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Taming chaos by impurities in two-dimensional oscillator arrays

M. Weiss, Tsampikos Kottos, and T. Geisel
Max-Planck-Institut fu¨r Strömungsforschung, and Institut fu¨r Nichtlineare Dynamik der Universita¨t Göttingen, Bunsenstraße 10,
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~Received 10 January 2001; published 19 April 2001!

The effect of impurities in a two-dimensional lattice of coupled nonlinear chaotic oscillators and their ability
to control the dynamical behavior of the system are studied. We show that a single impurity can produce
synchronized spatiotemporal patterns, even though all oscillators and the impurity are chaotic when uncoupled.
When a small number of impurities is arranged in a way, that the lattice is divided into two disjoint parts,
synchronization is enforced even for small coupling. The synchronization is not affected as the size of the
lattice increases, although the impurity concentration tends to zero.
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I. INTRODUCTION

Coupled arrays of oscillators are studied extensively
many fields of science because of their prevalence in nat
They are used as models for coupled arrays of neurons@1#,
chemical reactions@2#, coupled lasers@3# or Josephson junc
tions @4#, charge-density-wave conductors@5#, crystal dislo-
cations in metals@6#, and proton conductivity in hydrogen
bonded chains@7#. Various models and coupling schem
have been proposed and analyzed previously@8#. A particu-
lar class are arrays of coupled oscillators, which exhibit c
otic motion when uncoupled. This class includes the forc
Frenkel-Kontorova model@9#, which finds a straightforward
physical realization in an array of diffusively coupled J
sephson junctions@10,11#, in which the applied current o
each junction is modulated by a common frequency. T
possibility to obtain synchronized motion in such syste
has been investigated recently by Braimanet al. for the case
of one- ~1D! and two-dimensional~2D! chaotic arrays of
forced damped nonlinear pendula@12# and coupled Joseph
son junctions@13#. They observed the emergence of comp
but frequency-locked spatiotemporal patterns, in which
chaotic behavior was completely suppressed, when a ce
amount ofdisorderhad been introduced by randomizing th
lengths of the pendula. In Ref.@14#, the same phenomeno
has been investigated from a completely different point
view: It was shown for 1D arrays of coupled chaotic pend
that introducing a single impurity at a particular site is s
ficient to lead to complete synchronization.

In this paper, we study 2D arrays of coupled chaotic p
dula. We ask for the minimal coupling as well as the infl
ence of concentration and arrangement of impurities nee
to observe spatiotemporal patterns. Although for geometr
reasons one might expect that a single impurity cannot p
the role it plays in 1D arrays, we find that it is able to tam
the chaotic behavior of an arbitrarily large 2D array, pr
vided that the coupling is strong enough. A single impur
can produce synchronized spatiotemporal patterns, e
though all oscillators and the impurity are chaotic when u
coupled. In order to observe spatiotemporal patterns
smaller couplings, the geometrical arrangement of the im
rities is shown to play a crucial role. Specifically, we sho
that an impurity configuration that divides the lattice into
least two disjoint parts is most appropriate for the creation
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synchronized solutions. Such configurations will always p
duce patterns that locally can be identified as lines, provi
the coupling is above a threshold value. The resulting s
tiotemporal patterns are stable with respect to an increas
the system size, indicating that an impurity concentrat
that tends to zero may suffice to lead to synchronization

II. MODEL

We will focus our analysis on the model examined
Refs.@12,14#:

l n,m
2 ün,m1gu̇n,m52gln,m sinun,m1t81t sinvt

1k~un11,m1un21,m24un,m

1un,m111un,m21!, ~1!

wheren,m51,2 . . .N. Thus, there is a damped, driven pe
dulum with unity mass and lengthl nm on each site (n,m) of
the lattice, subject to an ac and a dc torque. The parame
used are the gravitational accelerationg51, the dc torque
t850.7155, the ac torquet50.4, the angular frequencyv
50.25, and the dampingg50.75. Neighboring pendula ar
coupled via a discrete Laplacian, wherek denotes the cou-
pling strength. We have chosen free boundary conditio
i.e., u0,m5u1,m , uN,m5uN11,m ,un,05un,1 , un,N5un,N11,
and used a fourth-order Runge-Kutta routine with a time s
dt50.01 to numerically integrate Eq.~1!. We carefully
checked that decreasing the time step todt50.001 did not
alter our results.

