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Parameter variations in the equations of motion of dynamical systems are identified by time series analysis.
The information contained in time series data is transformed and compressed to feature vectors. The space of
feature vectors is an embedding for the unobserved parameters of the system. We show that the smooth
variation ofd system parameters can lead to paths of feature vectors on siholatiensional manifolds in
feature space, provided the latter is high-dimensional enough. The number of varying parameters and the
nature of their variation can thus be identified. The method is illustrated using numerically generated data and
experimental data from electromotors. Complications arising from bifurcations in deterministic dynamical
systems are shown to disappear for slightly noisy systems.
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[. INTRODUCTION nonstationary setting, where the parameters themselves are
also time dependent.

Time series analysis has become a popular approach to We will consider two related settings for the reconstruc-
the investigation of dynamical behavior of systems in experition of parameter spaces. One is the situation of nonstation-
ments and field measurements. Methods which are usuallgrity, where we assume that parameters vary as a function of
called nonlinearrefer to the reconstruction and exploitation time. Provided that this time dependence is slow enough
of structure in phase spa¢#,2], and are very powerful if a compared to the time scales of the system’s dynamics, we
time series is generated by an almost deterministic lowean map this situation by a segmentation of the time series
dimensional dynamical system. These, like also almost albnto the second setting, where we assume to possess a
other time series analysis methods, require a strict stationasample of time series from a given system with different
ity of a time series. constant parameter settings. We will show that in an ideal-

However, in a huge number of dynamical phenomena thézed setting for both situations, the following holds:dipa-
variability of the dynamics is much more relevant or inter-rameters are varied, the set of all conceivable feature vectors
esting than the dynamics itself. One example is the activitys confined to al-dimensional manifold in the reconstructed
of the human heart reflected by electrocardiagram recordparameter space. If the number of variable parameters is un-
ings: The electrophysiological mechanism which creates th&nown, it can be identified as the maximal dimensionality of
signature of an individual heartbeat is rather well understoodhe set of feature vectors, and, if the variation is time depen-
and rather robust, but the heart rate has a large variabilitydent, we can follow the path in the reconstructed parameter
and this variability may tell a lot about the physical condition space in order to identify the nature of the nonstationarity.
of the heart as an organ. Examples will demonstrate that we can also obtain meaning-

Although there are already different well established ap{ul results in realistic situations.
proaches to dynamical pattern recognition, data classifica- Potential future applications of this idea range from a bet-
tion, and the extraction of dominant modes, another point ofer understanding of laboratory experiments, where the con-
view will be taken here. In this paper we explicitly assumestancy of control parameters can thus be checked, over dy-
that the variability of a given system’s dynamics originatesnamical variability in field measurements, and the
from the change of a small set of system parameters. It wilunderstanding of driving forces causing nonstationarity for
be the goal of this paper to gain access to these unobservéasks such as data classification and failure detection. Data
and typically unknown parameters through the analysis of &lassification of a similar type was suggested in R&f. and
set of different time series reflecting this dynamical variabil-nonstationarity was traced in a kind of feature space in Ref.
ity. We propose to reconstruct the parameter space from tHel]. Feature extraction is a well known problem in statistics
time series data, whefeaturesof the underlying time series which can be studied under several aspects such as pattern
form the elements of the reconstructed parameter vectorsecognition or signal representation.

Their changes will reflect the variation of system parameters, The concept of parameter reconstruction will be intro-

e.g., when modifying experimental conditions or in a nonstaduced and the main claim will be formulated in an abstract
tionary setting. This idea implies that the fast time scale asway in Sec. Il. There, relations to established methods of
sociated with the dynamics of the system itself is eliminateddata classification will also be discussed. For the class of
by a kind of projection, and changes of system parameters dimear stochastic models our claim can be proven by referring
larger time scales thus gain enhanced observability. We wilto well known properties of these systems. In a more general
comment on the posterioridistinction between dynamical setting, deterministic and stochastic dynamical systems are
variables and parameters later, in particular in the case of discussed in Sec. IV, where certain complications can arise,
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in particular through bifurcations. We illustrate theoretical like Eq. (1) depend ord parameters as stated above. Follow-
considerations by numerical examples. In Sec. VI we applyng Whitney’s theorem, we thus ne&e=2d+ 1 independent
the method to time series data from electromotors, and showmooth representations of thesg@arameters in order to re-
that essentially two parameters drive the large dynamic variconstruct the parameter space inRih A scalar time series
ablllty contained in 84 different time series. In Sec. VII we obtained from a trajectory of the System should thus be con-
compare our approach to a method of parameter identificaerted intok different and mutually independent values: the

tion suggested by Parlitzt al. [5]. features. In order to represent the parameters and not the
details of the time series, these features should be indepen-
Il. RECONSTRUCTION OF UNOBSERVED SYSTEM dent of the initial condition or the particular realization of the
PARAMETERS time series(invariant under shift in timg but they have to

depend on the underlying parameters.
¢ Some definitions are necessary in order to formalize this
idea. As stated in Eq(l), we do not want to distinguish

We shall establish the concept of parameter reconstru
tion for random dynamical systems with the general form

. between purely deterministic data and time series from ran-
d_X_ FR(1).E.p) 1) dom processes. To be general, we will thus speak about the
dt 6:P source of the time series and on how many parameters the

source depends. The dependence of the source on the param-
eters can be such that it is essentially unobservable through
the time seriegwhich might depend on the measurement

; o . function. We naturally want to exclude these parameters
=const, Eq.(1) defines a deterministic dynamical system. go0 oyr discussion, and we thus define the following two
The time series is then a sequence(wiost often scalar  jyences, which will be the only ones covered by this pa-
observations{s,},n=1, ... N, where s,=h(x(t=nAt)), per.

