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Regular dynamics of low-frequency fluctuations in external cavity semiconductor lasers
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It is commonly believed that the dynamics responsible for low-frequency fluctuatiétiss) in external
cavity semiconductor lasers is stochastic or chaotic. A common approach to address the origin of LFF’s is to
investigate the dynamical behavior of, and the interaction among, various external cavity modes in the Lang-
Kobayashi(LK) paradigm. In this paper, we propose a framework for understanding of the LFFs based on a
different set of fundamental solutions of the LK equations, which are periodic or quasiperiodic, and which are
characterized by a sequence of time-locked pulses with slowly varying magnitude. We present numerical
evidence and heuristic arguments, indicating that the dynamics of LFF's emerges as a result of quasiperiodic
bifurcations from these solutions as the pumping current increases. Regular periodic solutions can actually be
observed whei(l) the feedback level is moderat@) pumping current is below solitary threshold, a3l the
linewidth enhancement factor is relatively large.
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[. INTRODUCTION duction of the optical feedback causes a drastic increase in
the optical linewidth 6]. The phenomenon is commonly re-
Nonlinear delay dynamical systeni&] are extensively ferred to ascoherence collaps€CC). At the same time, the

used in many fields of science and engineering. Such discintensity fluctuations are well randomized, so the average
plines as population dynamics, epidemiology, financiallaser intensity remains fairly constant. However, when the
mathematics, and optoelectronics, to name a few, use sugumping current is reduced close to the threshold, the laser
descriptions in their modeling efforts. In recent years primeintensity starts to exhibit sudden dropouts at irregular time
examples under intense investigation were the MacKayintervals, followed by a gradual recovery. The time scale of
Glass mode[2] of blood flow and the Ikeda equatid]  these fluctuationgmicroseconds to nanosecoids long
describing the evolution of the electric field in a ring cavity. compared to the intrinsic time scale of the laser oscillations,
Usually the model equations have very simple functionaky the phenomena are callddw-frequency fluctuations
forms, yet this apparent simplicity is deceiving. They display(LFF-S)_
rich and complex dynamics, partially resulting from the high 11,4 origin of the LFF regime has been debated since it
dimensionality that the retarded terms introduce, since th(zv

h iated with th r is of infinit vas first observed more than two decades @gpwith no
Eneiss?oipace associated wi ese equations 1S ot Infinite Gty hsensus in sight. Numerous mechanisms proposed to date

In optoelectronics, the intrinsic high dimensionality of the emphasize either the stochastic or determinigiiotig na-

delayed optical systems was recently used in communica{t-ure of the phenomenon. In this paper, we present evidence
tions applications with chaotic wave fornfid]. Typically, hat LFF’'s can be understood in terms of a particular set of

optoelectronic systems contain semiconductor lasers, whiche/0dic and quasiperiodic solutions that are part of the sys-
are preferred over other types of lasers due to their small siZ&M'S dynamics. We show that such regular solutions gradu-
and high efficiency. However, the extreme sensitivity ofally emerge from the overall chaotlc and sFochasUc dynamics
semiconductor lasers to optical feedback, which is inevitabl®f the system when the pumping current is lowered close to
in such systems, makes their operation unpredictable ani@e lasing threshold. In such parameter regimes, the regular
hard to control. Therefore, the problem of understanding thélynamics generates nearly periodic dropout events, which
behavior of the laser under the influence of external opticamore recently observed in experimeri&]. More impor-
feedback is of great practical importance. During the past 2¢antly, the commonly observeindomlow-frequency fluc-
years, in the area of semiconductor laser instabilities the dguations can be interpreted as chaotic motions over a set of
lay equations of Lang and Kobayadi] emerged as the destabilizedegular solutions, much like a typical scenario of
premiere model to discuss the behavior of external cavitya transition to chaotic dynamics in many nonlinear dynami-
semiconductor lasers. The focus of this paper is to investieal systems. These results have significant implications in
gate some intriguing aspects of this dynamics. understanding and applications of external cavity semicon-
Experimentally, the feedback is modeled by an externabluctor lasers. For instance, one might be interested in apply-
reflector, which reinjects part of the emitted light back intoing control to eliminate LFF’s. Knowing that the underlying
the main laser resonator. When the pumping curréntvell dynamics has embedded within itself a regular structure, de-
above the lasing threshold of the solitary lasgy, the intro-  spite the irregularity of LFFs, one can attempt strategies that
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are different from the commonly utilized approach of con-heuristic argument to explain the numerical results. A discus-

trolling chaos[9]. sion of a possible origin of the regular solutions is presented
Before we detail our numerical results and analysis, wdn Sec. V.

