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Multistability formation and synchronization loss in coupled Hénon maps:
Two sides of the single bifurcational mechanism
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We investigate phenomena of multistability and complete chaos synchronization in coupled He´non maps,
which is an invertible system. Multiparametric analysis of a selected family of periodic orbits for coupled
Henon maps shows that a single bifurcational mechanism describes both a loss of chaos synchronization and
multistability formation. The process of bubbling transition and riddle basins, and the multistability formation
in invertible systems are described in detail.
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I. INTRODUCTION

Recently chaotic synchronization has been a subjec
active research. Though there is still no common view on
phenomenon of chaotic synchronization, one of the wid
studied ones includes ‘‘complete synchronization,’’ when
cillations of subsystems are equal or nearly equal to e
other at every moment in time@1,2#. A large number of
works have been devoted to the study of general bifur
tional mechanisms which lead to the loss of complete cha
synchronization@3–11#.

As is known in the case of complete synchronizati
in a system of symmetrically coupled identical oscillators
chaotic attractor is located at the symmetric subsp
x15x2 (x1,2 are dynamical variables of the subsystem!
of the whole phase space of the system. The existenc
this subspace is determined by the invariance of the sys
under the exchange ofx1↔x2. A possibility of realization
of the synchronous regimes in real experiments
determined by the stability of the limit set in the symmet
subspace to the transversal perturbations, i.e., by the sig
the normal Lyapunov exponent. When all normal Lyapun
exponents on the attractor are negative, but a normal e
nent on some limit sets embedded in the attractor are p
tive. In this case, it was shown that a synchronous cha
regime exists. This, however, is not robust@12,11#. Any
small noise and any small mismatch between parameter
the subsystems lead to the so-called bubbling behavior@7#
when the differenceix12x2i looks similar to the on-off in-
termittency. The transition to the bubbling behavior can
the first step to the destruction of the chaotic synchroniza
regime.

In Refs. @10,11# the bifurcational mechanism of the de
struction of the regime of synchronous chaos was consid
in detail for a system of symmetrically coupled logist
maps. It was shown that the transition from robust synch
nous chaos to bubbling behavior is caused by a bifurcatio
the original symmetric saddle period-one orbit (C0) at the
base of which the attractor was formed. This bifurcation c
1063-651X/2001/63~5!/056212~9!/$20.00 63 0562
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be either period-doubling bifurcation~at weak coupling! or
the symmetry breaking bifurcation~at strong coupling!.
Then, with the change in the coupling parameter the peri
doubling bifurcations of other symmetric saddle orbits 2NC0

originating fromC0 enforce the bubbling phenomenon. Wi
further change in the coupling parameter the riddled basi
observed in the system. The holes from basins of ano
attractor located outside the symmetric subspace pene
into the basins of the symmetric chaotic attractor at an a
trary small distance from the subspace. Then these reg
grow and at some critical coupling the system makes a tr
sition to the unsynchronous regime from almost all init
points.

Therefore in the symmetrically coupled logistic maps t
saddle periodic orbits of the main family, which form th
skeleton of the chaotic attractor, play an important role in
bifurcational mechanism of the chaotic synchronization lo
The first bifurcations of these orbits take place in the sy
metric subspace and form the chaotic attractor, the sec
bifurcations of the same orbits take place transversal to
symmetric subspace~the eigenvector associated with th
largest multiplier is in the transversal direction to the sy
metric subspace!, and they lead to destruction of synchr
nous chaos.

If these second bifurcations take place before the tra
tion to chaos, at weak coupling~when they occur with stable
orbits!, they lead to the increase in the number of cycles
the phase space and, therefore, to the formation of multi
bility in the system@13#.

Does a connection between the bifurcation mechanis
of the loss of chaos synchronization and the formation
the multistability exist? Is this situation typical for differen
symmetrically coupled oscillators with period doubling
is it a peculiarity of the coupled logistic maps? To answ
these questions, we consider a more general model of
coupled He´non maps and perform a detailed bifurcation
analysis of the main family of periodic orbits appearing a
result of the subharmonic cascade. We find that the ove
behavior of the Henon map, though more complex and
vertible, is very similar to the one for the logistic map. In th
©2001 The American Physical Society12-1
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paper, it is shown that the multistability formation and t
loss of chaotic synchronization turn out to be two facets
the common bifurcational mechanism. The phenomena
bubbling, riddling transition, and multistability observed
coupled He´non maps are expected to exist in real physi
period doubling systems described by invertible differen
equations.

