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Ergodicity and scars of the quantum cat map in the semiclassical regime
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We study the quantum localization effect of the cat map manifested in the motions of statistical ensembles.
Specifically, the coarse-grained entropy and time-averaged phase space distributions are investigated. For this
purpose, an amended version of the Wigner function on the discretized phase torus is presented. We find that
the time average of the coarse-grained Wigner function is scdemtiscarregl along some short periodic
orbits, and the height&epths of these scarsantiscary decrease in a linear way with the Planck constant
when the semiclassical limit is approached. The relationship between the scars observed here and those
exhibited in the quasienergy eigenstates is discussed.
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[. INTRODUCTION periodic orbit and its invariant manifoldg8]. These en-
hanced or suppressed regions are called scars or antiscars

Classically, ergodicity plays an important role in studying[7,9]. They stand out against the monotonous background of
the random behaviors of dynamical systems. One fascinatinthe eigenstates derived from RMT and thus constitute the
problem is how it manifests itself in quantum mechanics, andnain correction to the latter. Generally they have a width of
in what way it is restored in the semiclassical limit-(-0).  order#; therefore, their existence would not destroy Schnire-
A fundamental theorem by Schnirelman, together with thoséman’s ergodicity.
who came after hinil], has answered the basic aspect of the These important results regarding the quantum ergodicity
question; i.e., for a classically defined operator, its quantunmainly surround the properties of the spectrum and the indi-
expectations over almost all individual eigenstates convergeidual eigenstates. However, to get a deeper insight into the
to the ergodic, microcanonical averages of its classical courelassical-quantum correspondence of ergodicity, the proper-
terpart ash —0. Some authors also studied the rate at whichies involving many eigenstates at a time need to be studied
they do sq2]. as well. In fact, only for such properties does the classical-

Later on, a lot of work was done in seeking the quantumguantum correspondence have implicatipf The reason
characteristics possessed by the classically ergodic systenis in the essential difference between classical and quantum
One breakthrough was made in 1984 by Bohigaal. [3], mechanics, from which a direct classical-quantum compari-
who conjectured that in the semiclassical limit the propertieson of physical meaning is expected to be performed in the
of the spectrum and the eigenstates of a chaotic system céimmework of statistical mechanics.
be predicted based on the random matrix the®WT) [4]. In most cases, however, it would be a very difficult job to
This implies Gaussian random eigenfunctions and a stronglgope with the statistical ensembles of a chaotic system. The
repulsive spectrum, whose concrete forms have a depemsituation becomes even harder when the deep semiclassical
dence on the symmetry properties of the system. The Gauskmit and long time evolutions need to be considered. As a
ian random form of eigenfunctions implies marginally result, our knowledge in this regard is still quite limited. For
Schnirelman’s ergodicityfor this reason, the ergodicity im- example, an immediate question one would want answered is
plied by the RMT is also known as “strong quantum ergod-whether an even phase-space distribution will be converged
icity” while that in the sense of Schnirelman is known as to by a general quantum ensemble apart from the inevitable
“weak guantum ergodicity’T5]). The most striking point of quantum fluctuations, and if not, whether the phase space
this conjecture is that the RMT is only concerned with thewill be evenly visited in the sense of time average. This
overall symmetries of the system rather than any detaileduestion will be focused on in this paper.
dynamics. Hence the RMT's success in approximating some The model system we adopt is Arnold’s cat n{df], a
quantum descriptions of a chaotic system indicates clearlyell-known paradigm of classical chaos. It turns out to be
the leading role played by the symmetries in question. On th@leal for our plan here due to its generality and simplicity.
other hand, it is thus natural to expect that in more accurat&pecifically, by using the quantum characteristic function
approximations some dynamical aspects of the systerfill], its evolution equation can be transformed into a much
should be taken into account as well. A well-known examplesimpler one, which has been proven to be crucial for both
is Gutzwiller's semiclassical trace formul&], from which  analytic and numerical workl2,13, especially related to the
nonrandom fluctuations in the spectrum of a chaotic systermotions of ensembles. If the coarse-graining procedure is
can be connected to the short periodic orbits. involved, this new form evolution equation will allow further

Short periodic orbits also have an important effect on thesimplification of the calculations. Quantum characteristic
structure of the eigenstates of a chaotic system. This effectunctions, as shown in this paper, are also important for de-
termed “scarring” [7], is the anomalous enhancement orfining a new Wigner function for the system whose phase
suppression of eigenstate intensity on or near an unstabipace is a torus like the cat map.
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We find that a very interesting quantum localization effect{17]. It consists of two steps. The first one is to specify the
may appear during the evolutions of a wave packet. After th&kinematics, i.e., the states and the operators that are involved
initial relaxation period, the phase space would be evenlyn the description of the system; and the second is to con-
distributed up to the randomlike quantum fluctuations instruct the dynamics, i.e., the time evolution operator that acts
most cases; but surprisingly, at other times some stronglgn them. The latter step can be carried out by a direct anal-
localized structures caused by quantum interference, whosmy with the classical dynamics.
scales are of the same order of the initial wave packet, would Assume the phase space is a torus with unit area. The fact
emerge from this monotonous background. This is in conthat it is compact implies that the number of phase cells
trast with the classical mixing property. In addition, if the N=1/(2##) is a finite integer that gives the dimension of
Plank constant is decreaséaking divided by a prime num- the state-vector space needed to describe the system. We
ber repeatedly these structures themselves are kept comedenote such ahl-dimensional Hilbert space &%, and con-

pletely unchangedexcept for the times at which they appear stryct two orthogonal, complete vector s¢tp)} and {|1)}

may change greatly This is different from the dynamical ith j,1=0,... N—1. They are assumed to be related by

classical limit. However, since the average interval between
the appearances of these localized structures increades as oo Nt
—0, the time-averaged phase-space distribution will finally y=— > e?mN|j), (2.1a
reach that required by the classical ergodicity in the semi- VN =0
classical limit. N1