wish to comment on the role of regular solutions in nonlinear

dynamical systems in general. The study of a nonlinear sys- Il. LANG-KOBAYASHI PARADIGM

m often ins with an analysis of ionar lution . . . .
tem often begins with an analysis of stationary solutions Here we discuss the delay differential equati¢hk de-

(fixed point3. Their locations and stability determine the fived by Lang and Kobayashj5] that model the external

structure and properties of chaotic motion in these SyStem.%avity semiconductor lasers. These equations describe the

For examp.'?* one of the Most common routes to chaos i_s Vi8volution of the complex electric field amplitudé&(t)
the destabilization of periodic orbits in a cascade of period-_ E(t)ei¢(‘) and of the excess carrier densiit). The LK

90.“b"”9 blfurcat!f)ns[lo]. The resultmg. c_hao'uc '.“‘“.'0” IS equations can be written in dimensionless fofrh3] as fol-
pieced together” from parts of the original periodic mo-

tion, and retains the general features and some characteristics

of the original orbits. In fact, it is widely accepted that un- - _

stable periodic orbits are the “backbone” or “skeleton” of E=NE(W)+7E(t=7)cod A1+ o),

any chaotic seft11]. The study of the Lang-KobayasfiiK) E(t—1)

model is no exception in this respect. One starts the analysis ¢: aN(t)— nwsir@(t) + ¢o], (1)

by identifying external cavity mode€ECM’s), and then at-

tempts to interpret the behavior of the LK model at different .

parameter values in terms of the location and stability prop- TN=P—N(t)—[2N(t) + 1]E(t)?,

erties of the ECM’s. This interpretation works reasonably ) _

well for studying the destabilization of individual ECM’'s Where A(t) = ¢(t) — ¢(t—7) is the phase delay during the
and for explaining coherence collapse as a process of “rarxternal cavity round-trip time-, and timet is measured in
dom” transitions, or hopping, among ECM’s. The situationf[he units of .the photon In_‘eUmg. The semiconductor medium
is different for LFF’s, whose structurshort pulses, gradual S characterized by the linewidth enhancement faetand
bu||dup of intensity, and dropouta's hard to exp|ain So|e|y the carrier lifetimeT. The external feedback level is repre-
on the basis of the ECM dynamics. Our belief is that thesented bys, while ¢o=wq7 is the round-trip phase mis-
difficulty in explaining the origin of the LFF regime stems match, wherew, is the emission frequency of the solitary
from the inadequacy of the ECM framework. The main goallaser. The excess pump currédtis proportional to /1)

of this work is to propose a framework for the study of the — 1. The influence of spontaneous emission noise can also be
LFF regime based on a different set of regular solutionsaccounted for by the addition of a Langevin teffi¥,15.
whose existence was discovered in experiméis Since  Even though the LK model assumes a single-mode operation
the structure of the solutions is apparently similar to that ofand neglects multiple reflections from the external mirror, it
the LFF regime, we propose to use them as a basis for th@produces many experimentally observed dynamical re-
analysis of the LFF dynamid4 2]. gimes of external cavity semiconductor lasers.

We stress that the class of regular solutions are intrinsic to Based on the LK model, the CC regime has been inter-
the system dynamics, just as periodic orbits are intrinsic an@reted as a manifestation of chaotic dynanfi]. Coupling
fundamental solutions of any nonlinear dynamical systemsof the single-mode laser with the external cavity adds a series
These regular solutions are therefore determined complete§f new external cavity modesThese are the stationary solu-
by the LK equations, and they appear to be structurallyions of Eg. (1), which have the formsE(t)=Es, ¢(t)
stable, i.e., their existence persists in finite parameter re= wgt, andN(t)=Ns, where
gions. While in many simple nonlinear systems, the creation PN
and evolution of the periodic orbits can be understood very 2_ "~ s _
well based on the analysis of a few types of bifurcations such S 2N+ 1>0' Ns= =7 CoS At ¢o), @)
as saddle-node and period-doubling bifurcations, analytical
studies of the regular solutions in the LK equations are dif-and As=ws7 are determined implicitly by the equatiakg
ficult, if not impossible. In fact, the existence of regular so-=—n7y1+ a? sin(As+ ¢p+tan ). The stationary solu-
lutions reported in this paper comes mostly from numericakions appear in pairs, and their number is proportionaCto
computations. Our confidence in the existence of these solu= 77ya?+1, so that it grows with the increasing feedback
tions is due to the following two fact$l) the LK equations level and/or the external cavity length. One of the solutions
are believed to be the fundamental equations that modéh each pair is intrinsically stable, and is therefore identified
external-cavity semiconductor lasers, d8fthe signature of with an ECM, while the other is unstable and often called the
the regular solutions has been found in experimgdis antimode From the standpoint and dynamical systems, the

