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Spectrum of anisotropic exponents in hydrodynamic systems with pressure

Itai Arad and Itamar Procaccia
Department of Chemical Physics, The Weizmann Institute of Science, Rehovot 76100, Israel

~Received 14 November 2000; published 11 April 2001!

We discuss the scaling exponents characterizing the power-law behavior of the anisotropic components of
correlation functions in turbulent systems with pressure. The anisotropic components are conveniently labeled
by the angular momentum indexl of the irreducible representation of the SO~3! symmetry group. Such
exponents govern the rate of decay of anisotropy with decreasing scales. It is a fundamental question whether
they ever increase asl increases, or they are bounded from above. The equations of motion in systems with
pressure contain nonlocal integrals over all space. One could argue that the requirement of convergence of
these integrals bounds the exponents from above. It is shown here on the basis of a solvable model~the ‘‘linear
pressure model’’! that this is not necessarily the case. The model introduced here is of a passive vector
advection by a rapidly varying velocity field. The advected vector field is divergent free and the equation
contains a pressure term that maintains this condition. The zero modes of the second-order correlation function
are found in all the sectors of the symmetry group. We show that the spectrum of scaling exponents can
increase withl without bounds while preserving finite integrals. The conclusion is that contributions from
higher and higher anisotropic sectors can disappear faster and faster upon decreasing the scales also in systems
with pressure.
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I. INTRODUCTION

Turbulent flows are often forced in an anisotropic fashio
The anisotropy has a significant effect on a variety of m
sured turbulence characteristics. We are interested in the
fect of anisotropy on statistical quantities, especially the lo
order structure functions of velocity differences across
scaleR. In perfectly isotropic systems, such objects are
pected to display pure scaling behavior in the limit of hi
Reynolds number. We have suggested recently@1# that in the
presence of anisotropy, the structure functions are no lon
pure power laws. Instead, components of the structure fu
tions that belong to different irreducible representations~sec-
tors! of the SO~3! group possess different scaling exponen
Each of these sectors is characterized by the angular mom
tum indicesl and m. By projecting the structure function
onto the different sectors, we could measure@2–4# the uni-
versal scaling exponents in each sector separately.

The spectrum of anisotropic exponents is particularly
cessible inlinear problems like passive scalar@5# and pas-
sively advected magnetic fields@6#. In both models, the
equations of motion are isotropic and as a result the e
tence of universal anisotropic exponents can be proven@7,8#.
Additionally the isotropy of the equations implies that t
scaling exponents depend onl but not onm. One of the
important results of the analysis is that the discrete spect
of anisotropic exponents is strictly increasing as a function
l . This explains the isotropization of the statistics as sma
and smaller scales are observed. Since the scaling expo
z appear in power laws of the type (R/L)z with L being
some typical outer scale andR!L, the larger is the expo
nent, the faster is the decay of the contribution as the scaR
diminishes. Therefore the gap between the leading, isotr
exponent and the next available exponent governs the ra
isotropization.

Experiments and simulations on Navier-Stokes~NS! tur-
1063-651X/2001/63~5!/056302~19!/$20.00 63 0563
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bulence also indicate that anisotropic sectors possess la
scaling exponents than the isotropic sector@2–4#. However,
to date, the exponents forl .2 were not determined with
sufficient accuracy. We thus do not know whether the hig
sectors are characterized by an ever increasing exponen
whether the exponentssaturate. This issue is theoretically
puzzling because of the effects of pressure. The inversio
the pressure in terms of the Green’s function of the Laplac
operator introduces integrals over the domain of turbulen
These integrals manifest the nonlocality of the problem a
are present in both the dynamical equation, and in the eq
tions for the correlation functions. When considering a s
tially homogeneous turbulence, the turbulent domain is u
ally taken to be infinite. The physical boundary conditions
scaleL are mimicked by employing a homogeneous forci
that acts at that scale. In this case, the integrals that re
from the pressure term are over allR3 and their convergence
has to be guaranteed. The question that we want to addre
this paper is the following: does the requirement of the c
vergence of the integrals necessarily bound the spectrum
the scaling exponents from above? Since the correla
functions appear in the integrand, an unbounded spect
implies a rapidly increasing integrand as a function of t
length scale. On the face of it, at some point the integr
must diverge in the infrared. It would appear therefore t
either there must be a limit to the magnitude of the scal
exponents or that the integrals converge due to an infra
crossover in the correlation functions. The latter scena
looks physically reasonable, yet in the presence of pres
integrals, seems to break scale invariance in the ine
range. To demonstrate that, consider a typical integral t
of the form,

E dy G~r2y!C~y!. ~1.1!
©2001 The American Physical Society02-1
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HereG(r )521/(4pur u) is the infinite domain Green func
tion of the Laplacian operator andC(r ) is some statistica
object, which is expected to be scale invariant in the iner
range. If C(r ) has an infrared crossover at scaleL ~or
equivalently, the integral has an infrared cutoff at scaleL),
then the above expression will not be a pure power law or,
not even inside the inertial range. Then how is it possi
that such an expression will cancel out a local term ofC(r )
as is required by the typical equations of motion?

This puzzle has led in the past to the introduction of
concept of ‘‘window of locality’’ @9,12#. The window of lo-
cality is the range for the scaling exponents in which
divergence occurs even if the cross-over lengthL is taken to
infinity. For these exponents, integrals of type~1.1! are
dominated by the range of integrationy'r and are therefore
termed ‘‘local.’’ In a ‘‘local’’ theory no infrared cutoff is
called for.

In this paper we show that scaling behavior of the cor
lation functions together with finite integrals over an infin
domaindo notnecessarily imply a bounded spectrum of a
isotropic exponents. Our strategy in this paper is to come
with a tractable example of alinear model with pressure, se
Eq. ~2.1!. We refer to this model as the ‘‘linear pressu
model.’’ We approach the solutions of this model in tw
steps. First we distill yet another, simpler, exactly solva
model, which still poses the riddle of the Navier-Stok
problem. The exact solution reveals that the spectrum
scaling exponents is unbounded and the convergence o
integrals is nevertheless not compromised. In the second
we find the scaling exponents of the ‘‘zero modes’’@10,11#
of the linear pressure model and use the conclusions of
simpler model to relate them to the full solution. We sho
that also in this case the spectrum does not saturate in
anisotropic sectors.

The linear pressure model and its simplified version
veal two mechanisms that allow an unbounded spectrum
scaling exponents. First, a careful analysis of the window
locality in the anisotropic sectors shows that it widens asl

increases. We always have a leading scaling exponent w
the window of locality. Second, there is a more sub
mechanism that comes to play when subleading expon
exist outside the window of locality. In these cases we sh
that there exist counter-terms in the exact solution~not the
zero modes!! that maintain the locality of the integrals. Th
bottom line is that in these models the anisotropic expone
are unbounded from above leading to a fast decay of
anisotropic contributions in the inertial range.

In Sec. II we introduce the linear pressure model a
derive the equations for the two-point correlation functio
We arrive at the form containing the dangerous integrals
discuss again the fundamental riddle. In Sec. III we const
a simpler, exactly solvable model with the same riddle.
Sec. IV we display the exact solution of the model and d
cuss the windows of locality and the existence of an
bounded spectrum. In Sec. V we go back to the linear p
sure model and offer a solution of its zero modes. Section
offers a summary and a discussion.
05630
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II. LINEAR PRESSURE MODEL

A. Model

The linear pressure model captures some of the aspec
the pressure term in Navier-Stokes turbulence while bein
linear and therefore, much simpler problem. The nonlinea
of the Navier-Stokes equation is replaced by an advec
field w(x,t) and an advected fieldv(x,t). The advecting field
w(x,t) is taken with known dynamics and statistics. Bo
fields are assumed incompressible. The equation of mo
for the vector fieldva(x,t) is

] tv
a1wm]mva1]ap2k]2va5 f a, ~2.1!

]ava50, ~2.2!

]awa50. ~2.3!

In this equation,f(x,t) is a divergencefree forcing term an
k is the viscosity. The domain of the system is taken to
infinite. Following Kraichnan’s model for passive scalar@5#,
we choose the advecting fieldw(x,t) to be a white-noise
Gaussian process with a correlation function that is given

d~ t82t !Dab~r ![^wa~x1r ,t8!wb~x,t !&, ~2.4!

Kab~r ![Dab~r !2Dab~0! ~2.5!

5Dr jF ~j12!dab2j
r ar b

r 2 G . ~2.6!

The forcingf(x,t) is also taken to be a Gaussian white no
process. Its correlation function is

Fab~r /L !d~ t2t8![^ f a~x1r ,t ! f b~x,t8!&. ~2.7!

The forcing is responsible for injecting energy and anis
ropy to the system at an outer scaleL. We choose the tenso
functionFab(x) to be analytic inx, anisotropic, and vanish
ing rapidly for uxu@1. Analyticity is an important require-
ment. It means thatFab(x) can be expanded for smalluxu as
a power series inxa; as a result its leading contribution in th
l sector is proportional toxl 22, given by]a]bxl Yl m( x̂).
To see that this is the leading contribution, the reader
consult the general discussion of the construction of the
reducible representations in Ref.@1#. All other analytic con-
tributions contain less derivatives and are therefore of hig
order inx.

