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Is semiquantum chaos real?

L. E. Ballentine
Department of Physics, Simon Fraser University, Burnaby, British Columbia, Canada V5A 1S6

~Received 13 September 2000; published 16 April 2001!

A semiquantum system, composed of a quantum part coupled to a classical part, can exhibit dynamical
chaos in the motion of the quantum state vector. However, there has been disagreement as to whether this
mathematical chaos is physically real or merely an artifact of the semiquantum approximation. It is shown, for
a model of a quantum spin coupled to an approximately classical nonlinear oscillator, that the semiquantum
chaos disappears rapidly as the mass of the oscillator is increased to make it more classical. The time interval
during which the semiquantum approximation remains accurate increases with the mass, but is not closely
related to the Lyapunov time.
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I. INTRODUCTION

Classical chaos may be defined as extreme complexit
the trajectories in phase space, with the trajectories be
very sensitive to small changes in the initial conditions.
characteristic manifestations include a seemingly rand
distribution of phase points on the Poincare´ surface of sec-
tion, and an exponentially rapid separation of two initia
close trajectories~measured by a positive Lyapunov exp
nent! @1#. It is well known that the state vector of a close
quantum system does not exhibit chaotic motion in Hilb
space. This is evident from the fact that the inner prod
^c1(t)uc2(t)&, and hence also the metric distance, betwe
two state vectors in Hilbert space is constant, as a co
quence of the unitary nature of time evolution. However,
coupling of a quantum system to a classical system can
to a genuinely chaotic motion of the quantum state in
Hilbert space, a phenomenon known assemiquantum chao
@2,3#. This term is reserved for systems in which neither
quantum part nor the classical part would be chaotic by
self, and the chaos is a result of the coupling between th

Semiquantum models arise in the Born-Oppenheimer
proximation if the system divides naturally into a fast~quan-
tum! part and a slow~approximately classical! part. Blümel
et al. @2,4# studied in detail a model consisting of a quantu
part whose boundaries are directly coupled to a classical p
with the expectation value of the quantum energy acting
an effective potential for the classical part. The mutual c
pling of the quantum and classical parts leads to chaotic
tions. Similar phenomena are predicted for a~quantum! atom
interacting with a~classical! cavity field @5–8#. The essential
structure of all these models~including the model used in
this paper! is a classical part acting directly on the quantu
part, with the quantum part reacting back on the class
part through the expectation value of some observable. W
appropriate nonlinearity in either the coupling or the inter
dynamics of the classical part, such a model can exh
chaos.

Although these systems, asmathematicalmodels, do in-
deed exhibit chaos, there is some doubt as to whether
prediction corresponds to physical reality. Treating part
the system as classical is surely an approximation. W
would happen to the semiquantum prediction of chaos if b
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of
g

s
m

t
t
n
e-
e
ad
s

e
t-

.
p-

rt,
s
-
o-

al
th
l
it

at
f
at
h

parts of the system were treated by quantum mechanics w
out approximation? On the one hand, we have the theo
@9# that the state of a closed quantum system is at m
quasiperiodic in Hilbert space, which argues against the
ality of semiquantum chaos. But what about the quant
state of only one part of the system when the other par
approximately classical? Perhaps semiquantum chaos is
in the regime where that approximation is accurate. Blu¨mel
et al. @10# argue for the reality of semiquantum chaos. Oth
@11#, however, have argued that the classical approxima
is valid only for times too short to see the chaos, and that
predicted chaos is an artifact of the approximation.

A limitation of most previous calculations of semiqua
tum chaos has been the failure to identify and systematic
vary any parameter that controls the degree of classica
That omission is remedied in this paper, where the mas
one part is varied to make it more classical. We find that
the classical part of the system becomes more massive, m
macroscopic, and hence more accurately classical, the m
scopic quantum part has a diminishing effect on it, and ev
tually becomes too weak to drive the system to chaos.
extent to which the results for this model may be typical
semiquantum systems is discussed in the final section of
paper.

It should be emphasized that the problem studied in
paper, namely whether or not chaotic motion in the Hilb
space of a semiquantum system exists, is distinct from
more fundamental problem of the emergence of class
chaos in a closed quantum system whose classical cou
part is chaotic. Chaos emerges from quantum mechanic
the classical limit, not from any chaotic motion of the sta
vector through Hilbert space, but rather from the growth
complex structures in the probability distributions that a
described by the state vector@12#.

