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Multistability formation and synchronization loss in coupled Henon maps:
Two sides of the single bifurcational mechanism
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We investigate phenomena of multistability and complete chaos synchronization in coupled iaps,
which is an invertible system. Multiparametric analysis of a selected family of periodic orbits for coupled
Henon maps shows that a single bifurcational mechanism describes both a loss of chaos synchronization and
multistability formation. The process of bubbling transition and riddle basins, and the multistability formation
in invertible systems are described in detail.
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[. INTRODUCTION be either period-doubling bifurcatiofat weak coupling or
the symmetry breaking bifurcatiogat strong coupling
Recently chaotic synchronization has been a subject ofhen, with the change in the coupling parameter the period-
active research. Though there is still no common view on theloubling bifurcations of other symmetric saddle orbitsc?
phenomenon of chaotic synchronization, one of the widelyoriginating fromC® enforce the bubbling phenomenon. With
studied ones includes “complete synchronization,” when osfurther change in the coupling parameter the riddled basin is
cillations of subsystems are equal or nearly equal to eacAbserved in the system. The holes from basins of another
other at every moment in timgL,2]. A large number of fittractor Ioc_ated outside the s_ymmetr_lc subspace penetr:_ate
works have been devoted to the study of general bifurcalnto the basins of the symmetric chaotic attractor at an arbi-

tional mechanisms which lead to the loss of complete chaotig@"y small distance from the subspace. Then these regions
synchronizatior3—11]. grow and at some critical coupling the system makes a tran-

As is known in the case of complete synchronizationSition to the unsynchronous regime from almost all initial

in a system of symmetrically coupled identical oscillators thepomts.

haofi ttractor is located at th mmetric subspac Therefore in the symmetrically coupled logistic maps the
chaolic attractor IS located at the Symmetric Pac&addle periodic orbits of the main family, which form the
X;=Xp (X1, are dynamical variables of the subsystgms

i skeleton of the chaotic attractor, play an important role in the
of the whole phase space of the system. The existence @iz cational mechanism of the chaotic synchronization loss.
this subspace is determined by the invariance of the systeffe first bifurcations of these orbits take place in the sym-
under the exchange of;—Xx,. A possibility of realization  metric subspace and form the chaotic attractor, the second
of the synchronous regimes in real experiments isifurcations of the same orbits take place transversal to the
determined by the stability of the limit set in the symmetric symmetric subspacéthe eigenvector associated with the
subspace to the transversal perturbations, i.e., by the sign @frgest multiplier is in the transversal direction to the sym-
the normal Lyapunov exponent. When all normal Lyapunovmetric subspage and they lead to destruction of synchro-
exponents on the attractor are negative, but a normal expmous chaos.
nent on some limit sets embedded in the attractor are posi- If these second bifurcations take place before the transi-
tive. In this case, it was shown that a synchronous chaotition to chaos, at weak coupligvhen they occur with stable
regime exists. This, however, is not robyd2,11. Any  orbits), they lead to the increase in the number of cycles in
small noise and any small mismatch between parameters d¢fie phase space and, therefore, to the formation of multista-
the subsystems lead to the so-called bubbling behdVipr bility in the system[13].
when the differencéix, —x,|| looks similar to the on-off in- Does a connection between the bifurcation mechanisms
termittency. The transition to the bubbling behavior can beof the loss of chaos synchronization and the formation of
the first step to the destruction of the chaotic synchronizatiothe multistability exist? Is this situation typical for different
regime. symmetrically coupled oscillators with period doubling or

In Refs.[10,1] the bifurcational mechanism of the de- is it a peculiarity of the coupled logistic maps? To answer
struction of the regime of synchronous chaos was consideretthese questions, we consider a more general model of the
in detail for a system of symmetrically coupled logistic coupled Haon maps and perform a detailed bifurcational
maps. It was shown that the transition from robust synchroanalysis of the main family of periodic orbits appearing as a
nous chaos to bubbling behavior is caused by a bifurcation afesult of the subharmonic cascade. We find that the overall
the original symmetric saddle period-one orb@% at the  behavior of the Henon map, though more complex and in-
base of which the attractor was formed. This bifurcation carvertible, is very similar to the one for the logistic map. In this
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paper, it is shown that the multistability formation and the A S
loss of chaotic synchronization turn out to be two facets of 14 S :
the common bifurcational mechanism. The phenomena of 7C9 5
bubbling, riddling transition, and multistability observed in i
coupled Haon maps are expected to exist in real physical , , ==X 7"7= = 140 20 ]
period doubling systems described by invertible differential 7C1,/4’ ————————— 5 Lo 5T T
equ ations. = b—?éf___‘___‘___'___"_/__4"_6‘__'___'___'__36__'___'___'___'___'
. 1.0 [ | ]
1. DYNAMICS OF COUPLED HE NON MAPS 8c? 4c?®
We study dynamics of the coupled ken maps of the
form 0.8 .
X1 (N+1)=\;=x5(n)+y(n) 2GO
0.6 i
+ e{x(n) —x3(n) +ya(n) —y1 (M)},
n+1)=bx;(n),
yi(n+1)=bx(n) osl ]
() !
Xa(N+1)=Az=X5(n) +yz(n) ) ]
0.2 i
+€e{x5(n) = xi(n) +y1(n) —y(n)},
y2(n+1):bx2(n)1 0.0 L L I !
0.0 0.1 0.2 0.3 0.4 0.5