In order to derive the statistical equations of the corre
tion function of va(x,t), we need a version of Eq.~2.1!
without the pressure term. Following the standard treatm
of the pressure term in Navier-Stokes equation, we take
divergence of Eq.~2.1! and arrive at

]n]mwmvn1]2p50. ~2.8!

The Laplace equation is now inverted using the Gre
function of infinite domain with zero-at-infinity boundar
conditions,
2-2
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p~x!52E dy G~x2y!]n]mwm~y!vn~y!, ~2.9!

G~x![2
1

4puxu
. ~2.10!

With this expression forp(x), Eq. ~2.1! can be rewritten as

] tv
a~x,t !1wm~x,t !]mva~x,t ! ~2.11!

2] (x)
a E dy G~x2y!]n]mwm~y!vn~y! ~2.12!

2k]2va~x,t !5 f a~x,t !.

B. Equations for the second-order correlation function

The statistical object that we are interested in is the tw
point correlation function of the fieldva(x),

Cab~r ![^va~x1r !vb~x!&. ~2.13!

We find its equation of motion in two steps. First, we ta
the time derivative ofCab(r ) using Eq.~2.11!,

] t^va~x1r !vb~x!&1^va~x1r !wm~x!]mvb~x!& ~2.14!

1^vb~x!wm~x1r !]mva~x1r !& ~2.15!

2 K va~x1r !] (x)
b E dy G~x2y!]m]nwm~y!vn~y!L

2 K vb~x!] (x1r )
a E dy G~x1r2y!]m]nwm~y!vn~y!L

2k^va~x1r !]2vb~x!&2k^vb~x!]2va~x1r !&

5^va~x1r ! f b~x!&1^vb~x! f a~x1r !&.

To simplify the equations we define an auxiliary functio
Tab(r )

Tab~r ![]m
(r )^va~x1r !wm~x!vb~x!&. ~2.16!

Using this definition and the space homogeneity of the
tistics, we arrive after some algebraic manipulation to
following equation:

] tC
ab~r !2Tab~r !2Tba~2r !1E dy G~r2y!]b]nTan~y!

1E dy G~2r2y!]a]nTbn~y!22k]2Cab~r !

5^va~x1r ! f b~x!&1^vb~x! f a~x1r !&. ~2.17!

The last equation is identical to the equation for t
second-order correlation function in the usual Navier-Sto
turbulence provided thatwm is replaced withvm in Eq.
~2.16!. Indeed, the vexing problem that we face is bei
made very clear: if the triple correlation function has a pow
law dependence onr with an arbitrarily large exponent, how
05630
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can the integral converge in the infrared? One possibility
that the scaling exponent ofTab(r ) is sufficiently low, mak-
ing the integral convergent. The other possibility is that t
correlation function is scale invariant only in the inerti
range and vanishes quickly after that, which is equivalen
the introduction of an infrared cutoff. However, the integr
terms in the equation probe the correlation function throu
out the entire space. Therefore, a crossover behavior of
correlation function at the outer scaleL seems to contradict a
pure scaling behavior of the correlation function in the in
tial range itself. This in turn implies the saturation of th
anisotropic scaling exponents.

To proceed, we use the fact that the fieldw(x,t), as well
as the forcing, are Gaussian white noises. This enables u
expressTab(r ) and the correlation of the force in terms o
Cab(r ) andFab(r ). In Appendix A we use the well-known
method of Gaussian integration by parts@13# that leads to the
final equations,

] tC
ab~r !5Tab~r !1Tba~2r !

2E dy G~r2y!]b]nTan~y!

2E dy G~2r2y!]a]nTbn~y!

12k]2Cab~r !1Fab~r !, ~2.18!

Tab~r !52
1

2
Kmn]m]nCab~r !

1
1

2
] (r )

a E dy G~r2y!]t@Kmn~y!]m]nCtb~y!#

2 1
2 E dy G~y!]b]t@Kmn~y!]m]nCat~r2y!#.

~2.19!

These equations have to be supplemented with two m
equations that follow directly from the definition ofCab(r ),

]aCab~r !50, ~2.20!

Cab~r !5Cba~2r !. ~2.21!

The first equation follows from the incompressibility co
straint of the vector fieldv(x,t), while the latter follows
from space homogeneity.

Finally, we note that Eqs.~2.18! and ~2.19! can be inter-
preted in a transparent way, utilizing two projection ope
tors that maintain the right-hand side~RHS! of Eq. ~2.18!
divergencefree in both indices. To define them, let us c
sider a tensor fieldXab(r ) that vanishes sufficiently fast a
infinity. Then the two projection operatorsP̂L and P̂R are
defined by
2-3
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P̂LXab~r ![Xab~r !2] (r )
a E dy G~r2y!]mXmb~y!,

~2.22!

P̂RXab~r ![Xab~r !2] (r )
b E dy G~r2y!]mXam~y!.

~2.23!

We observe thatP̂LXab andP̂RXab are divergencefree in th
left and right indices, respectively. Using these operators
can rewrite Eqs.~2.18! and ~2.19! in the form

] tC
ab~r !5P̂RTab~r !1P̂RTba~2r !12k]2Cab~r !

1Fab~r !, ~2.24!

Tab~r !52
1

2
P̂LKmn]m]nCab~r !

2 1
2 E dy G~y!]b]t@Kmn~y!]m]nCat~r2y!#.

~2.25!

The projection in Eq.~2.25! guarantees thatTab(r ) is diver-
gencefree in its left index while the projection in Eq.~2.24!
guarantees divergence freedom in the right index.

Not all the terms in these equations are of the same
ture. The integrals due to the projection operator are eas
deal with by applying a Laplacian on them. For example

]2P̂RTab~r !5]2Tab~r !2]b]nTan~r !. ~2.26!

On the other hand, there seems to be no way to eliminate
last integral in Eq.~2.25! and therefore we shall refer to it a
the ‘‘nontrivial integral.’’ Only for j50 andj52 it trivial-
izes: the integral vanishes whenj50 and is proportional to
Cab(r ) when j52. Unfortunately, in these extreme cas
also the projection operator trivializes and the effect of
pressure cannot be adequately assessed. We prefer to
the problem for a generic valuej for which the incompress
ibility constraint and the pressure terms are nontrivial.

We deal with this problem head-on in Sec. V. Due to t
nontrivial integral, we will not be able to provide a full so
lution of Cab(r ), but only of the zero-modes. However, b
fore doing so we would like to study a model that affords
exact solution in order to understand in detail the issue
hand. In the next section we therefore consider a simpli
model of the linear pressure model, yet posing much of
same riddle.

III. AN EXACTLY SOLVABLE TOY MODEL

We construct a toy model that inspired by Eqs.~2.18! and
~2.19! for the correlation function in the linear pressu
model. Within this model we demonstrate the strategy
dealing with the nonlocal pressure term. Since it is a sim
fication of the statistical equation of the linear pressur
model, the toy model has no obvious underlying dynami
equation.
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A. Definition of the toy model

In the toy model, we are looking for a ‘‘correlation func
tion’’ Ca(r ) whose equations of motion are

] tC
a~r !52Kmn~r !]m]nCa~r !2] (r )

a

3E dxG~r2x!]tK
mn~x!]m]nCt~x!

1k]2Ca~r !1Fa~r /L !, ~3.1!

]aCa~r !50. ~3.2!

HereFa(x) is a one-index analog of the correlation functio
of the original forcesFab(x). Accordingly, we take it aniso-
tropic, analytic inxa and rapidly vanishing foruxu@1. As in
the previous model, also here analyticity requires that
leading contribution for small uxu is proportional to
]axl Yl m( x̂) in the l sector. Accordingly it is of orderxl 21.

The toy model is simpler than the linear pressure mode
two aspects: First, the correlation functionCa(r ) has one
index instead of two and therefore can be represented b
smaller number of scalar functions. Second, the unplea
nontrivial term of the linear pressure model is absent. T
will allow us to solve the model exactly for every value ofj.
Nevertheless, the toy model confronts us with the same c
ceptual problems that exist in the linear pressure model
in NS turbulence: can a scale invariant solution in the iner
range with a crossover to a decaying solution at scaleL be
consistent with the integral term? If not, is there a saturat
of the anisotropic exponents?

Equation 3.1 can be rewritten in terms of a new project
operatorP̂, which projects a vectorXa(r ) on its divergence-
free part

] tC
a52P̂@Kmn]m]nCa#1k]2Ca1Fa, ~3.3!

where

P̂Xa~r ![Xa~r !2]aE dy G~r2y!]mXm~y!. ~3.4!

We shall solve this integro-differential equation by fir
turning it into a partial differential equation~PDE! using the
Laplacian operator and then turning it into a set of decoup
ODE’s using the SO~3! decomposition.

As in the linear pressure model, the nonlocality of t
projection operator can be removed by considering a dif
ential version of it

]2P̂Ta~r !5]2Ta~r !2]a]mTm~r !. ~3.5!