with a measurement functidnand a sampling intervalt. If Distribution influenceAt least one of the moments of the

we allow the parametersto be time dependent, the function probability distribution of the observable depends on the pa-

p(t) is assumed to vary on much larger time scales ti@n  rameter.

or evené do. However, when the starting points are time Dynam|cal_|nﬂuenCJeAt least one of thenth order tem-
series data of an unknown system, there may be some amBi® [ﬁi correlaélor:js_, (_jepends olr;;rle ;S)aramstir. D S

guity which will be discussed in Sec. V. The concept of € stanj ardizing samples={S;}, j=1,...D, §
parameter reconstruction will include two limiting cases. Sty e 'SNJ} is an ensemble dD time series which rep-

An ensemble of different time series obtained from a soluresents different settings of those parameters which are actu-
tion of the system in Eq(1) with the same measurement ally varied. Each single time seri& is assumed to be sta-
functionh and same sampling intervAt is given, but where tionary with constant parameters, and is obtained with the
each single series corresponds to some individual fixed S&@Me measurement function and sampling interval.

This situation is the typical starting point for the classifica- 1 nenumber of effective parametesde . Since different

tion task. parameters might have identical effects, or some parameters

might be kept constant in the standardizing sample, the num-

S|Ofll\l)|) I\r/]a? iﬁln?rlletimgg'rtggecéﬁrelisbégi t% a;ﬁrenetrﬁﬁ;ﬁ] of ber of effective parameteid, might be smaller thad. This
y varying ‘ P b might be trivial (if a parametera is just split intoa=a;

nonstationarity. However, the nonstationary situation can be - . s
) : ; S +a,) or nontrivial, and might, e.g., be shown by nontrivial
approximately mapped t() by cutting the time series into

: ) ; transformations of the equations defining the source.
(potentially overlappingsegments, if the change of the pa- . : o ; .
; e . Y . Finally, we define deature f a statistical quantity which
rameters is sufficiently slow. Since in this case the time se-

. : . . oes nof(at least in the limit of infinite sample sizelepend
ries segments are still nonstationary, time averages needed {0 T o AL

. on the realization of the process.g. initial condition, indi-
compute features do not represent averages according to an

invariant distribution. Hence, for the formal derivation of the \S/flfrigp;sc;eﬁ:‘gg’?gtgg’guﬁeoaqgrgn ;hsee?"g? ?gz'ile{z)ﬁofsthe
method we assume dnnrealisti¢ case in which, in the non- :

stationary situation, the parameters vary in a steplike manne(iﬁ"(e{(:lf_'}r)]d?zer]fgfrgl’l grgi]t?; |tsimn:sf:rrilec;|cgwsuch thatf;
with small absolute changes from one time series segment fo 31 ) for yu .
The standardizing sample will then be compressed into a

the successive one, with no changes inside each segment. In "~ ) A N
this case(b) is exactly mapped t¢a). set of identical cardinality of feature vectdrg}, where each

Hence the formal derivation and the essential part of thdeature vector is composed of the values of a set of iDdepen—
numerical illustrations will focus on the classification prob- dent features; on the corresponding time seri&: (f;);
lem for generality, and only in Sec. V will we come back to =f;(S;). Based on these definitions we make the following
the non-stationarity. The main idea of this paper is then thehreepropositions
following: Whitney’s embedding theoref®] states that any (8) When the standardizing sample represents the varia-
given d-dimensional smooth manifold can be embedded irtion of d,, effective parameters which possess either distribu-
anR¥ wherek=2d+ 1. Now let thisd-dimensional manifold tion influence or dynamical influence or both, then there
be the parameter space of a system, i.e., equations of moti@xists a k=2d.+1)-dimensional embedding space con-

wherexe 'CR' is the state vectorpe RY is a parameter
vector, andé represents a noise term. &t)=0 and p
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structed by the direct product &f=2d.+1 suitable inde- introduces a metric in feature space, and thus determines the
pendent features, in which the parameter space is uniquelyature of the manifold which represents the parameter space.
immersed. Optimal choices of the features might impose a Euclidean
(b) The set of feature vectors, representing a standardizingature on it, so that=d, might be sufficient.
sample of an unknown source and an unknown effective The features are quantitiesuch as the mean value
number of parameterd,, is confined to a<d.-dimensional  which are well defined for a given process, but whose values
manifold in embedding space formed by the direct product obn a finite sample are computed by a statistical estimator.
=2d, independent features. The extrapolated dimensionalitgince the reconstruction task is a comparative task on
of this set of feature vectors saturates at a vaduk , where  samples of equal size, we do not need an estimate that is as
the identity is found for suitable features and for d,. accurate as possible, so that a potential bias or inconsistency
(o) If the standardizing sample is derived by segmentatiorfloes not matter too much. More relevant for a sharp distinc-
from a single long time series, the time ordering of the feation is the variance of an estimator: Given different finite
ture vectors defines a path in feature spac&>2d,, this  time series as realizations of the same process with identical

path is topologically equivalent to the paiit) of the time  Parameters, how much does the outcome of our estimate
dependent parameters in their parameter space. vary? In order to be able to identify parameter changes, these
statistical fluctuations should be as small as possible, and we

need to employ estimators which have a minimal variance.
We will present a proof of the propositions only for the
To exploit proposition(b), one has to consider that the class of linear stochastic models. For more general dynami-
finite set of feature vectors obtained from the standardizingal systems, certain complications arise which typically are
sample has a dimension zero. It is assumed to be a finitgot destructive from a practical point of view, but might be
random sample of a set with an unknown dimengignThe  prohibitive for a more general proof. Since Whitney’s theo-
dimensiond, has to be extrapolated numerically, e.g., as inrem requires a smooth dependence of the coordinates of the
numerical dimension estimates of strange attractors, and thysnbedding space on the position in the original manifold,
the standardizing sample has to be sufficiently large. An unbifurcations in deterministic dynamical systems will turn out
suitable choice of features can only hide certain parametei$ pose problems, which can be circumvented by the inclu-

but cannot enhance their number. sion of the dynamical noisé in Eq. (1). It is thus plausible