wherex; o(n),y; An) are dynamical variables of the system,
\1,,b are parameters of each individual maps a coupling
coefficient. The coefficiertt can be interpreted as the param-  F|G. 1. Regions of the existence of regular and chaotic synchro-
eter of the dissipation of the system. nous regimes in the plane of the control parametsheet 3.

This type of interaction between individual systems cor-
responds to the future coupling. Wher=0 the system(1)  into the out-of-phase regime. As the lihg is crossed, the
reduces to the coupled logistic maps.bi#0 the system transitions to different unsynchronous regimes are observed
becomes invertible. depending on\. As € is further decreased, chaotic attractors

We investigate the dynamics of identical ma@ds (A\;  A°, 2A% 4A° 8A° are changed by stable orbits
=\,=\) at fixedb=0.3 depending on the parametarand  2C*, 4C? (or 8C*), 8C* and 1&?, respectively. The cha-
€ in the intervals[0; 1.25 and[0; 0.5, respectively. The otic attractors A and 7A5 are changed into orbits ©4 and
case of mismatched subsystems will be considgred Iatgr. 14(;;_ Projections of phase portraits in the out-of-phase re-

,n 0<A<0.3675 the systenl) has a stable fixed point gimes are presented in Fig. 2, which show symmetric orbits.
C” located in the symmetric subspagg=x,, y;=Y, for The transition from the synchronous chaos to the out-of-
all considered values of the coupling coefficient. Asn-  phase regular regimes occurs analogous to the one for the
creases, a set of period-doubling bifurcations of symmetrigoupled logistic map$10]. Let us consider the transition
periodic orbits 2'C° (N=0,1,2...) takes place on the from the synchronous chaotic attractor to the out-of-phase
base of the pointC®. The lines of these bifurcations are regime ! at A\=1.2 in more detail. Figure 3 shows the
displayed in Fig. 1, which demonstrates bifurcations of re<jme seried x,(n) —x,(n)] in a slightly mismatched system
gimes in the symmetric subspace. Foon the right side of (Ni=\, \,=68\, 6=0.995). Note that the destruction of
the linel,,, a cascade of bifurcations leads to formation of achaotic synchronization begins with the bubbling behavior.
chaotic attractor located in the symmetric subspace. With gne bubbling of the attractor becomes visible &t 0.2. For
further increase in\, the stability windows for orbits with larger e the parameter mismatch does not sufficiently influ-
different periods are created through the saddle-node bifutance the synchronous regime. From the figure it is seen that
cations. Figure 1 shows the stability windows only for two the intermittency becomes more developed as the coupling
orbits with equal periods (@2,7C3), which have the largest coefficient decreases. The bubbling behavior is observed in
regions of existence in the parameter planelAscreases, a the interval of e between 0.2 and 0.15. Then the system
cascade of the period-doubling bifurcations takes place omakes a transition to the stable orbit2[see Fig. &)]. For
the base of these orbits. As a result chaotic attract@t% 7 exactly identical mapsd=1), the dynamical behavior of the
and 7Ag are formed. system depends on the initial values in a complex manner at

Regimes of regular synchronous motions are observed alhis value ofe. The small change in initial conditions leads
all values ofe. The regime of chaotic synchronous motionsto situations where the phase trajectory is attracted either to
exists only in the limited region ie. As the coupling coef- the symmetric chaotic se® or to the periodic orbit Z2.
ficient decreases, the loss of the transversal stability turns Eigure 4 shows two time seriesx,(—x,) for the same

