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Influence of inlet and bulk noise on Rayleigh-Beard convection with lateral flow
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Spatiotemporal properties of convective fluctuations and of their correlations are investigated theoretically in
the vicinity of the threshold for onset of convection in the presence of a lateral through-flow using the full
linearized equations of fluctuating hydrodynamics. The effect of external forcing by inlet boundary conditions
on the downstream evolution of convective fields is separated from the effect of internal bulk thermal forcing
with the use of spatial Laplace transformations. They show how the spatial variation of fluctuations and of their
correlations are governed by the six spatial characteristic exponents of the field equations.
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I. INTRODUCTION augmented by additive stochastic forcifg0,23,24,9,2h
Graham[20] used multiple scale expansion techniques to
The formation of macroscopic flow structurgl] in hy-  infer from the Landau-Lifshitz equations of fluctuating hy-

drodynamic systems like, e.g., RayleighrBed convection drodynamics the additive forcing entering into the amplitude
or Taylor-Couette flow that are driven out of thermal equi-&duation. Schof and Zimmermann did the same for binary

s . : . fluid mixtures[26]. Swift and Hohenberg used the critical
librium by externally imposed heating or shear, reSpeCtIVelybehavior of correlation functions to find this relation for pure

are us_ually investigated by deterr_n_mls_tlc hydrodynamic f'eldﬂuids in a simplified version without stochastic heat currents
equations. However, under specific circumstances the infl 23]. Boundary conditions for the amplitude equation in

ence of imperfections that break a symmetry of these equasgnm_infinite geometry were evaluated for a through-flow

tions, of external deterministic or stochastic perturbationssetup where microscopic transversal momentum density
and of internal thermal noise on the pattern formation pro<jyctuations are swept via the inlet into the b{i.

cess should be taken into account to achieve a more realistic Besjdes the Ginzburg-Landau approximation the Swift-
and quantitative description of experiments. One prominenHohenberg model equatioi&3] were used 24,27 with a
example are the so-called noise sustained strucf@e$2  stochastic forcing extension derived in RE#4] to compare
in the convectively unstable parameter regifi®—15 in  with convection experiments in which the Rayleigh number
Taylor-Couette [4,5,8-1Q and Rayleigh-Beard [6,7,14  was temporally ramped through threshf8] or modulated
systems. They arise when an externally imposed throughperiodically [29]. Also stochastic generalized Lorenz-like
flow or an internally generated group velocity is large models obtained by truncating mode expansions of the hy-
enough to “blow” the pattern out of the system according to drodynamic field equations were derived and comp&8&d
the deterministic hydrodynamic field equations. In this driv-with the experimentg28,29. The comparisong24,27,30,31
ing regime one observes in experimeptss,7,17 structures  of various model equations and in particular the work by van
that are sustained by sources that generate perturbations Beijeren and Cohef32] incorporating the whole band of
the band of modes that are amplified according to the supesupercritically unstable modes showed that thermal noise
critical deterministic growth dynamics in downstream direc-was far too small to explain the experimental observations
tion sufficiently far away from the inlet. Another example [28,29 with time-dependent heating quantitatively. How-
are convective pattern fluctuations observed in closed corever, the convective fluctuation intensity that was measured
tainers in the subcritical driving rang&6,17] where accord- under static subcritical drivingjl7] was shown[17,33 to
ing to the deterministic equations the system would be quiagree with the predictiop32] following from internal ther-
escent. mal noise based on linear fluctuating hydrodynamics. Re-
Thermal-noise-generated fluctuating forces were introcently experimental findings of subcritical fluctuating elec-
duced by Landau and LifshifA8] as volume coarse-grained troconvection in nematic crystals, i.e., a system with a much
microscopic fluctuations contributing to the stress tensor anthrger noise susceptibility than Rayleigh+Bed convection
the heat current. Then Zaitsev and Shliofdig] and Graham  were reported that showed deviations from linear fluctuating
[20] were the first to study the effect of this Gaussian addi-hydrodynamicg34].
tive white noise forcing on Rayleigh-Bard convection The theoretical work done so far within the framework of
[21]. A more general discussion of hydrodynamic field fluc-the full fluctuating hydrodynamic field equations dealt with
tuations out of equilibrium was given by Schmitz and Cohenspatially extended systems making convenient use of spatial
for the Rayleigh-Beard system22]. Also the Ginzburg- Fourier modes. However, in finite systems the effect of noise
Landau amplitude equatidi] describing slow spatiotempo- on pattern fluctuations—say, in the convectively unstable re-
ral field variations in the vicinity of a pattern forming insta- gime in downstream direction away from an inlet
bility in terms of the amplitude of the critical mode has beenboundary—has been studied theoretic4ty3,6,8—1] only
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by means of amplitude-equation approximations. A reasoffluctuation dynamics in semi-infinite systems. There we
might be that the proper treatment, e.g., of the inlet boundarghow how to separate bulk-generated fluctuation effects from
conditions for the fluctuating hydrodynamic field equationsinlet-generated fluctuations and how to evaluate correlation
describing Rayleigh-Beard convection with a lateral functions using spatial Laplace transforms. Section VI con-
through-flow is somewhat intricate as shown in this work.tains conclusions. Details on the treatment of inlet boundary

Here we investigate within the full framework of linearized conditions are given in Appendix A and Appendix B gives
fluctuating hydrodynamics the effect of an externally im-formulas for Laplace-transformed thermal force correlations.

posed through-flow and the role that under such circum-

stances the inlet boundary conditions play in the downstream Il. SYSTEM

growth of convective fluctuations. Thus we distinguish be- . . . N
tween internal forcing due to thermal noise in our semi-hor\:]\ls gggitjser ?a\r,]i?a:![izgr?;?lfifelﬁi I_ayer ct)fzar}teilgu(;:?ett:?gd
infinite system and external forcing at the inlet, e.g., by per- 9 9 9&

turbations that might enter the system via the through-flow.downwards' A positive temperature differentd is m-
A particular experimental Rayleigh-Bard setup is pos- posed between the lower warm and upper cold confining

sibly subject to other noise sources as well: For examplel,)ounda”es' The associated Rayleigh number is

vibrations and rotations that accelerate the convection cell as
a whole, thus exerting fluctuatingmultiplicative) body Ra=
forces; temperature fluctuations enforced from the outside on

the boundaries of the cell, e.g., in the cooling and heating of h is the th | diffusivi & the ki L
the horizontal top and bottom plates, respectively; deformal¥/Nere « Is the thermal diifusivity ana the kinematic vis-
sity. The thermal expansion coefficiemtfollows from a

tions of the cell caused by sound or by mechanical stresset . : X X
that are generated by differentially moving fixtures. Com-/inear isobaric equation of state for the mass dengity,

pared to thermal-noise-generated fluctuations of the fluid it L~ @(T—To), for small deviations of the temperatuie
self (inside the cell or coming by the flow through the inlet from its meanT,. We also consider a mean lateral through-
into it) the above listed nongeneric perturbations can be corflow U in x direction that is caused, e.g., by an externally
trolled and diminished by appropriate experimental counterapplied pressure gradient with a through-flow Reynolds
measures. Moreover, in order for them to generate macrasumber Re=(d/v) U. We investigate here a small through-
scopic flow structures in the convectively unstable regimeflow, say Re<5. In a layer ofd=0.5 cm, »=0.01 cnf/s
they have_:_to emit noise into the narrow b_and of modes tha{HZO) the through-flow velocity for Re5 would be U

are ampllﬂed_determlnlstlcally. So thg noise would ha\(e 10— 1 cmi/s. Instead of Re we take thecRe number

contain the right frequency in combination with the right

wave number. Furthermore, among the noise sources that Pe= o Re (2.2
meet this requirement those that are operating close to or at

the inlet are the most effective ones since they offer thess second control parameter besides Ra. lere/« is the
longest amplification length/time for the noise-generatederandtl number of the fluid.

convective field perturbations to grow while being advected
downstream.

Here we consider statistically stationary conditions when
the inlet forcing and the thermal noise have been operating gnoring thermal fluctuations the macroscopic behavior of
for a long time. In this situation we found it natural to Fou- the fluid is described by the balance equations for mass, mo-
rier decompose fields and forces in frequency space and théAentum, and heat that we shall use in Oberbeck-Boussinesq
investigate the six characteristic complex spatial eigenvaluegpproximation18,39
K(w) of the hydrodynamic field equations that describe the
spatial response to a perturbation of frequeacynd that
govern the spatial variation of field fluctuations and their
correlations. To evaluate them we use spatial Laplace trans-
formations since this method allows for an easy separation of
the effects of inlet forcing and bulk thermal forcing on fluc-
tuating fields and on their correlation functions in a way that
is similar to the treatmerjtL1] of the amplitude equation in

semi-infinite geometry. . . . . ;
The papergis orga)rqized as follows: In Sec. Il we specifyleng.ths with the _he|g_hd qf thze fluid layer, time with the
the system and the fluctuating hydrodynamic equations. “x{grtlcal thermal diffusion timel/ «, the effective pressure

Sec. Il we investigate its six spatial characteristic exponent®/ ith «*/d?, and temperatures witkv/(agd®).
and compare with the four exponents of the amplitude-
equation approximation. In Sec. IV we briefly review the
dynamics of fluctuations and correlations in infinite, transla- For small Ra, Re a laterally homogeneous solution is
tional invariant systems in comparison with the Ginzburg-stable that describes a so-called conductive state without ver-
Landau approximation before we elucidate in Sec. V thdical convective flow. In it the temperature

agd®
AT, 2.1

A. Deterministic field equations

V.U=0, (2.33

(+U-V)U=0V2U-VP+0o(T-Ty)e,
(2.3p

(,+U-V) T=V2T. (2.30

Here U=U g, +Ve,+We, is the velocity field. We scale

1. Conductive state
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1 3
Teona=TotTRa 5—2) 2.4 Fazﬁzl Vi0as, G=V-q. (2.90
varies linearly between the temperatures Here it is useful to considefF=F, +F to be decomposed
into a “transversal” part that is divergence fre€; F, =0,
1 1 and into a “longitudinal” part without rotationVx Fy=0
=0)= Z =1)=Tna— — . [—%-
T(z=0)=Tot 7 Ra, T(z=1)=To— 3 Ra, (25  ppq adjectives “transversal” and “longitudinal” refer to di-

rections off in wave-vector space. The longitudinal p&jt
that are imposed at the lower and upper boundaries, respef@rces “longitudinal” momentum, pressure, and mass den-
tively. In addition there might be a lateral positive through- sity fluctuations(sound that are decoupled from the “trans-
flow in x direction versal” fluctuations ofsU [18]. Since the longitudinal fluc-
tuations of SU are not of interest for the growth of
macroscopic convective structures we focus with €993
on the transversal fluctuations. Then the pressure fluctuations
are given according to Eq2.9) by

