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Is semiquantum chaos real?
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A semiquantum system, composed of a quantum part coupled to a classical part, can exhibit dynamical
chaos in the motion of the quantum state vector. However, there has been disagreement as to whether this
mathematical chaos is physically real or merely an artifact of the semiquantum approximation. It is shown, for
a model of a quantum spin coupled to an approximately classical nonlinear oscillator, that the semiquantum
chaos disappears rapidly as the mass of the oscillator is increased to make it more classical. The time interval
during which the semiquantum approximation remains accurate increases with the mass, but is not closely
related to the Lyapunov time.
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[. INTRODUCTION parts of the system were treated by quantum mechanics with-
out approximation? On the one hand, we have the theorem
Classical chaos may be defined as extreme complexity d®] that the state of a closed quantum system is at most
the trajectories in phase space, with the trajectories beinguasiperiodic in Hilbert space, which argues against the re-
very sensitive to small changes in the initial conditions. Itsality of semiquantum chaos. But what about the quantum
characteristic manifestations include a seemingly randongtate of only one part of the system when the other part is
distribution of phase points on the Poincauerface of sec- approximately classical? Perhaps semiquantum chaos is real
tion, and an exponentially rapid separation of two initially in the regime where that approximation is accurate nél
close trajectoriesmeasured by a positive Lyapunov expo- €t al.[10] argue for the reality of semiquantum chaos. Others
nend [1]. It is well known that the state vector of a closed [11], however, have argued that the classical approximation
guantum system does not exhibit chaotic motion in Hi|bertiS valid Only for times too short to see the chaos, and that the
space. This is evident from the fact that the inner producPredicted chaos is an artifact of the approximation.
(1 ()| 4(1)), and hence also the metric distance, between A limitation of most previous calculations of semiquan-
two state vectors in Hilbert space is constant, as a conséum chaos has been the failure to identify and systematically
quence of the unitary nature of time evolution. However, thevary any parameter that controls the degree of classicality.
coupling of a quantum system to a classical system can leatihat omission is remedied in this paper, where the mass of
to a genuinely chaotic motion of the quantum state in itsone part is varied to make it more classical. We find that as
Hilbert space, a phenomenon knownsasniquantum chaos the classical part of the system becomes more massive, more
[2,3]. This term is reserved for systems in which neither themacroscopic, and hence more accurately classical, the micro-
quantum part nor the classical part would be chaotic by itScopic quantum part has a diminishing effect on it, and even-
self, and the chaos is a result of the coupling between theniually becomes too weak to drive the system to chaos. The
Semiquantum models arise in the Born-Oppenheimer a@Xtent to which the results for this model may be typ|CaI of
proximation if the system divides naturally into a fagban- ~ Semiquantum systems is discussed in the final section of this
tum) part and a slowapproximately classicapart. Blumel  Paper.
et al.[2,4] studied in detail a model consisting of a quantum It should be emphasized that the problem studied in this
part whose boundaries are directly coupled to a classical pafeaper, hamely whether or not chaotic motion in the Hilbert
with the expectation value of the quantum energy acting a§Pace of a semiquantum system exists, is distinct from the
an effective potential for the classical part. The mutual coumore fundamental problem of the emergence of classical
pling of the quantum and classical parts leads to chaotic mochaos in a closed quantum system whose classical counter-
tions. Similar phenomena are predicted faqgaantum atom  Part is chaotic. Chaos emerges from quantum mechanics in
interacting with a(classical Ca\/ity field [5_8] The essential the classical limit, not from any chaotic motion of the state
structure of all these modeléncluding the model used in Vector through Hilbert space, but rather from the growth of
this pape)' is a classical part acting direct|y on the quantumcomplex structures in the probablllty distributions that are
part, with the quantum part reacting back on the classicaflescribed by the state vectdr2].
part through the expectation value of some observable. With
appropriate nonlinearity in either the coupling or the internal
dynamics of the classical part, such a model can exhibit

chaos. _ _ The model studied in this paper consists of a quantum
Although these systems, asathematicamodels, do in-  gyin & interacting with the motion of a particle. Its Hamil-
deed exhibit chaos, there is some doubt as to whether thgdnian is

prediction corresponds to physical reality. Treating part of
the system as classical is surely an approximation. What
would happen to the semiquantum prediction of chaos if both H=Bo,+ Cxo,+ p22m+V(x). (1)