In stationary condition] tC
a50 and therefore the differentia

form of the toy model is given by

]2P̂@Kmn~r !]m]nCa~r !#

5]2Kmn~r !]m]nCa~r !2]a]tK
mn~r !]m]nCt~r !

5k]2]2Ca1]2Fa, ~3.6!
2-4
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]aCa~r !50. ~3.7!

We have reached a linear PDE of order four. This PDE w
be solved by exploiting its symmetries, i.e., isotropy a
parity conservation, as demonstrated in the next subsec

B. The SO„3… decomposition

Equation 3.6 and the incompressibility condition ofCa(r )
are both isotropic and parity conserving. Therefore, if
expandCa(r ) in terms of spherical vectors with a defini
behavior under rotations and under reflections, we would
a set of decoupled ODE’s for their coefficients.

For each sector (l ,m), l .0 of SO(3) we have three
spherical vectors

A1
a~ r̂ ![r 2l 21aaF l m~r !,

A2
a~ r̂ ![r 2l 11]aF l m~r !,

A3
a~ r̂ ![r 2l eamnr m]nF l m~r !. ~3.8!

HereF l m(r )5r l Yl m( r̂ ), and see@1# for further details. The
first two spherical vectors have a different parity than
third vector, hence the equations for their coefficients
decoupled from the equation for the third coefficient. In t
following, we shall consider the equations for the first tw
coefficients only as they have a richer structure and lar
resemblance to the linear pressure model. Finally, note
the isotropic sector, i.e.,l 50, is identically zero. To see
why, notice that in this special sector there is only o
spherical vector,A1

a( r̂ )[r 21r a. Hence the isotropic part o
Ca(r ) is given byc(r )r 21r a, c(r ) being some scalar func
tion of r. But then the incompressibility condition~3.2! im-
plies thatc(r );r 22, which has a UV divergence. We ther
fore conclude thatc(r )50 and restrict our calculation to
l .0.

By expandingCa(r ) in terms of the spherical vectorsA1,
and A2, we obtain a set of ODEs@decoupled in the (l ,m)
labels# for the scalar functions that are the coefficients
these vectors in the expansion. The equations for these c
ficients can thus be written in terms of matrices and colu
vectors. To simplify the calculations, we find the matr
forms of the Kraichnan operator and of the Laplacian of
projection operator separately, and only then combine
two results to one.

1. The matrix form of the Kraichnan operator

To obtain the matrix of the Kraichnan operator in t
basis ofA1 andA2, we expandCa(r )

Ca~r !5c1~r !A1
a~ r̂ !1c2~r !A2

a~ r̂ !. ~3.9!

Using the basic identities of theF l m(r ) functions~see@1#!,

]2F l m~r !50,

r m]mF l m~r !5l F l m~r !,
05630
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K̂Ca~r ![Kmn~r !]m]nCa~r !

5DxjF2c1912~21j!
c18

r
2~21j!~ l 11!

3~ l 12!
c1

r 2GA1
a~ r̂ !1DxjF2c2912~21j!

c28

r

12~21j!
c1

r 2
22~21j!l ~ l 21!

c2

r 2GA2
a~ r̂ !.

~3.10!

Therefore, in matrix notation, the Kraichnan operator c
be written as

K̂S c1

c2
D 52Dr jS 1 0

0 1D S c19

c29
D 12D~21j!r j21S 1 0

0 1D S c18

c28
D

2D~21j!r j22S ~ l 11!~ l 12! 0

22 l ~ l 21!
D S c1

c2
D

[r jK2S c19

c29
D 1r j21K1S c18

c28
D 1r j22K0S c1

c2
D . ~3.11!

2. The matrix form of the Laplacian of the projection operator

Let

Ta~r !5t1~r !A1
a~ r̂ !1t2~r !A2

a~ r̂ ! ~3.12!

and applying a Laplacian toP̂Ta, we get

]2P̂Ta5F2l t291l
t18

r
1l ~2l 21!

t28

r
2l ~ l 11!

t1

r 2

2l ~ l 21!~ l 11!
t2

r 2GA1
a

1F t292
t18

r
1~22l !

t28

r GA2
a . ~3.13!

Hence in matrix notation,

]2P̂S t1

t2
D 5S 0 2l

0 1 D S t19

t29
D 1

1

r S l l ~2l 21!

21 22l
D S t18

t28
D

2
1

r 2 S l ~ l 11! l ~ l 21!~ l 11!

0 0 D S t1

t2
D

[P2S t19

t29
D 1

1

r
P1S t18

t28
D 1

1

r 2
P0S t1

t2
D . ~3.14!
2-5



nd
n
o

f t

of

g

in
tive
s
or

Eq.

re-

s to

ery

ne

ITAI ARAD AND ITAMAR PROCACCIA PHYSICAL REVIEW E 63 056302
C. The matrix form of the toy model

Now that the matrix forms of the Kraichnan operator a
of the Laplacian of the projection operator have been fou
we can combine these two results to find the matrix form
the left-hand side~LHS! of Eq. ~3.6!. To this aim let us
define

S t1

t2
D 5K̂S c1

c2
D ~3.15!

and from Eqs.~3.11! and ~3.14! we get

]2P̂K̂S c1

c2
D 5r jM4S c1

(4)

c2
(4)D 1r j21M3S c1

(3)

c2
(3)D 1r j22M2S c1

(2)

c2
(2)D

1r j23M1S c1
(1)

c2
(1)D 1r j24M0S c1

c2
D , ~3.16!

where the number in parentheses denotes the order o
derivative. The matricesMi are given by

M4[P2K2 ,

M3[2jP2K21P2K11P1K2 ,

M2[j~j21!P2K212~j21!P2K11P2K01jP1K2

1P1K11P0K2 , ~3.17!

M1[~j21!~j22!P2K112~j22!P2K01~j21!P1K1

1P1K01P0K1 ,

M0[~j22!~j23!P2K01~j22!P1K01P0K0 .

To find the RHS of Eq.~3.6! we expand the ‘‘forcing’’
Fa(r ) in terms of the spherical vectorsA1 andA2,

Fa~r !5 f 1~r !A1
a~ r̂ !1 f 2~r !A2

a~ r̂ !, ~3.18!

and applying a Laplacian we find the matrix form
]2Fa(r ),

]2S f 1

f 2

D 5S f 191
2

r
f 182~ l 11!~ l 12!

1

r 2
f 1

f 291
2

r
f 281

2

r 2
f 12l ~ l 21!

1

r 2
f 2
D

[S r1

r2

D . ~3.19!

At this point it is worthwhile to remember that the forcin
term Fa(r /L) is assumed to be analytic. As a result forr /L
!1, its leading contribution in the (l ,m) sector is propor-
tional to ]ar l Yl m( r̂ );r l 21. However,]2Fa(r /L) is also
05630
d,
f

he

analytic and must therefore also scale liker l 21 for small r,
instead of scaling liker l 23, which could be the naive di-
mensional guess.

To proceed we restrict ourselves to finding the solution
the inertial range and beyond. In these ranges the dissipa
term k]2]2Ca(r ) is negligible and can be omitted, thu
reaching the following equation for the column vect
(c1 ,c2):

r jM4S c1
(4)

c2
(4)D 1r j21M3S c1

(3)

c2
(3)D 1r j22M2S c1

(2)

c2
(2)D

1r j23M1S c1
(1)

c2
(1)D 1r j24M0S c1

c2
D 5S r1

r2
D . ~3.20!

Finally, also the incompressibility constraint]aCa(r )
50 can be expressed as a relation betweenc1(r ) andc2(r ),

c1812
c1

r
1l c282l ~ l 21!

c2

r
50. ~3.21!

This constraint has to be taken into account when solving
~3.20!.

IV. SOLVING THE TOY MODEL

A. The general solution

The solution of Eq.~3.20! is somewhat tricky due to the
additional constraint~3.21!. Seemingly the two unknowns
c1(r ) andc2(r ) are over determined by the equations~3.20
and 3.21!, yet this is not the case, for Eqs.~3.20! are not
independent~when considered as two scalar equations,
sulting from the two-column vectorial equation!. To see that
this is the case and find the solution, it is advantageou
work in the new basis

d15c11l c2 ,
~4.1!

d2522c11l ~ l 21!c2 .

In this basis the incompressibility constraint becomes v
simple,

d25rd18 ~4.2!

allowing us to expressd2 and its derivatives in terms ofd1.
To do that in the framework of the matrix notation, we defi
the transformation matrixU

U[S 1 l

22 l ~ l 21!
D , ~4.3!

U215
1

l ~ l 11! S l ~ l 21! 2l

2 1 D , ~4.4!

so that

S d1

d2
D 5US c1

c2
D . ~4.5!
2-6
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The equations ofdi(r ) are the same as the equations
ci(r ) with the matricesMi replaced by

Ni[UMiU
21 ~4.6!

and the sourcesr i replaced by

S r1*

r2*
D 5US r1

r2
D . ~4.7!