II. DYNAMICS OF COUPLED HE´ NON MAPS

We study dynamics of the coupled He´non maps of the
form

x1~n11!5l12x1
2~n!1y1~n!

1e$x1
2~n!2x2

2~n!1y2~n!2y1~n!%,

y1~n11!5bx1~n!,
~1!

x2~n11!5l22x2
2~n!1y2~n!

1e$x2
2~n!2x1

2~n!1y1~n!2y2~n!%,

y2~n11!5bx2~n!,

wherex1,2(n),y1,2(n) are dynamical variables of the system
l1,2,b are parameters of each individual map,e is a coupling
coefficient. The coefficientb can be interpreted as the param
eter of the dissipation of the system.

This type of interaction between individual systems c
responds to the future coupling. Whenb50 the system~1!
reduces to the coupled logistic maps. IfbÞ0 the system
becomes invertible.

We investigate the dynamics of identical maps~1! (l1
5l25l) at fixedb50.3 depending on the parametersl and
e in the intervals@0; 1.25# and @0; 0.5#, respectively. The
case of mismatched subsystems will be considered later

In 0,l,0.3675 the system~1! has a stable fixed poin
C0 located in the symmetric subspacex15x2 , y15y2 for
all considered values of the coupling coefficient. Asl in-
creases, a set of period-doubling bifurcations of symme
periodic orbits 2NC0 (N50,1,2, . . . ) takes place on the
base of the pointC0. The lines of these bifurcations ar
displayed in Fig. 1, which demonstrates bifurcations of
gimes in the symmetric subspace. Fore on the right side of
the line l b1, a cascade of bifurcations leads to formation o
chaotic attractor located in the symmetric subspace. Wi
further increase inl, the stability windows for orbits with
different periods are created through the saddle-node b
cations. Figure 1 shows the stability windows only for tw
orbits with equal periods (7C1

0,7C2
0), which have the larges

regions of existence in the parameter plane. Asl increases, a
cascade of the period-doubling bifurcations takes place
the base of these orbits. As a result chaotic attractorsA1

0

and 7A2
0 are formed.

Regimes of regular synchronous motions are observe
all values ofe. The regime of chaotic synchronous motio
exists only in the limited region ine. As the coupling coef-
ficient decreases, the loss of the transversal stability turn
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into the out-of-phase regime. As the linel b1 is crossed, the
transitions to different unsynchronous regimes are obser
depending onl. As e is further decreased, chaotic attracto
A0, 2A0, 4A0, 8A0 are changed by stable orbit
2C1, 4C2 ~or 8C4), 8C4, and 16C8, respectively. The cha
otic attractors 7A1

0 and 7A2
0 are changed into orbits 14C1

7 and
14C2

7. Projections of phase portraits in the out-of-phase
gimes are presented in Fig. 2, which show symmetric orb

The transition from the synchronous chaos to the out-
phase regular regimes occurs analogous to the one for
coupled logistic maps@10#. Let us consider the transition
from the synchronous chaotic attractor to the out-of-ph
regime 2C1 at l51.2 in more detail. Figure 3 shows th
time series@x1(n)2x2(n)# in a slightly mismatched system
(l15l, l25dl, d50.995). Note that the destruction o
chaotic synchronization begins with the bubbling behavi
The bubbling of the attractor becomes visible fore,0.2. For
largere the parameter mismatch does not sufficiently infl
ence the synchronous regime. From the figure it is seen
the intermittency becomes more developed as the coup
coefficient decreases. The bubbling behavior is observe
the interval of e between 0.2 and 0.15. Then the syste
makes a transition to the stable orbit 2C1 @see Fig. 3~d!#. For
exactly identical maps (d51), the dynamical behavior of the
system depends on the initial values in a complex manne
this value ofe. The small change in initial conditions lead
to situations where the phase trajectory is attracted eithe
the symmetric chaotic setA0 or to the periodic orbit 2C1.
Figure 4 shows two time series (x12x2) for the same