_The distribution influence can show up in static characteryya¢ 4 general proof is possible only for noise driven systems.
istics such as a mean, standard deviation, or scaling proper-

ties such as dimensions, i.e., in all quantities which involve

the invariant measure of the deterministic dynamical system B. Relation to statistical approaches
or the invariant probability density functioPDF of the
stochastic system. The dynamical influence can express itse[ﬂ)
by quantities involving time lags, such as power spectrumemploy the same procedures, e.g., principal components
entropies, or Lyapunov exponents. The distinction betwee D '

distributi dd ical infl . tash Di Rourier or wavelet analysis. In this paper we restrict our-
IStribution and dynamical Influénce 1S not a sharp one. DiSqq 65 to a small set of different features, and it seems that

tributions in the time delay embedding space also contaify o e is no general guideline for an optimal choice of fea-

essFentlgI dy”‘?‘m"ij}' tlr?fbortr.natlon..th th . tures. The main difference of our approach compared to
or Laussian distributions with zero mean, the varance,, o i aditional methods of classification and characteriza-

2 /A —
and the fourth moment are related byx3)®—(x >_.0' tion lies in our hypothesis about the source of the data and
Nonetheless, second and fourth moments are two mdepeia-ence in the information which we want to extract

dent features since no general relationship holds for samples In statistical pattern recognitidi¥] one begins with a set

(time sene};_wnh arbitrary PDF_S' N of random vectors of lengtN, where each vector is a set of

. There exist parameters which hz_ive dynam|cal_ Imcluencer'andom variables which can be, but are not required to be, a
W'th?Ut. d|str|bu_t|on :cnguencg and V(che versg.b,;k S|mphle ext'time series, so that in general there is no dynamical informa-
ample IS a series of Laussian random variables, wnere lﬁiﬁm contained in them. The idea behind classification is then
variance of the distribution and the correlations between SUGhat there exist different classes of vectors which are charac-
cessve 1"3'“6‘3 can begulned independently through the mOdf]iJrized and distinguished by different probability distribu-
[an AR(1) model; see belofv tions in thisN-dimensional space. The minimal classification

) error is given essentially by the overlap of these distribu-
&n,

A. Remarks

Our approach uses ideas of feature selection and extrac-
n similar to those in other statistical methods. We can

2) tions. Since in the typical classification task these distribu-
tions are unknowra priori, they also have to be estimated
from a sample of vectors. The extraction of features, and

where &, is Gaussian white noise with unit variance?  hence the projection from this usually high-dimensional

=(x2) is the variance, and,= (XX, ) is the autocorrela- space onto a low-dimensional feature space, has two objec-
tion function at lag 1. tives: more reliable estimators of the probability distributions

The reason why we need the Whitneg2-1 “overem-  and the goal of simplifying the construction of the classifier.
bedding” lies in the nonlinear way in which the parametersGood features are those which increase the classification er-
might show up in the features. By the choice of features oneor by this projection least.

2
C1 C1

_ 2
Xp+1= Xt | 07— —
o? o?
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In our approach we start with a distinction between a stat@ower spectrum or, equivalent(gelected lags of the auto-

space Spanned by state Variab{eand a parameter space. correlation fUnCtion, prOVide a very Simple set of features
This distinction is not present in the traditional framework. Which represent the full, parameters in feature space.
Thus, in the language of classification, we have a continuum BY the methods discussed in Sec. IV A, one can directly
of classes, since every set of fixddystem parameters, i.e., determine the coefficients of the AR part of the model, but
every point in the parameter space, defines a new class. Gfis way one does not have a handle on the MA part. This
the other hand, since all classes can be distinguished ifonetheless makes sense if the systems under study are
theory by ad-tuple of parameter values, we know that adriven by external colored noise represented by the MA part,
projection onto a (8+ 1)-dimensional feature space will Whereas only the AR part reflects the system’s own dynam-
suffice for our classification problem. In the ideal céisdi-  iCS which is suspected to vary.
nite data setsthere was no overlap of distributions. In real-
istic situations with finite time series, our feature vectors
suffer from statistical inaccuracy; hence there is some over- IV. DETERMINISTIC SYSTEMS WITHOUT
lap, but it is of a different origin than in statistical pattern AND WITH WEAK NOISE
recognition. A. Equations of motion from data

Il RECONSTRUCTION OF PARAMETERS IN LINEAR The eqliations of motion of deterministic dynamical sys-

STOCHASTIC MODELS temsJi.e., £&=0 in Eq.(1)] can in principle be fully recon-
structed from observed dafd]. In stochastic modelssuch
A frequently used method fdialso time dependenfea-  as the ARMA or weakly noisy deterministic models, only

ture extraction consists in fitting AR or ARMA models to the deterministic feedback part can be reconstructed; how-
data(see, e.g., Ret8] for two examples of electroencepha- ever, this is often the relevant part. For simplicity, we restrict
logram data In our setting, these are models where the repyr discussion to discrete tinig0], but there are no difficul-
lation between features and parameters can be fully undefies in extending the arguments to continuous time systems

stood. The class of linear stochastic models is completely ittarential equations[11]. Let >Zn+1=|fp(§n) be the itera-

covered by the well studied autoregressive moving averag . | s
ARMA(M,N) models, tion of a map in theR', ands,=g(x,) be a scalar measure-

ment. Moreover, we assume that there@aparameters i p
which will be varied. If instead ofs,} the series of vectors