Il. THE SPIN-PARTICLE MODEL
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The first term on the right is the spin Hamiltonian, the last It is easily verified that Eq96)—(10) have two constants
two terms comprise the particle Hamiltonian, and secondaf motion: the total energy and the magnitude of the polar-
term is the interaction between the spin and the position oization vector|d|. The polarization vectoa=(ay,ay,a,)

the particle. A quartic potential/(x) =x*/4, has been cho- provides a complete parametrization of the quantum spin-
sen for this work because it is known that a periodic drivingstate operatorp=3 (1 +a- &).

force can drive the particle into chaotic motion in such a

potential. The dynamical problem can now be solved at two C. Significant parameters of the model

different levels of treatment. . - . .
Since the spin is to remain a quantum system while the

particle approaches its classical limit, we #et1 and in-

A. Full quantum theory crease the particle massto make the particle more nearly

The time-dependent Schitimger equation, classical. Thus the energy and time scales are fixed by the
. parameteB in the spin Hamiltonian.
alat| W (x,0)) == (i/h)H[W (1)), ) Two dimensionless ratios that describe the degree of clas-

sicality of the particle can be identified. The first is the ratio
of the energy-level spacings of the particle and of the spin in
the absence of interaction,

can be solved numerically, with the momentum operptor
Eq. (1) being —i%idl 9x. Here|¥(x,t)) is a two-component
state vector, and the spin operators in Bg.are 2<2 Pauli
matrices. The partial differential equation was solved by dis- AE
cretizing the coordinate into 513 values, and solving the
resultant set of 1026 coupled ordinary differential equations
by standard numerical methods. The partial state of the spif ihe particle were truly classical, its energy would be con-
can then be computed by integrating over the position varignous, and say should be small in the semigauntum limit.
able, Ignoring all numerical factors such as 2 andeads to the
following order of magnitudésee the Appendix

_ p

o= [ Iwou0)plax ® v
E."h
| | - =" (12
For spins=3, the 2x2 density matrixp is completely de- Bym’
scribed by the three components of spin polarization,
whereE,, is the energy of the particle.
ay=(oy)=tr(pay), (4a) The second is the ratio of the deBroglie wavelength of the
particle to the diameter of its orbit,
a,=(oy)=tr(pa,), (4b)
A:)\DB/XO' (13)
a,=(o)=tr(po,), (40
A similar order-of-magnitude estimatesee the Appendjx
B. Semiquantum theory yields
This approximation is most easily derived from the 553’471
Heisenberg equation of motion, A~ : (14

/m

dR/dt=(i/7)[H.R], ® This same magnitude is also of the ratiofoto the action of

whereR is the operator for one of the dynamical variables ofthe orbit. The parametersand A are dimensionless, in spite
the model,{o,,0y,0,,x,p}. The semiquantum equations ©f appearances, because the choice of the poteiM{ai)

are then obtained by replacing the quantum operatarslp ~ =X"/4, requires energy to be in units of (length)

with classical variableX and P. Since the spin operators  These two dimensionless ratios measure the classicality of
appear only linearly in these equations, we may averagf€ particle in quite different ways:» measures how clas-
them in the spin state and obtain equations of motion for théical the particle is relative to the spin, whilemeasures the

components of the spin polarizati¢d) coupled to the clas- classicality of the particle without regard to the spin. The
sical position and momentum variables: interaction strengtiC is not related to the degree of classi-

cality, and may be fixed independently.

da,/dt=—2Ba,, (6)
Ill. DISAPPEARANCE OF CHAOS AS m—x
da,/dt=2Ba,—2CXa,, (7) o _ .
Although the polarization vectdi is to be interpreted as
da,/dt=2CXa,, (8) describing the quantum state of the spin, nevertheless the
semiquantum equation$6)—(10) have the mathematical
dX/dt=P/m, (99 form of a classical dynamical system, to which the usual
techniques may be applied. Since the lerigthof the polar-
dP/dt=—X3—Ca,. (10 ization vector remains constant, it is natural to consider the
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FIG. 1. Poincaresection a,=0 for E=B=0.5, C=1.0,
m=16, showing chaos in th¥-P phase plane. The white spaces
contain many invariant tori, which are not plotted to avoid over-
complicating the diagram. FIG. 2. PoincaresectionX=0 for E=B=0.5, C=1.0, m=16,

showing chaos on the spin sphere.