Another interesting phenomenon is that when the initial L1 S e i2miliNy
wave packet is launched on or near a periodic orbit, it is |J>_\/_ﬁ =) € -
found along not only that one, but also some other periodic

orbits in which the time-averaged phase space distributioRnen the position and momentum opera@randp can be

protrudes. This suggests that to understand the scars alongyafined as the eigenoperators of these two vector sets, re-
given periodic orbit, it is insufficient to consider only the spectively, by

information contained in the dynamics of the wave-packet

(2.1b

origins from this single periodic orbit; the information con- O .

tained in the wave-packet dynamics along other periodic or- ali)= N|J>, j=0,...N—-1, (2.29

bits must be considered as well. This implies that the scar-

ring should be seen as a collective effect to which various o

periodic orbits make their contributions simultaneously in p| >:N| Y, 1=0,...N—1. (2.2b

some inseparable way.

This paper is organized as follows. In the next section, we ) A _

first discuss briefly the quantization of the cat map, and thedf i worth noting that the operator pajrp thus defined does

we introduce the quantum characteristic function, which ig"0t obey the Heisenberg commutation rule but rather the

equivalent to the density operator in describing a quantunfollowing Weyl commutation rul¢19]:

ensemble. In terms of this, a simple evolution formula for the

guantum cat map is derived. Section Il presents a new defi-

nition of the Wigner function for the system whose phase 23

space is a torus, and its propagator for Arnold’s cat map is . ) - .

discussed. The quantum interference exhibited in the mo~S t0 the dynamics of a density operafey if the unitary

tions of an ensemble can be illustrated by simply examiningime evolution operato® corresponding to the classical map

this propagator. Section IV discusses the coarse-grainingas been obtained in some way, then the time evolutign of

procedure, and Sec. V presents the numerical results. In Segan be described by

VI, we discuss the semiclassical behavior of the time average

of the coarse-grained Wigner function and the relationship pKF1=5pkSt (2.4

between the scars exhibited in this presentation and those

exhibited in the quasienergy eigenfunctions. A concise sumwherek and k+1 represent two successive integral times.

mary will be found in the final section. Obviously, it would be difficult in practice to evolve the
quantum ensemble by using this formula directly, especially
for the cases in whicN is large. To facilitate the calculation,

Il. QUANTIZATION OF THE CAT MAP a key technique used in this paper is to make good use of the

To quantize the cat map, several schemes are currentguantum characteristic function of the density operatpr
available[16—18. Among them, a general method for quan- which is defined a$11-13
tizing a linear map on the torus has been studied in detail by L
Hannay and Berry16]. But unfortunately, our model system e(mn)=Tr{pU(m,n)], (m,n)e 22, (2.9
does not satisfy the conditions of their formulation. Another R L
scheme, which we shall resort to here, is that once discussadhere U(m,n)=¢€ e'2mMdei2P gcts as a phase-space
by Balazs and Voros in their study of Baker’s transformationdisplacement operator, i.e.,

eizwnbeiZWma: ei271-mn/Nei27TmE]ei27Tn;J’ (m'n) 622.

iTmn/N
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O(m,n)“>:ei77m(2]—n)/N|[j —nly), (2.63 From the quantum counterpart of the Hamiltonian given
above, the unitary time evolution operator corresponding to

U(m,n)|l_>=ei””(2'+m)’N|m>. (2.6b the classical map can be integrated out exactly, which yields
&_ a—i7Np2a—i7NKg?
Here [ ]y denotes the congruence moduib It is easy to S=e € 212
verify that the symmetries dfJ(m,n), with two factors being responsible for the kick and the free
R ~ motion between two successive kicks, respectively. After a
U(m+N,n)=(—1)"U(m,n), straightforward calculation by using E@®.4), the time evo-
lution of the quantum characteristic function generated by
U(m,n+N)=(—1)"0(m,n), (2.7@ this unitary evolution operator can be given by
@ My 1, Nk 1) = (Mg, ny) (2.13

Of(m,n)=0(-m,—n) (2.79

- _ with
can be passed on to the quantum characteristic function

e(m,n), i.e., (mk+1) (1 K )(W)
= (2.19
e(m+N,n)=(—1)"¢(m,n), Nk+1 -1 1-K/|ng

for evenN, which is the case being dealt with in this paper.
Due to the periodic condition®.83, the iteration formulas
(2.13 and(2.14) can be constrained on anNX 2N square
lattice. Sincep(m,n) is actually permuted on this finite lat-
tice, it must return to its initial state after a finite number of
iterations. This period, denoted in this paper &¢N), is

o(mn+N)=(—1)"¢(m,n), (2.8a
¢*(m,n)=¢(—m,—n). (2.8b

From Eg.(2.83, one realizes that althougl(m,n) has a
period of 2N for both m andn, only N? values on a square .
NXN lattice are independent. This can also be verified di—knOWn as the quantum period of the systEth]. Research
rectly by the inverse transformation between the density Op[eveals thaie(N) has a strong dependence on the number-

) - . theoretical nature ofl [20].
h f . . .
erator and its quantum characteristic function, Comparing with Eq(2.4), the evolution formulag2.13

1 MorN-1ngtN-1 and (2.14 have an apparent advantage in that only integral
p== > > o(mn)0f(m,n). (2.9 operqtions are involved. Consequently,'much less memory
N m=m, n=ng and time are needed when the numerical calculations are

) o ) implemented. This is one of the reasons why we resort to the
This means that the characteristic functipfm,n) on an  guantum characteristic function in our investigations. In Sec.
arbitrary NXN square lattice can completely describe ajy, one may find that, based on these two formulas, the

quantum ensemblenf, and n, are two arbitrarily chosen nuymerical calculations can be simplified further as a conse-
integers. We emphasize this fact because it is crucially im-quence of coarse-graining.

portant for our later discussions on the Wigner function.

