation betwegn) andc,(r),
where the number in parentheses denotes the order of the ci+ 22+/c§—/(/— 1)2=0. (3.21
derivative. The matricedl; are given by r r
My=P,K,, This constraint has to be taken into account when solving Eq.
(3.20.
Ma=2£P, K, + Py Ky + 1P Ky,
’ 2 2 v IV. SOLVING THE TOY MODEL
Mp=€(E—1)PoKo+2(§— 1) PoKy+ PoKo+ €P1 K, A. The general solution
+ P K+ PoKs, (3.17 The solution of Eq(3.20 is somewhat tricky due to the
additional constrain{3.21). Seemingly the two unknowns
Mi=(E—21)(€—2)P K1 +2(£—2)Po Ko+ (€= 1) P Ky c,(r) andc,(r) are over determined by the equatigi8s20
and 3.2], yet this is not the case, for Eq€.20 are not
+P1Ko+ oKy, independeniwhen considered as two scalar equations, re-
sulting from the two-column vectorial equatjomo see that
Mo=(£—2)(£—3)P,Ko+ (§—2) P Ko+ PoKp. this is the case and find the solution, it is advantageous to

work in the new basis
To find the RHS of Eq(3.6) we expand the “forcing”

F(r) in terms of the spherical vectofs, andA,, di=c;+/¢,,
. . , (4.1)
Fe(r)=f1(r)AL(r) +f(r)Az(r), (3.18 dy=—2¢;+/ (/= 1)c,.
and applying a Laplacian we find the matrix form of In this basis the incompressibility constraint becomes very
P2F(r), simple,
2 1 d,=rd; 4.2
f, fi+t—fi—-(/+1)(7+2) =1, . ) o )
r r allowing us to expresd, and its derivatives in terms af;.
9 = 5 1 To do that in the framework of the matrix notation, we define
‘) f1+ Ffé+ it S~ 1)r_2f2 the transformation matrix/
U ( ! ‘ ) 4.3
= " , 4.
= (319 1 (/-1 7
Uil=—0—— : (4.9

At this point it is worthwhile to remember that the forcing SO that

termF<(r/L) is assumed to be analytic. As a result féL.

<1, its leading contribution in the/(,m) sector is propor- (dl) =U( Cl) 4.5
tional to 9°r’Y ,(r)~r” 1. However, 3°F%(r/L) is also dz C2
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The equations ofl;(r) are the same as the equations for réFVed(® +rév,d(® +rév,d® +ré-2v,d @
¢;(r) with the matrices\l; replaced by .
P
N;=UM, U2 (4.6) +ré3v,dB+ r“vodl:( i , (4.9
P2
and the sourceg; replaced by ) ) .
whereV; are two dimensional vectors given by
*
p p
( i>:U( 1). 4.7 0
P2 P2 V5EN4 1 y (41@
Notice that a divergencefree forcig(r) will causepy (r)
and p3 (r) to be related to each other in the same way that N 0
d,(r) andd,(r) are related to each other, i.e., Va=N, +N3 1)’
p3=r(p})’. (4.8 1 0
Next, we perform the following replacements: Va=Ng 3 +IN; 1/’
dy=rd{V, 1 0
Vo=N,| | +N
d$)=rd®+d(D, = f2) 1)’
di?=rd{®+2d{, 1 0
VlEI\\\l +N0 ’
4P =rd(M+3d®), ! !
1
d$Y=rd{®+4d{®. VOEI\O(O)- (4.1
We get an equation written entirely in terms of the function
d,(r) and its derivatives, Their explicit values are given by
0
Vs=D|, |,
2
Va=D 16+6¢)’
16+ 4§
V;=D ,
S\ —4/2-4/ 432648 /2 £/ + 68
—4/%— 4/ + 206+ 24— /2~ £/ + 2
V,=D ; ‘ ‘
2T\ —8E/% 88/ —AE— A8+ 2262282 /2 - 287/ +28°)
5 —(E+2)(—BE+E/ P+ E/+A/2+ A7)
VimOl (v o) (68— 87— 2/ /7186 £/ + 1+ 1124 25+ 100) |
v D( A= +2)(/+1)(E+2)
U E- (- )+ )

Equation(4.9) is for a column vector and can be regarded adower equation is the first derivative of the upper equation
two scalar differential equations that we refer to as the “up-provided that=“(r) is divergencefree. Hence the two equa-
per” and the “lower.” The upper ODE is of the fourth order tions are dependent and we restrict our attention to the upper
while the lower ODE is of fifth order. Not surprisingly, the equation. To simplify it, we divide both sides bpré,
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replaced,(r) by #(r), and define the RHS to be the function A/ =8+ &2+ &/ —26+5+4/+472%,  (4.17)
S(r),
B(/,&)=—8&%/—T&2/2+168%+28%/3+ £/

S(r)=D~"tr~&p¥(r). (4.12
—8¢&/%—8¢&/— 326+ 16+ 647+ 64772,

After doing so, we reach the following equation:

(4.18
(3) (2) (1) o
w(4)+a3—+a2(//—2+all//—+a0—=8(r). In the limit £ 0, the roots become
r r r3 r4 ,
(4.13 f=/+1,
Its homogeneous solution is easily found once we substitute (=1,
(4.19
P(r)=ghor*. (4.14 {3=—7/,
The scaling exponents are the roots of the polynomial Ly=—/—2.
P(O)=2(L—1)({—2)({—3)+azl({—1)({—2) Figure 1 displays the first few exponents as a functioi.of
We note that the spectrum has no sign of saturation”as

increases. Before we discuss the meaning of this observation

and are found to be real and nondegenerate. Two of them ale will make sure that these solutions are physically relevant
) and participate in the fullexac} solution including bound-

positive while the other two are negative, given in a decreas- o
ing order by ary conditions. . . N _
The general solution of E¢4.13) is traditionally given as