The rest of this paper is organized as follows. In Sec. Ilmode-antimode pairs are created after saddle-node bifurca-
we briefly describe the Lang-Kobayashi model and our nutions, and the antimodes are located on the basin boundaries
merical procedure. In Sec. Ill, we present numerical resultseparating different ECMs. Stable upon creation, each ECM
supporting the existence of the regular dynamics and its rebecomes unstable at a slightly higher feedback, and is re-
lation to the dynamics in the LFF regime. In Sec. IV, we placed by a limit cycle due to the Hopf bifurcation. A further
explore some properties of the regular solutions, and make iacrease in the feedback level leads to a chaotic attractor
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along either a quasiperiodic or period-doubling route. At yet @
higher feedback, attractors corresponding to different ECM’s 08
begin to merge via basin boundary crises, and a large attracgos
tor appears on the ruins of many single ECM attractors. As o4
the ECM’s span a wide range of frequencies, the systen ,, “ L
evolution on this large attractor corresponds to the loss of
coherence of the emitted light. 500 505 510 515 520 525 530

When the laser is biased well above solitary threshold, the

, c ool e Y - Y (®)
trajectory visits vicinities of different ECM’s in an essen-
tially random fashion. However, when the pumping current 08
is lowered close to the threshold, the system enters the LFF
regime, in that the evolution of the system acquires a definiteg -
direction in phase space toward ECM’s with higher gain. ,,
This drift leads to a gradual increase in the output power
(buildup), followed by a relatively fast decrease of the total o213
intensity (dropouy} when the system returns to lower gain QZ
ECM'’s. Early theoretical investigations of the nature of the o
LFF attributed random dropout events to the influence of
spontaneous emission noif&4,17. It was soon realized,
however, that the LFF regime is present in the LK model FIG. 1. (a) Numerical solution of Eq(l) in the LFF regime:
even when the noise term is omitted, thus suggesting th&=6, T=300, 7=700, 7=0.07, ¢,=0, andP=0.001. (b) The
deterministic nature of the LFF phenomenon. This led to th&aM€ SO'“}'O” is shown in the configuration spac&@) vs A(t).
interpretation of the LFF as a chaotic itinerancy with a drift () Poincaresection €=0, E<0) of the same solution. The circles
(buildup) followed by a switching to the antimode controlled and crosses ifb) and (c) show the location of the ECM’s and the
dynamics (dropout, caused by the boundary crisis of the antimodes, respectively.
high-gain ECM attractors[18,19. Recently the noise- ] ] .
induced dropout scenario was revived again in conjunctioﬁhe pulsating behawc_Jr of thf: laser, we construct the Poincare
with the notion of excitability{20]. Another area of current surface of section aE=0, E<O0. That is, we characterize
debate is centered around the role of multimode behavior ithe system evolution by recording a sequence of local
the LFF regimg21-23. maxima of the electric fieldg;=E(t;), as well as of the

In spite of the fact that noise influences the statistics ofexcess carrier densitiN;=N(t;), and theinstantaneous fre-

time intervals between successive dropdufS], while the quency ;= ¢(t;)). We usew; instead of the phase delay
presence of multiple modes changes the intensity distributiogoordinateA; = A(t;), since it better characterizes the domi-
during the buildup process in certain cag@s], the LFF  nant frequency of the emitted light in the pulse. The plot of
regime is easily identified in the numerical simulations of theg, versusw; 7 in Fig. 1(c) reveals a definite pattern traced by
fully deterministic LK model[19,24,23. Therefore, the LK  the |arge pulses. To explore the nature of the dynamics, we
model retains the essence of the dynamics in the LFF regim@ave constructed the PoinCasections at decreasing values
and thus contain clues as to the Origin of this phenomenonof the pump|ng parameté}" as shown in F|g 2. The remark-
able result is that as the pumping parameter is lowered below
the threshold, the pattern becomes better defined, afd at
=—0.012 the system dynamics is essentially quasiperiodic,
We now present numerical evidence of the existence of.e., the tips of the pulses; trace out a line in the configu-
particular types of periodic or quasiperiodic solutions of theration space. We find that the largest period associated with
LK equations, and conjecture that these solutions are respothe quasiperiodic motion is extremely large (100—A0&nd
sible for the drift dynamics in the LFF regime. We use theat P=—0.014 tends to infinity, so that the system evolution
fourth-order Adams-Bashford-Moulton predictor-correctoris reduced to a periodic motion. F&< —0.014 the motion
method[26]. Figure 1a) shows time dependence of an elec- again becomes quasiperiodic. The sequence of plots in Figs.
tric field E(t) obtained from numerical integration of E@. 2(a)—2(d) thus represents a genetaifurcation scenario in
with pumping near a solitary threshold. An important aspecthich the pumping parametér serves as a bifurcation pa-
of the laser operation is that slow variations of the fieldrameter. Thus, aP is increased, the periodic solutigRig.
(~107), which are identified with LFF’s, are in fact an en- 2(d)] undergoes a Hopf bifurcation to generate a quasiperi-
velope for a sequence of narrow pulses. These pulses hawelic solution[Fig. 2(c)], which then becomes chaofiEigs.
been first predicted from numerical solution of the LK model2(b) and Za)] through the quasiperiodic route to chd@$).
[19] and later observed experimentally with streak cameras It is important to note that the quasiperiodic behavior
[27,21,23. The authors of Ref[19] interpreted the pulsa- emerges gradually, so that its appearance cannot be inter-
tions as a form of “mode locking.” Indeed, as shown in Fig. preted as a window of spontaneous stabilization of the oth-
1(b), the pulses occur roughly at the phase delay®f the  erwise unstable quasiperiodic-periodic orbit. Instead it is
ECM'’s [28]. In order to study the LFF phenomenon from a more plausible to assume that, with decreasing pumping, the
dynamical system standpoint, while taking into consideratiodaser settles into a more regular regime as a means of coping