Now let us turn to thg cat map. The classical dyngmips of 1. WIGNER EUNCTION
the cat map can be derived from the model of a periodically
kicked one-dimensional particle with unit mass and it has the The Wigner function is one of the most useful tools to
Hamiltonian[ 18] investigate the motion of a quantum ensemble in phase
space. In this section, we will present an appropriate defini-
tion of the Wigner function for the systems whose kinemat-
ics were constructed in the preceding section.

From its conventional definition, a straightforward
whered,(t) represents a sequencedfunctions with period ~ Wigner function for the linear quantum maps on a two di-
of unit time. Integrating the equations of motion derived mensional torus has been given by Hannay and B@i)
from this Hamiltonian over a unit time from just before the [16]. It has period 1 in both thel and p directions, and
kth kick to just before theK+ 1)th kick, and imposing pe- nonzero values on aNex 2N lattice in the phase torus. In
riodic boundary conditions to bothandp to make the phase fact, this Wigner function, referred to a&/,5(q,p) in the
space a unit torus, one obtains following, can be expressed as the Fourier transformation of

the quantum characteristic function on d'2 2N square lat-
Okt 1 1-K 1\/qgy tice in the Fourier dual space of the torus, i.e.,
2 ) s

H= S p2s S g2 2.1
= 5P+ 5a%au(b), (2.10

-K 1

pk+1 2N—-1
. - —i2m(mag+np)
If |[K—2|>2, this map is an Anosov diffeomorphism on a Whg(9j.P1) ANz m,;:o e(m,n)e i 3.9

2-torus. The motion generated by such a map is strongly
chaotic, and in particular is mixing and ergodic. The Arnoldwith (q;,p;)=(j/2N,I/2N), (j,1) e Z2. From Eq.(2.83, we
cat map that we address later correspondk to—1 [10]. know that, for N? terms of(m,n) appearing in the right-
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hand side of this definition, onli? of them are independent; quantum counterpart to the classical phase torus. This fact
this infers that 4?2 spikes ofWyg(d; ,p;) on the phase torus makes the physical meaning of this definition more clear.
are associated in sets of four as already having been pointed On the other hand, from Eq2.8H one knows that
out by Hannay and Berry16]. This is in fact a shortcoming, W(q;,p,) is real if theNXN lattice A is symmetric about
because those redundant spikes cannot provide any new itike origin. Therefore, for oddN one can generate a real
formation, and even worse, they make the physical meanin@v(q; ,p;) by just specifying the\ used in Eq.(3.2) as the
of the Wigner function too vague to understdid]. symmetric one whose lower left vertex is located(at(N

As suggested by E¢2.9), a quantum characteristic func- —1)/2,—(N—1)/2). But for evenN, this effort fails and thus
tion defined on aNXN square lattice is sufficient for de- W(q;,p,) is in general complex. A better choice in this case
scribing a quantum ensemble. This fact implies that it is thds to locate the lower left vertex ok at (—N/2,—N/2), so
superfluous terms op(m,n) in definition (3.1) that cause that the image part oN(q;,p,) only comes from the contri-
the trouble, and therefore it is preferable to carry out thebutions of those terms of(m,n) along the left and the
summation in the right-hand side of E®.1) only within an  lower edges of\. However, since in both cases the values of
NXN square latticédenoted as\) in the Fourier dual space W(q;,p) are not non-negative—definit&V(q;,p;) cannot
instead. This consideration leads straightforwardly to a redeserve as a phase space probability distribution directly. As
fined Wigner function, far as this point is concerned, our viewpoint is that being real
but possibly negativéodd N) is by no means better than
being complex(evenN). Fortunately, it turns out that this
defect ofW(q;,p;) can be remedied by coarse-graining it in
some appropriate ways. For example, the corresponding Hu-
Obviously, this new version of the Wigner function defined simi distribution ofW(q;,p,) is found to be actually every-
here contains all the necessary information needed to specifyhere nonnegative for both odd and evénat least under
a gquantum ensemble, and therefore it can serve as a complétee conditionN>1, as we will show in the next section.
description of it. In addition, one can easily deduce that it has In the rest of this section, we would like to give the ex-
the projection nature plicit expression of the one-step propagator of this newly
defined Wigner function for Arnold’s cat majK& —1). For

> K p(m,n)e"12m(mgnp) (3 9

1
W(q;,p)=—
(q] pl) NZ (S

N—1 . . .

2 W(q ):<_|A|_> —0 N-1, (3.34 the conventional Wigner funct!on, the study by Hannz?\y and

e PO =Ulel J=0 RS Berry has revealed that for a linear maf,g is just carried
along by the classical map on &X 2N phase lattice, and

N-1 o no quantum effect is found to be manifested explicitly in this

> W(q;,p)=(I[p[l), 1=0,...N—-1 (3.3p simple picture. In contrast, the following results will show

j=0

that the propagation dN(q;,p,) seems to be more compli-

expected for a Wigner function. This further supports theCat,igsirr]r?eet)r(gtb;?té;nc?r:((i-s::/\;?u?igin;?én ter]:f:%tlsih ner function
validity of the new definition. Periodic conditions P 9
can be expressed as

W(g;+1,p)=W(q;,p;+1)=W(q;,p) (3.4

N—-1
are satisfied as well, and as a resujt,p,) can be restricted Wk+1(qj, p= > Wk(qj PP P3G ,P1),
on the NXN phase lattice {(q;,p)=(j/N,I/N); j,I j1=0
=0,... N—1}, which will be referred to as the Wigner lat- 3.9

tice in the following.