FIG. 1. Regions of the existence of regular and chaotic synch
nous regimes in the plane of the control parameters~sheet S!.
2-2
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FIG. 2. Regions of the exis-
tence of unsynchronous regime
in the plane of the control param
eters~sheets NS1, NS2, NS3!.
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parameters but with nearly initial values, illustrating th
phenomenon. The entrance of the phase trajectory into
stable orbit 2C1 does not depend on the distance between
initial conditions and the chaotic setA0. In an arbitrary small
neighborhood of the symmetric subspace, it is possible
find initial values, starting from which the phase point hea
towards the orbit 2C1. This behavior, as will be demon
strated further, is caused by the phenomenon of the ridd
basins of the chaotic attractorA0. With further decrease ine,
the regime of chaotic synchronization is not observed. P
tically at any initial values from a neighborhood of the setA0

the phase trajectory heads towards the stable orbit 2C1.
At values ofl corresponding to other symmetric chao

attractors (2A0, 4A0, 7A0, etc.! the process of the chaoti
synchronization loss takes place similarly, but leads to
transition to other unsynchronous regimes mentioned ab
~Fig. 2!. As the control parameter is changed, each o
gives birth to its own family of out-of-phase regimes. Let
consider oscillating regimes which are formed on the bas
stable periodic orbits 2C1, 4C2, and 8C4. Figure 5~a!
shows regions of the existence of regimes which are form
on the base of 2C1 @Fig. 2~a!#. Projections of the phase po
traits of typical regimes are presented in Fig. 6. As the c
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trol parameter is changed, the stable orbit 2C1 is softly
changed by quasi-periodic oscillations 2T1 @Fig. 6~a!#. For
large l we observe a transition to chaos through the t
breaking mechanism as the coupling is decreased. For s
l either a stable periodic orbit 4C1 @Fig. 6~b!# or another
stable periodic orbit 4C3 @Fig. 6~c!# appears ase decreases.
These orbits coexist and are symmetric with respect to e
other underx1↔x2 , y1↔y2. As l increases, a cascade o
period-doubling bifurcations occurs on the base of both
these orbits, which ends with the appearance of chaos. In
region of chaos a sequence of boundary-crisis bifurcation
observed, which is accompanied by the merging of the c
otic sets. Figures 6~d! and 6~e! show projections of phase
portraits of coexisting chaotic attractors 4A1 and 4A3, which
are formed on the base of the orbits 4C1 and 4C3, respec-
tively. As the control parameter is changed, these cha
sets merge and eventually a chaotic attractor 2A1 @Fig. 6~f!#
appears to end the evolution of this family. Afterwards,
chaotic attractorAS @Fig. 6~g!#, which contains chaotic set
of different families, completes the development of the sy
chronous chaos in the system.

Figures 5~b! and 5~c! show maps of out-of-phase regime
for two other families. As the control parameter is chang
2-3
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the orbits 4C2 and 8C4 are created and the transitions sim
lar to ones on the base of 2C1 occur. However, these fami
lies occupy smaller regions in the parameters plane. In
figure the boundaries of the sheets are shown in thick lin
The sheetsNS2 andNS3 of families of unsynchronous re
gimes are bound by the linesl b2 andl b3 @Figs. 5~b!,5~c!#. As
these lines are crossed, the system jumps from one fami
regimes to another one. Unsynchronous oscillations on
base of 8C4 turn into regimes on the base of 4C2, which in
turn becomes ones on the base of 2C1. Projections of the
phase portraits for several main regimes on the sheetsNS2
and NS3 are presented in Figs. 7 and 8. Evolution of t
family of the regimes on the base of 8C4 leads to the chaotic
attractor 8A4 @Fig. 8~c!#. Next there is a transition to th
attractor 4AS @Fig. 8~d!#, which includes the chaotic set 8A4

and chaotic sets of other families~for example, ones formed
on the base of the orbit 16C8). Evolution of regimes formed
on the base of 4C2 ~the sheetNS2) is completed by the
appearance of the chaotic attractor 4A2 @Fig. 7~c!#. Then
there occurs a transition to the attractor 2AS, which includes
the chaotic sets 4A2 and 4AS.