Xn+1= g‘o ajxn,j+j20 bj 70— 3 {x,} were measured, the most direct and obvious way to
reconstruct thed parameters would be to estimdtg from
where 7; are independently Gaussian distributed randonthe data. This is conveniently done by choosing a suitable
variables, and the set of fixed coefficiertsand b; deter-  fynctional formG,, for the unknowrF, depending on a huge
mines the properties of the modé]. These are the param- set of free coefficients, and to minimize the one-step predic-
eters of the system. The outcomg is again a Gaussian tion error e where e2=(l/N)E[§n+l—éq(§n)]2, with re-

random variable with zero mean. Its distribution is fully h fici if th ; ionE b
characterized by its variana8=(x2), i.e., all static features SPECt t0 the coefiicients. If the true functionk, can be

(higher moments of the probability distributipmre func- ~ @pproximated by, with sufficient precision, a variation of

tions of s2. Hence in such a feature space, an arbitrary enth® parameterp will induce a change of the coefficiens

semble of ARMA time series can at most yielg=1. [3]. Our <_:Ia|_m from_abqve now means that_ t_he variation of
Consequently, one also has to test for dynamical influenct® (in principle arbitrarily large set of coefficients) takes

in order to excludeor verify) that more than one parameter place on aj—d|rl1en3|onal manifold. T@s statement becomes

is varied. For ARMAM,N) models the set of coefficiengg  trivially true if F can be obtained fror® by setting all bud

and b; can be directly mapped onto the properties of thecoefficients identical to zero.

M-1 N

power spectruns?(k), When only a scalar time serigfs,} is recorded, due
N to the theorems of Sauest al. [12], an equivalent ofF
E b. el 27ki/L exists in the delay embedding spac%+1=H(§n)
) = =H(Sp,Sh-1, - - - Sn—m+1)- Again, H can be estimated
s°(k)= M ' 4)  from the data by choosing a suitable functional form and
1—2 ajeizﬂki/L minimizing the one-step-prediction erroe, where e?
j=1

=(1/N)E[sn+l—Hq(§n)]2 with respect to the free coeffi-
: ; : cientsg. Due to the fact that there is a one-to-one relation
for a time series of length, which can be mapped to the between the dynamics in the delay embedding space and in

autocorrelation function by another Fourier transform. In ad i iginal oh B d d th oy
dition, it is well known that all higher order statistics can be ", € original phase spacklq depends on the parametgrsn

derived from this second order statistics uniquidy. Evi-  Fp. Under variation ofp the set of arbitrarily manyy’s is
dently, an arbitrary feature vector is thus confined to &in ( confined to al-dimensional manifold. The details of how the

+M)-dimensional manifold in feature space, proving ourSet ofq’s depends on the set gfs depend on the details of
proposition. Moreover(selected frequency bands)athe H and the measurement functignby which the scalar ob-
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FIG. 1. The coefficientg,, c,, andc; of the fits to data gen- ~075 |
erated by the tent majeq. (5)], (connected by lines for increasing
a) and the projections onto each of the three planes. ‘ ‘ ‘
T4 1.45 15 1.55 16
servables are obtained. In general, the dependence is nonlit a
ear, such that the manifold to which tiyés are confined is
curved and thus can be embedded inRi‘nonIy for suffi- FIG. 2. The maximal Lyapunov exponektof the Henon map
ciently largek, where Whitney’s theorem states tikat 2d is ~ [Eq. (6), without the noise terfplotted vs the parametex The
sufficient. corresponding path in the parameter spagé) is indicated in Fig.
As an illustration, we study time series generated by tend by a black line. Although\ varies smoothly at the bifurcation
maps of the type points (zero crossings and continuously elsewhere, large fluctua-
tions due to bifurcations occur on arbitrary small scales on the
Xni1=3— a| x| (5 parameter axis.

for ac[1,1.6]. The chaotic motion is confined to two sub- N the (@,b) plane shown in Fig. 3. The variation of the
intervals of the interval — 1/2,1/7. We assume that we do Maximal Lyapunov exponent of typical orbits is shown in

not know the source of the data, and perform a fit with aFig. 2. . ) , ) i
6 Subcritical bifurcations create a discontinuous change of

sixth order polynomialG.(x)=2"_,cx'. Resulting fit coef- e ; . .
ficients obtained from 20 time series of length 1000, each foF;lll features. But even |f,b|furcat|ons are continuous as in the
different values ofa, are shown in Fig. 1: The variations of abo_ve example_ of the hien map, the changes can b‘? SO
C., C,, andcs (the other coefficients yield equivalent fig- rapld.as a function of the.contrgl parameter that thgy will, in
ureg clearly confirm that all time series are related to thePractice, appear to be d.ISCOHIIHUC.)US.. Features W'I.I th“?" ef-
éectlvely jump at bifurcations, and it will be hard to identify

variation of a single parameter. This rather simple examplWh ther tim ies before and after a bifurcation are related
demonstrates that we do not have to require(theealisti¢ ethe € Series belore and arter a bifurcation are refate
0 each other by the variation of a single parameter. The

case that the “true” equation of motion can be represente% . . ; i .
exactly by our fit. ypical dynamical system is not uniformly hyperbolic, and

The reconstruction of the equations of motion is the mos hus can have bifurcations everywhere in parameter space.