A very convenient measure that allows a quick visualiz
tion of the average global spatiotemporal behavior of
lattice is the average velocity

s~ jT !5
1

NM (
n51

N•M

u̇n~ jT ! ~2!

at multiple times of the driving periodT51/v. Using this
quantity @15# to obtain a bifurcation diagram not only ca
ascertain if chaotic or periodic behavior is obtained, but
addition helps to identify the maximum period of a patte
Computings(t) at each periodt5 jT of the driving will lead
to a periodic sequences1 , . . . ,sp ,s1 , . . . when transients
have died out and a spatiotemporal pattern of periodicitp
©2001 The American Physical Society11-1
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~‘‘ Pp attractor’’! has emerged. In practice, we inspect t
last 20 values ofs( jT) with j 51, . . .,170, so that transient
have died out. Thus,P20 attractors or attractors of large
periodicity are not recognized as such but rather appea
chaotic attractors.

Applying this strategy to an isolated pendulum, a bifurc
tion analysis with respect to the pendulum lengthl was per-
formed in Ref.@14#. This approach revealed that each is
lated pendulum is chaotic for valuesl 5160.002 and that
three more chaotic windows exist: Two narrow ones al
'0.84 andl'0.52, and a broad one forl ,0.35. Thus we
know whether a chosen pendulum with lengthl is chaotic or
not. Furthermore, for the above chosen parameter value
is known that pendula withl n,m.1 andl n,m,1 show libra-
tion and rotation, respectively, apart from the window
where chaotic motion appears.

III. RESULTS AND DISCUSSION

The simplest configuration of a 2D lattice described
Eq. ~1! is that of a single impurity in a sea of identical ch
otic pendula with lengthl n,m51. We fixed the lattice size to
be 50350, with the impurity located at site (25,25), an
made a bifurcation analysis with respect to the impur
lengthl imp for various valuesk of the coupling. In Fig. 1, the
obtained bifurcation diagrams fork51,2,3,5 are plotted ver
susl imp . For convenience, we normalizeds to take on val-
ues in the unit interval@0,1#. Similarly to 1D arrays, we find
that one impurity is able to organize the 2D arrays. Howev
our bifurcation analysis shows that the coupling constant
to be larger thankcr.3, whereas in the 1D casek>0.1 was
sufficient@14# to produce spatiotemporal patterns. We wou
like to point out the appearance of aP4 attractor fork
55,l imp,0.15 in Fig. 1~d!. Here an array of chaotic pendu
is synchronized by a single impurity, which itself is chaot
when isolated.

In order to illustrate the occurrence of thisP4 pattern in a

FIG. 1. Bifurcation diagram for a 50350 lattice of coupled
pendula with lengthl n,m51. A single impurity with lengthl imp is
located at lattice site~25,25!. For each l imp , the values of
s(151T), . . . ,s(170T) are shown, whereT is the period of the
driving. The coupling is~a! k51, ~b! k52, ~c! k53, and ~d! k
55. In ~c! the first windows of synchronization can be observe
which enlarge for bigger couplings~d!.
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better way, we show in Fig. 2 a typical gray scale plot of the
velocitiesu̇n,m as a function of the lattice coordinates (n,m).
The stroboscopic snapshots are taken with a time lag of
period of the drivingT; darker shading indicates higher ve
locity. In this example, we used 64364 oscillators having
l n,m51 and located an impurity of lengthl imp50.1 in the
middle of the lattice at (32,32). The coupling constant isk
55. After some transient~not shown!, the synchronization is
maintained and aP4 attractor is clearly visible. We neglec
edge effects except to remark that they are strictly confi
to the last few pendula near the boundaries. Moreover, t
become very regular if the calculation is carried on for long
times.

In many applications, however, one is interested in
weak-coupling limit@16#. In this limit, our analysis shows
that one impurity is not able to create spatiotemporal or
nization of a chaotic lattice. Therefore, it is meaningful
ask whether spatiotemporal patterns can emerge at all
under which conditions they may be obtained. To this e
we increase the number of impurities introduced in the latt
and investigate the importance of their geometrical arran
ment as well as their concentration.

In Fig. 3~a!, we report theP1 pattern emerging for a
1283128 lattice with coupling constantk50.5, when 128
impurities were arranged along a line in the middle of t
lattice, dividing it into two disjoint parts. The same behavi
could be observed even for smaller couplings. We verifi
this for coupling constants as small askcr50.1. Moreover,
we found that increasing the size of the lattice toN5256
~the limit of our computational capability!, but maintaining
the linelike geometry of impurities and the parameter valu
did not affect the formation of a pattern. In all cases,
observed synchronization to aP1 pattern after an initial tran-
sient. Thus, increasing the size of the lattice will not affe
the pattern formation, although the percentage of the im
rities will tend to zero in the limit of infinite systems. Thi
indicates that the concentration of impurities is not of p
mary importance.