Ucond= UYcond & - (2.6

2. Horizontal boundary conditions

For no-slip horizontal boundaries with=0 at z=0, 1 (2.10
the through-flow is plane Poiseuille flow with parabolic ve-
locity profile Ug;,;~=6 Pez (1—2z). On the other hand, For the form of the stochastic forc&sandG that enter into
for free-slip impermeable horizontal boundaries that imposehe equationg2.9) for the deviations from the conductive

V26P=00,6T+V.-F.

state we take as many previous authors the ansatz of Landau
(2.7 and Lifshitz[18], thus assuming local equilibrium to hold in
the imposed vertical temperature gradient. Then the statisti-
cal properties of the real fluctuating forces are given by the

W=9,U=9,V=0 atz=0,1,

the through-flow has a-independent plug flow profile,
UfS

con

4= Pe. Such a through-flow can be transformed away byollowing averages:

a Galilei transformation to a system that comoves with the

plug-flow velocity if the fluid layer is laterally unbounded or
if laterally periodic boundary conditions ir direction are
applied.

In finite or semi-infinite geometry, however, where the

externally imposed through-flow enters the system, say, at
x=0 the effect of the through-flow on the convective pertur-
bations that grow in downstream direction away from the
inlet cannot be trivially transformed away. Since the no-slip

Poiseuille through-flow yields in these laterally finite geom-

etries similar effects on the downstream growing convection
structures as in the analytically better manageable free-slip

(Fa(r,))=(G(r,1))=(F(r.t) G(r',t"))=0,

(2.113
(Fa(r,t) Fg(r',t"))
' ’ g 2 ’
=2Qy| 8, V- V' +V,V + 5_5 V.V
X8(r—r'")o(t—t'), (2.11b

(G(r,t) G(r' t')=2Q, V-V’ 8(r—r") (t—t").
(2.110

situation we shall investigate in this paper only the free-slip

case(2.7).

B. Stochastic equations for deviations
from the conductive state

The starting point for our investigation of the spatiotem-
poral behavior of the convective perturbations

oU=U—Ucong, 6T=T—Teond, OP=P—Pcona,
(2.9

of the conductive state are the linearized field equations
V-sU=0, (2.99

(9 +Pedy) SU=—V 6P+0o (V26U +6Te,)+F,
(2.9
(d,+Pedy) 5T=RadsW+V256T+G,  (2.99

for the fluctuations(2.8). They are generated by thermally
fluctuating stresses,z and heat currentg [18]

05630

Since the temperature variation across the fluid layer is small
whenAT/Ty<<1 we use for the strength of the forces

Toa?g?d*

3
vCp

QZ! (213

1

v
QZZkBTO d 3

pdk

the equilibrium parameters evaluated at the mean tempera-
ture T, that appears in Eq2.12) in its unreduced form. Here

Cp is the specific heat per unit mass danglis the Boltzmann
constant.

A few remarks are in ordefi) In Eq. (2.11) lengths and
times are reduced quantitigd.) The volume viscosity ap-
pears in Eq.(2.11b in front of the “longitudinal” term
~VQVE. It therefore does not enter into the correlations of
the “transversal” velocity field fluctuations(iii) Thermal
heat current fluctuations are for most experimental setups
much less relevant than stress fluctuations since, e.g.,
Q,/Q,=10"* for a layer of water of height 1 cm at room
temperatures. And finally(iv) the spectral weight in fre-
quency and wave-vector space of the stochastic fd@.49)
does not drop to zero for large andk. This causes ultra-

1-3
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violet divergence problems when evaluating in a direct wayy. Thus,éW, 6T, F,, andG are projected in E¢(2.9) onto
the mean square of velocity fluctuations resulting from Eq.\/2 sin(zz) while sU, P, and F, are projected onto
(2.9 at a fixedr,t via an integration over the whole fre- /2 cosgr2),

guency and wave-vector space. These convergence problems

are due to extending the hydrodynamic the@®y9) beyond W SW

its range of applicability to infinitely large wave vectors and

frequencies. The problems do not arise when considering 0 = 1 Ly q 1d (2 si 6T
only the critical fluctuations, that have according to a linear f, xt)= L)L y 0 Zy2sin(mz) F,
deterministic theory the largest growth rates or smallest de- . G
cay rates, respectively. 9
X(X,Y,Z,t), (2.173
C. Projection onto critical modes

A standard-linear analys[86] of the unforced dynamics u ouU
of the convective perturbatior(2.8) in laterally unbounded 1Yy 1
geometry gives an orthogonal basis of eigenmodes that spans P xn= L)L dy 0 dz\2 cogmz)| oP
the space of all solutions of Eq&.9a—2.9¢ with boundary fx v Fx
conditions(2.5) and(2.7). It shows that modes of the form, X(X.y,2.1). 2.17h

e.g., sT~sin(mz) €** eVt with wave number close té,

=7/\/2, no variation iny direction perpendicular to the di- ) N i o
rection of the wave vectdc=ke,, and a single maximum in Here 2L, is the “periodicity” length iny direction that we
vertical direction at mid height of the layer are the leastconsider if necessary in the limif,—c. Thus, we investi-
damped. The characteristic exponent with the largest redlaté convective perturbations wity=0 that show noy

part is variation. For such perturbations the dynamics of the
velocity-field component ity direction, 5V(x,k,=0,z,t), is
o+ 1 o—1\2 K2 decoupled from the other fields sind®, +Ped,— o (33
s(k)=—ikPe-—— g2+ \/ 5 q*+o Ra—;, +35)] 8V(x,k,=0z,t)=F,(x,k,=0.z,¢t). Hence we do not
9 discusssV fluctuations further.

(213 We should like to mention that a convective channel with
where g2 = k2+ 72, At the marginal stability boundary, rectangular crosssection that is longxrdirection and nar-

Ra.i(k) = q°/k?, the growth rate Re changes sign. The W iny direction, say of width 2, of the order of the layer
instability occurs for free-slip boundary conditions with the N€ight, is an appropriate experimental setup to enforce con-
critical wave numberk.= /2 and critical frequencyw, vective patterns of straight-parallel _rolls with axes aﬁgned in
—k.Pe at Ra=27x%4. Modes with larger vertical varia- Y diréction and wave vectdc=k,g,, i.e.,k,=0, also in the
tion, say~sin(272), can grow only at much higher Ha6]. ~ Présence of a lateral through-flow. In that casettprojec-

Therefore it suffices to consider here modes with the criticafion 1N EQ. (2.17) would be on the criticaly mode for this
vertical profiles. For smak—k, and small geometry. However, in systems where the width, & much

larger than 1, experiments and numerical simulations of the

Ra hydrodynamic equations have shoy87Y—4(Q a competition
““Ra 1 (2.14  petween transverse rolls with axes perpendicular to the flow
direction and longitudinal ones with roll axes aligned in flow
the characteristic expone(®.13 varies as direction that has also been investigated with coupled

Ginzburg-Landau equatiorigd1,42.

s(k)=—ik Pet[e— &5 (k—ko)?]/m9,  (2.158

and D. Projected field equations
The linear equations of motion for the fiel@&.17 in the

Raay k) =Ra[ 1+ gS(k— ke)?], (2.15B  function subspace with the critical variationZrandy follow
. directly from Eq.(2.9). In view of the fact that a stochastic
with process described by EqR.9) and(2.1)) is statistically sta-
tionary and since we are interested only in the long-time
statistical dynamics of the fluctuations and not in their initial
value dependence we found it most convenient to Fourier
transform the fields(2.17 into frequency space, e.g.,

2 g+l w(x,w)=[*_dt e“w(x,t). Henceforth we consider, unless
To=—— (2.16b otherwise stated, Fourier-transformed fluctuations depending
3m 0 on x and the real frequencw. They obey the stochastic

hydrodynamic equation@iE)

fr=—n0, (2.163

In the remainder of this paper we project the fie(@d)
into the function subspace with the critical variatiorziand du+Tw=0, (2.18a3
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(—iw+Pedyu=—ap+o (32— w?) u+f,,
(2.18b

(—iw+Ped)w=mp+o (92— m?) w+o 6+,
(2.189

(—iw+Ped,) 0=(s>— =) H+Raw-+g. (2.189

PHYSICAL REVIEW E 63 056301

_ 2 B ;2
Siz=m ﬁx’_(v_p_g)ax S ﬁx_(ﬁ_§)(9x’ .
(2.199

The superscript * in Eq(2.19 and throughout this paper
denotes complex conjugation. Here we have discarded any
stress fluctuatiomr, 5 at the horizontal boundaries=0,1. So

The statistical behavior of the fluctuating forces projectedight at the horizontal boundaries thermal fluctuations do not

according to Eq(2.17 is given by

(fa(X,0))=(g(X,0))=( f(X,0)[g(X",@")]*)=0,
(2.193

(fa(X,0)[fa(X",0")]*)=2 Q; 2mo(w—w’)

X Syp S(x—X'), (2.19B

(9(x,@) [9(X",0")]* )=2 Q1 2mé(w—w")
X (9ydyr + %) S(X—X"),

(2.190
with
2 4 g 2
Sll: 5"‘% 07X&X/+7T, 53,3:axaxr+ §+; a,
J
Pe T
=~ o0 =
g
0 Pe O
M=| —om O 0
0 0 0
0 0
1 0

The correlation matriX&;(x,w) [&(x’,»")]*) of the forces
follows directly from Eq.(2.19.