Notice that a divergencefree forcingFa(r ) will causer1* (r )
and r2* (r ) to be related to each other in the same way t
d1(r ) andd2(r ) are related to each other, i.e.,

r2* 5r ~r1* !8. ~4.8!

Next, we perform the following replacements:

d25rd1
(1) ,

d2
(1)5rd1

(2)1d1
(1) ,

d2
(2)5rd1

(3)12d1
(2) ,

d2
(3)5rd1

(4)13d1
(3) ,

d2
(4)5rd1

(5)14d1
(3) .

We get an equation written entirely in terms of the functi
d1(r ) and its derivatives,
a
p
r
e

05630
r

t

r j11V5d1
(5)1r jV4d1

(4)1r j21V3d1
(3)1r j22V2d1

(2)

1r j23V1d1
(1)1r j24V0d15S r1*

r2*
D , ~4.9!

whereVi are two dimensional vectors given by

V5[N4S 0

1D , ~4.10!

V4[N4S 1

4D 1N3S 0

1D ,

V3[N3S 1

3D 1N2S 0

1D ,

V2[N2S 1

2D 1N1S 0

1D ,

V1[N1S 1

1D 1N0S 0

1D ,

V0[N0S 1

0D . ~4.11!

Their explicit values are given by
V55DS 0

2D ,

V45DS 2

1616j
D ,

V35DS 1614j

24l 224l 132j182jl 22jl 16j2D ,

V25DS 24l 224l 120j1242jl 22jl 12j2

28jl 228jl 24j248122j222j2l 222j2l 12j3D ,

V15DS 2~j12!~26j1jl 21jl 14l 214l !

~j12!~6j22j2l 22j2l 2jl 2218j2jl 1l 4111l 212l 3110l !
D ,

V05DS l ~ l 21!~ l 12!~ l 11!~j12!

l ~j12!~j24!~ l 21!~ l 12!~ l 11!
D .
ion
a-
per
Equation~4.9! is for a column vector and can be regarded
two scalar differential equations that we refer to as the ‘‘u
per’’ and the ‘‘lower.’’ The upper ODE is of the fourth orde
while the lower ODE is of fifth order. Not surprisingly, th
s
-
lower equation is the first derivative of the upper equat
provided thatFa(r ) is divergencefree. Hence the two equ
tions are dependent and we restrict our attention to the up
equation. To simplify it, we divide both sides byDr j,
2-7
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FIG. 1. Scaling exponents o
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replaced1(r ) by c(r ), and define the RHS to be the functio
S(r ),

S~r ![D21r 2jr1* ~r !. ~4.12!

After doing so, we reach the following equation:

c (4)1a3

c (3)

r
1a2

c (2)

r 2
1a1

c (1)

r 3
1a0

c

r 4
5S~r !.

~4.13!

Its homogeneous solution is easily found once we substi

c~r !5c0r z. ~4.14!

The scaling exponents are the roots of the polynomial

P~z!5z~z21!~z22!~z23!1a3z~z21!~z22!

1a2z~z21!1a1z1a0 ~4.15!

and are found to be real and nondegenerate. Two of them
positive while the other two are negative, given in a decre
ing order by

z152
1

2
2

1

2
j1

1

2
A@ l ,j!1AB~ l ,j!] 1/2,

z252
1

2
2

1

2
j1

1

2
A@ l ,j!2AB~ l ,j!] 1/2,

~4.16!

z352
1

2
2

1

2
j2

1

2
A@ l ,j!2AB~ l ,j!] 1/2,

z452
1

2
2

1

2
j2

1

2
@A~ l ,j!1AB~ l ,j!#1/2,

where
05630
te

re
s-

A~ l ,j![j21jl 21jl 22j1514l 14l 2, ~4.17!

B~ l ,j![28j2l 27j2l 2116j212j2l 31j2l 4

28jl 228jl 232j116164l 164l 2.

~4.18!

In the limit j→0, the roots become

z15l 11,

z25l 21,
~4.19!

z352l ,

z452l 22.

Figure 1 displays the first few exponents as a function ofj.
We note that the spectrum has no sign of saturation al
increases. Before we discuss the meaning of this observa
we will make sure that these solutions are physically relev
and participate in the full~exact! solution including bound-
ary conditions.

The general solution of Eq.~4.13! is traditionally given as
the sum of a special solution of the nonhomogeneous eq
tion plus a linear combination of the zero modes. Howev
when attempting to match the solution to the boundary c
ditions, it is more convenient to represent it as

~4.20!

where the free parameters of the solution are the four c
stantsmi . Indeed a change inmi is equivalent to adding to
2-8
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the solution a const3r z i. In the next subsection we find th
values ofmi that match the boundary conditions, and discu
the properties of the solution.

B. Boundary conditions and inertial-range behavior

From Eq.~4.20! it is clear that the only values ofmi that
guarantee that the solution remains finite asr→0 and that it
decays asr→` arem15m251`, m35m450

c~r !52
r z1

~z12z2!~z12z3!~z12z4!
E

r

`

dx x32z1 S~x!

2
r z2

~z22z1!~z22z3!~z22z4!
E

r

`

dx x32z2 S~x!

1
r z3

~z32z1!~z32z2!~z32z4!
E

0

r

dx x32z3 S~x!

1
r z4

~z42z1!~z42z2!~z42z3!
E

0

r

dx x32z4 S~x!.

~4.21!

To understand the asymptotics of this solution we find fr
Eq. ~4.12! that for x!L, S(x) has a leading term that goe
like xl 212j whereas forx@L, S(x) decays rapidly. It is
now straightforward to prove that forr !L, the z3 and z4
terms scale liker l 132j, thez2 term scales liker z2, and the
z1 term scales liker z1 for values ofj for which z1,l 13
2j and like r l 132j otherwise. In addition, it is easy to se
that for r @L, c(r ) exhibits an algebraic decay: thez1 and
z2 terms decay rapidly due to the decay ofS(x) whereas the
z3 and z4 terms decay algebraically liker z i, respectively.
The asymptotics of the full solution are thus given by

c~r !;H r z2, r !L

r z3, r @L.
~4.22!

The obvious conclusion is that there is no saturation in
anisotropic scaling exponents asl increases. The lack o
contradiction with the existence of an integral over all spa
has two aspects. The main one is simple and obvious.
integro-differential equation~3.1! for Ca has a differential
version~3.6!. Solving the differential version, we are una
fected by any considerations of convergence of integrals
therefore the solution may contain exponents that incre
with l without limit. Nevertheless, the full solution~4.21!
exhibits a crossover atL: it increases in the inertial ranger
!L and decays forr @L. Thus plugging it back to the
integro-differential equation we are guaranteed that no div
gence occurs.

The question why the crossover lengthL does not spoil
the scale invariance in the intertial range still remains. T
answer is found in differential form of the equation of m
tion given by Eq.~3.6!. From this equation we find that th
integrand is a Green’s function times a Laplacian of a ten
By definition, such an integral localizes, i.e., it is fully dete
05630
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r.

mined by the value of the tensor at the external vectorr . In
the language of Eq.~1.1!, A(y)5¹2B(y).

The second and less obvious aspect is that the window
locality widens up withl . This is due to the cancellations i
the angular integration of the anisotropic solutions that
due to the orthogonality of theYl m( r̂ ) and their generaliza-
tionsBql m

a ( r̂ ). To demonstrate this consider again the sim
integral~1.1! and assume thatC(y) belongs to (l ,m) sector,
i.e.

C~y!5a~y!Yl m~ ŷ!. ~4.23!

For y@r , we may expand the Green function inr /y,

G~r2y!52
1

4pur2yu
52

1

4py (
n50

`

anF S r

yD 2

22
r• ŷ

y
Gn

.

~4.24!

Here an are Taylor coefficients. Obviously the dangero
terms for the infrared convergence are those with low val
of n. However, all these terms will vanish forn,l in the
angular integration againstYl m( ŷ). The reason is that al
these terms are of the formr n1yn2(r• ŷ)n3 with n3,l . The
angular part here has projections onlyYl 8m8 with l 8<k3
,l . The first term to contribute comes whenn5l
and is proportional to the amplitude integr
* r

`dy y2al m(y)y2l 21. For a power lawal m(y);yl this
implies locality for

l,l 22 ~4.25!

instead ofl,22, as in the isotropic sector. The lowe
bound of the window of locality is also extended and a sim
lar analysis fory!r leads tol.2l 23. For the toy model
this translates to the window of locality

2l 2j,z i,l 112j. ~4.26!

From the previous analysis we find that the leading pow
law of the full solution in the inertial range isr z2, which is
inside this ‘‘extended’’ window of locality. Nevertheless, th
subleading powerr z1 originating from the first term in Eq.
~4.21! is above this window, and its presence in the solut
can be explained only using the first mechanism.

We will see when we turn back to the linear pressu
model that both these mechanisms operate there as
leading again to a lack of saturation in the exponents.