The comparison of the maps of regimes in Figs. 1 an

FIG. 3. Projections of the phase portraits in the out-of-ph
regimes, which appear after the breakup of chaotic synchroniza
@~a! 2C1, ~b! 4C2, ~c! 8C4, ~d! 14C1

7#.
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shows that there are regions in the parameters plane w
the sheetsS, NS1, NS2, and NS3 overlap. In the phase
space, the attractors for different families coexist simul
neously. The region of multistability is bounded by th
boundary of the sheetNS1. The maximum number of coex
isting attractors is observed at small coupling in a neighb
hood of the chaos transition for the individual oscillator (lc).
At l,lc these attractors become regular ones. Atl.lc one
can find both regular and chaotic attractors depending
initial conditions. The set of coexisting states depends on
value ofe.

Thus, phenomena of synchronization and multistabi
are observed in the coupled He´non map system~1!. The loss
of chaos synchronization is accompanied by bubbling a
riddling transitions, leading to the appearance of a sta
periodic orbit, which gives birth to its own family of typica
regimes. The comparison of maps of the several dynam
regimes shows that the higher the period of the orbit on
base of which a family of out-of-phase regimes is forme
the smaller the regions which it occupies in the parame
plane.

e
on

FIG. 4. Time series of the difference of dynamical variab
which illustrate the process of the loss of chaotic synchroniza
@l51.2, d50.995, e50.25(a), 0.19(b), 0.16(c), 0.15(d)#.
2-4
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III. BIFURCATIONAL ANALYSIS OF LOSS OF CHAOTIC
SYNCHRONIZATION AND FORMATION OF

MULTISTABILITY

In this section we investigate mechanisms of the comp
chaotic synchronization loss and multistability formation
the coupled He´non maps~1!. We consider the case of iden
tical subsystems whenl15l25l. Figure 9 shows bifurca-
tional lines for the main family of symmetric orbits 2NC0 in
the plane of the control parameterse2l. On linesl s

i ( i is the
period of the orbit! one of the multipliers of the orbits be
comes21. The symmetric orbits lose their stability und
perturbations within the symmetric subspace but rem
stable under transversal perturbations. Stable periodic o
with doubled periods appear in their neighborhood within
symmetric subspace. Thus in the symmetric subspace a
cade of period-doubling bifurcations takes place, wher
chaotic attractor is formed. As a result, on the right side
the line l 1 there is a transition to synchronous chaotic attr
tors 2NA0 as l increases. On the linesl t

i the saddle orbits
2NC0 in the symmetric subspace undergo period-doubl
bifurcations, which become unstable in the transversal di
tion as well. In their neighborhoods the saddle orbits w
doubled periods appear outside the symmetric subspace
example, C0→2C1, 2C0→4C2, 4C0→8C4 on lines
l 1, l 2, l 4, respectively. Ase decreases these out-of-pha
orbits become stable as the bifurcational linesl r

2 , l r
4 , l r

8 are
crossed.

Let us consider the process of a loss of chaos synchr
zation in more detail. On the right side of the linel 1 ~Fig. 9!

FIG. 5. Time series of the difference of dynamical variab
at equal values of the parameters (l51.2, e50.15) and
close initial points @(a)x1(0)50.795, x2(0)50.804, y1(0)
50.245,y2(0)50.236; (b)x1(0)50.795, x2(0)50.805, y1(0)
50.245,y2(0)50.235].
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for l51.2 the one-band symmetric chaotic attractorA0 ex-
ists in the phase space. The regime of chaos synchroniza
is stable and robust. The saddle symmetric orbits 2NC0 em-
bedded in the chaotic attractor are stable under transve
perturbations. With the decrease ine the saddle pointC0

loses its transversal stability at the linel 1, producing the
saddle orbit 2C1 outside the symmetric subspace. This bifu
cation induces the bubbling behavior in the system, which
observed between the linesl t

1 and l p
2 . The regime of chaotic

synchronization becomes not robust. As the coupling coe
cient is decreased further, the orbit 2C1 undergoes a pitch-
fork bifurcation on the linel p

2 (e50.18). In its neighbor-
hood, a pair of saddle period-2 orbits, which are symme
with respect to each other, appear and the orbit 2C1 becomes
stable. In the system of coupled logistic maps@10# it was
shown that a similar bifurcation leads to the riddling of t
basin.