II. THE SPIN-PARTICLE MODEL

The model studied in this paper consists of a quant
spin s¢ interacting with the motion of a particle. Its Hami
tonian is

H5Bsz1Cxsx1p2/2m1V~x!. ~1!
©2001 The American Physical Society04-1
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L. E. BALLENTINE PHYSICAL REVIEW E 63 056204
The first term on the right is the spin Hamiltonian, the la
two terms comprise the particle Hamiltonian, and seco
term is the interaction between the spin and the position
the particle. A quartic potential,V(x)5x4/4, has been cho
sen for this work because it is known that a periodic drivi
force can drive the particle into chaotic motion in such
potential. The dynamical problem can now be solved at t
different levels of treatment.

A. Full quantum theory

The time-dependent Schro¨dinger equation,

]/]tuC~x,t !&52~ i /\!HuC~x,t !&, ~2!

can be solved numerically, with the momentum operatorp in
Eq. ~1! being2 i\]/]x. Here uC(x,t)& is a two-component
state vector, and the spin operators in Eq.~1! are 232 Pauli
matrices. The partial differential equation was solved by d
cretizing the coordinatex into 513 values, and solving th
resultant set of 1026 coupled ordinary differential equatio
by standard numerical methods. The partial state of the
can then be computed by integrating over the position v
able,

r5E uC~x,t !&^C~x,t !udx. ~3!

For spins5 1
2 , the 232 density matrixr is completely de-

scribed by the three components of spin polarization,

ax[^sx&5tr~rsx!, ~4a!

ay[^sy&5tr~rsy!, ~4b!

az[^sz&5tr~rsz!, ~4c!

B. Semiquantum theory

This approximation is most easily derived from th
Heisenberg equation of motion,

dR/dt5~ i /\!@H,R#, ~5!

whereR is the operator for one of the dynamical variables
the model,$sx ,sy ,sz ,x,p%. The semiquantum equation
are then obtained by replacing the quantum operatorsx andp
with classical variablesX and P. Since the spin operator
appear only linearly in these equations, we may aver
them in the spin state and obtain equations of motion for
components of the spin polarization~4! coupled to the clas-
sical position and momentum variables:

dax /dt522Bay , ~6!

day /dt52Bax22CXaz , ~7!

daz /dt52CXay , ~8!

dX/dt5P/m, ~9!

dP/dt52X32Cax . ~10!
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It is easily verified that Eqs.~6!–~10! have two constants
of motion: the total energy and the magnitude of the pol
ization vector ua¢u. The polarization vectora¢5(ax ,ay ,az)
provides a complete parametrization of the quantum sp
state operator,r5 1

2 (I 1a¢•s¢ ).

C. Significant parameters of the model

Since the spin is to remain a quantum system while
particle approaches its classical limit, we set\51 and in-
crease the particle massm to make the particle more nearl
classical. Thus the energy and time scales are fixed by
parameterB in the spin Hamiltonian.

Two dimensionless ratios that describe the degree of c
sicality of the particle can be identified. The first is the ra
of the energy-level spacings of the particle and of the spin
the absence of interaction,

h5
DEp

DEs
. ~11!

If the particle were truly classical, its energy would be co
tinuous, and soh should be small in the semiqauntum limi
Ignoring all numerical factors such as 2 andp leads to the
following order of magnitude~see the Appendix!:

h'
Ep

1/4\

BAm
, ~12!

whereEp is the energy of the particle.
The second is the ratio of the deBroglie wavelength of

particle to the diameter of its orbit,

L5lDB /X0 . ~13!

A similar order-of-magnitude estimate~see the Appendix!
yields

L'
Ep

23/4\

Am
. ~14!

This same magnitude is also of the ratio of\ to the action of
the orbit. The parametersh andL are dimensionless, in spit
of appearances, because the choice of the potential,V(x)
5x4/4, requires energy to be in units of (length)4.

These two dimensionless ratios measure the classicalit
the particle in quite different ways:h measures how clas
sical the particle is relative to the spin, whileL measures the
classicality of the particle without regard to the spin. T
interaction strengthC is not related to the degree of class
cality, and may be fixed independently.