system to have a four-dimensional phase sp&% E?,

formed by the surface of the spin sphere and the phase plamg zaslavskyet al. [13] for a nonlinear oscillator of fre-

of the particle. Energy conservation reduces the dimension Qfuency » driven by a perturbation of frequency For »

the accessible,manifold to 3, and so one further constraing they found the width of the chaotic layer to be propor-

yields a Poincarsurface of section. tional to exp-71/2w). In our model,o would be the natu-
The semiquantum limit involvesi— o, and so we expect ra| frequency of the particle and would be the precession

that  [Eq. (12)] and A [Eq. (14)] should go to zero. But the frequency of the spin =2B/#), both calculated without

relative magnitudes of and A must be specified to define a jnteraction €C=0). As mincreases, the oscillator frequency

definite limit process. It seems natural to hold constant thg, gecreases, and the exponential factor becomes very small.

ratio n/A=Ey/B. Apart from a numerical factor, this is the Thys the rapid disappearance of the chaotic zone is expected

ratio of the particle energ¥, to the spin energfs. The g be typical of the semiquantum limit, even if the limit were
chance for complex behavior is greatestEf and E,, are

similar in magnitude and each part has as much accessib'=
phase space as possible. Now if the total endfgyEg 8 17 L L I

+E, is less tharB, then the full spher&? will not be ener-
O Vs N \ |
}‘ x~l.’ o ’

T T T T

getically accessible to the spin. If, on the other hand, the
energyE is greater tharB, then a region of theX-P phase 10 /

plane around the origin will be energetically inaccessible tc
the particle. Therefore, we choo&e=B as the most favor-

T T T

e

able case to study. ST ! ]

Figure 1 shows the Poincasection fora,=0 with a, p X Y. \j
moving in the positive direction for a particle of mass r " ; ]
=16. The phase points fill most of the energetically acces 0T )‘ V_ .
sible region(bounded by the solid curyén a pattern typical L ¥ 2 1
of chaos, although there are several holes in the chaotic r¢ . N ff )

gion that contain tori of regular trajectories. In Fig. 2, the *"\:;m...«-w.w-....g‘,g:f"*
PoincaresectionX=0 (moving positively is shown on the
spin sphere, from which we see that the polarization vecto  _4 g
(equivalently the quantum spin stateas a chaotic pattern
covering much of the sphere. This is a clear case of sem
quantumChaOS. _15 {1 N N T Y S N Y N N N U N S A (N S A N T |
As the mass of the particle increases, the relative size ¢ 1.5 -1 0.5 0 0.5 1 15
the chaotic zone decreases. In Fig. 3,rfor 64 it has shrunk X
to a thin separatrix layer. Figure 4 confirms that the spin state
is also confined to a thin separatrix layer. Thus we see that FIG. 3. Poincaresection a,=0 for E=B=0.5, C=1.0,
chaos disappears rapidly as the masscreases. m=64, showing a narrow separatrix layer in theP phase plane.
The width of the chaotic separatrix layer was investigatedrhe solid curve bounds the energetically accessible region.
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FIG. 5. Poincaresectiona,=0 for the 3:1 resonance, with
E=1.50659,B=0.5, C=1.0, m=16. The solid curves bound the

energetically accessible region.

FIG. 4. PoincaresectionX=0 for E=B=0.5,C=1.0, m=64,

showing a narrow separatrix layer on the spin sphere. IV. COMPARISON BETWEEN SEMIQUANTUM

AND FULL QUANTUM THEORIES

approached by a different route from the one that we have In the full quantum theory, the state vector of the spin-
chosen ¢/A = const). particle system becomes entangled because of the interac-
An exception to this argument occurs if we kegp con- tion. _Therefore, the partial stayﬁ_B of the _sp|_n(3) dEJgs not
stant and in resonance as— . There are close connections "@Main a pure state, and the spin-polarization veatisrnot
between resonance and chédd], so this possibility should confined to the surface of the unit sphere. Figure 9 illustrates

be studied. From the definitioill), it follows that the complicatedbut not chaotit motion of the polarization