E. GLE approximation

change the lateral momentum balance of the fluid.

In order to investigate the spatial variations of the fluctua-
tions of the fieldsu, w, 6, andp we also rewrite Eq(2.18
into the system

(M=0d,) ¥=§ (2.209

of differential equations of first order in thederivative for
the six-component vectors

q’:(ﬁxwaaxaapvuywae)ty (220b
f, t
g: ;19!_fX70y0y0 (2200
of fields and forces, respectively, with
0 a2 -1
g
0 -Ra -
iw—om® Pemw 0 (2.200
0 —1r 0
0 0 0
0 0 0

[T (di+vg ) — €= E5 2] A, 1) =T (x,t), (2.22

with a complexstochastic forcd’(x,t). The statistical dy-
namics ofl" was derived 20,26 from Eq.(2.9) via a multi-
scale analysis to be of the form

For Rayleigh numbers close to the critical one, i.e., for

small

e the fluctuation dynamics around the heat-

(F'(x,0))=( I'(x,t) T'(x",t"))y=0, (2.23

conductivity state can be described in form of a complex

amplitudeA(x,t) multiplying the critical solution of the un-

forced equation$2.18 in time space

(W(X,t)) B
o(x,t))

w

A(x,t) e'kex—ed) y ¢ e,

(2.20)

where w.=k.Pe andw,# are constants such that/w

(T(x,1) [T(X',t)]* )=y (x—x") 8(t—1"). (2.29

In Sec. IV we will verify this result with

(2.29

o? Ql)
Ra. Q)

= Raclqﬁ. The amplitude obeys the stochastic Ginzburg-with a different method that is more direct and less compli-

Landau equatioiGLE) [20]

cated than the standard-multiscale analysis.
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Note that the coefficients, andc, that normally appear
in the complex GLE for oscillating patterf] vanish for the
horizontal plug flow resulting from the free-slip boundary
conditions. Furthermore, in this case one has

(2.2

vg=Pe.

lll. SPATIAL GROWTH BEHAVIOR

In Sec. IIC we have reviewed the standasmporal
growth analysis of a spatially extended mode'** with real

wave humbek and laterally constant amplitude. Its relevant

characteristic completemporalexponent Eq. (2.13 deter-

mines the oscillatory behavior and the exponential growth or

decay behavioeSW! of this mode as a function of time

Here we consider thepatial variatione'*(“)* of a “tempo-
rally extended” oscillatory mode'*!, with real frequency

o and temporally constant amplitude that might be generatec

PHYSICAL REVIEW B3 056301

3
e d

2 b K, J

| :_3/0/?99 Kl _
& g S\Q\e/e/o
)

_1 - K4 K2 4

=2} B

K6
-3 F <4deq bl
= 0 1
Re K/k,

by a continuously operating spatially localized source of per-

turbation. The characteristic complsegatial exponent (w)
determines via RE the wave number of the oscillatory
mode and via InK its growth or decay withx.

A. Characteristic spatial exponents

The spatial variation ix direction of the field fluctuations

FIG. 1. Characteristic spatial exponents of the hydrodynamic
equations (full arrows) and of the GLE approximatior{open
circles in the complex wave-number plane. Orientations and loca-
tions of the arrows indicate how;(w) varies with increasing fre-
quency foro—w.=-5,—-2,0,2,5. The eigenvaludss ¢ with the
large imaginary parts do not appear by construction in the GLE.
Parameters arar=1, Pe=1, e=-0.05. With increasinge,

in frequency space is governed by the six spatial charactef{1(Ks) crosses the real axis at=0, k., wc (—Ke, —wc). Atthe

istic exponents of Eq(2.18 or, equivalently, of the &6
system of differential equatior(2.20). In fact the solution of
the deterministic equatio(®.20g with £€=0 is a superposi-
tion of the six eigenvectorE; (j=1,2,...,6) of M multi-
plied by exponentials of the form

v == KX

i=E (3.0

HereiK; is the jth eigenvalue ofM and w is the real fre-
quency. The eigenvaluék ; and eigenvectorE; depend on
w, Pe, and Ra. If necessary we denote the dependence on
also sometimes by the argument Ra/Ra—1.

In general the six eigenvalués; have to be calculated
numerically. Being roots of the equation dét#(—iK)=0
they, however, obey the relations

o 1
> Kj=-—i Pe(1+; , (3.29

2), (3.2b

gy 772) . (320
g

Furthermore, with Kj(w,Pe) also —[K;(—w,Pe)*

bordereg,,,, between convective and absolute instability the trajec-
tories of K1,K, and of K3,K, touch, respectively. Beyone,,,
they are reconnected differently.

In the following we consider the through-flow” &et
number to be positive. Then we chose the numbering of the
six eigenvalues such th#t; andK; are the two “critical”
exponents that cross the real axiskat =k, with critical
frequency w=*w.==*=Pek,, respectively, when Ra
=Ra,. For the parameters investigated here the imaginary
parts of the other eigenvalues remain finite. So we deige
to have positive imaginary part while thosekof ,K,,Kg are
negative. The first four eigenvalues are pairwise related to
each other by Kz(w)=-[Ki(—w)]* and K, w)
= —[Ka(—w)]* while Ks(w)=—[Ks(~w)]* and Ke(w)
=—[Ke(—w)]*. Figure 1 shows the trajectories of &
for e=—0.05 in the complex wave-number plane as func-
tions of w.

The imaginary parts ofK;} determine the spatial growth
or decay of a fluctuation with frequenay while the real
parts of{K;} denote its wave number. It should be noted that
the characteristic spatial exponents—unlike the temporal ex-
ponent(2.13—depend nontrivially on the through-flow that
thus cannot be transformed away by a Galilei transformation.
This shows already that a proper physical interpretation of
the {K;} requires inhomogeneities or boundary conditions
that break the translational invariance in theélirection. In
this way one findgcf. Sec. \J that the contributiong'Ki*

=K,(w,Pe) is one of the six eigenvalues and because of theith j=2,4,6 (j=1,3,5) to the fields¥ describe the spatial

mirror symmetry —K;(o,Pe)=K,(w,—Pe). Moreover, the
imaginary part of an eigenvalu€;(w,Pe) can vanish only at
the frequencyw?z Pe ReX; for our free-slip boundary con-
ditions.

variation in upstreanidownstrear direction towards nega-
tive (positive x resulting from a perturbation or from a
boundary condition operating with frequeney, say, atx
=0. On the background of this identification one under-
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are given by{11]

Ko o) éo=—1 Ve o =i Vo, —€—i 0 0. (3.5

Here

2
To
620m:4—§g Us (36)

is the boundary between convective and absolute instability
within the GLE approximatiofi2]. Thus, the first two spatial
exponents ofv(x,w) Eg. (3.3 are

Ky @) =ke+Kyo— o). (3.7a

They come from the first term in the GLE approximation
(3.3). The next two exponents

Ks i @)= —ket+ Ky f 0+ o), (3.7b

come from the second term in E@.3) where we have used
FIG. 2. Frequency dependence of the imagin@jyand reallb)  the relation

parts of the spatial eigenvalu&s ,K, of the hydrodynamic equa-
tions for subcritical drivinge= — 0.05(dashed linesand supercriti- % _ IR _ *
cal driving e=0.01 (solid lineg. The corresponding GLE approxi- Kidw) [Kid~w)] 3.8
mation(3.73 is shown by upwardgdownward$ pointing triangles
for e=0.01 (e=—0.05). For the smallegte|=0.01 shown here
only ImK, and ReK; display small deviations from their GLE
behavior whenw differs sufficiently fromw.. Parameters are-
=1, Pe=1 so thate=0.01< €, -

or equivalently the relatiok; {w) = —[K3 4(—w)]* thatis
discussed below Eq<3.2) to follow from the field equa-
tions.

Figures 1 and 2 show a comparison of the amplitude
equation result$3.7) with the corresponding eigenvalues of
. the full-field equations. Note that within the GLE approxi-
iﬁ?nr;is q.ulti gasturﬁgfe;hit tr_lﬁ drct))wnr?tr?ﬁg—grr?\;\l/(t)h Ie.?]gteh ation the eigenvalueks ¢ with the large imaginary parts

j(1=135) 1 € with growing ugh-tiow st implying small-scale variations do not appear since by con-

the latter dilates the envelope of perturbations away from itSétruction the GLE is restricted to describe only slow-spatial

source. On the other hand, the upstream-growth lengt . : )
—1/imK, (j=2.4,6) decrease with increasing Pe since thL\?arlatlons. The agreement between the approximated and ex

: : act space eigenvalu improves with decreasin
through-flow compresses the intensity envelope of the pe P g €6, 4imp bl

turbations towards the source, making the growth steeper rBeing the better the smaller lKis.
The fact that for positivee the imaginary parts of the Figure 2 shows the variation of imaginary peatand real

“critical” eigenvaluesK; andKj3 are negative for bands of part (b) of K, andK, with frequencye for a subcriticale

: ; ; . .. =—0.05 (dashed lines and a supercriticale=0.01 (full
frequencies around w., respectively, signals an instability . c ) .
) o . . lines) below the threshole in comparison with the GLE
via the downstream amplification of fluctuations with near

conv
critical frequencies. These bands open up eat0, approximation(open trianglesdiscussed in Sec. Il B.
=+ w, (cf. Fig. 2. The imaginary parts of the other charac-

teristic exponents do not change sign with C. Convective versus absolute instability
Whenever at a stability threshold the frequency of pertur-
B. Spatial exponents of the GLE approximation bations is nonzero with a finite group velocity,