€
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parameters but with nearly initial values, illustrating this trol parameter is changed, the stable orb@!2is softly
phenomenon. The entrance of the phase trajectory into thehanged by quasi-periodic oscillationd 2[Fig. &a)]. For
stable orbit Z* does not depend on the distance between théarge A we observe a transition to chaos through the tori
initial conditions and the chaotic saP. In an arbitrary small  breaking mechanism as the coupling is decreased. For small
neighborhood of the symmetric subspace, it is possible ta either a stable periodic orbitG! [Fig. 6b)] or another
find initial values, starting from which the phase point headsstable periodic orbit €° [Fig. 6(c)] appears as decreases.
towards the orbit £1. This behavior, as will be demon- These orbits coexist and are symmetric with respect to each
strated further, is caused by the phenomenon of the riddledther underx,;<+x,, y;<Y,. As \ increases, a cascade of
basins of the chaotic attractdf. With further decrease is,  period-doubling bifurcations occurs on the base of both of
the regime of chaotic synchronization is not observed. Prachese orbits, which ends with the appearance of chaos. In the
tically at any initial values from a neighborhood of the 88t  region of chaos a sequence of boundary-crisis bifurcations is
the phase trajectory heads towards the stable ottt 2 observed, which is accompanied by the merging of the cha-
At values of\ corresponding to other symmetric chaotic otic sets. Figures (6) and &e) show projections of phase
attractors (A% 4A° 7A° etc) the process of the chaotic portraits of coexisting chaotic attractoré4and 4A3, which
synchronization loss takes place similarly, but leads to theare formed on the base of the orbit€%4and 4C3, respec-
transition to other unsynchronous regimes mentioned aboviévely. As the control parameter is changed, these chaotic
(Fig. 2. As the control parameter is changed, each orbisets merge and eventually a chaotic attractat PFig. 6(f)]
gives birth to its own family of out-of-phase regimes. Let usappears to end the evolution of this family. Afterwards, a
consider oscillating regimes which are formed on the base aofhaotic attractoA> [Fig. 6(g)], which contains chaotic sets
stable periodic orbits @, 4C2, and 8C*. Figure Ha) of different families, completes the development of the syn-
shows regions of the existence of regimes which are formedhronous chaos in the system.
on the base of 2! [Fig. 2a)]. Projections of the phase por-  Figures %b) and 5c) show maps of out-of-phase regimes
traits of typical regimes are presented in Fig. 6. As the confor two other families. As the control parameter is changed,
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FIG. 3. Projections of the phase portraits in the out-of-phase F!G- 4. Time series of the difference of dynamical variables

regimes, which appear after the breakup of chaotic synchronizatioWhiCh illustrate the process of the loss of chaotic synchronization
[(a) 2C1, (b) 4C2, (©) 8C4, (d) 14(:1] [A=1.2, 6=0.995, ¢=0.25@), 0.19(), 0.16(), 0.15d)].

the orbits 422 and 8C* are created and the transitions simi-

lar to ones on the base ofc2 occur. However, these fami-
lies occupy smaller regions in the parameters plane. In th%he sheetss, NSI, N2, andNS3 overlap. In the phase

figure the boundaries of the sheets are shown in thick linePace the attractprs for diﬁgrent .f_amillies coexist simulta-
The sheet?\S2 andNS3 of families of unsynchronous re- Neously. The region of multistability is bounded by the
gimes are bound by the linés, andl; [Figs. b),5(c)]. As _bo_undary of the_sheeM S1. The maximum n_umk_)er of coex-
these lines are crossed, the system jumps from one family d§ting attractors is observed at small coupling in a neighbor-
regimes to another one. Unsynchronous oscillations on thB0od of the chaos transition for the individual oscillatig).
base of &* turn into regimes on the base o€4, which in At A<A. these attractors become regular onesy At\ . one
turn becomes ones on the base &'2 Projections of the can find both regular and chaotic attractors depending on
phase portraits for several main regimes on the sH¢&%  initial conditions. The set of coexisting states depends on the
and NS3 are presented in Figs. 7 and 8. Evolution of thevalue of e.
family of the regimes on the base o€8 leads to the chaotic Thus, phenomena of synchronization and multistability
attractor A* [Fig. 8(c)]. Next there is a transition to the are observed in the coupled hten map systenl). The loss
attractor A~ [Fig. 8d)], which includes the chaotic seA8  of chaos synchronization is accompanied by bubbling and
and chaotic sets of other famili¢r example, ones formed riddling transitions, leading to the appearance of a stable
on the base of the orbit ©¥). Evolution of regimes formed periodic orbit, which gives birth to its own family of typical
on the base of @2 (the sheetNS2) is completed by the regimes. The comparison of maps of the several dynamical
appearance of the chaotic attractoA?4[Fig. 7(c)]. Then regimes shows that the higher the period of the orbit on the
there occurs a transition to the attract@x*2 which includes base of which a family of out-of-phase regimes is formed,
the chaotic sets 42 and 4A™. the smaller the regions which it occupies in the parameters
The comparison of the maps of regimes in Figs. 1 and Plane.

