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Infinitesimal and finite amplitude error propagation in spatially extended systems are numerically and theo-
retically investigated. The information transport in these systems can be characterized in terms of the propa-
gation velocity of perturbation¥,. A linear stability analysis is sufficient to capture all the relevant aspects
associated to propagation of infinitesimal disturbances. In particular, this analysis gives the propagation veloc-
ity V of infinitesimal errors. If linear mechanisms prevail on the nonlinear dfesV, . On the contrary, if
nonlinear effects are predominant finite amplitude disturbances can eventually propagate faster than infinitesi-
mal ones(i.e., V,>V, ). The finite size Lyapunov exponent can be successfully employed to discriminate the
linear or nonlinear origin of information flow. A generalization of the finite size Lyapunov exponent to a
comoving reference frame allows us to state a marginal stability criterion able to pMyideth in the linear
and in the nonlinear case. Strong analogies are found between information spreading and propagation of fronts
connecting steady states in reaction-diffusion systems. The analysis of the common characteristics of these two
phenomena leads to a better understanding of the role played by linear and nonlinear mechanisms for the flow
of information in spatially extended systems.
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[. INTRODUCTION stable systenfi.e., with A <0) can display an erratic behav-
ior with V,>0.

It is well recognized that chaotic dynamics generates a The first attempts to describe nonlinear perturbation evo-
flow of information in bit space: due to the sensitive depen-ution have been reported in RdfL3]. However, in these
dence on initial conditions one has an information flow fromstudies the analysis was limited to the temporal growth rate
“insignificant” digits towards “significant” ones[1]. In  associated with second order derivatives of one dimensional
spatially distributed systems, due to the spatial coupling, onenaps. A considerable improvement along this direction has
has an information flow both in bit space and in real spacebeen recently achieved with the introduction of the finite size
The flow in bit space is typically characterized in terms ofLyapunov exponen{FSLE) [14]: a generalization of the
the maximal growth\ rate of infinitesimal disturbancgse., ~maximal Lyapunov exponent able to describe also finite am-
of the maximal Lyapunov exponeéntvhile the spatial infor- plitude perturbation evolution. In particular, the FSLE has
mation flow can be measured in terms of the maximal velocbeen already demonstrated useful in investigating high-
ity of disturbance propagatiovi, [2-5]. dimensional systemigl2]. _ o

The evolution of a typical infinitesimal disturbance in 1€ @im of this paper is to fully characterize the infini-

low-dimensional systems is fully determined once the maXi_tesimal and finite amplitude perturbation evolution in spa-

mal Lyapunov exponent is known. The situation is morenotemporal chaotic systems. Coupled map lattig@ML’s)

complicated in spatiotemporal chaotic systems, where infiniLlS] are employed to mimic spatially extended chaotic sys-

tesimal perturbations can evolve both in time and in space. Items. The FSLE is successfully applied to discriminate the

. " o linear or nonlinear origin of information propagation in
this case a complete description of the dynamics in the USRS Moreover, a generalization of the FSLE to comov-

gent space requires the introduction of other indica_ltors, €.0ing reference framéfinite size comoving Lyapunov expo-
the comoving Lyapunov exponent§] and the spatial and  peny allows us to state a marginal stability criterion able to
the specific Lyapunov spectfd]. predictV, in both cases: linear or nonlinear propagation. A
Nevertheless, the complete knowledge of these Lyapunoyarajlel with front propagation in reaction-diffusi¢a6,17]
spectra is not sufficient to fully characterize the irregular(nonchaoti¢ systems is worked out. The analogies between

behaviors emerging in dynamical systems, this is particularl{he two phenomena authorize to draw a correspondence be-
true when the evolution of finite perturbations is concernedtween “pulled” (“pushed”) fronts and lineatnonlineay in-

Indeed, finite disturbances, which are not confined in thgormation spreading.

tangent space, but are governed by the complete nonlinear The paper is organized as follows. In Sec. Il the FSLE is
dynamics, play a fundamental role in the erratic behaviorsntroduced and applied to low-dimensional systeiss., to
observed in some high-dimensional syst@r12. A rather  single chaotic mapsSection Ill is devoted to the description
intriguing phenomenon, termed stable chaos, has been rand comparison of linear and nonlinear disturbance propaga-
ported in Ref[9]: the authors observed that even a linearlytion observed in different CML models. The finite size co-
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moving Lyapunov exponent is introduced in Sec. IV andwhereT=%;_; \ 7i(68,,r) and(7(5,,r))e=TIN.

employed to introduce a generalized marginal stability crite- A natural definition of the finite size Lyapunov exponent
rion for the determination o¥/,. A discussion on informa- \(4,) is the following[14]:

tion propagation in non chaotic systems conclude Sec. IV.