Compared with its conventional versi¢8.1), the advan- where P(q;,,p;/;q;,p;) represents the contribution of the
tage of this redefined Wigner function is that the redundanspike located atdj,p,) to that at ;. ,p,/) after one itera-
phase-space points that are not required by the position d@ion; then by substituting Eq3.2) into both sides of this
momentum wave-function descriptions are no longer in-equation and by making use of Eq2.13 and(2.14), one
volved. The Wigner lattice can therefore be viewed as thebtains

1
N2

P(d Py iGj,P) =z > A(m,n)e!27m =g b n(pi=2pir gy ) (36

(m,n)eA
with

(=)™ jf n—ssm<=2n—-s or 2n+s<m<n+s;
(=" if n>m+s or nsm-s; (
1 if 2n—s<ms=2n+s.

N
E) (3.7
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volved, time and memory used in the numerical calculations
can be reduced further.

For simplicity, we use a Gaussian coarse-graining factor
and denote its width by with \A<e<1. Then the coarse-
grained Wigner function can be written as

W(aj,p)=C X e (@@ ermTdw(g;,,pp),
]",|’=*°°
4.9

7 0505

FIG. 1. The real part of the one-step propagator of the Wignervvherec is an appropriate normalizing factor. However, in
function for the cat map withN=48. The initial spike is at practical calculations, it is more convenient to expréssin

(q .py) = (0.25-0.25). terms of the quantum characteristic function
In Fig. 1, we show forN=48 and §;,p;) = (0.25,-0.25) W(q;,p)= iz
the real part of the functioR(q;. ,p;s ;q;,p;) as an example N
to see how a spike fixed at|(,p,) will be propagated on the
Wigner lattice(please note that the origin of the phase spac
is located at the center in this figure and in all subsequent
figures in which phase space is concepn&ince the maxi-
mum of the imaginary part is quite small compared with that
of the real part (0.02 versus 0.5), Fig. 1 reflects almost all the
main details of the propagator.

In this figure, we can see three prominent peaks situate
exactly on three vertices of a right triangle whose two right . . !
sides are parallel to the axes and have the same length of 0. .beh negllglglle f%r (n,n)dout3||de a ?rr:]aller central re_gmn_of
The highest peak has a strength of 0.5, and its location whose radius depends only on the coarse-graining &ize

(0.25,0) is exactly whereqf,p;) would be mapped under and doe_s not grow _aN is increa_lsed. As a consequence, the
thé ciassical map. The othérltwo lower peaks, having thgummatlon on the right-hand side of qu.2) can be carried
same height of 0.25, are situated at(.25,0) and, €0.25 out onI_y within this region, which proyldes an ess_entlal sim-
0.5) respectivély"they have no cléssi,cal analog.an,d ar%matlon to the numerical calculations, especially when

N . ’ rgeN (or the deep semiclassical limihas to be dealt with.
thus responsible for the quantum character of the cat map.

Straightforward analysis shows that i;(p) is shifted, the essl,\lecr)m\?ilavl\lle Ser\]/c;W thﬁ;:’;hi'g‘i nleagg\fj ‘/Ii’m%a(ii"[p']) ;S
pattern ofP(q;.,p;-;q;,p;) will not change but will suffer a y fyw 9 ' — I N2

corresponding displacement j € Z; whenN>1, we may define a coherent state centered

Further investigations of Fig. 1 reveal that there are man?t @;.p) as
deep valleys in the immediate neighborhood of two nonclas- ya
sical peaks, which lead to noticeable fluctuation structures. |,/,>=(_) > efw[(j’fj)zfizl(j’fj)llN“ Y. (4.4
The wavelength of these structures is of orderSince the N/
Wigner function of a wave packet has a minimum width of ) _
order V%, the nonclassical contributions from neighboring !ts Wigner function has the form
points will counterbalance each other greatly during the ini- 5
tial evolving stage. This explains why the propagation of a W (g0 ,py) = Z e=2aNi(a =)+ (p=P)? (4.5
wave packet resembles that of the corresponding classical N
phase density before the quantum coherence app2as

> pdm,n)e2mMa e (4 9)
A

mn) e

@nd resort to the approximate relatifit8]

QDE(m,”)“e_wzez(mzmz)@(m,n) for
(mn)eA, Ne>1. (4.3

The Gaussian coarse-graining factor appearing in this equa-
ion acts as a wave filter, which causes the value gm,n)

jl==o

Substituting it into Eq(4.1) and lettinge= \%, we have
IV. COARSE-GRAINING

. . . . . 0 = Yia. )
As was illustrated in the preceding section, the Wigner Wr(aj.p)= |27x W¥a;,pi)W(a;,pir)
function itself is generally not non-negative-definite. In or- S

der to appreciate its real significance, one has to resort to its 1 .

coarse-grained form to obtain an appropriate phase-space :NW“)W}

representation. On the other hand, since coarse-graining

would smooth out all high wave-number undulations, this =0. (4.9

procedure makes it possible for various phase-space struc- ) S _
tures specific to the quantum motions to manifest themselvedere Wz is actually the Husimi distribution of the density
in a clear way. In addition, as fewer wave numbers are inoperatorp [22].
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Having appropriately defined a phase-space distribution,
we are now in a position to study the phase-space structures
imprinted by the quantum motions, which is expected to re-
veal the localization effect of the quantum chaos caused by
guantum coherence. We will use a Gaussian wave packet as
a probe and locate its centroid at various positions of interest
(e.g., near or on a particular classical periodic ortmtstudy
how the long-time behavior of a quantum ensemble is influ- . .
enced by the corresponding classical phase-space structures. 0 100 200 300
The quantum characteristic function for such an initial k
Wigner function has the form FIG. 2. Coarse-grained entropy for the quantum cat map. The

, 29 2. 2 initial Gaussian distribution is centered ai0,00 with a
@°(m,n) =g'2mme Fnp)g-atm(m™nY) - for =0.001 261 6,=0.000 04, and\=10° (dot-dash ling 1¢° (solid
line), and 4x 1C° (dotted ling. The dashed line gives its classical
(mn)eA, N>1. (4.7 counterpart.