1 1 1 the sum of a special solution of the nonhomogeneous equa-
(1=~ 57 §§+ EA[/’ &+ VB(/,61Y2 tion plus a linear combination of the zero modes. However,

when attempting to match the solution to the boundary con-

ditions, it is more convenient to represent it as

1 1 1
§2=—§—§§+§A[/,§)—M]”Z, \ )
Si r
111 410 0= g S,
ly=— 556 5A/.6)—\B(/.O]"2 RS A

all different roots

1 1
li== 5= 56 5[A/H+ BT (4.29
where the free parameters of the solution are the four con-
where stantsm; . Indeed a change im; is equivalent to adding to
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the solution a constréi. In the next subsection we find the mined by the value of the tensor at the external vectdn
values ofm; that match the boundary conditions, and discusghe language of Eq.1), A(y) =V?B(y).

the properties of the solution. The second and less obvious aspect is that the window of
locality widens up with/”. This is due to the cancellations in
the angular integration of the anisotropic solutions that are
due to the orthogonality of th¥ ,,(r) and their generaliza-

tions Bg/m(F). To demonstrate this consider again the simple
integral(1.1) and assume th&t(y) belongs to £, m) sector,

B. Boundary conditions and inertial-range behavior

From Eq.(4.20 it is clear that the only values af, that
guarantee that the solution remains finiterasO and that it
decays ag—o arem;=m,=+©°, my=m,=0

ie.
ré joo o .
ry=-— dx xX°7 1 §(x C(y)=a(y)Y . 4.2
N Ve ATr AT ST AR ) ) =ay¥en(y) 423
(2 Y o Fory>r, we may expand the Green functionrify,
- dx x*"¢28(x " R
(52‘51)(52‘53)(?2_54)£ x) (r—y) 1 1 5 (r)z 2r.y}n
r—y)y=-— =- ap | =] —2—| .
rés r ot Y 4mlr—yl| Amy i=o "L\y y
+ dx xX°7 3 §(x 4.2
(o0 8 (Lo L) ) S0 (4.24
2 Here a,, are Taylor coefficients. Obviously the dangerous
+ r frdx 344 5(x) terms for the infrared convergence are those with low values
(84— 84— E)(La—L3) Jo ' of n. However, all these terms will vanish for</ in the

(4.20) angular integration againét/m(yA/). The reason is that all
these terms are of the fornfy™2(r-y)"s with ny</. The

To understand the asymptotics of this solution we find from@ngular part here has projections onfy. with /’$k3:
Eq. (4.1 that forx<L, S(x) has a leading term that goes <7 - The first term to contribute comes whem=/"
like x”~17¢ whereas forx>L, S(x) decays rapidly. It is and Is prop_o/rgi)nal to the amplitude Alntggral
now straightforward to prove that far<L, the ; and ¢,  Jr dY Y°a/m(y)y “~*. For a power lawa, n(y)~y" this
terms scale like” "3~ ¢, the £, term scales like¢2, and the implies locality for
£, term scales lika ¢t for values ofé for which {;</+3 s
— ¢ and liker” 3¢ otherwise. In addition, it is easy to see N</=2 (4.29
that forr>L, y¢(r) exhibits an algebraic decay: thig and  jnstead ofA<—2, as in the isotropic sector. The lower
¢, terms decay rapidly due to the decqysgk) whereas the  [ound of the window of locality is also extended and a simi-
{5 and ¢, terms decay algebraically like*, respectively. |ar analysis fory<r leads tox>—/— 3. For the toy model

The asymptotics of the full solution are thus given by this translates to the window of locality
w(~1 ., (4.22 . o .
res, r>L. From the previous analysis we find that the leading power

law of the full solution in the inertial range ig2, which is

The obvious conclusion is that there is no saturation in thénside this “extended” window of locality. Nevertheless, the
anisotropic scaling exponents asincreases. The lack of subleading power<: originating from the first term in Eq.
contradiction with the existence of an integral over all spacd4.21) is above this window, and its presence in the solution
has two aspects. The main one is simple and obvious. Thean be explained only using the first mechanism.
integro-differential equatior3.1) for C* has a differential We will see when we turn back to the linear pressure
version(3.6). Solving the differential version, we are unaf- model that both these mechanisms operate there as well,
fected by any considerations of convergence of integrals angading again to a lack of saturation in the exponents.
therefore the solution may contain exponents that increase
with / without limit. Nevertheless, the full solutio®.21) V. SOLVING THE LINEAR PRESSURE MODEL

exhibits a crossover dt: it increases in the inertial range .
We now return to the linear pressure model. As men-

<L for>L. Th lugging i k he . . I
and decays for us plugging it back to the fioned before in Sec. Il B, we see no way of eliminating all

integro-differential equation we are guaranteed that no diver: . .
genge oceurs a 9 integrals from the equation and therefore we will not look for