— i wlhv. Therefore, to stay in resonance, we must take thé/ector in three dimensions. The initial state is the product of

limit A—0 with » constant. This illustrates a limitation of a spin state with polarizatiod=(0,~1,0) and a Gaussian

the semiquantum theory. From a quantum point of view, weave packet centered at average position=1.18921,

; ; - 241/2_
would like the energy-level spacingE, to go to zerahence ¥V'th half_-vgdth o=((x={x)))"*=1.0 and average momen-
1n—0), but from a classical point of view we want the fre- um (p)=0.
guency ratio to remain constattiencen=cons}. We can-
not do both at the same time; we have tried the first, and will At
now try the second, choosing the frequency ratie = 3/1. R 0 | o

For a quartic potential, the oscillation frequengys pro-
portional to the amplitude of oscillatio§, [15], and sinces
is also proportional ton~ 2, we must scale the amplitude so
thatXS/m is constant. The particle energy, which is propor-
tional to X2, now increases very rapidly witt, and is con-
fined within the bandE,=E=B. Figure 5 shows the,
=0 Poincaresection form=16. The chaotic zone fills most :
of the energetically accessible band. Figure 6 shows that the #
spin state is also chaotic, covering most of the sphere. For ¢
m= 64, the particle energy is much larger, and the relative
width of the energetically allowed band is so small that the
analog of Fig. 5 would be uninformative. However Fig. 7
shows that the motion of the spin state is quasiperiodic, be-
ing confined to a curve on the spin sphere.

Finally, we have computed the largest Lyapunov expo-
nent\ of the system(6)—(10), using a program based upon
that of Wolf et al. [16]. It is apparent from Fig. 8 that, as
m—oo, \ rapidly becomes so small that it is difficult to dis-
tinguish it from zero. This clearly demonstrates the disap- FIG. 6. Poincaresection X=0 for the 3:1 resonance, with
pearance of semiquantum chaos in the limit in which thee=1.50659,8=0.5, C=1.0, m=16, showing chaos on the spin
semiquantum approximation becomes valid. sphere.
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FIG. 7. Poincaresection X=0 for the 3:1 resonance, with
E=24.10539,B=0.5, C=1.0, m=16, showing quasiperiodic
motion on the spin sphere.

PHYSICAL REVIEW E63 056204

FIG. 9. Spin polarization vectd of the full quantum state, and
It is a consequence of the semiquantum equati@s its projections onto the Cartesian planes, ForB=0.5, C=1.0,
(10) that the length of the vectdris constant. Therefore, an m=64. The curve starts at the poif@,—1,0), and adjacent points
initially pure state for the spin, interacting with a single clas-are separated by a time intervAt=0.2. TheX, Y, and Z axes
sical particle, will always remain pure, and so cannot remairextend from—1 to 1, with the labels at the positive ends.

a good approximation to the full quantum theory. This diffi-

culty disappears when it is realized that the classical limit ofquantum ensembléd) s, iS to be compared with the polar-

a quantum state is normally an ensemble of classical traje¢zation vector of the full quantum theor§ig. 10. The de-
tories, rather than a single classical trajectfty,18. It is,  polarization of the semiquantum ensemble matches that due
therefore, necessary to construct an ensemble of classica entanglement of the full quantum state quite well, at least
particles whose position and momentum probability distribu-for a limited time.
tions agree with those of the initial wave function of the  The difference between the polarization vector of the full
quantum theory. For each member of the ensemble, the veguantum theory and the average polarization vector of the
tor & executes a different orbit on the surface of the unitsemiquantum ensemble is shown in Fig. 11 for mass
sphere, and the average of these vectors over the semi-64. As a conventional measure of the time during which

1
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FIG. 10. Magnitude of the polarization vector for the full quan-
FIG. 8. Largest semiquantum Lyapunov exponens recipro-  tum state(QM) and for the semiquantum ensemi®QB, for
cal mass. E=B=0.5,C=1.0, m=64.
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FIG. 11. Difference between the polarization vectors of the full
quantum state and of the semiquantum ensembleEfoB=0.5,
C=1.0,m=64.