=[dw(k)/dk]., one has to distinguish between spatiotem-
poral growth behavior of spatiallgxtendedperturbations
~e* X with real wave number- k. and of spatiallylocal-
ized or varying perturbations. The former have a positive
temporalgrowth rate, Rs(*+k.)>0, for Ra>Ra, according
(3.3 to Eq.(2.13. Equivalently the spatial growth exponerits 5
) N ) cross the real axis at (k.,w.) signalling for Ra>Ra. spa-
The two spatial growth ratels; , of A(x,w) defined by the 5 growth for perturbations within a frequency band around
two solutions of the unforced GLE2.22) in frequency space w, and a wave number band aroutic, . For the sake of

The GLE approximation ansat2.2l) yields in w space
fields of the form, e.g.,

W(X,0)=W kX A(X,w—w¢) +[W e*X A(X,— w—wc)]*.

of the form notational conciseness we restrict our discussion to the case
. of Ky,ke,w:. But the results apply as well t&;,—Ke,
A(X,w)~eK@x B4 —w,.
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Consider now a small spatially localized perturbation, i.e., The conditiong3.9) for the boundary between convective
a wave packet consisting of a linear superposition of exand absolute instability imply the “collision condition” of
tended perturbations of the forme'** with realk and small ~ Briggs[14],
amplitude. For Rz Ra. it might contain modes that can tem-

porally grow, Res(k)>0, and others that decay. The center d )

of such a wave packet or pulse perturbation propagates with dK def M(w) - 'K]|K* =0, (3.10

the group velocity 4 while its envelope is growing since the

pulse contains modes that grow in time. for the appearance of a double spatial eigenvalue. In Fig. 2

_ Now there are two parameter regimes to be distinguishethne sees how with increasingthe two spatial eigenvalues
(l) In the so called ConveCtlvely Ur.lstable parameter reglm«l (Coming from the upper Comp|ex half p|a|and KZ ap-
[13-19 the wave packet moves with the velocity faster proach each other. Ak=e¢l,, both branches meet at
away than it grows—while growing in the frame comoving Ky(w,)=Ky(w,)=K, . For our small Pe values"E is

. - * * * " *
Conduive ate 18 restored in the absence of permanent, 0@ (0 the GLE saddie frequenaf’'®~u.
operating forces. In other words, the two fronts that join the For the driving 0= e< e a frequency band around,

conv
wave packet's intensity envelope to the structureless sta\é”th Im K (@) <0 appears. Perturbations that are generated
propagate both in the direction in which the packet cente

Ocally and sustained continuously with frequencies within
moves. (i) In the so called absolutely unstable paramete.h's band are spatially amplified in downstream direction,

regime the growth rate of the packet is so large that one fron't?" _|n the direction oby. This fre(guency band is delimited

propagates in the laboratory frame opposite to the center md¥ithin the GLE byw.. = w2V e€con, /7o [8,11]. _

tion. Thus, the packet expands not only into the direction of NOte that ourlinear growth analysis of spatially varying

the pulse motion but also opposite td183,14 so that even- Perturbations is restricted to the driving range<ec,y,

tually the initial perturbation can fill the entire system. where an initially localized perturbation is “blown” out of
The boundary in parameter space between convective arfié system. In the driving range> ec,,,, of absolute insta-

absolute instability is marked by parameter combinations fobility, on the other hand, a perturbation acting wity will

which one of the fronts of the linear wave packet reverts itsgrow at every location: the spatial eigenvakig{w,.) con-

propagation direction in the laboratory frame: In the convec-rolling thelinear stationary solution-e'*1* loses its signifi-

tively unstable regime this front propagates in the same dicance there since monlinear solution invades in upstream

rection as the center of the packet, in the absolutely unstabl@irection the whole system.

regime it moves opposite to it, and right on the boundary

between the two regimes the front is stationary in the labo- IV. LATERALLY UNRESTRICTED SYSTEMS

ratory frame. This parameter combination can be determined

by a saddle-point analysis of the linear complex dispersion TO better understand how a restricted geometry and inlet

relations(K) over the plane of complex wave numbé§ts). conditions, say ax=0, influence the statistical dynamics of
The condition of vanishing front propagation velocity is the fluctuating fields we first review the simpler case of a

equivalent to finding the parameters for which system that is extending from= —c to x=ce.

Res(K,)=0, (3.99 A. Fluctuating hydrodynamics

In this section we discuss the statistical dynamics of the
fluctuations of the convection fieldB(x,») Eg. (2.20b that
are produced by the thermally fluctuating for@s, w) Eq.

with K, denoting the appropriate saddle positiors(K) in
the complex wave number plane given by

ds(K) (2.200.
| =o. (3.9 In unrestricted geometry one can solve Eg.20a di-
dK K, rectly,
= — -1
The solution of Eq(3.9) yields the sought-after boundary in ki) =[M(w)=ik]"" &k o), “.D
parameter space between the convectively and the absolutgl/}/a spatial Fourier transform  W(k, o)

unstable parameter regime.

We have solved Eq3.9) numerically for the dispersion
s(K) Eg. (2.13 of the hydrodynamic field equations and
compared the result foor=1 with the result of the GLE

=[”_dx e " W(x,w) with k denoting a real wave number.
In this way one finds

ok?2g—ik (2—iQ) (mf,+ikf,)

approximation. For the small'Blet numbers Pe5 explored w(k,w)= (4.2
here the saddl&, of the HE dispersion relatiof2.13 and D

the boundaryeg,,,(Pe) of the HE agrees well with the GLE , , _

results K, =k.—i(vg7o/265) =k.—(i/4)Pe and €S, 0k, 0) = (0q°—iQ) g g—ik Ra(wf,+ik fz)’ 43

= (75/4£5)vi=(1/6m%)P€&, respectively. Note thab,=Pe D
and c;=0 for the free-slip horizontal boundaries as men-

tioned earlier. with
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D(k,w)=0o def{ M—ik) B. Fluctuating hydrodynamics versus GLE approximation

_ 2 2 2 i L2 The statistical dynamics of the fluctuating fields within
=07 (0q"—1Q) (a7~10)~ok"Ra, (4.43 the GLE approximation is readily obtained from solving the
amplitude equatiori2.22 by double Fourier transform
QO=w—kPe, q°=m?+k2. (4.4b
—I'(k,w)
The combinationrf,+ikf, of the forces is proportional to Alk,w)= e— 212+ i(0—Kvg) 7o (4.8
the z component of the “transversal” part f(), 0 9o’ 7o
=(k/q?) (mf+ikf,). This reflects the fact that only “trans-
versal” forces enter into the forcing of the “transversal”
velocity field. The lateral velocity field fluctuations follow
from Eq. (4.2) with the continuity equationku= — 77w and (W(k"")) _
pressure fluctuations follow directly from E.10: —qg?p o(k,w)
=omf+ikf,+af,. Thus we restrict our discussion t@
and 6 only.
Note that the fluctuations with the critical wave numbers -

and frequencies (k. ,w) are strongly amplified when Ra is 4
increased. They diverge at Rwith, e.g., (4.9

and using the field representati¢®2]) leading to
w

| A(k—Kg, o—w¢)
0

=

[A(—k—K¢,—w—wc)]*.

D(k¢,wc)=(Ra,—Ra) o k? (4.5  Herew.=Kkwy=k.Pe. Since

vanishing linearly. It is obvious from Eq$4.2) and (4.3 (T(k,w) [T(K',0)]*)=y(2m)? 8(k=K') S(o=w"),
that the characteristic determinad{(k,w) Eq. (4.4) of the (4.10
deterministic hydrodynamic field equations governs the
—k dependence of the instability-driven amplification
mechanism.

From Egs.(4.2) and (4.3 and using Eq(2.19 one di-
rectly obtains the correlation functions CGLE(k w)= |w|2

one immediately obtains that within the GLE approximations
(4.8) and (4.9) the field correlations are given by

1
[e— &3 (k—ko)2?+(0—kvg)? 7

Corus (ko) = (w(k,w) [w(k",0")]*) (4.64 1

2 _ _K
(2m)° d(w—w'") 8(k—K") [E & (k+ko)?1P+(w—kv o) 76 5

k?g* (Q%+q%) (4.113
=20, ——— —~
% op i
0K o2 COrE(k,w)= L CSLE(k,w), (4.11b
X1+ ————], 4.6h
Q2 g2 02+q* (4.60 o
with 6/w=Ra,/q2. Here we have used the fact that the van-
K2 ishing of (I'(k,w)I"'(k’,w")) that follows from Eq.(2.23
Cpo(kiw)—20, R 0|14 2 a 02+ 0?0 |. implies (A(k,©)A(k’,'))=0 as well whereas
oIl Qe
4.7 L (277) S(k—=Kk") S(w—w")
(Ak,0) [AK ,0')]*)=7y RS
Here we used the fact that witf(x,t) being real one has §o ) o—kvg)" 7
[£&(k,0)]* =& —k,— w). The same holds fow and 6. (4.12

Note that because of E¢4.5) the correlation functions of
the critical modes+ (k.,w.) diverge ~1/e?> for e—0~
within the linear theory of fluctuating hydrodynamics. Since  One can elegantly and conveniently determine the forcing
here the fluctuations are spatially extended'** with real  strengthy in the stochastically forced GLE2.22 without
wave numbek there does not appear by construction a su-having to go to the lengthy multiple-scale derivation of Ref.
percritical driving range where convectively unstable pertur{20]. To that end we require that the fluctuation spectra
bations could be blown out of the system. Such a situatiori4.11) obtained within the GLE approximation agree with the
can arise only in restricted geometry with spatially varyinghydrodynamic fluctuation spectr@.6) and (4.7) based on
amplitudes. Thus, here in Sec. IV the linear analysis of exthe full-field equations for the critical fluctuations with wave
tended modes with wave numbeis restricted to the driving numberk, and frequencyw. when approaching the pattern
range RaRasan(K). forming instability threshold of the unforced field equations,