obvious way to get a handle on the unobserved parameters.rom a theoretical point of view this is destructive of our

However, in principle, every feature which dependsconc.ept’ _since embedding in th? spirit of V\/_hitney is only
smoothly’ on the paraméters should be suited as one coordioSSible if the features are continuous functions of the pa-

nate in the reconstruction space. In the tent-map example, t S‘rr::?_toerré gfv‘t’ﬁewa:r;f];g?ssefrveeto%ﬂ??g’ciggeivgnasmggtg
one-step prediction erroe obtained by the fits with sixth unct P ihwe w v :

order polynomials, together with, e.g., the variance of theotructure. s
distribution of the data, and its mean, again yields feature,. In practice, h_owever, purely deterministic low-
vectors which nicely align on a one-dimensional curve. dimensional dyna_mlcal systems are rare, a_nd as soon as ran-

domness comes into play all changes at bifurcations can be

expected to be not only continuous but even smooth. Intro-

B. Bifurcations ducing a few percent ,of interactive noise into thénde
Complications for deterministic dynamical systems arisenr}aa’ I.e., replacing the Hen map by a stochastic process of

from the possibility of bifurcations. Under smooth changest € form
of parameters, the dynamical behavior can change drastically
at a bifurcation point in the parameter space, such as the birth
of stable periodic orbits from a chaotic attractor. Most fea-
tures will thus strongly change at a bifurcation point. Fromwhere £(x,,) is white noise(for technical reasons correlated
the theoretical point of view most bifurcation types create awith the data such that trajectories do not leave the basin of
continuous, albeit fast, change of properties such as the irattraction and escape to infinjtysmoothes the bifurcations
variant measure and the Lyapunov exponents. As a protaufficiently. The smoothness is related to the fact that inter-
typical example, let us consider a part of the bifurcation dia-active noise can be reinterpreted as some fast stochastic fluc-
gram of the Haon map,xn+1=1—axﬁ+ bx,_4, for a path  tuation of the parameteisor b:

Xnt1=1—axC+bx,_ 1+ &n(Xy), (6)
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FIG. 5. The maximal Lyapunov exponextof the unperturbed
-0.1 Henon map for the parameter values,f) on a 120<120 grid in
~0.2 the parameter plane for which a bounded solution exists.
'0'30_9 1 11 12 13 14 15 16 17 18 acterization, we computed the maximal Lyapunov exponent

a of every trajectory through expansion in tangent sp@ge
i genvalues of products of Jacobians along the trajegtory
_FIG. 3. The parameter spaca,b) of the Heron map[Eq. (6),  \yhich is defined for both purely deterministic and noisy tra-
\éwthout the noise terfh_ Only the largest stable islands are res_OI"edjectories. Depending on the choice of parameter®Y (and
ere. A negative maximal Lyapunov exponanbf the trajectories hence the variance of the sighalhe standard deviation of
is represented by light gray, while the darkly shaded region COIex - noise amplitude is-2—4 % of the standard deviation of
sponds to positiva.. For parameter values in the white region, no the time series. Evidently, the small amount of noise wipes
bounded solution exists. The black line indicates the path in param- ) ' .
eter space for which in Fig. 2 is calculated. out all structures on small !ength scales in the parameter
space. This leads to the vanishing of all stable islands in the
~ darkly shaded region in Fig. 3; however, even if some larger
Xns1=1—anXa+bX,_1,  ay=a(l+£y(Xy).  (7)  one remained, the maximal Lyapunov exponent and the in-
variant measure would change smoothly when the param-
Hence adding noise to the equations of motion correspondsters approach the stability regime of a periodic orbit.
to the elimination of all structure in parameter space on The effect of interactive noise on the Lyapunov exponent
scales smaller than some cutoff related to the noise amplis illustrated in Figs. 5 and 6. We plot the maximal Lyapunov
tude. i exponent\ of Eq. (6) for the parameter values(b) on a
Numerical simulations of the noisy Hen map illustrate grid in the parameter plane for which a bounded solution
this nicely. In Figs. 3 and 4 the parameter plane of &). exists. Without a noise term coupled to thénda map the
without (with) the noise term is shown. Different gray scalesvery intricate structure ok due to the large number of bi-
represent the three types of asymptotic dynamical behaviorsyrcations is evident. The smooth but very rapid fluctuations
namely, stable periodic orbitdight gray), chaotic trajecto- of \ in Fig. 5 can be traced to arbitrarily small length scales,
ries in a bounded region of phase spddark gray, and  as shown in Fig. 2. Other features, such as the expectation
escape to infinitywhite). In addition to this qualitative char- value or the standard deviation of a time series, show a simi-
lar behavior. In clear contrast to this, the Lyapunov exponent

0.6 (and as well the other featunesalculated from Eq(6) varies
05 only slowly due to the smoothing effect of the dynamical
noise on small length scales in parameter space.

0.4 The identification of the varying parameters can be per-
03 formed for this smoothed situation. Selecting 2000 pairs of
’ parameter valuesa(b) on each line of the grid plotted in
0.2 Fig. 4, we produce a time series of length 2000 for each of

b

0.1

0.0
-0.1
-0.2
-0.3 :

09 1 11 12 13 14 15 16 17 1.8
a

;.5

FIG. 4. The parameter space,b) of Eq. (6) including the
noise term; the gray shading is as in Fig. 3. The black grid indicates FIG. 6. The maximal Lyapunov exponentof Eq. (6) for the
the parameter set underlying the standardizing sample of Fig. 7. same set of parameters as in Fig. 5.
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g-i [ expect thatd,=1. For the second set both, andp, were
03 | independent random numbers uniformly distributed Gri]
02 | such thatd,=2. For every time series in these sets we again
A 0'(1) i estimated the features: the largest Lyapunov expoxetite
0.1 - meanx, and the standard deviatian By this procedure the
:3;§ i two samples of time series were represented by two sets of
04 | points in the three-dimensional feature space, similar to Fig.
7. Thed,=1 case yields a blurred curve in this space, and
thed,=2 case a blurred and bent surface.
We can numerically extract a dimensionality from these

data. Given a set oN vectors§ieRm, the Grassberger-
Procaccia correlation sum is defined as

4N ; : 2 N o
oge o5 oe o7 0F oe C<e>=m2 O (e—d(y,—)), ®

i<j
FIG. 7. The feature vectorsX);,s;,\;) of the standardizing

) i where ® is the Heaviside step function, amtis a metric.
sample plotted in the feature space; compare to Fig. 4.