V. SOLVING THE LINEAR PRESSURE MODEL

We now return to the linear pressure model. As me
tioned before in Sec. II B, we see no way of eliminating
integrals from the equation and therefore we will not look f
a full solution. Nevertheless, we shall be able to calculate
zero modes and hence the scaling exponents. Our stra
relies heavily on the conclusions of the last section: we w
apply two Laplacians to the equation forCab(r ) in order to
eliminate the integrals of the two projection operatorsP̂L and
P̂R. The resulting equation will still contain the nontrivia
2-9
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integral. Using numerical integration we will solve the h
mogeneous part of this equation, i.e., we shall find its ze
modes. These are scale invariant solutions that solve
equation containing an integral. Their exponent must the
fore lie within the extended (l dependent! window of local-
ity. Finally, we will argue that these zero-modes are a par
the full solution that decays forr @L, and therefore solve the
original equation as well.

A. Equations for the zero modes

We start from Eqs.~2.24! and ~2.25!. In Appendix B we
perform integration by parts and algebraic manipulations
bring the nontrivial integral in Eq.~2.25! to a more tractable
form. The result of this process is

Tab~r !52
1

2
P̂LKmn]m]nCab~r !

2
1

2

12jD

~j23!~j25!
E dy G~y!yj22]2Cab~r2y!,

~5.1!

which is true for everyjÞ1. The j51 case will not be
treated here explicitly. Nevertheless, we will arguea poste-
riori that the results forj51 can be deduced from thej
Þ1 results by continuity.

Looking at Eq.~5.1!, we note that whenj52, the integral
on the RHS of the above equation trivializes to a local te
Cab(r ). In this limiting case the model can be fully solve
utilizing the same machinery used in the previous sect
The solution can then be used to check the zero modes c
puted below for arbitrary values ofj.

To proceed, we substitute Eq.~5.1! into Eq.~2.24!, noting
that the projectorP̂R leaves the nontrivial integral in Eq
~5.1! invariant since it is divergencefree in both indices. S
ting ] tC

ab(r ,t)50 in the stationary case, we arrive at th
following equation:

052@P̂RP̂LKmn]m]nCab#~r !

2
12jD

~j23!~j25!
E dy G~y!yj22]2Cab~r2y!

12k]2Cab~r !1Fab~r !. ~5.2!

As in the toy model, we apply two Laplacians to the abo
equation in order to get rid of the integrals of the projecti
operators and obtain

052]4@P̂RP̂LKmn]m]nCab#~r !

2
12jD

~j23!~j25!
E dy G~y!yj22]6Cab~r2y!

12k]6Cab~r !1]4Fab~r !. ~5.3!

Here and in the following, the operator]2n should be inter-
preted as (]2)n. We now seek the homogeneous station
solutions ofCab(r ) in the inertial range~zero modes!. These
05630
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satisfy the equations obtained by neglecting the dissipa
and setting the forcing and time derivative to zero,

05]4Kmn]m]nCab~r !1]a]b]t]sKmn]m]nCts~r !

2]a]t]
2Kmn]m]nCtb~r !2]b]t]

2Kmn]m]nCat~r !

1
12jD

~j23!~j25!
E dy G~y!yj22]6Cab~r2y!. ~5.4!

Let us now define the RHS of the above equation as
‘‘zero-modes operator’’Ô(j) and write the zero-mode
equation compactly as

05@Ô~j!Cab#~r !. ~5.5!

To solve it, we write the solutionCab(r ) in a basis that
diagonalizesÔ(j). This is done in the next subsection.

B. SO„3… decomposition

To diagonalizeÔ(j) we must look for its symmetries by
looking for the operations that commute with it. From E
~5.4! it is easy to see that these are rotations, scaling, per
tation of indices, and flipping ofr . As a resultÔ(j) is block
diagonalized by tensorsCab(r ) that have the following prop-
erties.

They belong to a definite sector (l ,m) of the SO~3!
group.

They have a definite scaling behavior, i.e., are prop
tional to r l with some scaling exponentl.

They are either symmetric or antisymmetric under perm
tations of indices.

They are either even or odd inr .
In @8# we discuss these types of tensors in detail. Here

only quote the final results. In every sector (l ,m) of the
rotation group withl .1, one can find nine independen
tensors Xab(r ) that scale like r l. They are given by
r lBl m,q

ab ( r̂ ) where the indexq runs from 1 to 9 enumerating
the different spherical tensors. These nine tensors can
further subdivided into four subsets

Subset Iof symmetric tensors with (2) l parity contain-
ing 4 tensors.

Subset IIof symmetric tensors with (2) l 11 parity con-
taining 2 tensors.

Subset IIIof antisymmetric tensors with (2) l 11 parity
containing 2 tensors.

Subset IVof symmetric tensors with (2) l parity, contain-
ing 1 tensor.

Due to the diagonalization ofÔ(j) by these subsets, th
equation for the zero modes foliates and we can compute
zero modes in each subset separately. In this paper,
choose to focus on subset I, which has the richest struct
The four tensors in this subset are given by
2-10
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B1,l m
ab ~ r̂ !5r 2l 22r ar bF l m~r !,

B2,l m
ab ~ r̂ !5r 2l @r a]b1r b]a#F l m~r !,

~5.6!
B3,l m

ab ~ r̂ !5r 2l dabF l m~r !,

B4,l m
ab ~ r̂ !5r 2l 12]a]bF l m~r !.

We expect the calculation of the other subsets to be ea
once one is familiar with the techniques we are about
develop. Finally, we note that since the correlationCab(r )
has to fulfillCab(r )5Cba(2r ), our subset I solution will be
valid only for evenl s.

ExpandingCab(r ) in subset I,

Cab~x!5r l@c1B1,l m
ab ~ r̂ !1c2B2,l m

ab ~ r̂ !1c3B3,l m
ab ~ r̂ !

1c4B4,l m
ab ~ r̂ !#, ~5.7!

and plugging it back into PDE~5.4!, we obtain a linear equa
tion for the coefficientsc1 ,c2 ,c3 ,c4 that depend on the pa
rametersl,l ,j. In the four-dimensional space of colum
vectors (c1 ,c2 ,c3 ,c4), we can write it as

S O~l;l ,j!D S c1

c2

c3

c4

D 50, ~5.8!

whereO(l;l ,j) is a 434 matrix that represents the zer
modes operatorÔ(j).

To continue, we note that due to the incompressibi
constraint~2.20! of Cab(r ), not all vectors (c1 ,c2 ,c3 ,c4)
are allowed; for a givenl,l , only certain combinations o
theBl m,q

ab ( r̂ ) lead to a divergencefreeCab(r ). A simple cal-
culation @1# shows that these belong to a two-dimensio
subspace, which is spanned by the ‘‘incompressible v
tors,’’

uu1~l;l !&5S 2l ~l2l !

~l12!~ l 21!~l2l 12!

0

2~l13!

D ,

~5.9!

uu2~l;l !&5S l2l

0

~l12!~ l 21!~l2l 12!

1

D .

The zero modes exponentsl can be found by requiring the
equation

O~l;l ,j!@a1uu1~l;l !&1a2uu2~l;l !&] 50, ~5.10!

to admit a nontrivial solution.
05630
ier
o

l
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The explicit computation of the matrixO(l;l ,j) is tech-
nically very cumbersome due to the presence of the inte
term. We shall therefore use an implicit method to determ
whether Eq.~5.10! has a nontrivial solution or not. The bas
idea is that the calculation of the nontrivial integral in E
~5.4! can be simplified if we contract its free indices with th
two isotropic tensorsr̂ a r̂ b and dab . Therefore, instead o
solving Eq. ~5.4! explicitly, we will contract its RHS with
these two tensors and require that the two resultant sca
vanish simultaneously. Obviously this would provide us w
a necessary condition for the solvability of Eq.~5.4!. Never-
theless, we shall see that it is also a sufficient condition.

Let us write the two tensorsr̂ a r̂ b anddab in matrix no-
tation as two row vectorŝw1(l )u,^w2(l )u given by

^w1~ l !u[$1 2l 1 l ~ l 21!% contraction withr̂ a r̂ b ,
~5.11!

^w2~ l !u[$1 2l 3 0% contraction withdab .

The contraction ofdab andr̂ a r̂ b with another tensor is trans
lated to the usual matrix multiplication of these row vecto
with a column vector. For example, ifuc& is a column vector
whose components are given byci , i 51, . . . 4, then

dab~c1B1,l m
ab ~ r̂ !1c2B2,l m

ab ~ r̂ !1c3B3,l m
ab ~ r̂ !1c4B4,l m

ab ~ r̂ !!

5~c112l c213c3!Yl m~ r̂ !

5^w2~ l !uc&Yl m~ r̂ !. ~5.12!

Returning to the zero-mode equations, we now define
232 ‘‘reduced matrix’’ Oi j (l;l ,j) by

Oi j ~l;l ,j![^wi~ l !uO~l;l ,j!uuj~l;l !&. ~5.13!

Obviously, the existence of a nontrivial solution that mak
the two contractions vanish is equivalent to the requirem
that Oi j (l;l ,j) is singular, i.e.,

detOi j ~l;l ,j!50. ~5.14!

