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Taming chaos by impurities in two-dimensional oscillator arrays
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The effect of impurities in a two-dimensional lattice of coupled nonlinear chaotic oscillators and their ability
to control the dynamical behavior of the system are studied. We show that a single impurity can produce
synchronized spatiotemporal patterns, even though all oscillators and the impurity are chaotic when uncoupled.
When a small number of impurities is arranged in a way, that the lattice is divided into two disjoint parts,
synchronization is enforced even for small coupling. The synchronization is not affected as the size of the
lattice increases, although the impurity concentration tends to zero.
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I. INTRODUCTION synchronized solutions. Such configurations will always pro-
duce patterns that locally can be identified as lines, provided
Coupled arrays of oscillators are studied extensively inthe coupling is above a threshold value. The resulting spa-
many fields of science because of their prevalence in naturéotemporal patterns are stable with respect to an increase of
They are used as models for coupled arrays of neurbhs the system size, indicating that an impurity concentration
chemical reactionsz]' Coup|ed |aser§3] or Josephson junc- that tends to zero may suffice to lead to SynChronization.
tions[4], charge-density-wave conductdfs], crystal dislo-
cations in metal$6], and proton conductivity in hydrogen- Il. MODEL
bonded chaing7]. Various models and _coupllng schemes We will focus our analysis on the model examined in
have been proposed and analyzed previo[8]yA particu- R )
. ) L efs.[12,14):
lar class are arrays of coupled oscillators, which exhibit cha-
otic motion when uncoupled. This class includes the forced

y - . _ ) _
Frenkel-Kontorova modd9], which finds a straightforward lhmOnmt ¥0nm==Qlnm SN0+ 7"+ 7SN

physical realization in an array of diffusively coupled Jo- +K(Ops1mt On-1m—40nm
sephson junction§10,11], in which the applied current of ’ ' '
each junction is modulated by a common frequency. The T Onm+1t Onm-1), (1)

possibility to obtain synchronized motion in such systems _ . .
has been investigated recently by Braimedral. for the case  Wheren,m=1,2...N. Thus, there is a damped, driven pen-
of one- (1D) and two-dimensiona(2D) chaotic arrays of dulum with unity mass and length,, on each siterf,m) of
forced damped nonlinear penddts2] and coupled Joseph- the lattice, subject_to an ac and a dq torque. The parameters
son junctiong13]. They observed the emergence of complexufed are the gravitational acceleratigs 1, the dc torque

but frequency-locked spatiotemporal patterns, in which thg’ =0-7155, the ac torque=0.4, the angular frequency
chaotic behavior was completely suppressed, when a certafi 0-25, and the damping=0.75. Neighboring pendula are
amount ofdisorderhad been introduced by randomizing the coupled via a discrete Laplacian, whetalenotes the cou-
lengths of the pendula. In ReffL4], the same phenomenon plmg strength. We have chosen free boundary conditions,
has been investigated from a completely different point of-€ fom=01m: Onm= On+1m:Ono=On1s  Onn=Onne1s
view: It was shown for 1D arrays of coupled chaotic pendula@nd used a fourth-order Runge-Kutta routine with a time step
that introducing a single impurity at a particular site is suf-dt=0.01 to numerically integrate Eq1). We carefully
ficient to lead to complete synchronization. checked that decreasing the time stepdte-0.001 did not

In this paper, we study 2D arrays of coupled chaotic penalter our results. o
dula. We ask for the minimal coupling as well as the influ- A very convenient measure that allows a quick visualiza-
ence of concentration and arrangement of impurities needgén of the average global spatiotemporal behavior of the
to observe spatiotemporal patterns. Although for geometricdpttice is the average velocity
reasons one might expect that a single impurity cannot play N-M
the role it plays in 1D arrays, we find that it is able to tame o(jT) = i
the chaotic behavior of an arbitrarily large 2D array, pro- NM =1
vided that the coupling is strong enough. A single impurity
can produce synchronized spatiotemporal patterns, eveat multiple times of the driving period = 1/w. Using this
though all oscillators and the impurity are chaotic when un-quantity [15] to obtain a bifurcation diagram not only can
coupled. In order to observe spatiotemporal patterns foascertain if chaotic or periodic behavior is obtained, but in
smaller couplings, the geometrical arrangement of the impuaddition helps to identify the maximum period of a pattern:
rities is shown to play a crucial role. Specifically, we show Computingo(t) at each period=jT of the driving will lead
that an impurity configuration that divides the lattice into atto a periodic sequence,, . ..,0p,0, . .. When transients
least two disjoint parts is most appropriate for the creation ohave died out and a spatiotemporal pattern of periodicity