shows that there are regions in the parameters plane where

056212-4



MULTISTABILITY FORMATION AND . .. PHYSICAL REVIEW E 63 056212

XX, 2.0 , 20
20 T X
X1 o 1
0.0 ] 0.0t
o 0
00 fin <R
’ a) b)
-2.0 ; 2.0
20 0.0 X, 20 -2.0 0.0 X, 2.0
2% 500.0 1000.0 « 20 ' 2.0
. X
a) " 1 ) ! ) -
XX, 00 00 '
20 T 0 - 1 0
' 1
c) d)
. -2.0 L -2.0 "
; 20 0.0 20 ~
00 f i X, 20 0.0 X, 20
- 2.0 : 2.0 .
X, - %, m
2% 500.0 1000.0 0.0 | 1 0.0 |
n -k
b) ) f)
] ) ] ) ) -2.0 : 2.0 .
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I1l. BIFURCATIONAL ANALYSIS OF LOSS OF CHAQOTIC
SYNCHRONIZATION AND FORMATION OF
MULTISTABILITY 20 .
"-2.0 0.0 2.0

In this section we investigate mechanisms of the complete
chaotic synchronization loss and multistability formation in
the coupled Heon maps(1). We consider the case of iden- FIG. 6. Projections of the phase portraits of typical regimes
tical subsystems wher;=\,=\. Figure 9 shows bifurca- from the base of the orbit@": (a) 2T*, (b) 4C*, (c) 4C?, (d) 4A",
tional lines for the main family of symmetric orbitd'2®in (&) 4A% () 2A%, (g) A*.
the plane of the control parameters \. On linesly (i is the
period of the orbit one of the multipliers of the orbits be-
comes—_l. The Symmetric orbits Ipse their stability unde( ists in the phase space. The regime of chaos synchronization
perturbations within the symmetric subspace but remain !

. S Js stable and robust. The saddle symmetric orbit€2em-
stable under transversal perturbations. Stable periodic orbi{S . :
with doubled periods appear in their neighborhood within the edded n the ChaOt'C attractor are stable under t_ran%versal
symmetric subspace. Thus in the symmetric subspace a cai€iurbations. With the decrease énthe saddle poinC
cade of period-doubling bifurcations takes place, where &0S€S it translversa_l stability at the lihé, producing the
chaotic attractor is formed. As a result, on the right side ofSaddle orbit Z- outside the symmetric subspace. This bifur-
the linel* there is a transition to synchronous chaotic attrac<cation induces the bubbling behavior in the system, which is
tors 'A% as\ increases. On the lind$ the saddle orbits Observed between the lingsandl3. The regime of chaotic
2NCO in the symmetric subspace undergo period-doublinggynchronization becomes not robust. As the coupling coeffi-
bifurcations, which become unstable in the transversal direcsient is decreased further, the orbi€2 undergoes a pitch-
tion as well. In their neighborhoods the saddle orbits withfork bifurcation on the Iinelﬁ (€¢=0.18). In its neighbor-
doubled periods appear outside the symmetric subspace: fbood, a pair of saddle period-2 orbits, which are symmetric

example, C°—2C!, 2c%—-4C? 4C%—8C* on lines  with respect to each other, appear and the orG Becomes

for A=1.2 the one-band symmetric chaotic attracdSrex-

I, 12, 1%, respectively. Ase decreases these out-of-phasestable. In the system of coupled logistic mdp$)] it was
orbits become stable as the bifurcational lifes I, 12are  shown that a similar bifurcation leads to the riddling of the
crossed. basin.

Let us consider the process of a loss of chaos synchroni- In order to investigate the structure of the basinsA8f
zation in more detail. On the right side of the lilfe(Fig. 9) Eqgs.(1) are rewritten in new variables
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In the case of synchronous motiorsss 0 andr=0, so
that the state of the system is characterized by the dynamical
variablesu and v in the two-dimensional symmetric sub-
space. We obtain the section of basins of the chaotic attractor
A° and of the stable orbit @' on the plane §,r) at fixed
values ofu andv.