When the vectory; are a random sample taken from a set
with (fracta) dimensionD;<m, then there will be(under

them. This set forms our standardizing sample, and, sincgjiaple conditions, e.gl sufficiently large a scaling range
both a andb were evidently varied, the effective number of . ) -
e whereC(e)xe”f. In our context the vectorg; would

parameters is 2. As features, here we choose the expectan{r‘;]]gtura"y be the feature vectors of the time seffes We

valuex=(x), the standard deviatios= V((x—x)?), and the  then expect the correlation sum to scale as
maximal Lyapunov exponemt. In Fig. 7, every time series

of the standardizing seinple is represented by a dot showing C(e)x €. 9)

the values of the triplex;s,\).

As can clearly be seen, the topology of the grid in theThe local slopes of I€ vs Ing,
parameter space can be nicely recovered in the feature space.
The lines are blurred as a consequence of finite samples: The dInC(e)
features on every time series segment suffer slightly from (€)= “dine
statistical errors and thus characterize, to a very small extent,

the particular finite time series and not only the underlyingare usually regarded as length scale dependent dimensions
parameters. However, these uncertainties of the features afghich can be useful for the characterization of noisy attrac-
small enough not to deteriorate the usefulness of this conpys.
cept. In the present casd, also typically depends oe. The
influence of parameter variation on the selected features can
be different, so that the extension of the data cloud is differ-
ent in different spatial directions, so that on large scales
fewer dimensions are visible. Moreover, the estimation of

It is desirable to determine the number of parameters teach feature vector from a finite time series produces statis-
describe the variations in a given standardizing sample, i.etical fluctuations which look like noise and increase the di-
to estimate the number of effective parametfrn the con-  mension on the small scales, as can be seen in Fig. 8.
text of statistical pattern recognition also known as the in- Note that it is not the feature vectors themselves that enter
trinsic dimension[7]. Under certain conditions, which we but only their pairwise distances. If we are able to determine
will discuss below, methods normally used to estimate fracthe distances between pairs of time senS ,S;), directly,
tal dimensions of attractors can be used for this task. We willn principle we have the possibility of estimatidg without
use the famous Grassberger-Procaccia correlation sum febnstructing any feature vectors, and thus circumventing the
the estimation of the correlation dimension, but loda¢-  delicate task of feature selection. Unfortunately, there are
cause of curvaturedinear methods such as the local single still several unsolved problems with this approach. The main
value decomposition(SVD) method [13] can also be problem is to find a good metric for the time series. Some
employed. candidates based on cross-prediction erfb4s4], which are

As an example, we use two samples of time series proattractive from the physical and computational points of
duced by the noisy Hen map[Eqg. (6)]. The parameters view, are only dissimilarity measures and do not possess all
were chosen according t@=0.9+0.90; and b=-0.3 the properties of a metric; also see Rdfk5,16 for a dis-
+0.9p,, 10000 values for each set. If a trajectory diverges tocussion of some other measures. Up to now we have not
infinity, the corresponding parameters were discarded angucceeded in finding a metric which produced robust and
replaced by a new random pair. For the first samplewas  easy interpretable results, comparable to these shown in
chosen randomly between 0 and 1, while=1—p,, so we  Fig. 8.

C. Estimating the number of parameters—dimensions
in feature space
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0.01 |
S 0001 ¢ g .
>
0.0001 |
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1e-06 : : :
0.001 0.01 0.1 1 ; ; T~
. 0 5000 10000 15000 20000
n
FIG. 9. Time series of the nonstationary Mackey-Glass system
[Eq. (10)].
values of these features, which can be interpreted as a kind of
§ average over the small remaining nonstationarity inside each

segment. We see a clear loop in feature space in Fig. 10 with
the topology of a circle. Longer time series yield even clearer
results, but we purposely restrict ourselves here to a small
amount of data in order to demonstrate the applicability of
8'001 0_'01 011 1 the method in realistic situations.

e The situation of nonstationarity requires an additional dis-

cussion of time scales. In order to be able to compute the

FIG. 8. C(e) (top) and the local sloped(e) (below estimated  features in a robust way, the time dependence of the param-

in the feature space spanned Kx); ,s; \\;) (also compare Fig.)7  eters should be slow compared to the internal time scale of

varying one parametds) and two parameter). those variables which are to be eliminated. The shorter the
time series segments on which features are computed, the
V. NONSTATIONARITY AND PATHS IN FEATURE SPACE large are the statistical errors of the values of these features.