In order to investigate the structure of the basins ofA0,
Eqs.~1! are rewritten in new variables

FIG. 6. Projections of the phase portraits of typical regim
from the base of the orbit 2C1: ~a! 2T1, ~b! 4C1, ~c! 4C3, ~d! 4A1,
~e! 4A3, ~f! 2A1, ~g! AS.
2-5
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s~n11!522s~n!u~n!1r ~n!12e@2s~n!u~n!2r ~n!#,

r ~n11!5bs~n!,

~2!

u~n11!5l2u~n!22s~n!21v~n!,

v~n11!5bu~n!,

where

FIG. 7. Projections of the phase portraits of typical regim
from the base of the orbit 4C2: ~a! 4T2, ~b! 8C4, ~c! 4A2, ~d! 2AS.

FIG. 8. Projections of the phase portraits of typical regim
from the base of the orbit 8C4: ~a! 8T4, ~b! 16C8, ~c! 8A4, ~d! 4AS.
05621
s5
x12x2

2
, r 5

y12y2

2
,

u5
x11x2

2
, v5

y11y2

2
.

In the case of synchronous motions,s50 and r 50, so
that the state of the system is characterized by the dynam
variablesu and v in the two-dimensional symmetric sub
space. We obtain the section of basins of the chaotic attra
A0 and of the stable orbit 2C1 on the plane (s,r ) at fixed
values ofu andv.

Figure 10 shows the sections of basins for a set ofe when
u andv are chosen to be at the fixed pointC0. In this section,
C0 is located at the origin, that is,s50,r 50. Figure 10
shows that after the bifurcation of 2C1 it becomes stable and
in a small vicinity of the saddle pointC0 embedded in the
chaotic attractorA0 there exist phase trajectories that a
attracted to the orbit 2C1. However, when the value of th
parameter is close to the bifurcation point@Fig. 10~a! corre-
sponds toe50.177# an arbitrary transversal perturbation
the trajectory in a small neighborhood ofC0 does not induce
a transition to the orbit 2C1. For such transition the pertur
bations must be along a particular direction in the tw
dimensional normal subspace (s,r ). The farther the param
eter is from the critical value, the larger the size of the reg

s

s

FIG. 9. Bifurcational lines of periodic orbits of the main famil
in the parameter plane.
2-6
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FIG. 10. A section of the basins of the symmetric chaotic attractor~white! and of the stable periodic orbit 2C1 ~black! as the coupling
is decreased. The two other variables are chosen to be at the pointC0.
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of initial points nearC0, starting from which the phase tra
jectory heads towards the stable orbit 2C1 @see Figs. 10~a!–
10~d!#. For example, ate50.15 @Fig. 10~d!# there is a wide
sector of directions for such transversal perturbations.

Figure 11 shows sections of the basins ofA0 and 2C1 for
the same values ofe but with u and v chosen to be at an
arbitrary point in the chaotic attractor. In the figures th
point is at the origin,s50, r 50. From Fig. 11~a! it is seen
that near the bifurcational point (e50.177) a small vicinity
of some points on the attractor is not riddled by holes
longing to the basins of 2C1. With further decrease ine the
structure of the section of the basins becomes more comp
Points from the basins of 2C1 appear in the vicinity of the
symmetric subspace in increasing numbers. Figure 1~d!
shows the section fore50.15, where the riddling become
visible. Similar results hold for other sections of the basins
05621
-

x.

f

the attractors. We chose 10 arbitrary points on the attra
and investigated sections of the basins on the plane (r ,s). As
the coupling coefficient is changed, the rebuilding of the b
sins occurs similar to these sections.

IV. CONCLUSION

In the coupled He´non maps, the process of the loss
complete synchronization and the formation of multistabil
arise from the single bifurcational mechanism. These s
narios are determined by bifurcations of the main family
the saddle periodic orbits 2NC0 which form a skeleton of the
attractor. The synchronization loss begins with the sec
period-doubling bifurcation of the orbitC0: C0→2C1, af-
ter which the regime of chaotic synchronizations becom
2-7
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FIG. 11. A section of the basins of the symmetric chaotic attractor~white! and of the stable periodic orbit 2C1 ~black! as the coupling
is decreased. The two other variables are chosen be an arbitrary point in the attractor.
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less robust. The second period-doubling bifurcations of
other orbits of the main family 2NC0: 2NC0→2N11CN en-
force the bubbling behavior of the attractor. The bifurcati
of the saddle orbit 2C1 located outside the symmetric su
space leads to formation of the complex structure of the
sins ofA0. The vicinity of the chaotic setA0 becomes riddled
by holes from which the phase trajectory leaves towards
orbit 2C1. The bifurcations of the other orbits 2N11CN from
2NC0 located outside the symmetric subspace enforce
riddling of the basins ofA0, where holes from basins of th
other orbits appear. The attractorA0 gradually loses its ba
sins and the regime of nonrobust chaotic synchronizatio
gradually destroyed.