To test the influence of the special arrangement of im
rities, we considered a 1283128 lattice withk50.5 and 128
impurities of lengthl imp50.7 located at random positions o
the lattice. In all cases we have studied we obtained cha
patterns. Even an increase of their concentration by m
than a factor of 3 did not produce any spatiotemporal patte

It is thus natural to ask whether a line of impurities is t

,

FIG. 2. Snapshots ofu̇n,m for a 64364 lattice with l n,m51,
l imp5 l 32,3250.1, andk55 at multiple times of the driving periodT.
1-2
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only geometry that can produce spatiotemporal patterns
relatively small values of the coupling constant. In Figs. 3~b!
and 3~c!, we report theP1 attractors of a lattice of 128
3128 coupled pendula with lengthsl n,m51, l imp50.7, and
coupling k50.5, where the impurities are arranged like
cross@Fig. 3~b!# or as a ring@Fig. 3~c!#. In both cases, the
observed pattern geometries consist locally of stripes, as
also observed for the ‘‘line geometry’’ in Fig. 3~a!.

What is the common geometrical feature of the abo
impurity configurations that allow them to control the ch
otic lattice? From the above analysis, we draw the conc
sion that it is sufficient for synchronization that the impu
ties divide the lattice intoat leasttwo disjoint subregions. In
that way, the critical coupling needed to observe a spatiot
poral pattern is decreased by an order of magnitude. Re
ing the coupling belowkcr'0.1, however, suppresses th
formation of spatiotemporal patterns even for these lattic
This finding is consistent with earlier investigations on 1
arrays, which revealed a critical couplingk'0.1, below
which no pattern formation could be observed. Furthermo
the observedP1 pattern for the ‘‘line geometry’’@Fig. 3~a!#
is analogous to the 1D case, where the introduction o
single impurity caused the same topology of the array, i.e
division into two disjoint sets, and a similar pattern was o
served@14#. Thus, the results of the 1D case define the li
iting k value also for the 2D lattice.

We finally examined the effect of disorder and the pos
bility of obtaining self-organization or frequency locking
For a 1283128 lattice, we randomly varied the lengths of t
pendula but restricted the range of the disorder such that
individual pendulum is chaotic, i.e.,l n,mP@0.998,1.002#. We
found that the emerging pattern was always chaotic fo
large number of different realizations of disorder and init
conditions. The lacking synchronization can be observed

FIG. 3. Snapshots ofu̇n,m for a 1283128 lattice withl n,m51,
l imp50.7, andk50.5. The impurities are positioned as indicated
the upper panel:~a! on a line alongn564, ~b! on a cross along the
lines n564 andm564, ~c! on a square with (n,m)5(63,63) the
lower left and (66,66) the upper right corner. In the lower panel,
correspondings( jT) is shown.
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better way by inspectings( jT), which does not show any
periodicity @see Fig. 4~a! for an example#. If the range of
disorder is increased to include also regular moving pend
i.e., l n,mP@0.8,1.2#, self-organization is possible, in agre
ment with the findings of Ref.@12#. This can be understood
by the observation that synchronization already occurs, w
choosing the disorder from an interval of pendulum leng
associated with regular motion, i.e., l n,m
P@0.8,1.2#\@0.998,1.002#. A particular example for this is
shown in Figs. 4~b! and 4~c!, where the occurrence of aP6
pattern can be observed. Thus, taking the lengths from
entire interval l n,mP@0.8,1.2# on average yields only 1%
chaotic pendula, whose motion will be overdominated by
synchronizing regular ones, explaining the spatiotempo
pattern observed in Ref.@12#.