The question why the crossover lendthdoes not spoil a full solution. Nevertheless, we shall be able to calculate the
the scale invariance in the intertial range still remains. Thef€ mode_s and hence the .scalmg exponents. .Our stratggy
answer is found in differential form of the equation of mo- relies heavily on _the conclusions qf the last section: we wil
tion given by Eq.(3.6). From this equation we find that the PPy tWo Laplacians to the equation f6r#(r) in order to
integrand is a Green’s function times a Laplacian of a tenso€liminate the integrals of the two projection operatBsand
By definition, such an integral localizes, i.e., it is fully deter- Pz. The resulting equation will still contain the nontrivial
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integral. Using numerical integration we will solve the ho- satisfy the equations obtained by neglecting the dissipation

mogeneous part of this equation, i.e., we shall find its zeroand setting the forcing and time derivative to zero,

modes. These are scale invariant solutions that solve an

equation containing an integral. Their exponent must there-

fore lie within the extendedA dependentwindow of local- 0=dK**9,3,C(r)+3*9P3,0,K"*3,3,C™(r)

ity. Finally, we will argue that these zero-modes are a part of w

the full solution that decays for>L, and therefore solve the = 0°0,0°K"3,0,C(1) = 9P d.9°K""9,9,C*(1)

original equation as well. 12¢D
T

(6=3)(é—5) §-256CaB(y —
5—3)(5—5)fdy6(y)y C(r—y). (5.4

A. Equations for the zero modes

We start from Eqs(2.24) and(2.25. In Appendix B we
perform integration by parts and algebraic manipulations td-€t us now define the RHS of the above equation as the
bring the nontrivial integral in E¢(2.25 to a more tractable “zero-modes operator’®(¢) and write the zero-modes
form. The result of this process is equation compactly as

1,
aff —_ v apB
Te8(r) =~ 5PK*3,9,C*(r) 0=[O(&)C(r). (5.5

_1125—[) §—220aB(r _
2(g_g))(g_g,)fdyG(y)y d“C*P(r—y),

To solve it, we write the solutiol€*?(r) in a basis that
(5.0 diagonalizes)(£). This is done in the next subsection.

which is true for everyé#1. The é&=1 case will not be
treated here explicitly. Nevertheless, we will arqugoste- B. SO(3) decomposition
riori that the results foé=1 can be deduced from thé

#1 results by continuity. ) . D
y Y looking for the operations that commute with it. From Eg.

Looking at Eq.(5.1), we note that whe§= 2, the integral L - .
on the RHS of the above equation trivializes to a local term (>4 it iS €asy to see that these are rotations, scaling, permu-

CA(r). In this limiting case the model can be fully solved tation of indices, and flipping af. As a resultO(£) is block

utilizing the same machinery used in the previous sectiondiagonalized by tensoG*#(r) that have the following prop-

The solution can then be used to check the zero modes corifties.

puted below for arbitrary values &t They belong to a definite SeCtOl’/(m) of the SQ@3)
To proceed, we substitute E¢.1) into Eq.(2.24), noting  9roup.

that the projectorPy leaves the nontrivial integral in Eq. . Thley hﬁ"‘? ha definite sl_calmg behavior, i.e., are propor-
(5.1) invariant since it is divergencefree in both indices. Set-10nal tor™ with some scaling exponeat
ting 3,C**(r,t)=0 in the stationary case, we arrive at the They are either symmetric or antisymmetric under permu-

: : tations of indices.
following equation: ) .
geq They are either even or odd m

DD ap In [8] we discuss these types of tensors in detail. Here we
0=~ [PrPK"3,0,C*](r) only quote the final results. In every sectof,(n) of the

To diagonalizeD(&) we must look for its symmetries by

12¢D 2.2 B rotation group with/>1, one can find nine ind_ependent
_WJ dy G(y)y* “9°C*"(r—y) tensors )S“ﬁ(r) that scale liker. They are given by
r'Bef q(r) where the indexq runs from 1 to 9 enumerating
+2kd*CP(r)+ FB(r). (5.2 the different spherical tensors. These nine tensors can be

_ _ further subdivided into four subsets
As in the toy model, we apply two Laplacians to the above g hset [of symmetric tensors with-{)”

equation in order to get rid of the integrals of the projection
operators and obtain

parity contain-
ing 4 tensors.

Subset llof symmetric tensors with<€)” " parity con-
taining 2 tensors.

0= _‘94[PRPLKW‘9M9VC“B](” Subset lllof antisymmetric tensors with=()” "1 parity
12¢D containing 2 tensors.
- 3—f dy G(y)y¢ 295C*P(r —y) Subset I\of symmetric tensors with-{)” parity, contain-
(£-3)(£-9) ing 1 tensor.
+2KkBCYB(r)+ d*F*B(r). (5.3 Due to the diagonalization dd(&) by these subsets, the

equation for the zero modes foliates and we can compute the
Here and in the following, the operatéf” should be inter- zero modes in each subset separately. In this paper, we
preted as ¢?)". We now seek the homogeneous stationarychoose to focus on subset I, which has the richest structure.
solutions ofC%4(r) in the inertial rangézero modes These The four tensors in this subset are given by
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Bix,{;m(;):r—/—Zrarﬁ@/m(r), _ The explicit computation of the matri®(\;/, &) is tegh-
nically very cumbersome due to the presence of the integral
term. We shall therefore use an implicit method to determine
whether Eq(5.10 has a nontrivial solution or not. The basic
(5.6 idea is that the calculation of the nontrivial integral in Eq.