Here @;,p)) is the center position of the probe in phase ) )
Space andi is |ts W|dth in bothq andp Coordinates_ tic funCUO” ha.S the form Of Eq(47) W|th a=0.0012616

Our numerical investigations on the localization effect of (noting that for the cas&l=10° we havea=/#, which
the quantum cat map consist of two parts. We will first focusmeans that the initial distribution describes a coherent)state
our attention on the time evolution of the coarse-grained enis Gaussian. The evolution of the corresponding classical
tropy. In order to facilitate the numerical calculations, a dif- coarse-grained entropy is also shown.
ferent expression for nonequilibrim entropy  In this figure, we can see that the time evolution of the
S:—KBIn(Tr[[JZ]), which was first suggested by Prigogine QCE undergoes two stages: In the_relaxation stage, it in-
[23], is used. Setting the Boltzmann constag=1, the Creases in the same way as its classical analog does, and the

coarse-grained entropy of a quantum ensemble of a cat mﬁ;cending trend will not stop until a critical entropy value.is
is [13] pproached. After that moment, however, while the classical

coarse-grained entropy goes on increasing up to the equilib-
5 rium Sgqand stays there invariably, the QCE stops increasing
Se=— In( 2 l@(m,n)] ) and begins to show an irregular sequence of dips of different
sizes thereafter.
N—1 The appearance of the dip sequence caused by quantum
S In( E |W5(qj ,p,)|2) —2InN. (4.8 coherence in the time curve of QCE after the relaxation stage
T reveals a significant difference between the quantum motions

Besides that, we will also study the phase-space structur(ﬁsnd thhe; CZ’:I;SICM mogpg dynamics. IE order to show glearly
left by a wave packet during its evolutions by calculating the"OW this difference disappears as the quantum maotion ap-

time average of the coarse-grained Wigner function over thé)roaches its classical limit, we use the _t|me-averaged devia-
whole quantum period, i.e., tion ofihe QCE from that of its classical counterpars

=S.q— S. as a measure and investigate its semiclassical be-
_ . havior. As we do so, we find that for fixed initial phase-space
W(q;,p)= 2(N) kZ We(q;.pi). (4.9  distributions, the entropy differenceS exhibits a strong de-
-0 pendence on the number-theoretical natureNpfjust like
many other characters of the quantized cat map have shown
V. NUMERICAL RESULTS [20]. In order to reveal the trend @S in the semiclassical
A. Quantum coarse-grained entropy(QCE) limit that underlies these number-theoretical fluctuations, a
. i ) natural method is to smooth the curv&$ versusN) out by
In this subsection, we show some of the numerical resu“%weragingAS over a certain neighboring range kffor ev-

of the. time eyolutipns of th(_e coarse—grained entropy anqery sample point that resides on it, as was done in R&l.
study its semiclassical behavior. By using the periodic conyere we would like to point out that these number-

ditions (2.89 and the recurrence formuld8.13 and(2.14,  theoretical fluctuations can also be eliminated if one restricts
the QCE at timek can be expressed as the investigation along some specified sequencé$ &uch
a sequence can be generated by simply multiplying a positive
S=—ml > e~ 2¢*m(md*+ (M) 0 my no) |, integer N, with a prime b successively, i.e.N;=Ngb',
(Mg.Ng) € A I=1,2,....InTable I, we show the sequencezk)t;,\,I foran
D initial Gaussian distribution with widta=0.05, and from it
where (mJ,[ne]) €A, [mJ=m,, and[nJ]=n(modN). We find that ad increasesASy, descends linearly with™ 2,
In Fig. 2, we show several time curves of QCE fori.e., ASx# (this result is somewhat different from that we
€=0.00004 andN=10°, 1(P, and 4x 10°, respectively. The obtained by averaging\S over N, which indicatesAS
initial phase-space distribution, whose quantum characteris<#°72[13]).

a(N)—-1
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TABLE I. The dependence on Planck’s constart1/N of the
deviation of the time-averaged quantum coarse-grained entropy al
the time-averaged coarse-grained Wigner function from their clasf

sical counterparts. Initial Gaussian distribution is located0e) - S I .
o - : rints of the initial distribution and the quantum scéasti-
with a=0.05, €=0.035. Three sample points on the phase torusgcars). In the following, we shall describe the interesting fea-

used for evaluatingA\(q,p) are (0,0, (~0.5-05), and tyres of these two types of patterns in detail.
(0.2,0.2).

terns of W resulting from the numerical calculations display
mplicated phase-space structures, we are able to recognize
hem as a superposition of two basic patterns, i.e., the im-