At weak coupling the same bifurcations of the orbits le
to multistability in the system. The first step is the seco
period-doubling bifurcations of the in-phase orbits 2NC0
05621
e
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e
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d

which lead to the increase in number of coexisting sad
orbits in the phase space of the system. The second st
the bifurcations of out-of-phase orbits 2N11CN, which turn
these orbits into stable ones.

The bifurcational mechanism in the coupled He´non maps
~1! is very similar to the ones in the coupled logistic ma
@10#. But it has some differences. Namely, the riddling of t
basins does not appear immediately after the bifurcation
the saddle orbit 2C1. The complication of the structure of th
basins occurs gradually with leaving of the parameter fr
the bifurcational point. This peculiarity may be due to t
higher dimensionality of the system~1!. In a model of
coupled oscillations with minimal dimension (n52) after
the bifurcation of 2C1 any transversal perturbation in
neighborhood ofC0 induces a transition to the out-of-phas
regime. In the coupled He´non maps, this takes place on
2-8
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when the perturbations have a well-defined direction.
In noninvertible systems the so-called pre-imag

play an important role in the loss of complete synchroni
tion @7,9#. The investigation of the invertible system
shows that the existence of the preimages is not a neces
condition for phenomena of bubbling behavior and ridd
basins. This point is important since real physical syste
are described by invertible differential equations and, the
fore, the phenomena described in our work can occur in s
systems.
,

I.

Int

ev

05621
s
-

ary

s
-

ch

ACKNOWLEDGMENTS

We acknowledge the support by Award No. REC-006
the U.S. Civilian Research & Development Foundation
the Independent States of the Former Soviet Union~CRDF!
and the Naval Research Laboratory under Contract
N68171-00-M-5430. We also thank the Korean Ministry
Education and the Korean Ministry of Science and Techn
ogy for support. V. Asktakhov acknowledges support by
NCSL at POSTECH during his visit.
ni,

-

.

E

P.
@1# H. Fujisaka and T. Yamada, Prog. Theor. Phys.69, 32 ~1983!.
@2# V. S. Afraimovich, N. N. Verichev, and M. I. Rabinovich

Radiophys. Quantum Electron.29, 795 ~1986!.
@3# N. F. Rulkov, M. M. Sushchik, L. S. Tsimring, and H. D.

Abarbanel, Phys. Rev. E51, 980 ~1995!.
@4# V. S. Anishchenko, T. E. Vadivasova, and D. E. Postnov,

J. Bifurcation Chaos Appl. Sci. Eng.2, 633 ~1992!.
@5# M. G. Rosenblum, A. S. Pikovsky, and J. Kurths, Phys. R

Lett. 76, 1804~1996!.
@6# A. S. Pikovsky and P. Grassberger, J. Phys. A24, 4587~1991!.
@7# P. Ashwin, J. Buescu, and I. Stewart, Phys. Lett. A193, 126

~1994!.
.

.

@8# P. Ashwin, J. Buescu, and I. Stewart, Nonlinearity9, 703
~1996!.

@9# Y. C. Lai, C. Grebogi, J. A. Yorke, and S. C. Venkatarama
Phys. Rev. Lett.77, 55 ~1996!.

@10# V. Astakhov, A. Shabunin, T. Kapitaniak, and V. Anish
chenko, Phys. Rev. Lett.79, 1014~1997!.

@11# V. Astakhov, M. Hasler, T. Kapitaniak, A. Shabunin, and V
Anishchenko, Phys. Rev. E58, 5620~1998!.

@12# M. M. Sushchik, N. E. Rulkov, and H. D. I. Abarbanel, IEE
Trans. Circuits Syst.44, 866 ~1997!.

@13# V. V. Astakhov, B. P. Bezruchko, E. N. Erastova, and E.
Seleznev, JETP60, 19 ~1990!.
2-9