Figure 10 shows the sections of basins for a setwhen
uandv are chosen to be at the fixed po®!. In this section,
C? is located at the origin, that is=0,r=0. Figure 10
shows that after the bifurcation ofZ2 it becomes stable and
in a small vicinity of the saddle point® embedded in the
chaotic attractorA® there exist phase trajectories that are
attracted to the orbit @%. However, when the value of the
parameter is close to the bifurcation pojfig. 10(a) corre-
sponds toe=0.177] an arbitrary transversal perturbation of
the trajectory in a small neighborhood ©f does not induce
a transition to the orbit €. For such transition the pertur-
bations must be along a particular direction in the two-

FIG. 8. Projections of the phase portraits of typical regimesdimensional normal subspacs, ). The farther the param-

from the base of the orbit®*: (a) 8T*, (b) 16C8, (c) 8A%, (d) 4A>.

eter is from the critical value, the larger the size of the region
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FIG. 10. A section of the basins of the symmetric chaotic attra@tbite) and of the stable periodic orbitC? (black as the coupling
is decreased. The two other variables are chosen to be at theQfoint

of initial points nearC?, starting from which the phase tra- the attractors. We chose 10 arbitrary points on the attractor

jectory heads towards the stable orb@*2[see Figs. 1&—  and investigated sections of the basins on the plars).(As
10(d)]. For example, a&e=0.15[Fig. 10d)] there is a wide the coupling coefficient is changed, the rebuilding of the ba-
sector of directions for such transversal perturbations. sins occurs similar to these sections.

Figure 11 shows sections of the basinsA8fand 2C* for
the same values of but with u andv chosen to be at an

arbitrary point in the chaotic attractor. In the figures this IV. CONCLUSION
point is at the origins=0, r=0. From Fig. 119) it is seen )
that near the bifurcational poine&0.177) a small vicinity In the coupled Heon maps, the process of the loss of

of some points on the attractor is not riddled by holes becomplete synchronization and the formation of multistability
longing to the basins of @. With further decrease ia the  arise from the single bifurcational mechanism. These sce-
structure of the section of the basins becomes more complerarios are determined by bifurcations of the main family of
Points from the basins of @ appear in the vicinity of the the saddle periodic orbitsNZ® which form a skeleton of the
symmetric subspace in increasing numbers. Figur&d)11 attractor. The synchronization loss begins with the second
shows the section foe=0.15, where the riddling becomes period-doubling bifurcation of the orb&?: C°—2C?, af-
visible. Similar results hold for other sections of the basins ofter which the regime of chaotic synchronizations becomes
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FIG. 11. A section of the basins of the symmetric chaotic attra@tbite) and of the stable periodic orbitC? (black as the coupling
is decreased. The two other variables are chosen be an arbitrary point in the attractor.

less robust. The second period-doubling bifurcations of thevhich lead to the increase in number of coexisting saddle
other orbits of the main family"Cc? 2NC%—2N*1CNen-  orbits in the phase space of the system. The second step is
force the bubbling behavior of the attractor. The bifurcationthe bifurcations of out-of-phase orbits'2*CN, which turn
of the saddle orbit 2 located outside the symmetric sub- these orbits into stable ones.
space leads to formation of the complex structure of the ba- The bifurcational mechanism in the coupledrida maps
sins ofA°. The vicinity of the chaotic seA® becomes riddled (1) is very similar to the ones in the coupled logistic maps
by holes from which the phase trajectory leaves towards thgl0]. But it has some differences. Namely, the riddling of the
orbit 2C*. The bifurcations of the other orbit'2'CN from basins does not appear immediately after the bifurcation of
2NCO located outside the symmetric subspace enforce ththe saddle orbit *. The complication of the structure of the
riddling of the basins oAA°, where holes from basins of the basins occurs gradually with leaving of the parameter from
other orbits appear. The attractaP gradually loses its ba- the bifurcational point. This peculiarity may be due to the
sins and the regime of nonrobust chaotic synchronization igigher dimensionality of the systerfl). In a model of
gradually destroyed. coupled oscillations with minimal dimensiom£2) after

At weak coupling the same bifurcations of the orbits leadthe bifurcation of Z! any transversal perturbation in a
to multistability in the system. The first step is the secondneighborhood ofc® induces a transition to the out-of-phase
period-doubling bifurcations of the in-phase orbit§C® regime. In the coupled H®n maps, this takes place only
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when the perturbations have a well-defined direction. ACKNOWLEDGMENTS
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