1. The imprints of the initial distribution (IOID)

N «(N) AS AW(0,0) AW(—0.5-0.5) AW(0.2,0.2) Since the motion of the quantum cat map is periodic, it is
300 300 0.24091 1.93061 —0.05909  —0.10665 R‘?btﬁ{%nto :;(g:g;:l(; I\I,Dvri,re];ht?,gn;ﬁ;ia,:/tiﬁgsgri%%?\js)e}:pr?gte ae
600 ~ 300 0.19428 168646 —0.11526 ~ —0.10534 too large. In Fig. 3, some typical patterns of 10ID with
1200300 0.17525 1.57584  —0.10074 —0.08977 Gaussian initial distributions are shown. Figurgs)3and
2400 600 0.11365 0.93976 0.10147  —0.06217 3(b) are for a three-dimensional plot & and its contours,
4800 1200 0.06089 0.49055 0.07140  —0.02984  regpectively, withN=3998, «(N)=333. The IGD is cen-
9600 2400 0.03052 0.24642 0.03686  —0.01532 tered at(0,0), which is the fixed point of the classical map.
19200 4800 0.01526 0.12321 0.01843  —0.00766 From these two figures, a prominent peak at the fixed point
can be found, and away from this pointy remains high
along its stable and unstable manifolds. There is a simple
Furthermore, we find for large enougthat all the dips in  argument that explains this phenomenon. In fact, the motion
the time curve of QCE will be found to appear again in thegf 3 quantum ensemble is similar to that of its classical coun-
next curve with a larger value df with only the times at terpart before the characteristic logarithmic time is reached
which they appear undergoing a change. More interesting21]. During this stage, the IGD is squeezed along the stable
the identified dips appearing in different time curves of QCEmanifold and stretched along the unstable manifold, and this
share the same phase-space distributions, too. On the othgffect would cause a considerable accumulatioMoglong
hand, no new dips are found to emergéd a&reases further, the unstable manifold as well as at the fixed point. This is
hence the result observed above can be ascribed to the lineggg what happens to the stable manifold just before a quan-
dependence of the quantum period brwhen | is large  tym period elapses, but in the reverse time order. It is evident

enough(Table ). that such a mechanism is also effective in cases in which the
IGD is located at other places. Noting that the time-averaged
B. Scars and antiscars in phase Space ngnel’ dlStI’IbUtIOﬂ |S JUSt a |Ineal’ COmb'nat'On Of the

B . h ined Wi f ion di igner functions of the quasienergy eigenstatese Sec.
y using the coarse-graine igner function discusse 1), this argument provides also a guide to the interpretation

above, we can conveniently investigate the motion of anyy ihe same phenomenon that has been observed in the study
ensemble in which we are interested in the phase space. OB the scars that appear in the eigenstéfes

observation of @nterest is how an initial Gaussian distri_butiqn When the IGD is moved away from the fixed point, the
(IGD) evolves in the phase-space. Such an observation firdaerng of 10ID change accordingly. Figuré&Bshows the
a_ppe_are_d In Re[._18_] with a differently defined phase space contours of)V when the center of the initial Gaussian is
_d|fs_tr|bu'qon_, and it impressed us due to t.he recurrence of tthoved to an arbitrarily chosen point-(L/6,—22/153). In
initial distribution as well as the complicated phase Spacgys plot, besides the peak at the initial point, one can find

structure exhibited in the transient equilibrium stage during aclearly the imprints left by the first three iterations as well as

?uantu:n perlfoth In otrder to flgurgllofut the quantttumt_locaﬂlza—that left by the last three iterations before the ensemble dis-
lon nature of the cat map, we will Tocus our attention Nere, iinn returns to its initial state. In our numerical calcula-

on the time average of the coarse-grained Wigner funCt'O'?ions, we also found another type of 10ID that appears only
Wc(q;j,p) instead. Since it is defined on the discretizedyhen the motion of the quantum cat has an even period. For
phase torus, for the purpose of illustrating the quantumsych quantum cats, the initial distribution may reappear after
classical analogy, it is preferable to introduce a density disthe half-quantum period at its symmetrical position with re-
tribution YW(q,p) on the entire torus, which is uniform on spect to the origin0,0). Figure 3d) shows an example of
each phase cell and is related to the coarse-grained Wigngijs type of I0ID when the initial Gaussian is located at
function on the discretized phase torus by (—1/6,~ 22/153) withN= 2554 anda(N)=426.

W(dj,p)=N?W,(q;,p)). (5.2 2. Scars and antiscars

As th i distributi the oh . ) Apart from the above-mentioned 10ID, most patterns of
s the equilibrium distribution on the phase torus is now . - .
expressed a¥V.(q,p) =1, our attention will be focused on W may actually display additional peaks and dips along

. g — i some classical short periodic orbits. These phase-space struc-
the time-averaged quantigh)\(q,p)=W(q,p) —1, which  tyres are caused by the quantum coherence during the equi-
could reflect the deviation from the classical ergodicity. A lot|iprium stage[18,13 and could be recognized as scars and
of patterns ofW with differentN and different IGD for the antiscars(here the readers should not be confused with the
Arnold cat map have been investigated. Although major patexamples shown in Fig. 3, which happen to be those in
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(d)

FIG. 3. Time-averaged ensemble density distributivvigy, p)
with a=0.024 ande=0.021.(a) A three-dimensional plot foN
=3998 [«@(N)=333] and IGD at(0,0. (b) The contours fonv
shown in(a) ranging from 0.99 to 1.09 with space 0.0126). and
(d) Contours ofy from 1 to 1.4(spacing size 0.04) for the IGD at
(—1/6,—22/153) withN=3998 andN=2554 [ «(N)=426], re-
spectively.
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FIG. 4. (a8 Two invariant sublattices foN=686: 1, (dot and
crossepand|, (dot and circles (b) Periodic orbits of the cat map
up to period 4. Dot for the fixed point, squares for two period-2,
crosses for four period-3, and circles for ten period-4 orbits, respec-
tively.

which these structures are greatly depressed and hence are
ideal for illustrating the IOID. Although it is not an easy
task to determine exactly whether a certain classical orbit
will be scarred or not under the given conditions, some
simple rules are strongly suggested by the numerical data.
For example, one of our findings is that when the IGD is
located at the fixed point, all of the scarred classical periodic
orbits will be exactly organized to form some of the invariant
sublattices of the Wigner lattice. It is interesting to note that
the concept of an invariant sublattice plays an important role
also in the mathematical study of the classical periodic orbits
of the cat map by using the ideal theory in quadratic fields
[25]. For the convenience of the following illustrations, in
Fig. 4@ two invariant sublattices of the Wigner lattice for
N=686 are plotted. They arel;={(q,p)|q=j/2,
p=1/2, j,1==1,00 and I,={(q,p)|lq=j/7, p=1/7, j,I=
-3, ...,3, respectively. The former consists of the fixed
point and a period-3 orbit that passes througt0(5,—0.5)
(denoted a®,), while the latter consists of the fixed point
and six period-8 orbits.