The analogies between disturbance propagation in chaotic \(8 )E< 1 > nr= 1 nr @
systems and front propagation connecting steady states are n 7(5,,1) . (7(8n,1))e

analyzed in Sec. V. The Appendix is devoted to the estima-

tion of finite time corrections for the computation of the The last equality stems from the relationship among the two
FSLE in extended systems. Finally, some conclusive remarkgverages reported in E(L).

are reported in Sec. VI. In the limit of infinitesimal perturbatio®,, and of infinite
T (or N) the FSLE converges to the usual maximal
II. FINITE SIZE LYAPUNOV EXPONENT: Lyapunov exponent
LOW-DIMENSIONAL MODELS . .
lim lim A(S,)=N\. 3
Let us introduce the FSLE by considering the dynamical Y

evolution of the state variabbe=x(t) ruled by , )
In practice, at small enough,,, \(5,) displays a plateau

Doy — ~\. Moreover, one can verify that(4,,) is independent of
XU =), r, at least for not too large [14].

wheref represents a chaotic flow in the phase space. In orde“rmlg eqh(:)rﬁggtt'Eg?uurzlt'g]iizgswbheeenn;(ssgrﬁgﬁtgﬁj;ggcgg
to evaluate the growth rate of noninfinitesimal perturbations(t ically sampled at fixed intervalare corﬁ)sidered In order
one can proceed as follows: referenc@) and perturbed ypically P '

, . . . . ... to generalize the FSLE’s definition to the case of discrete
x'(t) trajectories are considered. The two orbits are |n|t|allytime dvnamical svstems. let us consider the followind mao:
placed at a distancé(0)= 6, With 6,,,<<1, assuming a y y ' g map:
certain normé(t)=||x’'(t) —x(t)||. In order to ensure that X(t+1)=F(x(1)),
the perturbed orbit relaxes on the attractor a first scratch
integration is performed for both the orbits until their dis- wherex is a continuous Variab|e, aricassumes integer val-
tance has grown frond, to &, (where B> 65> min). This  yes. In this case(s,,r)=r has simply to be interpreted as
transient ensures also the alignment of the perturbation alongie minimum “integer” time such tha#(7)=é,.,, and,
the direction of maximal expansion. Then the two trajecto-since nowds(r)/8, is a fluctuating quantity, the following
ries are let to evolve and the growth of their distad€)  definition is obtained:
through different preassigned threshold® € 5,r", with n
=0,... N and typically I<r=<?2) is analyzed. (1)

After the first thresholdg,, is attained the times(J,,r) Mon)= (7(8,1)) <In( 9 )> ' @
required fors(t) to grow from s, up to 8,1 are registered. neove nile
When the largest thresholéy (which should be obviously A theoretical estimation of Eq4) is rarely possible, and in

chosen smaller than the attractor gize reached, the per- ot cases, one can only rely on a numerical computation of
turbed trajectory is rescaled to the initial distan%g, from \(8,). However, in the following we will report two simple

the reference one. . cases for which an approximate analytic expression for the
By repeating the above procedur€ times, for each Eg|E can be worked out.
threshold §,,, one obtains a set of “doubling” timeghis Let us first consider the tent map

terminology is strictly speaking correct only if=2)
{7(6n.1r)}i=1, . » and one can define the average of any

observableA=A(t) on this set of doubling times as: F(x)=1-2)x—5

1\
X— 5l

1 - where xe[0:1]. This is a one-dimensional chaotic map,
(A)e= /T/izl Ais sinceh= In 2 is positive.