The above condition is also sufficient for the solvability
the zero-modes equation. To see that, notice that the RH
Eq. ~5.2! and therefore the RHS of Eq.~5.4! produce tensors
that are divergencefree in both indices. Thus the vec
O(l;l ,j)uui(l;l )& will belong to the two-dimensional sub
space that is spanned byuuj (l1j26;l )&. Since the trans-
formation matrix

Ui j [^wi~ l !uuj~l1j26;l !& ~5.15!

is nonsingular for all values ofl and j, we find that
O(l;l ,j)uu1(l;l )& and O(l;l ,j)uu2(l;l )& are linearly
dependent if and only if Eq.~5.14! holds.

Looking at Eq.~5.4!, we recognize thatÔ(j) is a sum of
a differential and an integral operator. Consequen
O(l;l ,j) andOi j (l;l ,j) can be written as a sum of corre
sponding parts,
2-11
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O~l;l ,j!5Odi f~l;l ,j!1Oint~l;l ,j!,
~5.16!

Oi j ~l;l ,j!5Oi j
di f~l;l ,j!1Oi j

int~l;l ,j!.

These parts are of a different nature and thus we dedi
two different subsections for their calculation.

1. Form of the differential operator

The calculation ofOi j
di f(l;l ,j) can be done directly by

calculating the matrixOdi f(l;l ,j), employing the same
techniques that are used in Refs.@1,8# and in Sec. III. Here
we merely give the mid and final results.
n-

by

05630
te

From Eq. ~5.4!, we see that the differential part of th
zero-mode operator is given by

Ôdi f~j!Cab[]2]2Kmn]m]nCab1]a]b]t]sKmn]m]nCts

2]a]t]
2Kmn]m]nCtb2]b]t]

2Kmn]m]nCat.

~5.17!

To find its matrix representation it is convenient to first c
culate following operators:
L~l;l !:Xab→]2Xab,

L~l;l !5S ~l2l 22!~l1 j 13! 0 0 0

2 ~l2l !~l1l 11! 0 0

2 0 ~l2l !~l1l 11! 0

0 4 0 ~l2l 12!~l1l 21!

D , ~5.18!

M1~l;l !:Xab→]a]b]t]sXts,

M1~l;l !5S ~l2l 22!~l2l 24!

l2l 22

l2l 22

1

D S ~l11!~l12!

2l ~l12!~l2l !

~l111l !~l2l !

l ~l2l !~ l 21!~l2l 12!

D T

. ~5.19!

M2~l;l !:Xab→]a]tX
tb1]b]tX

at,

M2~l;l !5S 2~l2l 22!~l12! 2l ~l2l !~l2l 22! 2~l2l 22!~l2l ! 0

l12 ~l2l !~ l 1l13! 2~l2l ! ~l2l !~ l 21!~l2l 12!

2~l12! 2l ~l2l ! 2~l2l ! 0

0 2~l13! 2 2~ l 21!~l2l 12!

D ,

~5.20!

K~l;l ,j!:Xab→Kmn~j!]m]nXab,

K~l;l ,j!5D@~j12!L~l;l !2jl~l21!1#. ~5.21!
With these four matrices, the matrix form of the differe
tial part is written compactly as

Odi f~l;l ,j!5@L~l1j24;l !L~l1j22;l !

1M1~l1j22;l !2M2~l1j24;l !

3L~l1j22;l !#K~l;l ,j!. ~5.22!

Oi j
di f(l;l ,j) is then computed directly from definition.

2. Form of the integral operator

The integral part of the zero-modes operator is given
@Ôint~j!Cab#~r ![
12jD

~j23!~j25!

3E dy G~r2y!ur2yuj22]6Cab~y!.

~5.23!

To calculate the reduced matrix~5.13!, we have to compute
the contraction ofÔint(j)Cab with r̂ a r̂ b and dab . To do
that, let the tensorXab(r ) be of the form of the trial solution
~5.7!, i.e., let it belong to the (l ,m) sector of SO~3!, be
divergencefree in both indices, and proportional tor l. If we
2-12
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denote in matrix notationXab(r ) by the column vectorux&,
then from the isotropy of the tensorsr̂ a r̂ b , dab , we have the
following useful identities:

r̂ a r̂ bXab~r !5^w1~ l !ux&r lYl m~ r̂ !,
~5.24!

dabXab~r !5^w2~ l !ux&r lYl m~ r̂ !.

Consider now the contraction of

E dy G~r2y!ur2yuj22Xab~y!, ~5.25!

with dab

I 15dabE dy G~r2y!ur2yuj22Xab~y!

5^w2~ l !ux&E dy G~r2y!ur2yuj22ylYl m~ ŷ!.

~5.26!

If l is in the window of locality of the integral above, the
the integral will converge and be proportional
r l1jYl m( r̂ ). The scaling exponentl1j follows from power
counting @remember thatG(r );1/r ] while the angular de-
pendence is a result of the isotropy of the integration over
space. This leads us to define the proportionality fac
A(l;j,l ),

A~l;l ,j!r l1jYl m~ r̂ ![E dy G~r2y!ur2yuj22ylYl m~ ŷ!

~5.27!

with which we can write

I 15^w2~ l !ux&A~l;l ,j!r l1jYl m~ r̂ !. ~5.28!

The prefactorA(l;l ,j) is the only part of the calculation
that cannot be done analytically. However, instead of ca
lating the integral in Eq.~5.27! numerically, we can expand
the integrand as a Taylor series and writeA(l;l ,j) as an
infinite series of poles inl. This is done in detail in Appen
dix C with the result that

A~l;l ,j!52
1

2 (
q50

`

aq~ l ,j!

3F 1

l131l 12q
2

1

l1j2l 22qG .
~5.29!

The coefficientsaq(l ,j) are given in Appendix C. We no
tice that the window of locality in the definition~5.27! of
A(l;j,l ) can be identified from the positions of the poles
Eq. ~5.29!. Indeed, the boundaries of the window of locali
are determined by theq50 term and located atl52l 23
andl5l 2j. Whenl hits these boundaries the integral
~5.27! diverges corresponding to a pole in Eq.~5.29!. How-
05630
ll
r

-

ever, the above formula is valid also for values ofl outside
this window of locality for which the formal definition o
A(l;l ,j) makes no sense. The relevance of these value
the full solution must therefore be addressed. This will
done in the next subsection where we present the value
the scaling exponents.

Let us now consider ther̂ a r̂ b contraction

I 25r 22E dy G~r2y!ur2yuj22r ar bXab~y!. ~5.30!

Using the identity

r ar b5~r a2ya!~r b2yb!1~r a2ya!yb1ya~r b2yb!

1yayb , ~5.31!

we can decompose the integral into four terms:
The (r a2ya)(r b2yb) term:
Recalling that

G~r2y!52
1

4pur2yu
, ~5.32!

it is easy to verify that

G~r2y!ur2yuj22~r a2ya!~r b2yb!

5
1

~j11!~j21!
]a]bG~r2y!ur2yuj12

2
1

j21
G~r2y!ur2yujdab . ~5.33!

Plugging this into the integral, the term with the derivativ
will vanish due to integration by parts and the divergencef
Xab(r ). We are therefore left with

2
r 22

j21E dy G~r2y!ur2yujdabXl m
ab ~y!

52
r 22

j21
^w2~ l !ux&E dy G~r2y!ur2yujylYl m~ ŷ!.

~5.34!

Using the identity

]2yl12Yl m~ ŷ!5~l122l !~l131l !ylYl m~ ŷ!,
~5.35!

we further integrate by parts the last integral to finally obta

2j

~l122l !~l131l !
^w2~ l !ux&A~l12;l ,j!

3r l1jYl m~ r̂ !. ~5.36!

The (r a2ya)yb ,ya(r b2yb) terms: Using the same
tricks as in the previous term, i.e., integration by parts a
the fact thatXab(y) is divergencefree, we can easily sho
that both these terms vanish.
2-13
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FIG. 2. Leading scaling expo
nents for the first fewl ’s in the
linear pressure model. The dashe
line indicates the upper bound o
the window of locality.
ear
-
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The yayb term: Using Eq.~5.24! and the definition of
A(l;l ,j), we directly get

^w1~ l !ux&A~l12;l ,j!r l1jYl m~ r̂ !. ~5.37!

Gathering all the terms, we see that the contraction withr̂ a r̂ b
is equal to

I 25F ^w1~ l !ux&2
j

~l122l !~l131l !
^w2~ l !ux&G

3A~l12;l ,j!r l1jYl m~ r̂ !. ~5.38!

To conclude, the matrixOi j
int(l;l ,j) is given by the follow-

ing equations:

uũi~l;l ,j!&5
12jD

~j23!~j25!
L~l24;l !

3L~l22;l !L~l;l !uui~l;l !&, ~5.39!
05630
O1,i
int~l;l ,j!5A~l24;l ,j!F ^w1~ l !uũi~l;l ,j!&

2
j

~l242l !~l231l !

3^w2~ l !uũi~l;l ,j!&G ,
O2,i

int~l;l ,j!5A~l26;l ,j!^w2~ l !uũi~l;l ,j!&.