B2 (1) =1 [reP+rPa¥]d ,n(r),

BSE (1) =178 (1), (5.4) can be simplified if we contract its free indices with the
g s two isotropic tensor?:aFﬁ and 6,5 . Therefore, instead of
Balm(r)=1"""29%0P® ,(r). solving Eq.(5.4) explicitly, we will contract its RHS with

) _these two tensors and require that the two resultant scalars
We expect the calculation of the other subsets to be easigqnish simultaneously. Obviously this would provide us with
once one is familiar with the techniques we are about 0 necessary condition for the solvability of B§.4). Never-
develop. '.:'”aa'};y! we ”B(fe that since the correlatloff(r)  theless, we shall see that it is also a sufficient condition.
has to fulfill C*(r)=C”“(—r), our subset | solution will be Let us write the two tensorfsaFB and s, ; in matrix no-

valid only for even/s. . . PN
ExpandingC#(r) in subset |, tation as two row vectoréw,(/)|,{w,(/)| given by

CUP(x)=r[c1B2, (1) +c,BSE (1) +c3B3e (1) (wi(/)|={1 2/ 1 /(/—1)} contraction witrrar(ﬁs, "

+c,BYE (D], (5.7) (wo(/)|={1 2/ 3 0O} contraction withs,,z .
and plugging it back into PDE5.4), we obtain a linear equa- The contraction 0B,z andr ,r 5 with another tensor is trans-

tion for the coefficients,,c,,c3,¢4 that depend on the pa- lated to the usual matrix multiplication of these row vectors
rameters\,/,¢. In the four-dimensional space of column with a column vector. For example, i) is a column vector

vectors €;,C,,C3,C4), We can write it as whose components are given by, i=1, ... 4,then

C1 8ap(C1BYE (1) +CoBSE (1) +CaBEE (1) +CyBgL (1)

Cy R

O(N;7,€) .. | =0 (5.9 =(Ccy+2/CoH+3C3)Y (1)
3

Ca =(Wa()[C)Y /m(T). (5.12
where O(\;7,€) is a 4<4 matrix that represents the zero-  Returning to the zero-mode equations, we now define the
modes operato®(&). 2X2 “reduced matrix” O;;(\;/,§) by

To continue, we note that due to the incompressibility ) o ) )

constraint(2.20 of C*A(r), not all vectors ¢;,C;,C3,Cq) Oij (N7, ) =(Wi(N[ON; 7, H)[uj(N; 7). (5.13

are allowed; for a giver,/, only certain combinations of ) ) . i
B8, (7) e toa civergencena@” (). A simplecal-  OIVOUS, e exstence of a roniivi sauton that makes
culation [1] shows that these belong to a two-dimensional AN . q q

that O;;(\;/, &) is singular, i.e.,

subspace, which is spanned by the “incompressible vec-
tors,”

—/(N=7) L . .
N2/~ D) (A= +2) The above condition is also sufficient for _the solvability of
luy(n;)) = ( ’ ’ the zero-modes equation. To see that, notice that the RHS of
B 0 ' Eq. (5.2 and therefore the RHS of E¢6.4) produce tensors
—(A+3) that are divergencefree in both indices. Thus the vectors
O(N;Z,8)|ui(N;2)) will belong to the two-dimensional sub-
N/ (5.9 space that is spanned hy;(A +£—6;/)). Since the trans-
0 / formation matrix
|ua(hi )= (N+2)(/—1)(N=/+2) | Uij=(Wi()|uj(N+£-657)) (5.19
1

is nonsingular for all values oh and & we find that
ON;Z,6)|ur(N; 7)) and O(N;7,8)|ux(N;/)) are linearly
dependent if and only if E¢5.14) holds.
Looking at Eq.(5.4), we recognize thab(¢) is a sum of
O(N; 7, 6)[ag|ur(N;))+aguy(h; /)] =0, (5.10 a differential and an integral operator. Consequently,
O(N\;7,€) andO;j(\;/,£€) can be written as a sum of corre-
to admit a nontrivial solution. sponding parts,

The zero modes exponentscan be found by requiring the
equation
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O(N:/, &) =091 (\: /7, &)+ 0NN/, ), From Eq.(5.4), we see that the differential part of the
_ _ (5.16 zero-mode operator is given by
Oij(\;7,6)=0f"(\; 7,6+ OM'(\; 7, &).
These_ parts are of a different nature anq thus we dedicat@dif(f)caﬁzaZaZKﬂvaMayca,B_l_aaaﬁaT&UKuVﬂMaycﬂr
two different subsections for their calculation.
—9%9,9°K**3,0,C™F—9P9 9°K*3,9,C.
1. Form of the differential operator (5.17)
The calculation of0ff'(\;/,£) can be done directly by
calculating the matrixO%f(\;/, &), employing the same
techniques that are used in Reff$,8] and in Sec. Ill. Here To find its matrix representation it is convenient to first cal-
we merely give the mid and final results. culate following operators:

L(N;Z): X — 92X P,

(N—/=2)(\+j+3) 0 0 0
o (N=/)N+/+1) 0 0
L= 2 0 N=)YN+/+1) O 618
0 4 0 (N=/+2)(\+/—1)
My(N;2): XP—9%9P 5 ,0,X™,
(N=/=2)(\—/—4) (N+1)(A+2) T
o AN—/—2 2/(N+2)(A—7)
M= N—/—2 N+ 1+/)(N=7) ' (5.19
1 SIN=) (/=1 (N=/+2)
My(N;2): X — 9%9 X™B+ 9P X,
20N—/=2)(A+2) 2/(A=/)YN—=/=2) 2(A—/—=2)(\=/) O
| M2 N=)/+N\+3) 2(\=7) A=)N/=1)(N=/+2)
Ma(\; )= 2(A+2) 2/(N=7) 2(N—/) 0 ’
0 2(N+3) 2 20/ -1)(N—/+2)
(5.20
K(\;7,8): XK (£)d,0,XF,
K(\;/,&)=D[(£+2)L(N; /) —EN(A—1)1]. (5.21)

With these four matrices, the matrix form of the differen- . 12¢D
tial part is written compactly as [OM(&)C*](r)= (E=3)(£=5)

0N/, &) =[LIN+E—4;/)L(N+£-2,7)

XfdyG(r—y)lr—ylf’z&ec”‘ﬁ(y).
+My(N+E=2;/)—Mx(N+E-4;0)