III. DISAPPEARANCE OF CHAOS AS m\`

Although the polarization vectora¢ is to be interpreted as
describing the quantum state of the spin, nevertheless
semiquantum equations~6!–~10! have the mathematica
form of a classical dynamical system, to which the us
techniques may be applied. Since the lengthua¢u of the polar-
ization vector remains constant, it is natural to consider
4-2
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system to have a four-dimensional phase space,S23E2,
formed by the surface of the spin sphere and the phase p
of the particle. Energy conservation reduces the dimensio
the accessible manifold to 3, and so one further constr
yields a Poincare´ surface of section.

The semiquantum limit involvesm→`, and so we expec
thath @Eq. ~12!# andL @Eq. ~14!# should go to zero. But the
relative magnitudes ofh andL must be specified to define
definite limit process. It seems natural to hold constant
ratio h/L5Ep /B. Apart from a numerical factor, this is th
ratio of the particle energyEp to the spin energyEs . The
chance for complex behavior is greatest ifEs and Ep are
similar in magnitude and each part has as much acces
phase space as possible. Now if the total energyE5Es
1Ep is less thanB, then the full sphereS2 will not be ener-
getically accessible to the spin. If, on the other hand,
energyE is greater thanB, then a region of theX-P phase
plane around the origin will be energetically inaccessible
the particle. Therefore, we chooseE5B as the most favor-
able case to study.

Figure 1 shows the Poincare´ section forax50 with ax
moving in the positive direction for a particle of massm
516. The phase points fill most of the energetically acc
sible region~bounded by the solid curve! in a pattern typical
of chaos, although there are several holes in the chaotic
gion that contain tori of regular trajectories. In Fig. 2, t
Poincare´ sectionX50 ~moving positively! is shown on the
spin sphere, from which we see that the polarization vec
~equivalently the quantum spin state! has a chaotic pattern
covering much of the sphere. This is a clear case of se
quantum chaos.

As the mass of the particle increases, the relative siz
the chaotic zone decreases. In Fig. 3, form564 it has shrunk
to a thin separatrix layer. Figure 4 confirms that the spin s
is also confined to a thin separatrix layer. Thus we see
chaos disappears rapidly as the massm increases.

The width of the chaotic separatrix layer was investiga

FIG. 1. Poincare´ section ax50 for E5B50.5, C51.0,
m516, showing chaos in theX-P phase plane. The white space
contain many invariant tori, which are not plotted to avoid ov
complicating the diagram.
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by Zaslavskyet al. @13# for a nonlinear oscillator of fre-
quencyv driven by a perturbation of frequencyn. For n
@v, they found the width of the chaotic layer to be propo
tional to exp(2pn/2v). In our model,v would be the natu-
ral frequency of the particle andn would be the precession
frequency of the spin (n52B/\), both calculated without
interaction (C50). As m increases, the oscillator frequenc
v decreases, and the exponential factor becomes very sm
Thus the rapid disappearance of the chaotic zone is expe
to be typical of the semiquantum limit, even if the limit wer

-

FIG. 2. Poincare´ sectionX50 for E5B50.5, C51.0, m516,
showing chaos on the spin sphere.

FIG. 3. Poincare´ section ax50 for E5B50.5, C51.0,
m564, showing a narrow separatrix layer in theX-P phase plane.
The solid curve bounds the energetically accessible region.
4-3
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L. E. BALLENTINE PHYSICAL REVIEW E 63 056204
approached by a different route from the one that we h
chosen (h/L5const).

An exception to this argument occurs if we keepn/v con-
stant and in resonance asm→`. There are close connection
between resonance and chaos@14#, so this possibility should
be studied. From the definition~11!, it follows that h
5\v/\n. Therefore, to stay in resonance, we must take
limit L→0 with h constant. This illustrates a limitation o
the semiquantum theory. From a quantum point of view,
would like the energy-level spacingDEp to go to zero~hence
h→0!, but from a classical point of view we want the fre
quency ratio to remain constant~henceh5const!. We can-
not do both at the same time; we have tried the first, and
now try the second, choosing the frequency ration/v53/1.