1. Identification of y
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i.e., in the limit e—~0". Thus identifying the divergence k=k, =0,
~(1/€) of Eq. (4.6) for k., w. ande—0 with the same one 10
of Eq. (4.12 one finds

2 2
~ dc Qi o
w|?y=2 (1+——), 4.1
lw|y QZUZRBC Q, Ra, (4.13
)
and similarly ag
v
Ra, Q; o?
2
[617y=2Q, 2(1+Q Ral’ (4.14

Swift and Hohenber23] have identifiedy in a somewhat
similar approach neglecting, however, the small contribution
~Q;. Our result(4.13 and (4.14 agrees with the result (b) 0,05 @
obtained in[26] when one uses as [26] the scaling of the L - ) 1
critical modes in whichw=1 and9=Ra,/q?. For a direct
comparison one has to note that these authors have evaluated
v for a two-component mixture. Therefore, one has to set in
Eqg. (5.12 of Ref.[26] the separation rati =0 that corre-
sponds to our case of a one-component fluid. The same result ©

ao(K, )

was obtained also by GrahaQ]. | 0.1
2. Comparison of the spectra C(do)
Figure 3 shows that the GLE approximation, | 27 | 5 N
—6.2 kék 0.2
2 |
dc Q; o°
CoF(k,w)=2 1+ =
wa (K ©0)=2Qp—5 o’R Q; RaC FIG. 3. Reduced correlation spectra of vertical velocity fluctua-

tions (a,0 and of temperature fluctuatiorils,d) resulting in a later-
{ 1 ally infinite system from fluctuating hydrodynamigsill lines) and
X from the GLE approximatioridotted lines. The left column(a,b
22 (—Kk 212 _ 2 2 ,
[e— & (k—ko)? ]+ (w0—kvg)® 7o shows frequency spectra fle k. and the right columigc,d) wave-
1 } number spectra fop = w. . The spectra diverge with increasiagt

e=0Kk.,w. as discussed in the text. Parameters@arel, Pe=5.
Cuwl(Cae) is reduced by B, (0.02Q, R&).

+[e—§3(k+ k) 212+ (0—kvg)? 73]

(4.19 depending ok, w, Ra, and Pe while the GLE yields for this
ratio of mean square amplitude fluctuations the constant

R R&/q .
Coif(k,w)=— % CSEE(k, ), (4.16 /a:
dc 3. C(x=0,w)
agrees quite well with the fluctuation spec@g,,(k,») Eq. In Fig. 4 we compare the frequency dependence of the

(4.6) andC »,(k, ) Eq. (4.7), respectively, for the small val- fotal spectral weight in wave-number space

ues ofe=—0.05 ande= — 0.1 shown there. The left column

showsC(k;,w) versusw and the right Columlﬁ:(k,wc) ver- C(x=0,0)= foo %C(k,w) 4.18

susk both for Pe=5. In each case we have ignored the small 2w

contributions~Q4/Q, in Egs. (4.6) and (4.7) and in Egs.

(4.19 and (4.16. for w and 6 fluctuations that result from fluctuating hydro-
Here and in the following the GLE result fav fluctua-  dynamics with those following from the GLE approximation

tions agrees better with the spectrum of fluctuating hydrody-

—o0

namics than the spectrum éffluctuations. The reason lies in oLE q? ( Q; o?
the ratio Cow X=0,0 +==
w 1= e o ZRaC Q; Ra
Coo(k,w) R& X[G(w—w)+G(o+w)],
= (4.17
Can(k,@) 024 q4 (4.199
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via Q%= (w—kPeY to an increased weight of the large-
@) Pe=0 modes for which the GLE approximation deteriorates.
4. C(k,t=0)
€} Finally, we discuss the wave-number dependence of the
T total spectral weight
o§ > dw
C(k,t=0)=j —C(k,w) (4.20
—:x:27T
in frequency space. This mean-squared amplitude &f a
mode is for free-slip horizontal boundaries independent of
the through-flow—the Pe dependence drops out in integra-
ol ®) Pe=0 | tions over allw reflecting the invariance of the laterally un-
bounded system with free-slip horizontal boundaries and
N plug flow under a Galilean transformation. One finds
S
I c (kieo)- Q2 (1t o)Rak) ~Rak?
S 'l w0 = ) T Raadk)—Ra 9?
2
x|1+ 2 4
Q2 (1+0)Raan(k) —Ra
R 0 1 (4.2
oo,
and
FIG. 4. Frequency dependence of the reduced total spectral
weight in wave-number spac€(x=0,w), of velocity fluctuations o Q2 Ref
(a) and of temperature fluctuatiors) according to the hydrody- Coo(k,t=0)= o(1+0) RayayK) —Ra

namic equationsfull lines) in comparison with the GLE approxi-

mation (dotted line$ for different through-flow Pelet numbers as Q; (14+ 0)Ray (k) —Ral
indicated. Parameters ate=1, e=—0.05. C,,,,(Cyy) is reduced x| 1+ (TQ— 2 .
by 2Q, (0.02Q, R&). 2 R
(4.22
R - . . .
CSHLE(X=0,w)=—§ COLE(x=0,w). (4.199 :/r\]lgthln the GLE approximation one finds from E{.11)
C
i I 2
(o
In the first(second contribution of waLvE(k,t=0)= Q2 1+ % _
3o(1l+o0) Q> Ra,
1 1 1
=— — ——— (4.190 1 1
|IKi— K52\ ImK;  ImK, X 5 o+ 5 5
le—&5(k—ko)?| e &5 (k+ke)?|
in the square bracket of Eq4.1939 the arguments of the (4.23
GLE approximation(3.5) for Rl,Z arew—w. (0+ ). Un-
fortunately the complexity of the hydrodynamic spectra doend
not allow for an analytical wave-number integration of Eqs. Rag
(4.6 and(4.7). COLE(kt=0)= — COLE(k,t=0).  (4.24

With increasing through-flow the fluctuation intensity
C(x=0,w) decreases for frequencies closaspand spreads
over a broader band aroung.. The time-displaced correla- Also here for the total spectral weigh®k,t=0) the con-
tions of fluctuations at the common position are reducedributions ~Q, from forcing due to stochastic heat currents
since in a finite through-flow fluctuations that are generateds small in comparison to the forcing due to stochastic
also by forces operating further away in upstream directiorstresses.
enter into the correlator. The difference between the hydro- C(k,t=0) diverges at the marginal stability boundaries
dynamic fluctuation strengt@,,,,(x=0,w) and the GLE ap- Ra;;5(k) of the HE or egp= gé(k—kc)2 of the GLE ap-
proximation CE-E(x=0,w) grows since the hydrodynamic proximation, respectivelysee Fig. 5. At k=0 incompress-
velocity field fluctuations are enhanced by the fact®?( ibility does not allow momentum currents in direction.
+g%) in the numerator of Eq4.6b—the growth in Pe leads ThereforeC,,, (and alsoC,, for Q;=0) vanishesxk? for

c
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20 — ' ‘ ‘ ‘ tra of the fluctuations taken at a common positipme., the
mean-squared fluctuation amplitudes vary with distarce
from the inlet.

A. Spatial Laplace transformation

The fluctuating fields¥'(x,w) that enter into the spectra
depend(i) on the fluctuating hydrodynamic forcex, )
and (i) on the boundary conditions at the inlet=0. To
keep track of these two different dependencies we found it
convenient to use spatial Laplace transformations according
to

(k,t=0)

CWW

os | . e=005 ®) | f(x) = F(K)=—i fo dx e "*f(x), (5.1

with K being a complex wave number. Thus th& 6 system
(2.20 of differential equations

C,y(k,t=0)

[M(w) = dx] W(X,0)=&X,0) (5.29

for the field vectoW(x, w) [Eq.(2.200] reads after Laplace
transformation

[ M(w)—iK]WP(K,0)=&K,w)+i¥P(X=0,w).
(5.2b
FIG. 5. Wave-number dependence of the reduced total spectral
weight in frequency spac&(k,t=0), of velocity fluctuationda  Tne yse of spatial Laplace transformations provides an addi-
and of temperature fluctuatiorib) according to the hydrodynamic 54| computational convenience since it allows to evaluate
equations(full lines) in comparison with the GLE approximation correlation functions of the field¥#(K,w) in Laplace space

(dotted lines for two different drivinge as 'nd'.catedCWW(C”) 1S algebraically thus circumventing involved differential and
reduced by B, (0.02 Q, R&). Both are independent of the . -
integral operations.

through-flow for free-slip horizontal boundary conditions, c.f. text.
The Prandtl number is=1.

B. Diagonalization
small k that cannot be reproduced within the GLE. The To solve the inhomogeneous boundary value problem

dominan.t contribution~-Q, to C””(k’t:.o) COMES from the (5.2 we diagonalize it with the 86 matrix 7(w) that di-
stochastic momentum currents that distort the vertical temégonalizesA/l(w) [Eq. (2.200] i.e.,

perature stratification. Nevertheless, the forcing by stochastic
heat currents-Q, yields a small but finite value o, for (T‘lMT)j k=K Sk, (5.3
large as well as smak.