: 5.2
XLIN+E—2;/)]K(N; 7, €). (5.22 .23
dif ) ) o To calculate the reduced matri%.13, we have to compute
Oj (N;7,€) is then computed directly from definition. the contraction of@im(g)cag with FaFB and 5,5. To do
o F ¢ the intearal ‘ that, let the tensoX*4(r) be of the form of the trial solution
- rorm ot the integral operator (5.7), i.e., let it belong to the {,m) sector of ST3), be

The integral part of the zero-modes operator is given bydivergencefree in both indices, and proportionatto If we

056302-12



SPECTRUM OF ANISOTROPIC EXPONENTS IN . .. PHYSICAL REVIEW@3 056302

denote in matrix notatioXX“?(r) by the column vectofx),  €ver, the above formula is valid also for valueshobutside
then from the isotropy of the tenscfr§FB 8.5, We have the this window of locality for which the formal definition of

following useful identities: A(N;7,€) makes no sense. The relevance of these values to
the full solution must therefore be addressed. This will be
P XB(r) = (wy ()XY, (r) done in the next subsection where we present the values of
«p e (524 the scaling exponents.
6aﬁxaﬁ(r)=(W2(/)|X>r"Y/m(F). ' Let us now consider théa?ﬁ contraction
Consider now the contraction of |2:r—2j dyG(r—y)|r—y|§‘2rar,3X“ﬁ(y). (5.30
f dy G(r—y)|r —y|[*2X*#(y), (5.29  Using the identity
with 50‘5 rarB:(ra_ya)(rB_y,B)+(ra_ya)y,8+ya(rﬁ_yﬁ)
+yayﬁr (53])

=4, fd G(r—y)|r—y|¢ 2xe#
! g VG =yl ) we can decompose the integral into four terms:

The (r,—Ya.)(rg—yp) term:

=(w2(/’)|x)f dy G(r—y)[r—y|$ 2yMY, m(y). Recalling that
5.2
(.20 G(r—y)=——4ﬂ|r_y|, (5.32
If \ is in the window of locality of the integral above, then
the integral will converge and be proportional to it is easy to verify that
r*éy . (r). The scaling exponent+ ¢ follows from power (2
counting[remember thaG(r)~1/r] while the angular de- G(r=y)[r=yl* “(ro=ya)(rg—yp)
pendence is a result of the isotropy of the integration over all 1
space. This leads us to define the proportionality factor =9 (3:,8(3(r—y)|r—y|§+2
iy (+1)(¢-1) ¢
A(N;E,7),
: A - ~ ———G(r=y)|r—y[¢6,5. 5.3
AL Y D)= [ Ay G-l =yIE Y ) =l (533
(527 Plugging this into the integral, the term with the derivatives
with which we can write will vanish due to integration by parts and the divergencefree
X*P(r). We are therefore left with
L= (W) X)AN; 7, ETMTEY (1), (5.28 (2
_ _ —v|¢ ap
The prefactoA(\;/, &) is the only part of the calculation g—lf dy G(r=y)[r =y|*0usX7m(y)
that cannot be done analytically. However, instead of calcu- (-2
lating the integral in Eq(5.27 numerically, we can expand _ Wal( ) x fd G(r—wr—vI& Y, (v
the integrand as a Taylor series and wWité\;/, &) as an §_1< A% | dy G(r=y)|[r=y[*y*Y  m(Y).
infinite series of poles il. This is done in detail in Appen- (5.34

dix C with the result that
Using the identity

o0

N /,
AN/ =5 2 (/) PYNY n(§) = (N 2= )+ B+ Y (D),
(5.3
1 1

“INF3+/+2q Nté-/-2q)

we further integrate by parts the last integral to finally obtain

(5.29 —¢
N+2-)N+3+/

) (Wo()X)AN+2;7,€)

The coefficientsay(/, &) are given in Appendix C. We no-

tice that the window of locality in the definitiofb.27) of Xr”’rgY/m(F). (5.36
A(\;&,7) can be identified from the positions of the poles in

Eq. (5.29. Indeed, the boundaries of the window of locality ~ The (r,—VY,)Ys.Ya(rg—Yys) terms: Using the same
are determined by thg=0 term and located at=—/—-3  tricks as in the previous term, i.e., integration by parts and
and\=/—&. When\ hits these boundaries the integral in the fact thatX*#(y) is divergencefree, we can easily show
(5.27) diverges corresponding to a pole in E§.29. How-  that both these terms vanish.
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FIG. 2. Leading scaling expo-
nents for the first few’s in the
linear pressure model. The dashed

9
8
C(a:z;) 7
6
sk T e . line indicates the upper bound of
4
3
2

(=9

== the window of locality.

The y,yg term: Using Eq.(5.24 and the definition of it ‘ .
A(N;7,€), we directly get O'fi(7\;/',5)=A(7\—4;/,5)[(Wl(/')|Ui(>\;/”,§)>

'3
C(N=4-/)(N\—3+/)

(W )AN+2;7,EMEY (). (5.37)

Gathering all the terms, we see that the contraction ﬁ\gjfk}; X<W2(/)|ai()\;/,§)>},
is equal to

E ) int/y . o _ Ay =

XAN+2:7,6)rMEY (7). (5.39 3. Results
Figure 2 shows the leading scaling exponents of the linear
pressure model for'=0,2,4,6,8,10. The results were ob-

ANty . o ; B
To conclude, the matri®;; (N\;7,€) is given by the follow- tained by numerically solving Eq.(5.14 for ¢