For a quartic potential, the oscillation frequencyv is pro-
portional to the amplitude of oscillationX0 @15#, and sincev
is also proportional tom21/2, we must scale the amplitude s
that X0

2/m is constant. The particle energy, which is propo
tional to X0

4, now increases very rapidly withm, and is con-
fined within the bandEp5E6B. Figure 5 shows theax
50 Poincare´ section form516. The chaotic zone fills mos
of the energetically accessible band. Figure 6 shows tha
spin state is also chaotic, covering most of the sphere.
m564, the particle energy is much larger, and the relat
width of the energetically allowed band is so small that
analog of Fig. 5 would be uninformative. However Fig.
shows that the motion of the spin state is quasiperiodic,
ing confined to a curve on the spin sphere.

Finally, we have computed the largest Lyapunov exp
nentl of the system~6!–~10!, using a program based upo
that of Wolf et al. @16#. It is apparent from Fig. 8 that, a
m→`, l rapidly becomes so small that it is difficult to dis
tinguish it from zero. This clearly demonstrates the dis
pearance of semiquantum chaos in the limit in which
semiquantum approximation becomes valid.

FIG. 4. Poincare´ sectionX50 for E5B50.5, C51.0, m564,
showing a narrow separatrix layer on the spin sphere.
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IV. COMPARISON BETWEEN SEMIQUANTUM
AND FULL QUANTUM THEORIES

In the full quantum theory, the state vector of the sp
particle system becomes entangled because of the inte
tion. Therefore, the partial stater of the spin~3! does not
remain a pure state, and the spin-polarization vectora¢ is not
confined to the surface of the unit sphere. Figure 9 illustra
the complicated~but not chaotic! motion of the polarization
vector in three dimensions. The initial state is the produc
a spin state with polarizationa¢5(0,21,0) and a Gaussian
wave packet centered at average position^x&51.189 21,
with half-width s[Š(x2^x&)2

‹

1/251.0 and average momen
tum ^p&50.

FIG. 5. Poincare´ section ax50 for the 3:1 resonance, with
E51.506 59,B50.5, C51.0, m516. The solid curves bound th
energetically accessible region.

FIG. 6. Poincare´ section X50 for the 3:1 resonance, with
E51.506 59,B50.5, C51.0, m516, showing chaos on the spi
sphere.
4-4
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It is a consequence of the semiquantum equations~6!–
~10! that the length of the vectora¢ is constant. Therefore, a
initially pure state for the spin, interacting with a single cla
sical particle, will always remain pure, and so cannot rem
a good approximation to the full quantum theory. This dif
culty disappears when it is realized that the classical limit
a quantum state is normally an ensemble of classical tra
tories, rather than a single classical trajectory@17,18#. It is,
therefore, necessary to construct an ensemble of clas
particles whose position and momentum probability distrib
tions agree with those of the initial wave function of th
quantum theory. For each member of the ensemble, the
tor a¢ executes a different orbit on the surface of the u
sphere, and the average of these vectors over the s

FIG. 7. Poincare´ section X50 for the 3:1 resonance, with
E524.105 39, B50.5, C51.0, m516, showing quasiperiodic
motion on the spin sphere.

FIG. 8. Largest semiquantum Lyapunov exponentl vs recipro-
cal mass.
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quantum ensemble,^a¢&sqe, is to be compared with the polar
ization vector of the full quantum theory~Fig. 10!. The de-
polarization of the semiquantum ensemble matches that
to entanglement of the full quantum state quite well, at le
for a limited time.

The difference between the polarization vector of the fu
quantum theory and the average polarization vector of
semiquantum ensemble is shown in Fig. 11 for massm
564. As a conventional measure of the time during whi

FIG. 9. Spin polarization vectora¢ of the full quantum state, and
its projections onto the Cartesian planes, forE5B50.5, C51.0,
m564. The curve starts at the point~0,21,0!, and adjacent points
are separated by a time intervalDt50.2. TheX, Y, and Z axes
extend from21 to 1, with the labels at the positive ends.