The previous discussions were based on standardizingVerly large statistical fluctuations may conceal the structure
samples where each single time series was stationary by cofD€ is searching_ for. If no clear time scgle separation. exists,
struction. In a nonstationary setting, typically a single long€Vverything is difficult and the concept might be unapplicable.
time series with time dependent parameters will be cut into N our example for nonstationarity, a second issue is hid-
segments which, for the sake of identical statistical errors oflen: the harmonic time dependenceagf) andb(t) can be
the features, should have equal lengths. These segments &f@ated by two additional deterministic degrees of freedom
at best pseudostationary, i.e., the parameter variation inside.g., a= — w?b, b=—w,a, with suitablew; and ), in
each given segment can be neglected. To increase the nunvhich case there is no nonstationarity at all. However, in
ber of feature vectors, one can use overlapping segmentsder to reconstruct these in a time delay embedding space a
which form the standardizing sample. Since now the sampléa Takens, one should use a time lag which is huge compared
elements possess a natural time ordering, it makes sensettwa suitable lag for the Mackey-Glass dynamics, so that it is
study the path in the feature space thus created. For an illupractically impossible to reconstruct both parts of the dy-
tration here we use data from the Mackey-Glass delay difnamics, the Mackey-Glass dynamics, and #éieb dynam-
ferential equatiorj17], which for our parameter values and ics, in the same time delay embedding space. Hence the
the time lag7=>55 has attractor dimensions between unitypoint of view of nonstationarity is more appropriate. None-
and about 10:

(t ax(t—7) 0 10
X 1+x(t—7)™ X0

The parametera andb were varied on an elliptic path in this
two-dimensional parameter spaca(t)=0.3+0.1 cost)
b(t) =0.125+0.025 sin{t), and (1=1/(2000r). The com-
plete nonstationary time series sampled with= 7/2 is plot-

ted in Fig. 9. As features, we use the two-point correlation
Moo= (X X;_,), the mean(x), and the standard deviatie3

of the data on 50 disjoint moving windows of length 200 FIG. 10. Loop in feature space, representing the nonstationary
each. Although now the dynamics of each time series segwiackey-Glass time series of Fig. 9. Crosses: projection of the fea-
ment is not strictly stationary, we can of course compute theure vectors onto the bottom plane.
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feature 3
0.1
0.08
0.06 FIG. 11. A set of feature vectoss, €V, cal-
0.04 culated from the time series of the stator current
of an induction motor. The entries are three com-
0.02 ponents of windowed Fourier spectra of sections
0 of the time series which are harmonic to the elec-
0. tric supply frequency.
0.55
0.06
_____ feature 2
A .
feature 1 018 0253302

theless, it shows that there (Baturally some ambiguity in  frequency of induction motors cannot be regulated, and is
the distinction between system variables and parameters. klightly less(1- 2 %, depending on the load torgukan one
practice, the interpretation of what can be considered aRalf or one timg(depending on the construction of the motor
noise is also vague. Often, drifting parameters and noiséhe electrical supply frequency. Therefore, this quantity does
have a clear time scale separation, but certain types of proyot independently enter the stator current.
cesses such asfl¢an yield complications. From this it follows that a reliable monitoring of induc-
tion motors requires training a fault sensing algorithm with
data recorded from the particuldhealthy motor which
should be monitored in order to learn about the load states
Finally we want to show a practical application of our and production tolerances of this motor. Additionally, a se-
concept of parameter identification to a problem of signallection of the environmental conditions present during nor-
processing, the failure detection of inducti@bectromotors, mal operation can be covered. However, since in practice
by monitoring a single phase of the stator current. This probone cannot expect that all potential environmental conditions
lem from electrical engineering has the advantage of being are contained in the training set, the failure detection algo-
real world problem instead of an experiment which may sim<ithm must be able to distinguish between previously unob-
ply be designed to show low-dimensional behavior; see Refserved motor states and actual faults. In R&8] a method
[18], and references cited therein, for a closer introduction t®f geometric signal separation for the failure detection of
this subject. induction motors was introduced, which successfully deals
The stator current of induction motors can easily be meawith this problem.
sured at the power supply, and offers a cheap method for Here we only want to show one aspect of this problem,
monitoring these machines which are very widespread in inwhose analysis is important for the development of a solu-
dustry applicationge.qg., to drive conveyor belts, assembly tion: the environmental degrees of freedom of the stator cur-
lines, air-condition systems, etcThe difficulty is to isolate rent of induction motors. Due to the quasiperiodicity of the
changes of the stator current causeddgveloping failures  stator current and theoretical arguments, the entries of the
from all other influences where, of course, possible failuredeature vectors are appropriately chosen components of win-
have to be detected well before the motor breaks down. Thdowed Fourier spectra of sections of the recorded time series.
quantities which mainly influence the stator current @re-  In Ref.[18] it was shown that there exist two feature spaces
sides the electrical supply frequendiie magnitude and time V; andV;, where inV, almost only information about the
dependence of the torque of the motoe., it makes a dif- average load torque, the production tolerances, and the envi-
ference if the motor drives a constant torque or an oscillatingonmental conditions enter, while i, the information
load torque like a compres9opthe production tolerancéthe  about motor failures and the time dependence of the torque is
air gap between the stator and rotor and the winding distriadditionally contained. The components of the feature vec-
bution of the statgr the environmental conditions present tors v, V, have to be harmonics of the electrical supply
during operatior(essentially the temperature and the air hu-frequency. In Fig. 11 a set of feature vectagscalculated
midity), and, last but not least, possible failures. Typical fail-from data of an induction motor is plotted in the three-
ures includes damage to the rotor due to overheating, imbatlimensional feature spaas,.
ances of the driven loads, and damage to the bearing races The data set consists of seven recordings from a four-pole
due to(continuou$ abrasion. The impact of the load torque induction motor with 8-kW power, where each recording
and the production tolerances on the stator current is typieontains 12 time serie®f 9-min length eachwhich were
cally about one magnitude larger than that of the environgenerated during the operation of a single load. Four types of
mental conditions and possible failures. The influences ofoads(constant, sinusoidal at a rotating frequency of the mo-
these last two quantities are about the same. The rotationdr, sinusoidal at a half rotating frequency, and sinusoidal at