Ing equations: =0,0.01,0.02. ..,1.99,2. The prefactof(\;/,£) was cal-
culated using the formula@12) and (C13) where the infi-
- 126D ‘ nite series of poles was truncated typically after 100 poles
[ui(\;7,6))= mﬂ«'(k —4,/) when it was clear that relative contribution from the consecu-

tive pole was smaller than the machine precisiabout
XLN=2;/)LN)|ui(N; ), (5.39 10 %, Additionally, the numerical results were compared
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to the analytical results @f=0,2 and of/=0 and/=2 and  +2<\A<\p+2. Suppose now that* with A ;<A <\p+2
found to be correct within a relative error of 1¥. is such a solution, which is therefore part of the full solution
From Fig. 2, we see that in the isotropic sector and in thef Eq.(5.42. We now claim that this solution also solves the
/=2 sector, the leading exponentds-0, corresponding to  original equationEq. (5.41)], hence allowing the existence
the trivial C*4(r)=const solution. These zero modes will of scaling exponents outside its window of locality. To see
not contribute to the second-order structure function, whicihat, we first notice that since the full solution decaysrfor
is given by >L, then all the integrals in Eq5.41) converge and are
therefore well defined. All that is left to show is that the
S*P(r)=2[C*#(r)— C*(0)] (5.40  equation is indeed solved l§(r). But this is a trivial con-
sequence of the uniqueness of the solution for Laplace equa-
and so we have to consider the zero mode with the consecon with zero at infinity boundary conditions. Indeed, if we
tive exponent. In the isotropic sector this exponent is exactlyjenote the integral term in E¢6.41) by
{=2—¢ as can be proven by passing to Fourier space. This
special solution is a finger-print of the existence of a constant
energy flux in this model. Indeed just like in Navier-Stokes I(r)=f dy K(r=y)C(y), (543
turbulence, one can show analytically that the isotropic part
of the triple correlation functiogv *(X)w*(x+r)vP(x+r)) then from Eq.(5.42 we have
is proprtional tor and henceS{”_(r)~r?"<. A
Returning to the main question of this paper, we see that &?1(r)=3d’[F(r)—DC(r)] (5.49
no saturation of the anisotropic exponents occurs since the
leading exponent in every>2 sector isf)=/—2. These and since both(r) andF(r)—DC(r) decay ag —, then
exponents are within the window of locality of E¢6.2),  they must be equal. Of course no breaking of scale invari-
which is given by—/—3<{</— £. However, the next-to- ance occurs because the equation is satisfied B
leading exponent&hat are the leading ones in the structure —HC(r) is a sum of an inhomogeneous solution and power
function for/'=0,2) are already out of this window and their |gys.
relevance has to be discussed. We propose that the sameReturning to the linear pressure model, we have shown
mechanism that works in the toy modeke Sec. IV Balso  that not only the first, leading exponents in every sector are
operates here and that all these higher exponents can Rgjitimate but also the next few exponents. These exponents
found in the full solution. To understand this, let us write aare inside the shifted window of locality of the “Laplaced”
model equation for the correlation function in the spirit of equation(5.4), which is given by—/+1<\</+4—¢.
Eq(1.D, At this point, we may ask whether this is also the case for
the other exponents, which are outside this shifted window
DC(r)+ J' dy K(r—y)C(y)=F(r) (5.41) of locality. In light of the above discussion, it_ is clear that all
of them may also be part of the full solution for we can
. always differentiate Eq(5.2) sufficient number of times,
with K being some kernel an® being some local differen-  thus shifting the window of locality to include any of these
tial operator. In view of Eq(5.2), the differential operatoP ~ exponents. However, this procedure is unnecessary once we
should be regarded as the Kraichnan operator and the inteave written the prefactoA(\;/,£) as an infinite sum of
gral term should be taken for all integral terms in the equapoles in\. In that case the equation is defined for all values
tion including integrals due to the projection operators.of X except for a discrete set of poles, enabling us to look for
These integrals create a window of locality that we denote byxponents as high as we wish.
Now<A<Api. Any pure scaling solutiorC(r)~r* with \
outside the window of locality will diverge and hence will VI. SUMMARY AND CONCLUSIONS
not solve the homogeneous part of E§.41). Nevertheless,
we will now demonstrate how this zero mode can be a part of The main question raised and answered in this paper is
a full solution without breaking scale invariance. For this wewhether the existence of the pressure terms necessarily leads
act with a Laplacian on both sides of E.41) in order to  to a saturation of the scaling exponents associated with the
get rid of the projection operators integrals. Of course, like inanisotropic sectors. Such terms involve integrals over all
the linear pressure model, this will not eliminate all integralspace, and seem to rule out the existence of an unbounded
terms and thus we can write the resultant equation as spectrum. We have discussed a mechanism that allows an
unbounded spectrum without spoiling the convergence of the
pressure integrals. The mechanism is demonstrated fully in
the context of the simple toy model and we proposed that it
also operates in the case of the linear pressure model. The
Our main assumption, which was proven analytically in themechanism is based on two fundamental observations. The
simple case of the toy model, is that the above equation ha#st one is that the window of locality widens up linearly in
a solution that is finite for alt and decays for>L. Letus / due to the angular integration. The second, and more im-
now consider the zero modes of H§.42); their exponents portant, is that a scaling solution with an unbounded spec-
have to be within the “shifted” window of localityn,,,, ~ trum can existas a part of a full solution, which decays at

&Z@C(r)Jrf dy K(r—y)a?C(y)=a?F(r). (5.4
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infinity. Indeed pure scaling solutions cannot solve by them- (v (x+r HWH(x,t)vP(x,1))

selves the zero-modes equation if their scaling exponent

is out of the window of locality. However, the zero modes :J dtrf dy (WH(x, W (y,t"))
are always part of the full solution that decays to zero

once r>L and we have shown that if such a solution
solves a differential version of the full equation, it must
also solve the original equation. Therefore, by differentiating
the full equation sufficiently many times, we can always 8
reach a differential equation with a window of locality +<va(x+r,t) S (X’t)> _
as high as we wish. In that equation we can find zero-mode SW(y,t")
solutions with arbitrarily high exponentéotice that in

the toy model, it was sufficient to differentiate once to geto find out the functional derivative, we formally integrate
rid of all integrals, thus obtaining an “infinitely wide” 3 «(x,t)

window of locality). But since these zero modes are part of a

full solution that decays at infinity, then this solution is also t

valid for the original equation, hence showing that in the full vi(x = J AU v (xt)

solution there can be power laws with arbitrarily high
exponents.