3. Results

Figure 2 shows the leading scaling exponents of the lin
pressure model forl 50,2,4,6,8,10. The results were ob
tained by numerically solving Eq. ~5.14! for j
50,0.01,0.02, . . . ,1.99,2. The prefactorA(l;l ,j) was cal-
culated using the formulas~C12! and ~C13! where the infi-
nite series of poles was truncated typically after 100 po
when it was clear that relative contribution from the conse
tive pole was smaller than the machine precision~about
10214). Additionally, the numerical results were compar
2-14
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to the analytical results ofj50,2 and ofl 50 andl 52 and
found to be correct within a relative error of 10210.

From Fig. 2, we see that in the isotropic sector and in
l 52 sector, the leading exponent isz50, corresponding to
the trivial Cab(r )5const solution. These zero modes w
not contribute to the second-order structure function, wh
is given by

Sab~r !52@Cab~r !2Cab~0!# ~5.40!

and so we have to consider the zero mode with the cons
tive exponent. In the isotropic sector this exponent is exa
z522j as can be proven by passing to Fourier space. T
special solution is a finger-print of the existence of a cons
energy flux in this model. Indeed just like in Navier-Stok
turbulence, one can show analytically that the isotropic p
of the triple correlation function̂va(x)wm(x1r )vb(x1r )&
is proprtional tor and henceS(l 50)

ab (r );r 22j.
Returning to the main question of this paper, we see

no saturation of the anisotropic exponents occurs since
leading exponent in everyl .2 sector isz (l ).l 22. These
exponents are within the window of locality of Eq.~5.2!,
which is given by2l 23,z,l 2j. However, the next-to-
leading exponents~that are the leading ones in the structu
function for l 50,2) are already out of this window and the
relevance has to be discussed. We propose that the s
mechanism that works in the toy model~see Sec. IV B! also
operates here and that all these higher exponents ca
found in the full solution. To understand this, let us write
model equation for the correlation function in the spirit
Eq.~1.1!,

D̂C~r !1E dy K~r2y!C~y!5F~r ! ~5.41!

with K being some kernel andD̂ being some local differen
tial operator. In view of Eq.~5.2!, the differential operatorD̂
should be regarded as the Kraichnan operator and the
gral term should be taken for all integral terms in the eq
tion including integrals due to the projection operato
These integrals create a window of locality that we denote
l low,l,lhi . Any pure scaling solutionC(r );r l with l
outside the window of locality will diverge and hence w
not solve the homogeneous part of Eq.~5.41!. Nevertheless,
we will now demonstrate how this zero mode can be a par
a full solution without breaking scale invariance. For this w
act with a Laplacian on both sides of Eq.~5.41! in order to
get rid of the projection operators integrals. Of course, like
the linear pressure model, this will not eliminate all integ
terms and thus we can write the resultant equation as

]2D̂C~r !1E dy K~r2y!]2C~y!5]2F~r !. ~5.42!

Our main assumption, which was proven analytically in t
simple case of the toy model, is that the above equation
a solution that is finite for allr and decays forr @L. Let us
now consider the zero modes of Eq.~5.42!; their exponents
have to be within the ‘‘shifted’’ window of localityl low
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12,l,lhi12. Suppose now thatr l with lhi,l,lhi12
is such a solution, which is therefore part of the full soluti
of Eq. ~5.42!. We now claim that this solution also solves th
original equation@Eq. ~5.41!#, hence allowing the existenc
of scaling exponents outside its window of locality. To s
that, we first notice that since the full solution decays for
@L, then all the integrals in Eq.~5.41! converge and are
therefore well defined. All that is left to show is that th
equation is indeed solved byC(r ). But this is a trivial con-
sequence of the uniqueness of the solution for Laplace e
tion with zero at infinity boundary conditions. Indeed, if w
denote the integral term in Eq.~5.41! by

I ~r !5E dy K~r2y!C~y!, ~5.43!

then from Eq.~5.42! we have

]2I ~r !5]2@F~r !2D̂C~r !# ~5.44!

and since bothI (r ) andF(r )2D̂C(r ) decay asr→`, then
they must be equal. Of course no breaking of scale inv
ance occurs because the equation is satisfied andF(r )
2D̂C(r ) is a sum of an inhomogeneous solution and pow
laws.

Returning to the linear pressure model, we have sho
that not only the first, leading exponents in every sector
legitimate but also the next few exponents. These expon
are inside the shifted window of locality of the ‘‘Laplaced
equation~5.4!, which is given by2l 11,l,l 142j.

At this point, we may ask whether this is also the case
the other exponents, which are outside this shifted wind
of locality. In light of the above discussion, it is clear that a
of them may also be part of the full solution for we ca
always differentiate Eq.~5.2! sufficient number of times,
thus shifting the window of locality to include any of thes
exponents. However, this procedure is unnecessary onc
have written the prefactorA(l;l ,j) as an infinite sum of
poles inl. In that case the equation is defined for all valu
of l except for a discrete set of poles, enabling us to look
exponents as high as we wish.

VI. SUMMARY AND CONCLUSIONS

The main question raised and answered in this pape
whether the existence of the pressure terms necessarily l
to a saturation of the scaling exponents associated with
anisotropic sectors. Such terms involve integrals over
space, and seem to rule out the existence of an unboun
spectrum. We have discussed a mechanism that allow
unbounded spectrum without spoiling the convergence of
pressure integrals. The mechanism is demonstrated full
the context of the simple toy model and we proposed tha
also operates in the case of the linear pressure model.
mechanism is based on two fundamental observations.
first one is that the window of locality widens up linearly
l due to the angular integration. The second, and more
portant, is that a scaling solution with an unbounded sp
trum can existas a part of a full solution, which decays a
2-15



m
e

es
ro
n
st
in
ys
ty
od

e

f
so
ul
h

o
ut
ts
3
e
te

ith
ke
k
e
e

o
on
in
d
ae
N

in

n

ia

ird

te

n
he
so

nc-
to
ion

ITAI ARAD AND ITAMAR PROCACCIA PHYSICAL REVIEW E 63 056302
infinity. Indeed pure scaling solutions cannot solve by the
selves the zero-modes equation if their scaling expon
is out of the window of locality. However, the zero mod
are always part of the full solution that decays to ze
once r @L and we have shown that if such a solutio
solves a differential version of the full equation, it mu
also solve the original equation. Therefore, by differentiat
the full equation sufficiently many times, we can alwa
reach a differential equation with a window of locali
as high as we wish. In that equation we can find zero-m
solutions with arbitrarily high exponents~notice that in
the toy model, it was sufficient to differentiate once to g
rid of all integrals, thus obtaining an ‘‘infinitely wide’’
window of locality!. But since these zero modes are part o
full solution that decays at infinity, then this solution is al
valid for the original equation, hence showing that in the f
solution there can be power laws with arbitrarily hig
exponents.

Finally, we want to comment about the relevance
our calculations to Navier-Stokes turbulence. If we substit
blindly j54/3 in our results, we predict the exponen
2/3, 1.252 26, 2.019 22, 4.048 43, 6.068 60 and 8.083
for l 50, 2, 4, 6, 8, and 10, respectively. It would b
tempting to propose that similar numbers may be expec
for Navier-Stokes and indeed forl 50 and 2 this is not too
far from the truth. We cannot, however, state w
confidence that the genuine nonlinearity of Navier-Sto
does not change these numbers significantly. More wor
needed before we can draw final conclusions on the rat
decay of the high sectors of anisotropy in Navier-Stok
turbulence.
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APPENDIX A: GAUSSIAN INTEGRATION BY PARTS

The field w(x,t) as well as the forcing are Gaussia
white noises. This enables us to expressTab(r ) and the
correlation of the force in terms ofCab(r ) and Fab(r ).
One way to accomplish this is by using the Gauss
integration by parts method@14#. Using the basic formula
for Gaussian integration by parts, we get for the th
moment
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^va~x1r ,t !wm~x,t !vb~x,t !&

5E dt8E dy ^wm~x,t !wn~y,t8!&

3F K dva~x1r ,t !

dwn~y,t8!
vb~x,t !L

1K va~x1r ,t !
dvb~x,t !

dwn~y,t8!
L G . ~A1!

To find out the functional derivative, we formally integra
va(x,t)

va~x,t !5E
2`

t

dt8 ] t8v
a~x,t8!

52E
2`

t

dt8 w~x,t8!m]mva~x,t8!

1E
2`

t

dt8E dy @]a]tG~x2y!#

3wm~y,t8!]mvt~y,t8!

1@ terms that are independent ofw#, ~A2!

and thus

dva~x,t !

dwn~y,t8!
5u~ t2t8!$2d3~x2y!]nva~y,t8!

1@]a]tG~x2y!#]nvt~y,t8!%. ~A3!

When we plug this result back to Eq.~A1! we face the prob-
lem of evaluating the step functionu(t2t8) at t5t8 due to
the delta correlation in time ofw(r ,t). To solve this problem
in a ‘‘physical’’ way @14#, we approximate the delta functio
of the white noise with a sharp even function, perform t
integral, and only then take the white noise limit. Doing
we obtain the formal resultu(0)51/2 stemming from the
fact that we approximate a delta function with an even fu
tion. Finally, we remark that this derivation corresponds
the Stratonovich interpretation of the stochasic equat
Eq. ~2.1!.