The most conspicuous difference between the GLE aPwhereK;(w) (j=1,...,6) are the sispatial eigenvalues dis-
proximation and the hydrodynamic result is the lakgbe-  cussed in Sec. Il A. The matriXconsisting of the six eigen-
havior of Cy,y(k,t=0) andC,,(k,t=0). The mean square yectorsE; of M is a function of theK;(w,Ra,Pe). In the
of the stochastic forces that generate fluctuations increasggjiowing we sometimes suppress alsoin the argument

within the theory of fluctuating hydrodynamics quadratically |jst. Introducing transformed field vectos and force vec-
with k. This leads for large to unphysical behavior in the (o5 ¢ respectively, by

smallk hydrodynamic theory(cf. the discussion in Sec.
HB). Within the GLI_E, however, the sto.chastic_forces. excite =T W, (=T 1¢ (5.4)
all Fourier modes with the same amplitude with which the

critical mode is forced. Thus the total GLE-mode intensitie

Sthe 6x6 system(5.2) of coupled equations is transformed
of fields drop to zero at largk y (5.2 up quat !

into six decoupled equations

V. SEMI-INFINITE SYSTEMS (iK;— a0 @5(x) = £(x), (5.59

In this section we investigate how the fluctuation spectra
of the hydrodynamic field®l(x,») [Eq. (2.20D] are influ- (IK; =iK) ¢j(K) = {;(K) +i¢j(x=0), (5.5p
enced by the fact that the system is taken to be semi-infinite,
0=x<, and by the specific boundary conditions imposedfor the transformed fieldg; (j=1,...,6). Their respective
atx=0. In particular, we evaluate how the correlation spec-solution is
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0j(x) =€ @j(XZO)—JOXdX’ e_inx/fj(X')}.
(5.63
()= A0 (5.60
J

From Eg.(5.6) one can obtain the solution of the original
fields W by using the inverse transformation of E§.4)

W=T¢p, £=TL (5.7
In this way the solution in Laplace space
W(K)=G(K)[1§K)—¥(x=0)] (5.8a

takes the form of the propagator matidk multiplying the
inhomogeneityi £(K) —¥(x=0) where

5“
(5.8b

G(K,0)=Tw)G(K,0)T o), GiKw)=

Here G is the diagonal propagator matrix entering into Eq.
(5.6b. In real space the solutiof®.83 reads

W(x)=—G(x) ¥(x=0)+ f:dx’ G(x—x") &x").
(5.80

The propagator matrix

g(x,0)=Tw) §(X,0) T Hw), Gj(x,w)=—-7 ek
(5.9

in real space is the Laplace transform of E5.8b).

C. Boundary conditions

Not all boundary conditions¥;(x=0)=XP_,7} ¢(x
=0) arephysicallyadmissible in the mathematically unre-
stricted solution (5.6) and (5.7). The physical solution
W (x)=T¢(X) has to remain finite for all &x<<cc as long as
the driving is subcriticale<0. Thus, in view of the nonsin-
gular form of the transformation matrif(w) one has to
demand thatpj(x—c) remains finite forall j=1,...,6
when e<0. This is automatically guaranteed fpe=1,3,5
[43] for which ImK,>0. However, fom=2,4,6 one would
have exponential growth with 1§,,<0 if ¢,(x=0) is not
chosen appropriately. To avoid a divergence in Gc6a for
Xx— o0 in the subcritical driving regime one has to require that

@m(xzo)_fxdx/ e_iKmX/é’m(X,) =0,
0
(5.109

lim

X— 00

or equivalently

em(Xx=0)=i {n(Kp) (5.10b

PHYSICAL REVIEW E 63 056301

for m=2,4,6. Thus, the boundary condition far,,(x=0)
being constrained by a physical nondivergence condition on
the fields ¢ ,(x— ) is fixed by the spatial Laplace trans-
form of the fluctuating force,, [Eq. (5.100] evaluated for
the complex wave numbeK,,. Inserting the condition
(5.10b into the solution(5.6b for m=2,4,6 one sees that
the physically admissible fields

. gm(K)_gm(Km)

em(K) =i K—K (5.11

do not contain poles at the three complex wave numkiers
(m=2,4,6) lying in the lower complex half plane. This con-
dition is a direct extension of the result obtairfdd] for the
case of the GLE. So the residue, Hme(K— K @(K), of
the poles aK,, (m=2,4,6) in the fieldp(K)—and with it
also in the field¥(K)—are zero. When the driving crosses
over into the supercritical range<Oe<ec,,,, then the wave
number K; (K3) crosses into the lower complex wave-
number plane fow close tow. (— w;) leading to exponen-
tial growth in positivex direction as discussed in Sec. lll.
Moreover, only the characteristic “critical” exponenks, 3
cause supercritical growth in the driving range<®

< Egonv "

We should like to stress that the nondivergence condition
(5.10 fixes only three of the six boundary conditions; the
other three boundary conditions are still free to be chosen.
Thus with ¢, 4 (x=0) being fixed one can choosg 3 5(x
=0) in an arbitrary way so that six conditions oh;(x
=0) (j=1,...,6)would result viaW = 7¢ from this choice.
However, we can also externally fix three of tife fields at
the inlet instead, sayW,=u, ¥s=w, and ¥Y¢=6. The
other three¥, , ; would then be determined by the condi-
tions (5.10 together withW, 5 ¢ (cf. Appendix A. This will
be done in Sec. VE 1.

D. Decomposition of the fieldse

Before we impose in the next subsection boundary condi-
tions on the original fieldsF and evaluate their correlation
functions we treat first the more simple case of imposing
external conditions on three of the transformed figkdsAs
shown in the previous sectiap,(x=0)=i {(K,,) is fixed
internally by bulk forcing properties fom=2,4,6. The
boundary conditiong,(x=0) (p=1,3,5) on the other three
fields are still free. Here we consider the inlet boundary con-
ditions ¢,(x=0,0) (p=1,3,5) to be chosen externally and
to be statistically independent from the bulk forces. Then the
six solutionse; [Eq. (5.6)] can be decomposed

e(K)=@"(K)+¢"(K) (5.123
into an inlet driven part
=0
. _M if j=p=1,3,5
¢"(K)= K=Kp (5.128
0 if j=m=2,4,6,
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depending only on the externally imposed boundary condi- \[riln v, ‘I’lf Z5(Ky)
tion at the inlet and into a bulk driven part in b
Vo | =A| ¥s|, | Y2 | =B {a(Ky)
- Ep(K) o 24 Ve W L6(Ke)
i i K—Kp if j=p=1,3,5 (5.14b
#(K) LK) = &n(Kip) therwi at x=0 according to Eq(A4) in Appendix A. The X3
' K—K,, otherwise. matricesA(w) andB(w) [Eq. (A5)] contain matrix elements
(5.120 of T(w) and 7 *(w). Note that the contribution?}", (x
=0,w) contains only the externally controlled boundary con-
In real space one has ditions ¥, 5 (x=0,w) at the inlet. The bulk part[’kl’m(x
=0,w) ensures the nondivergence condition. It is in this way
(&g (x=0) if j=p=135 that the bulk forcinggm(Km) =_1(7 " )miéj(Ky) enters
@) (X)= 0 i i—m=246 (5.138 into the boundary conditioN; , {x=0,w).
J s Since the field componentl , s x=0,w) are chosen to
be genuinely externally determined at the inlet we have
. X H ’ ’ . - H
e jodx e P gp(x') if j=p=135 W4 5dX=0,0) =5 (x=00), W3g¢x=00)=0
eP(X) = . (5.19
e fx dx' e”msy(x')  otherwise. in our notation.

(5.13p 2. Field decomposition

Thus the inlet-sustained part is supported only by the inlet With the decompositioi5.14) and(5.19 of the boundary
boundary conditionp,(x=0) and describes its propagation conditions one can immediately decompose also the fields
into the bulk,x>0. The bulk part of the fieldgB(x) (p  W(K) [Eq. (5.8] into

=1,3,5) is sustained and determined by the fluctuating _ain b

forces{,(x’ <x) to the left of the observation location—the WK, @) =K, 0) + WK, 0), (5.163
effect of the perturbation at locatiof is propagated to the ith
right, i.e., towards the observation potvith the “propa- ' ‘
gator” eKe*~X) On the other hand, fluctuations of the P'(K,w)=-G(K,0)¥"(x=00), (5.16b
fields goﬁ](x) (m=2,4,6) are generated and determined by
forces { (X' =x) operating to the right of the observation
location. Here the response is propagated to the left towards
the observation point with the “propagator”e ™Km®' =9 HereWwi"(K,w) is supported only by the externally imposed
This again clearly shows the different physical rdel Sec.  inlet boundary conditions that enter directly int}'s {(x
i) that the characteristic exponeris, and K, play: The  =0,4) [Eq. (5.15] and indirectly intoW¥!", (x=0,0) [Eq.
former, p=1,3,5 (latter, m=2,4,6) describe downstream (5 .14h]. The bulk part¥® is determined solely by the fluc-

WK, w)=G(K,w)[i &K, »)— ¥’ (x=0,0)].
(5.160

(upstream propagation of perturbations to the righeft). tuating forces¢ that enter directly into Eq(5.160 and in
addition indirectly into¥? , (x=0,w) [Eq. (5.14h] via the

E. Decomposition of the fields¥ nondivergence constraint. In real space one has
We consider now the situation where boundary conditions W(x,w)=W"(x,0)+P(X,0), (5.173

are imposed externally at the inbet= 0 on three of the origi-

nal hydrodynamic fieldsV;(x,») [Eqg. (2.200]. The other  with

three boundary conditions are fixed by bulk forcing via the _ _

nondivergence requiremet.10. P'(X,0)=— G(X,0) ¥'"(x=0w),  (5.17h

1. Bound ditions¥; (x=0, X
oundary conditionsW¥;(x=0,w) \I’b(x,w)ZJ X' G(x—X' ) &X' )
For the sake of definiteness we impasdernally deter- 0

mined boundary conditions on the three fiedis=u, ¥

=w,V¢= 6. Then the boundary conditions on the remaining ~ (X, 0)WO(x=0w). (5.179
three fields¥; , X, w) can be separated into two parts, Note that Eq.(5.16) or (5.17 together with Eqs(5.14)
. and (5.15 is the complete physical solution for the fields
U, ,4x=0,0) =T, {x=0,0)+ P!, {x=0,0), W(w) that is constructed such as to explicitly obey the ex-

(5.143  ternally imposed and the implicitly physically required
boundary conditions. The propagator matt¢K,w) [EQ.
with (5.80] entering intoW'""(K,w) [Eg. (5.168] contains poles
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at all six locations in the complex plane given by the char- _ CNX,w:X,0")
acteristic spatial eigenvaluds;. However, W(x=0) was c;?(xlw)z”’;/ (5.22
designed to ensure that the residues of the polak (@) in 27 S(w—w')

the lower complex half plane &,, (m=2,4,6) are zero for i i .
arbitrarily chosen¥, . {(x=0) and arbitrary realizations of of the correlation matrix5.20 taken at the common position