-150 -100 -50 -300 -200 -100 1]
A (x)iT

Ill. EVIDENCE OF THE REGULAR DYNAMICS
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FIG. 3. Dependence of the average interdabetween large
pulses on the ratia/T. A pulse is considered “large” when its
peak is above the energy surface of the ECM’s, as given b{2Eq
Ei2>(P—Ni)/(2Ni+l). The system parameters awe=6, 7
=700, »=0.07, ¢o=0, and P=—0.012. Each dot represents a
median value of 3000 time intervals.

FIG. 2. Emergence of quasiperiodic) and periodic(d) LFF’s
with decreasing pumping parameferThe other parameters are the . ] ) ]
same as in Fig. 1. Each plot contains 10 000 points. ing, as an intermediate regime between the CC regime and

the efficient regular regime.
With pumping current increasing from below the solitary

with insufficient influx of the pumping current. Indeed, in the 2
reshold, the sequence of transitions appears as follows.

CC regime, the laser operates extremely erratically, readil N S . ,
hen the pumping is very low, lasing is possible only in a

ing th into it. When th ing i
expending the energy pumped into it en the pumping I@equence of short pulses with a drift, i.e., the efficient regime

lowered close to the threshold, the laser has to find a mor h i Fi d2d). As th T h
efficient operation mode. One of the possibilities would be to>OWn in Figs. &) and 2d). As the pumping increases, the

settle into one of the ECM’s. However, a large value of theoperation in the efficient regime becomes unstable and bifur-
linewidth enhancement factar in semiconductor lasers in- cates into chaos via a quasiperiodic route. The resulting re-

duces a strong coupling between the ECMs, which prevent ime is that of the LFF’s, which are irregular, but still retain
the system from operating in a single ECM é@e] the global drift dynamics characteristic of the efficient re-

Our numerical results, as well as recent experimgsits 9‘”?6- With higher'anq higher pumping currgnts, the gmount
suggest that there exists a different type of efficient operatiof?f irregular behavior increases, while the drift dynamics be-

regime, which is characterized by a sequence of narroWf°Mes less and less apparent, until it disz_ippears Whef? the
pulses with slowly varying magnitude and a wide frequenc aser enters the CC regime. These observations are consistent

band. The system evolution in this regime is strikingly simi-With experiments exploring the parameter space in the direc-

lar to that of the LFF’s; that is, both LFF’'s and regular so- tion of varying pumping 31].

lutions are characterized by a drift toward ECM’s with

higher gain, followed by a return to lower gain ECM’'s. We |\, soME PROPERTIES OF THE REGULAR SOLUTIONS

stress here that the comparison between our numerical results

and the experimental findings in Ré¢8] is specific for the Further exploring the nature of the quasiperiodic solu-

regular solutionsonly. In particular, a similarity is observed tions, we find that the average time interval between large

if one compares Fig. 1 with Fig.(d) in Ref.[8]. However, pulses in Fig. {a) is abouts=0.504r, which corresponds to

there are notable differences between the temporal shapes approximately two pulses per round-trip time, and shows no

the time evolution of the laser fields in our numerical plotsignificant dependence &% 7, «, or ¢4. On the other hand,

and in experiments. Such a comparison, of course, is meadepending on the value of the carrier lifetime paraméter

to be qualitative only, as there are complicating factors suclthe system exhibits a sequencetiofe-lockedstates contain-

as spontaneous emission in experimental lasers which weieg an integer number of pulses peras shown in Fig. 3.