Finally, we want to comment about the relevance of
our calculations to Navier-Stokes turbulence. If we substitute
blindly £€=4/3 in our results, we predict the exponents +Jt dt’J dy[6%9.G(x—y)]
2/3, 1.25226, 2.01922, 4.04843, 6.06860 and 8.08337 —o 7
for /=0, 2, 4, 6, 8, and 10, respectively. It would be
tempting to propose that similar numbers may be expected
for Navier-Stokes and indeed fef=0 and 2 this is not too +[terms that are independentw], (A2)
far from the truth. We cannot, however, state with
confidence that the genuine nonlinearity of Navier-Stoke
does not change these numbers significantly. More work is

<5v“(x+r,t)
>< —
ow”(y,t")

UB(X,t)>

(A1)

t
=— J dt’ w(x,t")#*ad,v*(x,t")

XwWH(y,t")d,07(y,t")

Sand thus

needed before we can draw final conclusions on the rate of Sv*(x,t) ) 3 -
decay of the high sectors of anisotropy in Navier-Stokes m=0(t—t =6 (x=y)d,v(y.t")
turbulence. Y

+[079,.G(x=y)]a,07(y,t")}.  (A3)

When we plug this result back to EGAL) we face the prob-
lem of evaluating the step functiof(t—t’) att=t’ due to
) ._the delta correlation in time of(r,t). To solve this problem
We thank Luca Biferale, Yoram Cohen, and Massimojy, 5 “physical” way [14], we approximate the delta function
Vergassola for many helpful discussions and suggestiongf the white noise with a sharp even function, perform the
We would also like to thank Anna Pomyalov for her help in integral, and only then take the white noise limit. Doing so
the numerical calculations. This work has been supported iwe obtain the formal resul#(0)=1/2 stemming from the
part by the Israel Science Foundation, the German-Israefact that we approximate a delta function with an even func-
Foundation, the European Commission under Contract Ndion. Finally, we remark that this derivation corresponds to
HPRN-CT-2000-00162“Nonideal Turbulence’), and the the Stratonovich interpretation of the stochasic equation

Naftali and Anna Backenroth-Bronicki Fund for Research inEd: (2.1). . . .
Chaos and Complexity. Next, we perform the spatial integration, arriving at
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APPENDIX A: GAUSSIAN INTEGRATION BY PARTS 1 1
=—§K“”(r)avcaﬁ(r)+ E&f’,)

The field w(x,t) as well as the forcing are Gaussian
white noises. This enables us to exprds¥(r) and the xf dy G(r—y)a,[K*(y)a,C™(y)]
correlation of the force in terms of“#(r) and F%A(r).

One way to accomplish this is by using the Gaussian )

integration by parts methoflLl4]. Using the basic formula + Ef dy 9%2,G(y)[K**(y)dY C*(r—y)],
for Gaussian integration by parts, we get for the third

moment (A4)
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and therefore from which we get that fon # 3

aBipy= 9(N¢;a B 1 A
T (r) a,u <U (X+|’)WM(X)U (X)> j dyyaﬁary)\xar(y):_mf dy[y)\f?:xaﬂ(y)

1 1
== 5K¥(1)3,0,C*(N) + 50, +y' Py PX(y)]. (B6)

For \#1, we can even do better using the identity
><f dy G(r—y)a,[K*"(y)3,3,C™(y)]
0= f dy 9. y* 1aPX*7(y) = (A - 1) f dy y*3y,aPX7(y),
-3 f dy #%9,G(y)[K*"(y)aY ) C"(r —y)]. (B7)

(A5) which finally brings us to

1 B Ny aT A AN—3yap
APPENDIX B: SIMPLIFICATION OF dy§f9 Iy X(Y) == 57| dyy" “X(y).
THE “NONLOCAL” TERM (B8)
For &£+ 1, the nontrivial integral on the LHS of ER.25 Let us now apply Eq(BS8) to the integrals in Eq(B1).
can be further simplified. To see that, let us denote ity  Assuming thag+# 1, we get
and rewrite it(omitting the —1/2 facto)y with the explicit
forms of the Kraichnan operator and of the Green function D&(&+2) £-3.2ap
Int:m dyy* “9°C*(r—y)
D 1
— . B ER2~aTi
It (§+2)47J dyyﬁ 9 Ly*a°C*(r—y)] (B1) DE(E-2)

=2 E=5ymyv aB(p —
4W(§_5)fdyy y*y"9,9,CP(r=y).