- in X. Into its spatial evolution there enter only the three expo-
forcebsg(K). Thus each ofthe contributiond*(K) as well nentialse’®r* (p=1,3,5) as explained at the end of Sec. V E.
asW®(K), do not contain poles &, , ¢ Separately. There- X ST ) X )
fore only spatial variations~e'p* ’(’p=1 3,5) occur in Thus if the driving is in the convectively unstable regime
W(x,0) (5.170. Moreover, the terms- K (Mm=2,4,6) where ImK; 3 become negative the spectryf22) is domi-
in W°(x,w) [Eq. (5.170] play only the role of “propaga- nated for positivew at largex by the growth behavior

tors” in the upstream direction as seen already in the simpler

case of Sec. V D. Ci(x,0)=Ejj(w)e ™2 MKalekx, (5.233

i
N _ _ resulting frome'*1*, For <0 the growth is dominated by
F. Decomposition of correlation functions ImK3(w)=ImK,(— ). The matrix

Here we evaluate the correlation function matrix ( )
Dw,w’
. ! Iy — ! ! = —' T
Gi(x 03X, 0" ) =(Wi(x,0)[¥;(X",0)]*) (5.18 B)=80) s oy O (@) G230
for the case that the boundary conditiolg 5 ( x=0,w) for

. ) ; is given by the inlet correlation matri$s.21) and
the fieldsu,w, 6 that are imposed externally at the inlet are 9 y k.23

statistically independent from the bulk forcé&x, w). After Si(0)=T1(0) T w) (5.230
. ij il 1j ' '
all, these forces were assumed to deorrelated in space.
Then the field¥™ is uncorrelated with the bulk pa¥®. In the subcritical driving range<0, where InK,>0 for all
Consequentl_y, the correlation mati.18 splits into an in-  p=1,3,5 all correlation spectr@"(x, ») [Eq. (5.22] decay
let part and into a bulk part to zero forx—. Their decay is dominated by the imaginary
" b part of the characteristic exponek, that is closest to the
Gj=Cij +Cjj . (5.19  real axis in complex wave-number space. For positive

4 o , (and P¢ this isK; whene is only slightly subcritical.
Here C;'=(W;"[¥|"]*) contains correlations off'" [Eq.

(5.170] while €} =(WP[¥P]*) contains correlations of the 2. Bulk part
: b
field W* [Eq. (5.179] only. The evaluation of the bulk part
Cij(X,w;x,0") contains the factor 26(w— o). It fol-
lows from the fact that the forcing proce§&,t), as well as > (X, ;X' w’)=<\P}°(x w)[\I'F’ (X', 0")]*) (5.24
]JV 1 L L 1 ]’ L .

the boundary condition¥, 5 (x=0.) are taken as statisti-

cally stationary and that in the considered long-time limitof the correlation matrix is more complicated since the fluc-
initial-value dependencies have relaxed away. Note, howating forces£ enter into the first term of?® [Egs. (5.160
ever, that the proces¥(x,t) is spatially not translational and (5.179] explicitly and into the second term implicitly
invariant due to the boundary &t=0. Thus Eq.(5.18 de-  yia the condition¥®?, (x=0). The latter reads, e.g., for
pends orx andx’ separately. -

WE(x=0)=B1m {m(Km) =Bim T i &(Km) (5.2
1. Inlet part

The inlet part of the correlation matrix according to Eq(5.140 with B(w) given in Appendix A. In
Eq. (5.25 sums ovem=2,4,6 andj=1,2,...,6 arémplied.
CM(x, X", 0" )=G(X,w)D(w,0' )G (X", 0") (5.20 Thus the stochastic forces enter inIdf,zys(x:O) via their
Laplace transformation.
is given by the propagator matrix (5.9) and its Hermitian Instead of directly evaluating E@5.24 in real space we
adjointh multiplying the correlation function matrix preferred the algebraic method of determining the correlation
matrix in Laplace space,
D“-,(w,w')=<\P;”(x=o,w)[qf}”,(x=o,w')]*> ) .
(5.21) (KoK 0" )=(¥(K,o)¥ (K o), (5.2

of the field¥'"(x=0,0). The latter is determined according and then perform a double-Laplace transform back to real
to [Egs. (5.14bh and (5.15] by the externally imposed field space. The rational functions oK,K’ appearing in
componentsV, s (x=0,0). The case of nonstochastic inlet Eq. (5.26 can easily be transformed back, say, with

conditions is included as a special case in GR1) as well;  MATHEMATICA. In Eq.(5.26 and in the following we denote

in particular, also the trivial case &F'"(x=0,0)=0 where for better identification of the two functions entering into Eg.

D=C"=0. (5.29 the Laplace transform of a functiorf(x)]* by an
Consider now the spectrum additional caret, i.e.,
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[F0T* = F(K)=—[f(=K*)]*, (5.27)

wheref(x) < f(K).

In order to give an impression of the algebraical problems
involved in Eg.(5.26 we introduce the auxiliary effective
forcing field

EMK,0)=&K,0)+iP’(x=0,0) (5.28

in order to keep the expressions handy. The choice of the
superscripteff for effective is motivated by the fact that
\If?lzs(x:O,w) is given by the stochastic bulk forcé&gK )
(m=2,4,6) as indicated in Eq5.295. Then one finds with
WP(K,w)=iG(K,w) £*'(K,0) that

¢ (KoK o)
=Gy(K,0)(&"(K,0) & (K", 0")Gi1 (K '),
(5.29

With £877 being linearly related via Eq$5.28 and(5.25 to

£ one can express the correlation function&sf" entering
into Eq. (5.29 in terms of the forcing correlation matrix
(Appendix B

FIG. 6. Bulk partCBe(x,w) of the correlation spectrum of tem-

COV o — P ' perature fluctuations in a semi-infinite system with through-flow
Fii(Q@:Q"0")=(£(Q.) £:(Q",0")) Peclet number Pe2 subject to the boundary condition®(x
N(Q,Q") =0,0)=0. For the subcritical drivingz= —0.05 (a) CE,F, grows in
=27 S(w—w") ! . downstream direction to a finite bulk level depending on frequency
Q+Q’ w. For the supercritical driving=0.016(b) the correlation spec-

(539 tum diverges e 2 MKu(@)X yithin the frequency band of,
—0.47, w+0.52).CY, is reduced by RQ,/27. The Prandtl num-
HereQ denotes eitheK or K, 4 candQ’ stands for eitheK’  beriso=1.
or K, 46 The matrix A/ [Eq. (B3)] in the numerator of Eq.
(5.30 containsQ and Q" up to bilinear orderQQ’. The  the spectrum as a three dimensional plot overxthes plane
propagator matrixg entering into Eq(5.29 contains sums of variables for a slightly subcritical drivinge&s —0.05)
of simple pole terms-1/(K—K;). Thus one can apply par- with through-flow, Pe=2. The critical frequency isw,
tial fraction decompositions and the method of residues in=k_Pe. With the decomposition of the field into exter-
the double-Laplace transform of E@5.29 back to real nally and internally generated parts one m@(xzo)
space. =0°(x=0)=0 Eq. (5.19 so thatC’,(x=0,0)=0. On the
other hand, forx—o the bulk-generated temperature fluc-
G. Correlation spectra tuation spectrum approaches in the subcritical driving situa-

Let us discuss the spatial evolution of the correlationtion a finite limit spectrumC},(x=20,w). The latter is the
spectra of the temperature fluctuatiof(x,w) = V¢(x,w) as  same as the wave-number integrfl,..(dk/2m)C y4(Kk, ),
a representative example. Thosewfare quite similar to  Eq. (4.18), over the fluctuation spectrum in doubly infinite
those ofg; andw andu are related to each other via incom- systems. The approach to this limig(1—e 2'MK) s
pressibility (2.183. governed by the spatial eigenvalifg that is closest to the
The inlet part[Egs. (5.20—(5.23)] is essentially domi- real axis. On the other hand, the variation near the inlet is
nated for positivew by the contribution from the growth/ caused by the contribution from the other exponentials.

decay behavioe' ¥ coming from the “critical” character- Figure @b) ShOWSCl;(,(X,w) in the convectively unstable
istic exponentK; as discussed in Sec. VF1. So we regime. The driving iss=0.016. The other parameters are
concentrate here on the bulk part the same as in Fig. (6. Here the correlation spectrum

) b s CP,(x,w) diverges~e 2K for large x in the critical
(PP(X, 0)[W(x,0")]") (5.3) Dandw,—0.47<w<w,+0.52 of negative Ink,(w). Mean-
27 S(o—o') ' squared fluctuations with the critical frequeney have the
highest downstream growth at the inlet and are dominated by
of the spectrum of fluctuations taken at a common positionthe eigenvalueK;. Outside the critical-frequency band all
x=x". perturbations are damped.
Figure §a) shows the bulk-generated patf,(x,w) of The influence of through-flow on the growth length of