Next, we perform the spatial integration, arriving at

^va~x1r ,t !wm~x,t !vb~x,t !&

52
1

2
Kmn~r !]nCab~r !1

1

2
] (r )

a

3E dy G~r2y!]t@Kmn~y!]nCtb~y!#

1 1
2 E dy ]b]tG~y!@Kmn~y!]n

(y)Cat~r2y!#,

~A4!
2-16
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and therefore

Tab~r !5]m
(r )^va~x1r !wm~x!vb~x!&

52
1

2
Kmn~r !]m]nCab~r !1

1

2
] (r )

a

3E dy G~r2y!]t@Kmn~y!]m]nCtb~y!#

2 1
2 E dy ]b]tG~y!@Kmn~y!]n

(y)]m
(y)Cat~r2y!#.

~A5!

APPENDIX B: SIMPLIFICATION OF
THE ‘‘NONLOCAL’’ TERM

For jÞ1, the nontrivial integral on the LHS of Eq.~2.25!
can be further simplified. To see that, let us denote it byI nt
and rewrite it ~omitting the 21/2 factor! with the explicit
forms of the Kraichnan operator and of the Green functio

I nt52~j12!
D

4pE dy
1

y
]b]t@yj]2Cat~r2y!# ~B1!

1j
D

4pE dy
1

y
]b]t@yj22ymyn]m]nCat~r2y!#.

~B2!

It is easy to verify that the tensors]2Cat(r2y) and
ymyn]m]nCat(r2y) are divergencefree in both indices du
to the fact thatCat(r ) itself is divergencefree. Therefore, t
simplify the integrals in Eq.~B1!, we consider the generi
expression

E dy
1

y
]b]ty

lXat~y!, ~B3!

where Xat(y) is some divergencefree tensor andl is an
arbitrary exponent. We also assume thatl is such that the
integral is convergent and integration by parts is allow
Then we may write

E dy
1

y
]b]ty

lXat~y!5E dy @l~l22!yl25ybyt Xat~y!

1lyl23Xab~y!

1lyl23yt]
bXat~y!#. ~B4!

The last formula can be simplified by using identity

05E dy ]byl23yt Xat~y!

5~l23!E dy yl25ybyt Xat~y!1E dy yl23Xab~y!

1E dy yl23yt]
bXat~y!, ~B5!
05630
.

from which we get that forlÞ3

E dy
1

y
]b]ty

lXat~y!52
l

l23E dy @yl23Xab~y!

1yl23yt]
bXat~y!#. ~B6!

For lÞ1, we can even do better using the identity

05E dy ]ty
l21]bXat~y!5~l21!E dy yl23yt]

bXat~y!,

~B7!

which finally brings us to

E dy
1

y
]b]ty

lXat~y!52
l

l23E dy yl23Xab~y!.

~B8!

Let us now apply Eq.~B8! to the integrals in Eq.~B1!.
Assuming thatjÞ1, we get

I nt5
Dj~j12!

4p~j23!
E dy yj23]2Cab~r2y!

2
Dj~j22!

4p~j25!
E dy yj25ymyn]m]nCab~r2y!.

~B9!

To continue, we wish to turn the second integral into t
same form of the first integral. To accomplish that, consi
the following identity:

05E dy ]m@yj23yn]m]nCab~r2y!#

5~j23!E dy yj25ymyn]m]nCab~r2y!

1E dy yj23]2Cab~r2y!1E dy yj23yn]n]2

3Cab~r2y!, ~B10!

which gives us

E dy yj25ymyn]m]nCat~r2y!

52
1

j23E dy @yj23]2Cab~r2y!

1yj23yn]n]2Cab~r2y!#. ~B11!

Additionally, we have

05E dy ]nyj23yn]2Cab~y!

5jE dy yj23]2Cab~y!1E dy yj23yn]n]2Cab~y!,

~B12!

and so finally we obtain
2-17
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E dy yj25ymyn]m]nCat~r2y!

5
j21

j23E dy yj23]2Cab~r2y!. ~B13!

Substituting this into Eq.~B9!, we arrive at the final resul
for I nt :

I nt5
12jD

~j23!~j25!
E dy G~y!yj22]2Cab~r2y!.

~B14!

APPENDIX C: CALCULATION OF A„l; l ,j…

The prefactorA(l;l ,j) was defined by

A~l;l ,j!r l1jYl m~ r̂ ![E dy G~r2y!ur2yuj22ylYl m~ ŷ!.

~C1!

Due to the isotropy of the integral, it ism independent and
therefore we specialize to them50 where theYl m( ŷ) is
proportional to the Legendre polynomialPl ( ŷ• ẑ). Setting
r5 ẑ, the unit vector in thez direction, we write the integra
in spherical variables (y,u,f) and perform the trivialf in-
tegration~for r5 ẑ, the integrand is independent off). We
arrive at

A~l;l ,j!52 1
2 E

0

`

dy y21lE
21

1

d~cosu!

3~y222y cosu11!~j23!/2Pl ~cosu!.

~C2!

Using the standrad tricks of Feynmann integrals, one
express this integral~at least in thel 50 case! in terms of
gamma functions. Here, however, we choose to calculate
integral directly by a strightforward expansion of the int
grand. This procedure underlines the connection between
pole structure and the anisotropy labell .

Let us therefore turn the annoying (y222y cosu
11)(j23)/2 term into a Taylor series in 2y cosu/(11y2),

A~l;l ,j!52
1

2 (
n50

`
~21!n2n

n!

3S j23

2 D S j23

2
21D . . . S j23

2
2n11D

3B~n,l !C~l,n,j!, ~C3!

whereB(l,n,j) andC(n,l ) are two one-dimensional inte
grals that are given by

B~n,l ![E
21

1

d~cosu! cosnu Pl ~cosu!, ~C4!
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he

C~l,n,j![E
0

`

dy y21n1l~11y2!(j23)/22n.

~C5!

Before calculatingB(n,l ), we notice that it vanishes forn
,l and forns that are of different parity thanl . The first
observation is a simple manifestation of the orthogonality
the Legendre polynomials intimately connected to the
thogonality of different irreducible representations of t
SO~3! group. Forn.l with the same parity, we can use th
well-known identity

Pl ~x!5
1

2l l !

dl

dxl
~x221! l ~C6!

from which we get, after simple integration by parts, th
B(n,l ) is given by

B~n,l !5~21! l
n~n21!•••~n2l 11!

2l l !

3E
21

1

dx xn2l ~x221! l dx. ~C7!

The above integral can be done explicitly leading us to
final result

B~n,l !5
n~n21!•••~n2l 11!

2l l !
(
k50

n S l

k D 2~21!k

n12k2l
.

~C8!

We now calculate the second integral by dividing the
tegration regime@0,1`# in Eq. ~C5! into a 0,y,1 part and
a 1,y,` part. In each part we expand the (
1y2)(j23)/22n term in y and 1/y, respectively, and perform
the integration. After adding up these terms again, we ar
at the following sum

C~l,n,j!5 (
k50

`
1

k! S j23

2
2nD

3S j23

2
2n21D •••S j23

2
2n2k11D

3F 1

l131n12k
2

1

l1j2n22kG . ~C9!

Plugging these results back in Eq.~C3!, we get

A~l;l ,j!52
~21! l

2 (
n5l ,l 12, . . .

`

(
k50

`
2n

n!k!

3S j23

2 D •••S j23

2
2n2k11D

3F 1

l131n12k
2

1

l1j2n22kGB~n,l !.

~C10!
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To expose the structure of the poles in the above formul
is convenient to change the order of summation by defin
the new indicesq, j ,

q[
n2l

2
1k50,1,2, . . . ,

~C11!

j [
n2l

2
50,1,2, . . . ,q,

and obtaining

A~l;l ,j!52
~21! l

2 (
q50

`

aq~ l ,j!

3F 1

l131l 12q
2

1

l1j2l 22qG ,
~C12!

whereaq(l ,j) are given by

aq~ l ,j![(
j 50

q
2l 12 j

~ l 12 j !! ~q2 j !!

3S j23

2 D •••S j23

2
2l 2 j 2q11D

3B~ l 12 j ,l !. ~C13!
d

v.

n

v.
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Equation C12 shows thatA(l;l ,j) is given as an infinite
series of poles inl. For j.0 this series can be shown t
converge although for small values ofj the convergence is
very slow. In the special case ofj52, the series is truncate
after the first pole. To see why this is so, return to the ori
nal definition ofA(l;l ,j) and setj52:

A~l;l ,2!r l12Yl m~ r̂ !5E dy G~r2y!ylYl m~ ŷ!.

~C14!

But since

ylYl m~ ŷ!5
1

~l122l !~l131l !
]2yl12Yl m~ ŷ!,

~C15!

then from the definition of the Green function we get

A~l;l ,2!5
1

~l122l !~l131l !
. ~C16!
,
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