VI. FAILURE DETECTION FOR INDUCTION MOTORS
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a twice rotating frequengywere operated at each of three Ref.[19]. In this extended phase space, neighbors of a given
torques(half, three quarter, and full rated loads of the mo-delay vector are states of the dynamical system observed
tor). The environmental conditions between the different re-under the same parameter setting referred to in the present
cordings have partially changed, but we do not have anyjelay vector, or others nearby. It was shown in R&8] that
information about this. Four recordings were done with anfor D variable parameters and &hdimensional phase space,

order to simulate an imbalance. From each of the 84 timgn,s use an embedding spacenof 2(N+ D).

series, 204 feature vectors were calculated which are plotted Together with this background, the idea of Parkitzal.

in Fig. 11. relies on the existence of a training set which contains direct

Calculating the covariance matrix of this set of featuremeasurements of those parameters which should be deter-

vectors shows that, to a very goo_d approximation, all Vemor?pined later on in situations where they are no longer mea-
lie in a plane spanned by the eigenvectors with the larges

eigenvalues of the covariance matrix. The eigenvalue of th€ured. Thus we start from time series of tupleg, ). The
eigenvector perpendicular to the plane turns out to be gseries ofs, is converted into delay vectors with a higher than
times smaller than the second largest eigenvalue, and abottinimal dimension, and through this procedure every delay
320 times smaller than the largest eigenvalue. vector s, possesses a corresponding parameter vegior
The 12 large clusters in Fig. 11, which are well separatedry, ;s there is a trivial map frons to p. For every delay
from each other, correspond to the three load torques of thg. o of 5 test set one searches for Khelosest delay vec-
motor and to four environmental conditions which appear %ors from the training set, for which there exiétorrespond-

be clearly different. We may conclude that two of the seveqng parameter vectors. The actual setting of the parameters is

recordings which correspond to clu_ste_rs Iying_ pairwise CIOSe{hen a suitable average over these parameter vectors corre-
to each other are recorded under similar environmental con-

ditions (i.e., within a short period of timehowever, as men- sponding to the training vectors. Overembedding is needed

tioned above we do not have information about this. We nown order to guarantee that the map frano p is invertible.

can conclude that the two visible degrees of freedom in the Thus here there is no need to select suitable features; in-
feature spac¥, correspond to the average load torque of thestead the training situation fixes which parameters can be
motor and to one environmental degree of freedom which isdentified from the test set. This concept can deal with much
probably dominated by the temperature. We also expect th&horter time series segments in the test phase, since one can
in the higher-dimensional, failure sensitive feature spage give an estimate op for every singlem-dimensional delay
only one environmental degree of freedom visibly entersvector derived from the time series. The training set, how-
This is a very useful result, because the structuré&/pfis  ever, has to be as large as or even larger than the whole data
much more complicated than that\éf. We want to mention sets we are using in this paper, since for every delay vector
that, despite the fact that induction motors may appear not tin the test set one needs a “good” neighbor in the training
be very complicated systems, these results cannot be oket for a reasonable parameter identification. Thus the train-
tained from theoretical arguments or models of inductioning data have to fill the high-dimensional embedding space

machines. reasonably well. In addition, as mentioned above, in the
training period the setting of the parameter vectf»,n;salso
VIl. OVEREMBEDDING AND INSTANTANEOUS has to be recorded. Thus this approach applies to a different
PARAMETERS setting of the problem.

Our approach in this paper is to rely exclusively on time
series data representing the systems’ dynamics. If, however,
a training set of data is available, where in addition to ob-
servables system parameters are measured synchronously,We have shown that variations of parameters underlying a
and this training set covers a suitably large range of differenset of time series can be identified qualitatively and quanti-
parameter settings, an alternative approach suggested by Ptatively in terms of their number and the manner of variation
litz et al.[5] can be followed. Since some aspects are relateth feature spaces. This supplies an approach to characteriza-
to our approach, this shall be briefly revisited here. This aptions of both nonstationary dynamical phenomena and sets of
proach can be formalized by the idea of overembedding intime series stemming from related dynamical phenomena. In
troduced in Ref[19]: An implicit knowledge of the equa- nonstationary situations, one can follow paths in feature
tions of motion is represented by a delay vector and the nexpace representing the time evolution of system parameters,
observation, gn ,Sn+1), Since these vectors of the extendedand thus identify their own dynamics; this amounts to a tre-
delay embedding space are confined to a manifold. Equatiorf§éndous reduction of complexity, since the fast degrees of
of motion corresponding to a modified parameter configurafreedom, callek and ¢ in Eq. (1), are eliminated.
tion yield a different manifold, to which the delay vectors of  Although in the motivation of the method we drew a par-
the modified dynamics are again confined. For its unambiguallel to the time delay embedding method for the reconstruc-
ous distinction from the first manifold, one has to extend thetion of state spaces from scalar time series, there are some
phase space further. For each time dependent parameter, cegsential differences which make the range of applicability of
needs two additional directions in phase space, as shown the parameter reconstruction different. This method applies

VIIl. CONCLUSIONS
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to deterministic and stochastic processes, and a strict statio

PHYSICAL REVIEW E 63 056215

different combinations of features to represent the changes of

arity of the single time series segments is not required. Omll parameters on approximately similar scales.
the other hand, we do not see a way to construct a feature

space which is general enough goaranteethat all time
dependent parameters will be visible. Presumably for eac
problem one has to optimize the feature space and to tr
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