Ch(x,w)=

056301-16



INFLUENCE OF INLET AND BULK NOISE ON.. .. PHYSICAL REVIEW E 63 056301

other eigenvalues do not show such a distinctive behavior
LAY close toe=0. The eigenvalueKsg with relatively large
4’\\\\\\\\\\\\\\\\\\\\§\\§\\\\§\\\§\\§§§§\ : imaginary parts implying large spatial variations are of
~“\\\\\\\\\\\\\\\\\*\\\\\\\\\\§\\\\\§\\\\\\§\\*\\1\*‘“ purely hydrodynamic origin. They do not appear in the GLE
’\\\ R approximation. The agreement of both descriptions improves
when reducinge|.
In Sec. IV we have discussed the fluctuation dynamics in
unrestricted geometry. By comparing the residue of the cor-
relation functions at— 0~ with the corresponding GLE ex-
pressions the stochastic forcing strengtbf the latter could
be identified in terms of the strength of stress and heat cur-
rent fluctuations. For smalle| the correlation spectra
FIG. 7. Bulk-generated mean-squared temperature fluctuationgw"".(k'w) and C‘?(’(k’w) of velocity and temperature fluc-
Cb,(x,w.,Pe) with critical frequencyv, as a function of down- tuat|_0ns,.resp(_act|vely, compare rather well with the GLE ap-
stream distance from the inlet and through-flow &t number Pe proximation with a better agreeme_nt in the former case. The
for e=0.016 in the convectively unstable regime. The laxgee-  tofal spectral weightC,,,(x=0,0) in wave-number space
havior is dominated bye 2'mKi(wc.Pex b s reduced by deviates with increasing through-flow more and more from
R&Q,/27. The Prandtl number is=1. the GLE approximation due to substantial contribution from
the high-momentum region. In frequency space the corre-
bulk fluctuations withw, is presented in Fig. 7. At the su- sponding total spectral weight§,,,(k,t=0), for the GLE
percritical heating e=0.016 the correlation spectra and HE differ at largek as a result of an overestimated hy-
CY,(x, ) are shown for increasing group velocities Pe ofdrodynamic weightck®.
convectively unstable states. The through-flow expands the In Sec. V we have investigated how a restricted geometry
influence of the inlet condition§in our cased"(x=0,0)  and inlet conditions at=0 influence the statistical dynam-
=0] into the bulk. Thus higher the Pe the longer is theics of hydrodynamic fluctuations in downstream direction.
growth length of mean-temperature fluctuations since th&Ve have considered a statistically stationary situation with
downstream variation~e~2'mKpX (p=1,3,5) flattens and time translational invariant correlations of the fluctuations
the upstream modes e'*m (m=2,4,6) decay faster in up- that are evaluated in space. But because of the restricted
stream direction. geometry the system is not translational invariant. Therefore
we have used spatial Laplace transformations as a convenient
VI. CONCLUSIONS tool to separate the effects of inlet forcing at the boundary,
x=0, and of bulk thermal forcing. Moreover, this method
We have studied fluctuations of the hydrodynamic fieldsallows also for an algebraical evaluation of correlation func-
in laterally infinite and semi-infinite Rayleigh-Bard sys- tions having simple pole structures in Laplace space that can
tems with lateral through-flow in the vicinity of the threshold straightforwardly be transformed back into real space. The
for onset of convection. The linearized field equations in-six characteristic spatial exponents mark the pole positions.
cluding additive thermal forcing have been projected into the The hydrodynamic field equations require six boundary
subspace with the critical variation mandy directions for  conditions. Three can be imposed freely at the inlet and the
free-slip horizontal boundaries. other three are chosen such that the fluctuations do not di-
In addition to the standard temporal growth analysis ofverge atx— o in the subcritical driving range. These condi-
modes~e™**, with real k we have studied the spatial re- tions imply that in Laplace space the residue of the poles at
sponse~eX(©)X of an oscillatory modee™"*! with real . K, 46 in the lower complex half plane vanish. That, in turn,
There are six different characteristic spatial exponentsixes the remaining conditions &t=0 in terms of bulk ther-
K;(w). Their imaginary parts determine the spatial growthmal forcing properties. In this way one can separate the con-
or decay of the modes. In the subcritical driving regirae, tribution to the fluctuating fields and their correlations that
<0, three of them—namel¥, 35 (K, 46 in our notation—  are caused by externally imposed boundary conditions at
lie in the upper(lower) complex wave-number plane. The =0 on the one hand and bulk thermal forcing on the other.
contributions~ e'*135 (e'f248) determine the evolution of This decomposition is exemplified for the experimentally rel-
the fields to the righ{left), i.e., in downstreanfupstreamh  evant situation that the temperature and velocity fields are
direction for through-flow in positives direction. With in-  specified at the inlet.
creasing through-flow the downstreafapstream growth For subcritical drivinge<0, the spectra of the fluctuating
lengths 1/InK, 35 (—1/ImK, 4 ¢ increasgdecrease When  fields approach foxk— the corresponding ones in an infi-
the Rayleigh number becomes supercritical the “critical” nite systenp<[1—e ™2 'mKi(@)X] whenw is close tow,. For
eigenvalueK; andKj cross the real axis &= *k; with @ close to— w, it is the other “critical” exponentk; that
o=*w., respectively, fore=0. Thereafter in the super- dominates the growth. In the supercritical, convectively un-
critical regime, G<e<ec,, below the boundargf,, be- stable driving range the fluctuation amplitudes diverge
tween the convectively and absolutely unstable driving rangece™2 'MK1(«)X at |largex when o lies in the band of modes
all perturbations with frequencies aroundw. for which  close tow, for which ImK;(w)<0. Increasing the through-
ImK; (w)<0 are amplified in downstream direction. The flow causes the growth length of fluctuations to increase.
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Experimental investigatior{#4] of Rayleigh-Baard con- To Tia Tis T Tz Tis
vection in the presence of a lateral flow have been done
predominantly in the absolutely unstable parameter regime c=| T2 T4 Tps|, d=| Tar Tz Tos
where the convection structures are well developed and T3, T3q T3 T31 T3z T35
largely insensitive to perturbations. While the necessity to (A2b)
distinguish also in this open-flow system between convective . ) _ ) i
and absolute instability45] is becoming common knowl- ©0mbining Eq.(A1b) with Eq. (Ala) one immediately finds
edge, there is a lack of convection experiments that are spd1® sought-after relations between the fieldsa0,
cifically designed to measure the downstream growth and W
evolution not only of amplitudes but also of fluctuation spec- ?1 4 2
tra of flow intensity and/or temperature. Such experiments, | ¢3 | =(1—-bd)"ta | ¥s|+(1—bd) *bc| ¢4,

performed in long and narrow convection channels, are best ¥

. : - . s 6 Pe
suited to determine the influence of inlet and bulk thermal (A3)
noise. These data should allow at least a qualitative compari-
son with our free-slip theoretical results for the spatial evo- /¢, v, ®s

lution of the frequency spectra of the fluctuations.
a v sp ¥, | =(1-db)y tda| ¥s|+(1-db) tc| ¢4
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APPENDIX A: BOUNDARY CONDITIONS AT x=0 Equations(A3) and (A4) show explicitly how the boundary

In Sec. VC we have seen that one has to impose theonditions onp, 5sand on¥, , sare related to the externally
boundary conditiong5.10 on the fields withm=2,4,6 in  imposed conditions¥ , 5 ¢ and the internally required condi-
order to avoid unphysical divergencesxat-o for subcriti-  tioNs ¢, 46 involving bulk forces. Note that EqsA3) and
cal driving. With the three even components=2,4,6 of the ~ (A4) require the matrix (+db) to be invertible. _
transformed fieldsp=7 "1 W [Eq. (5.7)] being determined We should _Ilke'to stress hgre that in general one can f|x
internally atx=0 according to Eq(5.10 by the Laplace only three arbitrarily (_:hosen field components out of the six
transformation of the bulk transformed-field forcas Components of the field vectol at the inlet,x=0. The
=71 ¢the odd components, with p=1,3,5 still require a  fémaining three boundary co'ndmons for the sy;(éni) of
boundary condition ax=0. SixX d!fferentlal equations of first order are furnished by the

In this appendix we externally impose as one possibl€onditions (5.10 on ¢, 4x=0) that ensure the correct
choice boundary values on the fields,=u, ¥s=w, and physical be_hawor of the solutlc_)r_1 at— oo, Th_us if one
We=6. Then with ¢, 4 ¢(x=0) being fixed internally and chooses to impose thernal Condlfuons on thiefelds other
with W, 5 {(x=0) being fixed externally we explicitly evalu- than¥sse0ne gets in a way that is completely analogous to
ate the remaining other components;ssx=0) and EOS. (A1) and (A2) matrix relations _that expresg; s s in
W, ,4x=0) of the transformed and of the untransformedterms of¢2,4y_6 and_the three choseh fields and the remain-
field set, respectively. To that end we decompose the trand0d threeW fields in terms of the chosen ones apgl, ¢
formation relations¥W=T¢ and =71 W as follows:

APPENDIX B: LAPLACE TRANSFORMED FORCE

CORRELATIONS
P1 Wy vy ) )
es|=al| ¥s| +b| ¥, |, (Ala) Here We_complle formulas for thg double_—spatlal Laplace
transformation of the force correlation functions
®5 Ve Vs
(§(X,@)[&(X",0)]*) Z(&(K,0)€(K' w"))
v, ®2 @1 =Fjj (K,o;K" 0"). (B1)
Wol=c| ¢a| +d| ¢3], (Alb)
N ¢ P Here the caret indicates the Laplace transformation of a
3 6 > conjugate-complex function in real space as introduced in
Eq. (5.27). Since[ &(x,w) ]* = &(Xx, — ) as a consequence of
T T T T T Ti the reality of&(x,t) one has
a=| Tas Tos Tos |, b=| T To T |, (K o) =§ (K ~w'). (B2)
Tt Tss Tso Tsi Tsi Tsy

(A2a) From Egs.(2.19 and(2.20b one finds
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’ ’ ’ MJ’(K’K,) = % r_ i_z
.Fjjl(K,(x),K , W ):277 5(&)—&) )W N31_2 o | K vp 3 K ) (Bae)
(B3a)
with ¢ 4
Nag=2i Q,| m?— —+—)KK’ , (B3f)
Q¢ 4 3
S TR I _ 2 ’
Ni1=2i 02[ p+3 7 —KK } (B3b)
and\j;, =0 for all otherj,j’. At the inlet,x=0, we discard
. Q &2y, the fluctuating stressas;; and o33 and the lateral compo-
Nig=2 T K= v 3 K™ (B39 hent of the fluctuating heat current. Withw, 6 being fixed
at x=0 they do not enter into the correlation functions
Nyp=2i Qq(7?—KK"), (B3d) (5.18.
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