IV. CONCLUSION

In conclusion, we have demonstrated that a lattice of c
otic pendula can be frequency-locked into a spatiotemp
pattern by introducing impurities in the lattice. In the stron
coupling limit, a single impurity can tame chaos. Decreas
the coupling constant requires more impurities in order
observe self-organization. In this case, the geometry of
impurity configuration plays an important role. Our resu
suggest that if the impurity configuration divides the latti
into at least two disjoint parts, then the coupling const
may be decreased without affecting the synchronization
the chaotic array. Moreover, the induced spatiotemporal
terns are then unaffected by the size of the lattice. Below
critical coupling kcr'0.1, no synchronization is observe
The value of this critical coupling is dictated by the min
mum coupling, which leads to the formation of spatiotemp
ral patterns in the 1D case.
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FIG. 4. ~a! Chaotic sequences( jT) for a 1283128 lattice (k
50.5) with l n,mP@0.998,1.002#. ~b! Periodic sequences( jT) for a
1283128 lattice (k50.5) with l n,mP@0.8,1.2#\@0.998,1.002# re-
vealing aP6 pattern.~c! Snapshots at multiple periodsT of the
driving confirm the existence of aP6 pattern as predicted in~b!.
1-3



n

ca
r-

v.

.

-

ys

E

s

p.

.

tt.
,

ris-
. R.

.

,

s,

d in

M. WEISS, TSAMPIKOS KOTTOS, AND T. GEISEL PHYSICAL REVIEW E63 056211
@1# D. Amid, Modelling Brain Function~Cambridge University
Press, Cambridge, UK, 1989!; J. Hertz, A. Krogh, and R.
Palmer, Introduction to the Theory of Neural Computatio
~Addison-Wesley, Redwood City, 1991!.

@2# A. Arneodo, J. Elezgaray, J. Pearson, and T. Russo, Physi
49, 141 ~1991!; G. K. Schenter, R. P. McRae, and B. C. Ga
rett, J. Chem. Phys.97, 9116~1992!.

@3# G. Kozyreff, A. G. Vladimirov, and P. Mandel, Phys. Re
Lett. 85, 3809~2000!; H. G. Winful and L. Rahman,ibid. 65,
1575~1990!; J. Terry, K. S. Thornburg, A. D. J. DeShazer, G
D. VanWiggeren, S. Zhu, and P. Ashwin, Phys. Rev. E59,
4036 ~1999!; A. Hohl, A. Gavrielides, T. Erneux, and V. Ko
vanis, Phys. Rev. Lett.78, 4745~1997!.

@4# A. V. Ustinov, M. Cirillo, and B. Malomed, Phys. Rev. B47,
8357~1993!; K. Wiesenfeld, P. Colet, and S. Strongatz, Ph
Rev. Lett.76, 404 ~1996!.

@5# S. H. Strogatz, C. M. Marcus, R. M. Westervelt, and R.
Mirollo, Physica D36, 23 ~1989!.

@6# E. N. Economou,Green’s Functions in Quantum Physic,
Springer Series in Solid State Physics Vol. 7~Springer-Verlag,
Berlin, 1979!.

@7# A. V. Ustonov, B. A. Malomed, and S. Sakai, Phys. Rev. B57,
11 691~1998!; O. M. Braun and Yu. S. Kivshar, Phys. Re
05621
D

.

.

306, 1 ~1998!; E. Nylund, K. Lindenberg, and G. Tsironis, J
Stat. Phys.70, 163 ~1993!.

@8# J. F. Heagy, L. M. Pecora, and T. L. Carrol, Phys. Rev. Le
21, 4185~1995!; J. F. Heagy, T. L. Carrol, and L. M. Pecora
Phys. Rev. E50, 1874~1994!.

@9# L. M. Floria and J. J. Mazo, Adv. Phys.45, 505 ~1996!.
@10# A. V. Ustinov, M. Cirillo, and B. A. Malomed, Phys. Rev. B

47, 8357~1993!.
@11# S. Pagano, M. P. Soerensen, R. D. Parmentier, P. L. Ch

tiansen, O. Skovgaard, J. Mygind, N. F. Pedersen, and M
Samuelsen, Phys. Rev. B33, 174 ~1986!.

@12# Y. Braiman, J. F. Lindner, and W. L. Ditto, Nature~London!
378, 465~1995!; N. V. Alexeeva, I. V. Barashenkov, and G. P
Tsironis, Phys. Rev. Lett.84, 3053~2000!.

@13# Y. Braiman, W. L. Ditto, K. Wiesenfeld, and M. L. Spano
Phys. Lett. A206, 54 ~1995!.

@14# A. Gavrielides, T. Kottos, V. Kovanis, and G. P. Tsironi
Phys. Rev. E58, 5529~1998!; Europhys. Lett.44, 559~1998!.

@15# There are a variety of related quantities that may be define
a similar way. However, we uses( jT) as a particular intuitive
measure, which furthermore is easy to calculate.

@16# H. G. Winful and L. Rahman, Phys. Rev. Lett.65, 1575
~1990!.
1-4