10

the semiquantum approximation is accurate, we chbogQse

the time when the difference reaches 0.05. Figure 12 shows
thatt, o5 increases with the mass of the particle, as expected, =R
but only very slowly. It is not closely related to the B
Lyapunov time, 1, as the latter changes by a factor of 100 1 " SE—
while the former changes by only a factor of 10.

T r\\l T T T T T T T T
©
o
\U'l

1 10 100
V. DISCUSSION mass

The question posed in the title of this paper has been FIG. 12. The Lyapunov time i/and the break time, os (when
answered negatively. Semiquantum chaos disappears rapidiye polarization-vector difference reaches 0.0 mass.
as one enters the regimen{-~~) where the semiquantum
approximation is accurate. One may now ask whether thisyapunov time diverges as goes rapidly to zero. But the
result, derived for the spin-particle model, is of greater gentime during which the semiquantum approximation is accu-
erality. There is good reason to believe that it is more genrate (i s in Fig. 12 is not closely related to the Lyapunov
eral. The spin could stand for any two-level quantum systemtime. This should not be surprising, since the latter charac-
Any nonlinear oscillator will have the property that its natu- terizes only the chaotic motions, which cease to exist as
ral frequency decreases as its mass is increased at constamts o,
energy, hence the argument of Zaslavskyal. [13] for an
exponentially narrow chaotic separatrix layer, which was in-
voked in Sec. lIl, should also apply. If, on the other hand, the

energy of the oscillator is varied to keep the spin and the Financial support from the Natural Science and Engineer-

particle in resonance, then the energy of the oscillator wiling Research Council of Canada is gratefully acknowledged.

become very much greater than that of the spin, and the

perturbation on the oscillator by spin will become too weak

to drive it to chaos. Thus there is good reason to believe that APPENDIX: CLASSICALITY PARAMETERS

our result will also hold for very many systems comprising a The two dimensionless parametefaind A introduced in

quantum part _coupled to a nonlinear oscillator. Sec. Il C to describe the degree of classicality of the particle
If the classical part of the system had more than one de-

ree of freedom, it could be chaotic without coupling to theWiII now be evaluated. Since only orders of magnitude and
9 ' o piing scaling properties are of interest, we shall omit nhumerical
guantum part. It is, of course, trivial that the state of the

uantum system would be driven chaotically by such a chataCtorS and use the symbol =" to denote order-of-
gtic driver ySuch svstems are excluded fro%n )(;ur Consioler[nagnitude equality. It is convenient to write the potential as
' y \((x)z Dx*4, whereD is a dimensional constant.

ation, since quantum dynamics plays no part in causing thai The classical action of the particle orbit EPoXo,

kind of chaos. hereP, and X, are the extents of the phase-space orbit in

The semiquantum approximation improves as the mass c\%'ﬁ " o ; .
T . e momentum and position directions. Their magnitudes are
the particle increases. It had previously been suggd&tgd getermined byP%/mij andV(X)~E WhereEg s tho
P pr P

that the semiquantum approximation would remain accurate ="

only for a time shorter than the Lyapunov time\ Livhich particle energy. Thus we have

would be too short to see the predicted chaos. That is indeed

true in our model(see Fig. 12 but mainly because the Po~(ME)*,  Xo=~(E,/D)¥. (A1)
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If we take A to be the ratio of the quantum of action to the The level spacing can be approximated &f,=JE,/dn.
classical actionA =7%/J, then we obtain Using Eq.(A3) to expressh in terms ofE, then yields

Amﬁm—1/2E;3/4D1/4. (AZ) AEp%ﬁm_l/ZE;MD 1/4. (A4)

In Sec. IIC,A was defined to bepg/Xy, the ratio of the The spacing between spin energy level\E;~B, so the
deBroglie wavelength to the spatial extent of the orbit. Usingratio of AE, to AE is
Ape=~"/Py and Egs.(Al), we obtain the same expression

(A2) for A. n~hm YEFDWpBL (A5)
The particle energy levels can be estimated by setting ) o
J~n#, wheren is an integer. This yields Since the potentia¥(x) has the form of a power !aw, itis
natural to rescale the lengihso as to mak® =1, as is done
Ep~(nfi/ym)**D (A3) inSec.IIC.
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