D 1
+té f dy Py 2y y*3,0,C77(r =y)]. (B9)
(B2)  To continue, we wish to turn the second integral into the
same form of the first integral. To accomplish that, consider
It is easy to verify that the tensors?’C®’(r—y) and the following identity:
y*y”d,d,C*(r—y) are divergencefree in both indices due
to the fact thalC*’(r) itself is divergencefree. Therefore, to OZJ dy d“[y¢3y"9,0,C*(r —y)]
simplify the integrals in Eq(B1), we consider the generic
expression
. =(£-3) f dy y %y*y*9,3,C*(r—y)
f dy 0°9,y*X<(y), (B3)
+f dyy§*3¢92C“ﬁ(r—y)+f dyy¢3y¥9,0?
where X%(y) is some divergencefree tensor andis an
arbitrary exponent. We also assume thais such that the X C*(r—y), (B10)
integral is convergent and integration by parts is allowed.Which iVes us
Then we may write 9

! J dy y&Sy#y?a,d,Co7(r —y)
f dyyﬁﬁﬂfy"xm(yhfdy[h()\—Z)y“‘r’yﬁyTX“T(y) yy® Yy od, Yy

1
+AYNT3XB(y) = g—_3f dy[y* 3a°C*¥(r—y)
+)\y)‘_3yraﬁX“T(y)]. (B4) _’_y.ffSyvaV&ZCﬂB(r_y)]. (Bll)
The last formula can be simplified by using identity Additionally, we have
0= f dy #%y* 3y, X7(y) 0= f dy 3,y 2y a*CeAy)
—(A—3) J dy y*SyBy_Xe7(y)+ J dy y* ~3XA(y) =¢ f dy y*~35°C*A(y) + f dy y¢~3y"a,d°C*#(y),
(B12)
A—3 By ar
+f dyy™ 7y 07X (), (B5) and so finally we obtain

056302-17



ITAI ARAD AND ITAMAR PROCACCIA PHYSICAL REVIEW E 63 056302

J dyy* °y*y’9,a,C(r—y) C(x,n,é)zf dy AL y?)
0
&-1 (CH
— §=3852caB(r —
§—3f dyy*=o"C*(r=y).  (B13 Before calculatingd(n,/), we notice that it vanishes far
</ and forns that are of different parity thari. The first
Substituting this into Eq(B9), we arrive at the final result observation is a simple manifestation of the orthogonality of
for I : the Legendre polynomials intimately connected to the or-
thogonality of different irreducible representations of the

12¢D " SQO(3) group. Fom> /" with the same parity, we can use the
Ine= (=3)(£=5) 5)f dy G(y)y* ?9*C*¥(r—y). well-known identity
(B14) »
P,(X)=———(*-1) (C6)
APPENDIX C: CALCULATION OF A(X;7,£&) 27/ dx
The prefactoiA(\;/, &) was defined by from which we get, after simple integration by parts, that

B(n,/) is given by
AN/ O (1) = f dy G(r=y)lr =yl AN (9.

1y n(n—-1)-- (n—/+1)

Due to the isotropy of the integral, it i®m independent and 1 /2 y
therefore we specialize to them=0 where theY ,,(y) is X fﬁldxx” (x2—1)"dx. (C7)

proportional to the Legendre polynomil, (y-Zz). Setting

r=2z, the unit vector in the direction, we write the integral The above integral can be done explicitly leading us to the

in spherical variablesy 6, ¢) and perform the triviakp in- final result

tegration(for r=z, the integrand is independent @f). We n(n—1)---(n—/+1) n 2(— 1)«

arrive at B(n,/)= 2 2 ( ) nt2k—/"
(C8)

B 1
AN/ E)=— %fo dy yz“ﬁld(cosw

We now calculate the second integral by dividing the in-
B tegration regimé¢0,+ ] in Eq.(C5) into a 0<y<1 part and
X (y?=2y coso+1)¢"22P (coso). a 1<y<w part. In each part we expand the (1
(c2)  +y»H¥ 2 " term iny and 1y, respectively, and perform
the integration. After adding up these terms again, we arrive
Using the standrad tricks of Feynmann integrals, one caat the following sum
express this integrdlat least in the/’=0 caseg in terms of "
gamma functions. Here, however, we choose to calculate this 1/&-
integral directly by a strightforward expansion of the inte- C\.n.&)= Z k! T_ )
grand. This procedure underlines the connection between the
pole structure and the anisotropy label
Let us therefore turn the annoyingy%— 2y cosé
+1)€372 term into a Taylor series iny2cosé/(1+y?),

§ &
L TN =

1
1< 1)“2“ INF3TnT2k Nt E—n—2k| (€9
AN/ 6 =5 E —
- Plugging these results back in BEE3), we get
5—3)(6—3 ) (§ 3 / - ®  on
X|—=—|—=—-1]...|———n+1 -1y 2
2 /172 2 " O S )
2 n=/7F2,... k=o n'K!
XB(n,/)C(\,n,§), C3
(n,/)C(\,n,é) (o) ) §_3> (5_3 .
whereB(A,n,€) andC(n,/) are two one-dimensional inte- 2 ) 2 :
grals that are given by 1
1 “INT3Int2k ANté-—n—2K B(n.7).
B(n,/)zf d(cos?) cos'd P (cosh), (C4)
o (C10
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To expose the structure of the poles in the above formula, it Equation C12 shows thadt(\;/, ) is given as an infinite
is convenient to change the order of summation by definingeries of poles in. For £>0 this series can be shown to

the new indiceq,j,

n—/
=——+k=0,1,2...,
(C1y

X N¥3+/+29 Nté-/-2q
(C12
whereay(/,&) are given by
2/ +2

q
8/ =2, o)

X

§-3 &3
T)---(——/—J—q+1

2
XB(/+2j,/). (C13

converge although for small values éfthe convergence is
very slow. In the special case 62, the series is truncated
after the first pole. To see why this is so, return to the origi-
nal definition of A(\;/,&) and seté=2:

A()\;/,Z)r“ZY/m(F):j dy G(r=y)yY, m(¥).
(C14

But since

YYo= 552 Aogsr YY),
(C15

then from the definition of the Green function we get

1
N+2=/)(N+3+/)"

A(N;/,2)= (C16
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