In Fig. 5a), we show a three-dimensional plot B¥ for
N=686, a(N)=1176 witha=0.024, €=0.021. The IGD
is centered at the fixed point (0,0). In this plot, besides the
highest peak at the fixed poifpart of it serves as I0ID W
is also peaked to some lower heights along several other
classical short periodic orbits that occur on the Wigner lat-
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A careful observation of the numerical data reveals that

W also takes the minima around some classical short peri-
odic orbits. These valleys are known as antiscars for quan-

tum eigenstate§9]. Because the absolute value AWV is
usually quite small foV<<1, we have to show these antis-

cars specifically. In Fig. &), the contours oflV from its
minimum to near 1 (0.730.92) are shown, and from it one
can recognize the antiscarred periodic orbits almost at first
sight(the minima on the middle lines between the stable and
unstable manifolds of the fixed point should be regarded as
part of IOID). According to the depth of the antiscars gener-
ated, they can be roughly classified into three groups: two
period-2, two period-4, and four period-3 orbftsompare
with Fig. 4(b)]. An interesting fact is that none of these orbits
lives on the Wigner lattice at the present value\ofThis is
also a general feature.

One may notice that the fixed point is the common ele-
ment of all sublattices of the Wigner lattice. So it is reason-
able to conjecture that some of these sublattices being
scarred in the above case may have a close connection with
the fact that the IGD is actually placed on one of their points.
This conjecture can be easily tested by checking whether or
not a scarred sublattice will survive if the IGD is shifted to
the other points. The answer is positive. As an example, we
keep the other conditions used in Fig. 5 unchanged but shift
the centroid of the IGD to (2/7,2/7) of a period-8 orbitlin
and plot the contours ofV in Fig. 6(a). We find that apart
from 10ID, the whole invariant sublattice, generates scars
again. An evident difference of Fig(® compared with Fig.
5(b) is that the scarred sublattite that once appeared in the
latter now vanishes. Based on the above conjecture, one can
attribute this to the fact that the IGD in this situation is quite
apart from thd ; sublattice. On the contrary, if the IGD sits
on Oy, thenl, (but notl,) will be expected to be scarred
instead. This has been easily verified by numerical calcula-
tion.

It is also of great interest to know what will happen if the
IGD is shifted to the short periodic orbits that would antiscar
W when it is centered at the fixed point. Since these periodic
orbits actually do not belong to the Wigner lattice, the way
they act onW must be different from that presented in the
above paragraphs. A general simple rule is also found under
this condition from extensive numerical investigations. As an
tice. In F|g 8b), we p|ot the contours OW ranging from 1 i“UStl’atiOﬂ, the reader is referred to Flgbﬁ where the con-
to 1.6, which shows these scars clearly. From this plot, onéours of W for the IGD being set at (1/3,1/3) of a period-4
can recognize two groups of periodic orbits, one containingrbit, which has been recognized from the antiscarg\uih

. . — Fig. 5(c), are presented. In addition to the 10ID along this
the period-3 orbiD; that strongly scarsV and the other one period-4 orbit, there is an accompanying period-12 orbit that

containing six period-8 orbits that sca relatively weakly.  \yeakly scars)y. An interesting correlation between these
Together with the fixed point, the former forms the invariantyyo scarred orbits is that their relative position in phase
sublatticel; and the latter forms, [see Fig. 4a)], and in  gpace is the same as that of the fixed point and periodic orbit
each sublattice it seems the scars along those orbits that shate (which forms the invariant sublattide). In other words,

the same period have the same height. This striking phenonihe points of the accompanying period-12 orbit can be di-
enon, in which the periodic orbits scarriy are organized vided into four groups; the three points in each group to-
into invariant sublattices of the Wigner lattice, is also ob-gether with another one coming from the period-4 orbit can
served for all other values dfl that were investigated, and form a square of the same sizelgf We find that this con-
therefore it is believed to be a general feature. nection is not changed when the IGD is moved to the other

FIG. 5. (a) Three-dimensional plot ofV for N=686 [ a(N)
=1176]. The IGD is at (0,0) witra=0.024 ande=0.021. Its con-
tours ranging from 1 to 1.6 with step size 0.075 are showtbjn
and those from 0.73 to 0.92 with step size 0.0317cin
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0.5

PHYSICAL REVIEW E 63 056208

can still manifest themselves cleaflfig. 6(c)]. In fact, as
SCIND © OB O the IGD is gradually moved away from one point of such a
S @ @»\L set, say a scarred invariant sublattice, one may find that in
P ' the first stage this scarred sublattice will survive well but the
© & heights of the scars on it usually decrease. If another set is

0.0

approached by the IGD during this process, then at the end
W will be taken over by the approached one. As to the in-
termediate states, sometimes a strong competition between
the two opponents can occur so that it is difficult to recog-

nize any one of them from the mingled structures/of In
spite of such a complication, these sets can serve perfectly as