0n(jT) )
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FIG. 1. Bifurcation diagram for a 5050 lattice of coupled better way, we show in Fi@ a typical gray scale plot of the
pendula with length, n=1. A single impurity with lengtim, is  velocities#,, ,, as a function of the lattice coordinates fn).
located at lattice site(25,29. For eachliy,, the values of The stroboscopic snapshots are taken with a time lag of one
o(151T), ... ,o(170T) are shown, wherd is the period of the  nherjod of the drivingT; darker shading indicates higher ve-
drgllnlg. Thfhc%ypllng 'Z(a) k:fl’ (b) hk=2_, (t‘?) k=3, E‘”d(g) k J locity. In this example, we used 6464 oscillators having
whic.:hne(r::ILrgg fgrsb}';ge:’(‘;‘fug”nsgg)c_ ronization can be obseved, | =1 and located an impurity of length,,=0.1 in the

middle of the lattice at (32,32). The coupling constank is

. ) =5, After some transier(hot shown, the synchronization is

(“Pp attractor”) has emerged. In practice, we inspect theyaintained and #4 attractor is clearly visible. We neglect
last 20 values obr(jT) with j=1,...,170, so that transients ¢qge effects except to remark that they are strictly confined
have died out. ThusP20 attractors or attractors of larger i the |ast few pendula near the boundaries. Moreover, they

periogiicity are not recognized as such but rather appear §§come very regular if the calculation is carried on for longer
chaotic attractors. mes

ti .

_ Applying this strategy to an isolated pendulum, a bifurca- |5 many applications, however, one is interested in the
tion analysis with respect to the pendulum lengwas per-  \yeak-coupling limit[16]. In this limit, our analysis shows
formed in Ref.[14]. This approach revealed that each iSo-ihat one impurity is not able to create spatiotemporal orga-
lated pendulum is chaotic for valugs=1=0.002 and that  pization of a chaotic lattice. Therefore, it is meaningful to
three more chaotic windows exist: Two narrow onesl at ask whether spatiotemporal patterns can emerge at all and
~0.84 andl~0.52, and a broad one fér<0.35. Thus we  ynder which conditions they may be obtained. To this end,
know whether a chosen pendulum with lengib chaotic or e increase the number of impurities introduced in the lattice

not. Furthermore, for the above chosen parameter values, §,q investigate the importance of their geometrical arrange-

tion and rotation, respectively, apart from the windows, |y Fig. 3a), we report theP1 pattern emerging for a

where chaotic motion appears. 128x 128 lattice with coupling constark=0.5, when 128
impurities were arranged along a line in the middle of the
lIl. RESULTS AND DISCUSSION lattice, dividing it into two disjoint parts. The same behavior

could be observed even for smaller couplings. We verified
The simplest configuration of a 2D lattice described bythis for coupling constants as small kg=0.1. Moreover,
Eq. (1) is that of a single impurity in a sea of identical cha- we found that increasing the size of the latticeNe- 256
otic pendula with lengtt,, ,=1. We fixed the lattice size to (the limit of our computational capabilitybut maintaining
be 50<50, with the impurity located at site (25,25), and the linelike geometry of impurities and the parameter values,
made a bifurcation analysis with respect to the impuritydid not affect the formation of a pattern. In all cases, we
lengthl;y,, for various valuesk of the coupling. In Fig. 1, the observed synchronization toRdl pattern after an initial tran-
obtained bifurcation diagrams fé=1,2,3,5 are plotted ver- sjent. Thus, increasing the size of the lattice will not affect
suslimp. For convenience, we normalizedto take on val-  the pattern formation, although the percentage of the impu-
ues in the unit intervdl0,1]. Similarly to 1D arrays, we find rities will tend to zero in the limit of infinite systems. This
that one impurity is able to organize the 2D arrays. Howeverindicates that the concentration of impurities is not of pri-
our bifurcation analysis shows that the coupling constant hamary importance.
to be larger thark,,~=3, whereas in the 1D case=0.1 was To test the influence of the special arrangement of impu-
sufficient[14] to produce spatiotemporal patterns. We wouldrities, we considered a 128128 lattice withk=0.5 and 128
like to point out the appearance of R4 attractor fork  impurities of lengthl;;,,=0.7 located at random positions of
=5imp<<0.15 in Fig. 1d). Here an array of chaotic pendula the lattice. In all cases we have studied we obtained chaotic
is synchronized by a single impurity, which itself is chaotic, patterns. Even an increase of their concentration by more
when isolated. than a factor of 3 did not produce any spatiotemporal pattern.
In order to illustrate the occurrence of thig pattern in a It is thus natural to ask whether a line of impurities is the
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FIG. 3. Snapshots o@n m for a 128<128 lattice withl,, ,=1, 128>_< 128 lattice k=0.5) with Invme[0'8'1'3_\[0'993'1'002 re-
limp="0.7, andk=0.5. The impurities are positioned as indicated in vealing aP6 pattern.(c) Snapshots at multiple periods of the

the upper paneka) on a line alongn=64, (b) on a cross along the driving confirm the existence of B6 pattern as predicted ifi).