FIG. 10. Magnitude of the polarization vector for the full quan
tum state~QM! and for the semiquantum ensemble~SQE!, for
E5B50.5, C51.0, m564.
4-5
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L. E. BALLENTINE PHYSICAL REVIEW E 63 056204
the semiquantum approximation is accurate, we chooset0.05,
the time when the difference reaches 0.05. Figure 12 sh
that t0.05 increases with the mass of the particle, as expec
but only very slowly. It is not closely related to th
Lyapunov time, 1/l, as the latter changes by a factor of 1
while the former changes by only a factor of 10.

V. DISCUSSION

The question posed in the title of this paper has b
answered negatively. Semiquantum chaos disappears ra
as one enters the regime (m→`) where the semiquantum
approximation is accurate. One may now ask whether
result, derived for the spin-particle model, is of greater g
erality. There is good reason to believe that it is more g
eral. The spin could stand for any two-level quantum syst
Any nonlinear oscillator will have the property that its nat
ral frequency decreases as its mass is increased at con
energy, hence the argument of Zaslavskyet al. @13# for an
exponentially narrow chaotic separatrix layer, which was
voked in Sec. III, should also apply. If, on the other hand,
energy of the oscillator is varied to keep the spin and
particle in resonance, then the energy of the oscillator w
become very much greater than that of the spin, and
perturbation on the oscillator by spin will become too we
to drive it to chaos. Thus there is good reason to believe
our result will also hold for very many systems comprising
quantum part coupled to a nonlinear oscillator.

If the classical part of the system had more than one
gree of freedom, it could be chaotic without coupling to t
quantum part. It is, of course, trivial that the state of t
quantum system would be driven chaotically by such a c
otic driver. Such systems are excluded from our consid
ation, since quantum dynamics plays no part in causing
kind of chaos.

The semiquantum approximation improves as the mas
the particle increases. It had previously been suggested@11#
that the semiquantum approximation would remain accu
only for a time shorter than the Lyapunov time 1/l, which
would be too short to see the predicted chaos. That is ind
true in our model~see Fig. 12!, but mainly because the

FIG. 11. Difference between the polarization vectors of the
quantum state and of the semiquantum ensemble, forE5B50.5,
C51.0, m564.
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Lyapunov time diverges asl goes rapidly to zero. But the
time during which the semiquantum approximation is ac
rate ~t0.05 in Fig. 12! is not closely related to the Lyapuno
time. This should not be surprising, since the latter char
terizes only the chaotic motions, which cease to exist
m→`.
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APPENDIX: CLASSICALITY PARAMETERS

The two dimensionless parametersh andL introduced in
Sec. II C to describe the degree of classicality of the part
will now be evaluated. Since only orders of magnitude a
scaling properties are of interest, we shall omit numeri
factors and use the symbol ‘‘'’’ to denote order-of-
magnitude equality. It is convenient to write the potential
V(x)5Dx4/4, whereD is a dimensional constant.

The classical action of the particle orbit isJ'P0X0 ,
whereP0 andX0 are the extents of the phase-space orbit
the momentum and position directions. Their magnitudes
determined byP0

2/m'Ep andV(X0)'Ep , whereEp is the
particle energy. Thus we have

P0'~mEp!1/2, X0'~Ep /D !1/4. ~A1!

FIG. 12. The Lyapunov time 1/l and the break timet0.05 ~when
the polarization-vector difference reaches 0.05! vs mass.

l
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If we takeL to be the ratio of the quantum of action to th
classical action,L5\/J, then we obtain

L'\m21/2Ep
23/4D1/4. ~A2!

In Sec. II C,L was defined to belDB /X0 , the ratio of the
deBroglie wavelength to the spatial extent of the orbit. Us
lDB'\/P0 and Eqs.~A1!, we obtain the same expressio
~A2! for L.

The particle energy levels can be estimated by set
J'n\, wheren is an integer. This yields

Ep'~n\/Am!4/3D1/3. ~A3!
s
n
u
ic
ve
on
an

h.

s.

05620
g

g

The level spacing can be approximated byDEp5]Ep /]n.
Using Eq.~A3! to expressn in terms ofEp then yields

DEp'\m21/2Ep
1/4D1/4. ~A4!

The spacing between spin energy levels isDEs'B, so the
ratio of DEp to DEs is

h'\m21/2Ep
1/4D1/4B21. ~A5!

Since the potentialV(x) has the form of a power law, it is
natural to rescale the lengthx so as to makeD51, as is done
in Sec. II C.
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