-0.5 : )
-0.5 0.0 q 0.5 the backbones of the scarsf in general cases, and there-
(a) fore they are of great importance for studying the features of
05 the phase-space structures resulting from the quantum coher-
’ - N ence of the cat map.
f B @ & Finally, it should be noted that, changing the parameters
p . o - % and a usually alters the sizes of the scars, antiscars, and
et © IOID. If their values are decreased, finer scars and antiscars
> o o for longer periodic orbits usually will emerge, but no fresh
0.0 . . : clues have been deduced from them as to the ways in which
: g they are organized.
Iy 0 @ @
7% E i VI. DISCUSSION
05 -~ ' -~ One of the unexpected results in our numerical investiga-
0.5 0.0 q 0.5 tions on the phase-space scars is that scarring for the quan-
(b) tum cat map appears not to be an individual behavior of a
os single orbit, but rather a collective one arising from some
‘ F related short periodic orbits. Since the invariant sublattices
@O®©§Q @2@@2 @ © for a given NXN Wigner lattice depend strongly on the
b Do) @B @ & & number-theoretical nature bf, it is natural to expect that the
© @ R (?J/J 4 time-averaged ensemble distributiv¥(q,p) closely related
2 Q (@ to the invariant sublattices will do so as well.
0.0-@ @ } On the other hand, from Ed4.8) we see that the QCE
gives an overall measure of the deviation){q,p) from
the uniform distribution. Thus corresponding to each dip in
)@ @ @ @Q@ @( the time curve ofS, (Fig. 2), there must be a strong local-
ization in the time evolution oMV(q,p). As a result, the
05 © @ &?@ h&@oﬁ decreasing of the time-averaged ﬂfference of QCH\ds
-0.5 q 0.5 increased(Table ) implies that AW(q,p) should vanish
(C) gradually as the semiclassical limit is approached. In order to

FIG. 6. Contours ofW for N=686, a=0.024, ande=
with the IGD at(a) (2/7,2/7) (1 to 1.6 and 0.075 spackdb)
(1/3,1/3)(1 to 1.7, 0.077 spacgdand(c) (2/7+ Aq,2/7+ Ap) with

Ag=Ap=0.01 (1

to 1.5 and 0.063 spaged

get rid of the peculiar number-theoretical dependence of

W(q,p) on N, we can again restrict ourselves to the se-
quence oN, i.e.,N,=Ngb',| .. with b a prime, as we

did in the preceding section. In Table I, the values of
AWNl(q,p) at three different representative phase points for

short periodic orbit that lives in the meshes of the Wignera sequence oN, are shown. The numerical results show

lattice.

excellently that in the semiclassical regime

As a brief summary of this subsection, the short periodic

orbits can be classified into different sets. Each set will gen-
erate scars simultaneously when the IGD is located on one of
its points. We have two distinctive categories of these sets.
Those in the first category can be identified with the invari-i.e., the intensities of both the quantum scéstiscars and

ant sublattices of the Wigner lattice, and those in the seconthe 10ID decrease linearly with the Planck constant for the
category contain two short periodic orbits coupled through aat map. It should be noted that the result obtained here does
square. A common important feature of all of these sets igot contradict the common opinion that the intensities of the
that they have a certain stability when they are scarred. Thagcars exhibited in the eigenstates of a chaotic system can be
means that even if the IGD is not set on them exactly, theyletermined by classical dynamics and therefore should be

_ 1 —
AW, ,,(4:P)= g AW (a.P), (6.2)
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independent of the Planck consta@6]. In fact, in this pa- N’

per, the semiclassical limit is implemented with a fixed ini- W(q;,p) =2 (b p° &b )Wi(qi,p))

tial phase-space distribution, which should be described by . = v
different density operators when the Planck constant i%

changed. We think that in order to get some physical insight§jenotes the Wigner function of the eigensthte). It tells

into the semiclassical limiting properties, it is important to — L ) o i
g Prop P hat W(q;,p;) is just a linear combination of the Wigner

consider a fixed physical state rather than a fixed mathematl— . )
cal state Phy unctions of the eigenstates. As a result, the scars caused by

Since, up to now, most efforts on scars have concentratettq]e classical short periodic orbits on each eigenfunction will
on the study of energy eigenstates, an interesting questigiFcumulate to form the structures)of(q, p), which we have
that remains to be answered is the relationship between tH10Wn in our figures.
scars we have observed in the time-averaged ensemble dis- VIL. SUMMARY
tribution of the quantum cat map and those exhibited in its :
quasienergy eigenstates. Here is a simple calculation that We have presented a detailed study of the quantum mo-

(6.5

y straightforward application of Eq3.2). HereW,(q; ,p))

gives the answer.

tion of an ensemble of Arnold’s cat map in the context of

Let [¢,),r=1,... N be a complete set of the quasien- statistical mechanics. By investigating the evolution of the

ergy eigenstates of the time evolution operafprand let

quantum ensembles, we found that quantum coherence mani-

e'% r=1,... N be the corresponding eigenvalues. Then thefests itself through an irregular sequence of dips in the time

eigenangled, can only take one of the following(N) pos-
sible values:

27U+ yy

BU_W, u=1,...

a(N), (6.2

whereyy is a constant that depends only Nh16]. Now, for

curve of coarse-grained entropy after the system reaches the
transient equilibrium state. Moreover, we find that the devia-
tion of the time average of the quantum coarse-grained en-
tropy from its classical counterpart decreases linearly Wwith
when the semiclassical limit is taken by letting
=1/(2Ngb") with b a prime and — .

Meanwhile, we find that classical short periodic orbits

any given initial ensemble distribution, one can always conave strong influences on the time-averaged Wigner function

struct an orthogonal set of quasienergy eigenstptes,r
=1,... N (N'=N) with distinct eigenangles, such that
its density operator has the form

N’

;Ozrél P?s|¢r><¢s|- (6.3

By making use of Eq(2.4), the time-averaged density op-

erator can be expressed as

g -t N

= a0 2, P2 enle(ad, 64

from which we have

by scarring and antiscarring the lattéAlthough antiscars
have been predicted theoretically in Ozorio de Almeida’s
book[9], reports on its direct observation are rare in publi-
cations, so our observation provides numerical evidgnce.
Furthermore, these short periodic orbits usually occur in sets
rather than individually. Finally, we have shown that the
deviation of the time average of the coarse-grained Wigner
function from its classical counterpart also decreases linearly
with # in the semiclassical regime along the above-
mentioned sequence éf
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