not included in our computations. The focus of our paper idNote that the time-locked behavior of the fast pulsations was

to look for deterministic dynamical structures of LFF’s. observed experimentally by Vaschengbal. [21], and de-
The dynamical features that distinguish the LFF regimescribed as a “marked pseudoperiodicity at the round-trip

from the efficient regime is that the former is chaotic andtime of the optical field in the external cavity.”

admits irregularities similar to the CC regime, such as in- The time-locking of the pulses can be easily explained

verse switchind 18], while the latter is very regular, and is based on the LK model in Eql). From the third equation

either periodic or quasiperiodic. Thus the LFF regime shares/e see thalN(t) is always negative wheR<<0. This means

similarities with both the CC regime and the efficient regimethat, when pumped below threshold, only the second term in

of lasers operating below the solitary threshold. Based othe first equation contributes to the formation of a new pulse.

this evidence, we view the LFF’s, which occur at low pump-That is, a new pulse is formed at the moment when the
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energy from a previous pulse returns into the laser cavitfeCM'’s, it does not appear feasible at present to derive them
after the round-trip time. Therefore, the time-locked stateanalytically from the LK model without any approximations.
develops because the processrigfgering the laser emission Therefore, we will refer to a recently proposedncatedLK

by pulses reflected from the external cavity is naturallymodel[32], which is constructed by replacirig(t—7) and
locked to the rOUnd-trip time. The dependence of the numbe&(t) in Eq (1) with truncated Tay|or series expansions in
of pulses perr on the carrier lifetimeT can be understood terms of E(t) and A(t), respectively:E(t—r)=E(t) and

based on the evolution of the excess carrier densitt). B(t)=A/7+A/2. The result is a system of threedinary
The evolution ofN(t) during the pulse is governed essen- yicco antial equations

tially by the last term in the third equation of Eqd), TN

~ —E?, which causes a rapid decrease\gt). In order to be E=NE+ 7E cog A+ ¢y),

able to sustain the next pulse, the carrier density needs time

to recover. The recovery process, during whie 0, is de- Al2=—Al7+aN—5sin(A+ ¢q), €)
scribed by the exponential laM(t)~P—Nye YT, so the

number of pulses per must be inversely proportional b TN=P—N—(2N+1)E?,

Note that, as shown in Fig. 3, the time-locked states do not

form for 7/T>8. The reason is that for six or more pulseswhich is much easier to explore both analytically and nu-
per 7 the interval between pulses becomes comparable tmerically. Even though the above expansions cannot be jus-
their duration, which leads to a breakdown of the triggeringtified for large values ofr, the truncated system retains a
mechanism. very important feature in that it has the same stationary so-

The triggering mechanism can also explain the apparerittion as the original LK system. Moreover, the ECM’s in

“mode locking” of the pulses in the phase delay variablethe truncated system also destabilize via Hopf bifurcations,
A(t). Indeed, efficient triggering requires that td&)+¢,] and are replaced by the limit cycles around individual
~1 in the first equation of Eq41), which means thaA(t) ECM’s. Most importantly, when the feedback is further in-
~A,=2mn— ¢y during the pulse, wher@ is an integer. creased, the limit cycles begin to merge via a gluing bifur-
Numerical solution of the LK model shows that the value ofcation, creating a large limit cycle revolving around many
A(t), during large pulses, is much closerAq than toAq. ECM’s. This cycle is very similar to the one shown in Fig.
Therefore, the mode locking cannot be associated with indi2(d). Even though the small dimensionality of the truncated
vidual ECM'’s, but rather reflects a complesimultaneous system cannot support the rich variety of regimes present in

influence of many ECM’s on the system evolutid8]. the full LK model, we do see a transition from periodic to
chaotic behavior when the pumping paramekris in-
V. DISCUSSIONS creased. The apparent similarity between the quasiperiodic

. ) . or periodic LFF solutions in the LK model and the large
In conclusion, we have discovered a particular type ofcycles of the truncated model suggests that the regular LFF
quasiperiodic or periodic solutions of the LK model, and sojytions also emerge in a sequence of gluing bifurcations.

provide evidence that these solutions are responsible for thg/e intend to explore this subject in more detail in our future
drift toward the higher gain ECM’s followed by the return pjications.

dynamics(often referred to as the “Sisyphus effegtih the
LFF regime. . . ACKNOWLEDGMENT
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