lines n=64 andm=64, (c) on a square withr{,m)=(63,63) the  patter way by inspecting(jT), which does not show any
lower left aqd (65,66) the upper right corner. In the lower panel*theperiodicity [see Fig. 4a) for an examplg If the range of
correspondingr(jT) is shown. disorder is increased to include also regular moving pendula,
oy geomety tatcan pruce spaitemporal patems 1 0.5, s ryeizaion s possule, 1 v
relatively small values of the coupling constant. In Fig)3 . el

and 3c), we report theP1 attractors of a lattice of 128 by the observation that synchronization already occurs, when

. = - choosing the disorder from an interval of pendulum lengths
% 128 coupled pendula with lengtths =1, lin,=0.7, and associated with regular motion, e, Inm

coupling k=0.5, where the impurities are arranged like a ; e
oS, o of 25 & MGG, 201} 1 b0l Case. 1 Slass i oy ot s, v e ocemeies o
observed pattern geomt_atries consist Io_cally of stripes, as Washttern can be observed. Thus, taking the lengths from the
also observed for the “line geometry” in Fig.(8. entire intervall,, ,€[0.8,1.2 on average yields only 1%
What is the common geometrical feature of the above:haotic pendula, whose motion will be overdominated by the

impurity configurations that allow them to control the cha- synchronizing regular ones, explaining the spatiotemporal
otic lattice? From the above analysis, we draw the conclupattern observed in Ref12].

sion that it is sufficient for synchronization that the impuri-

ties divide the lattice intat leasttwo disjoint subregions. In IV. CONCLUSION
that way, the critical coupling needed to observe a spatiotem- . .
poral pattern is decreased by an order of magnitude. Reduc- " conclusion, we have demonstrated that a lattice of cha-
ing the coupling belowk,~0.1, however, suppresses the otic pendu!a can b_e frgquenc_:y—lqcked Into a spatiotemporal
formation of spatiotemporal patterns even for these Iattices}:.""‘tter.n by mtrodupmg mpunpes in the lattice. In the stron_g-

This finding is consistent with earlier investigations on 1Dcoupl|ng limit, a single impurity can tame chaos. Decreasing

arrays, which revealed a critical couplifig~0.1, below the coupling constant requires more impurities in order to

which no pattern formation could be observed. Furthermor 9bserve seli-organization. In this case, the geometry of the

. ity configuration plays an important role. Our results
the observedPl pattern for the “line geometry’[Fig. 3a)] impuri : . i . . g .
is analogous topthe 1D case, wherge the i?\fcrod%ction of éuggest that if the impurity configuration divides the lattice

single impurity caused the same topology of the array, i.e., o a; Iedast two g'spt'ﬂt ptart;, tthen tt::e couprl]lng _co?stantf
division into two disjoint sets, and a similar pattern was ob-May b€ decreased without aftecting the synchronization o

served[14]. Thus, the results of the 1D case define the Iim-:Ehe chaotltcharray. l;;lor;ao(;/gr, ;[Ee |r)duc?(3hsp;e1tt|tc_)tem§olral ptﬁt'
iting k value also for the 2D lattice. erns are then unaffected by the size of the lattice. Below the

We finally examined the effect of disorder and the possi-Critical COUp”ng.ka%Q'l’ no sy_nch_roni_zation Is observ_eo_l.
bility of obtaining self-organization or frequency locking. The value _Of this _crmcal coupling is d|ctated by the mini-
For a 128<128 lattice, we randomly varied the lengths of the mum couplmg, which leads to the formation of spatiotempo-
pendula but restricted the range of the disorder such that eaéﬂl patterns in the 1D case.
individual pendulum is chaotic, i.d,, ,e[0.998,1.002. We ACKNOWLEDGMENT
found that the emerging pattern was always chaotic for a
large number of different realizations of disorder and initial We are grateful to T. Gavrielides, V. Kovanis, A. Politi,
conditions. The lacking synchronization can be observed in and G. Tsironis for helpful discussions.
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