Due to the simplicity of this map, one can estimate the
whereA, =A((3,.,r)). The averagé- - - ), does not coin- exp_ressior(4) analytically obtaining the following approxi-
cide with an usual time averade- - ), along a considered Mation:
trajectory in the phase space, since the doubling times typi-
cally depend on the considered point along the trajectory and
on the threshold,,. The two averages are linkédt least in
the continuous cagevia the following straightforward rela-
tionship[18]:

A(8)=1In2—s, (5)

valid for not too larged values. The maximal Lyapunov
exponent is correctly recovered in the limit-0 and the
above expression reproduces quite well the numerical esti-
. mate of the FSLEsee Fig. 1a)]. An important point to
:l :<AT>6 stress is that for this map the finite amplitude perturbations
(A1) dt A(t) : (1) ; o e
TJo (Te grow with the same rate or slower than the infinitesimal
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08 , - - - - - consequence, the circle map can exhibit behaviors that can
07 oootsseg 5 ] be hardly distinguished from chaos under the influence of
06 - . noise, since small perturbations may be occasionally driven
05 | ; “m“ i into the nonlineafunstable regime and therefore amplified.

& o4l 08} ' /'/\'\ ] Lo Of course, the role of noise can be played by coupling with
< Tz 061 SN ol other maps, e.g., it has been found that coupled circle maps
03 = 0/ L display behavior resemblingor some aspectshat of a cha-

02 [ o otic system[11]. This phenomenon becomes even more
i 0 0.20.40.60.8 1 i ; ;
0.1 . | striking in certain coupled stable maps where, even if the
0 s s s s s - maximal Lyapunov exponent is negatiM@, one can have a
107 10% 10® 10* 10 1027 107 1

strong sensitivity to noninfinitesimal perturbatioi®] (see
Sec. IV B for a detailed discussipn

1 ; ; ; ' ; ' The two maps here examined for which E@) holds
#5b have a common characteristic: they are discontinuous. How-
081 — o Y ] ever, in order to observe similar strong nonlinear effects, it is
o6l 4 - sufficient to consider a continuous map with high, but finite,
s o8t /| A first derivative|F’| values[10]. In this respect a simple ex-
= oal® 8-2 WS b ample, that will be examined more in detail in Sec. 1V, is
02 ya represented by the map
02t 0 o
0 0.20.40.60.8 1 g bx  0<x<1/b
X i ! !
0 L L L I L 1 Hin
107 10% 10° 10* 10® 10® 107 4 b+c
6 1-c(1—-q)(x—1b), 1lb=s=x<-—r1,
F(x)= bc " (g)
FIG. 1. N(6) versus$ for the tent map(@) and the shift map b+c b+c
with 8=2 (b). The continuous lines are the analytically computed q+d| x— bc |’ bc <x=<1;

FSLE and the boxes the numerically evaluated one. The two maps

are displayed in the insets. with b=2.7, d=0.1, q=0.07, andc=500. Forc— the
map (8) reduces to the one studied in REJ)]. For the map

) the FSLE dependence dhis similar to that observed for
(tarae shift map.

ones. The contraction of perturbations at large scales is d
to saturation effects related to the attractor size. A similal
dependence of the FSLE on the considered scale is observ
for the majority of the chaotic magogistic, cubic, eto, as

we have verified. IIl. INFORMATION SPREADING IN SPATIALLY

One can wonder if there are systems for which, at vari- DISTRIBUTED SYSTEMS

ance with the behavigb), the finite size corrections leads to
an enhancement of the growth rate at large scales. As sho
in Ref. [11], the shift mapF(x)=8x mod 1 represents a

In this section we will examine the mechanisms behind
"Re information flow in spatially distributed systems. In par-
- : : o . < ticular, the influence of linear and nonlinear effects on infor-
good gandldate. Also in this case it is possible to obtain anation (erron spreading will be analyzed. As a prototype of
analytical expression for the FSLE, whér:[1/(r + B)], spatially distributed system coupled map lattid&ML's)
l—,Bé” © [15] are considered:

1)

7‘(5):%5 (1-268)InB+6In B

Xi(t+1)=F(xi(t))

which again correctly reproduces the numerical datee

Fig. 1(b)] and in the limit6— 0 reduces to the corresponding ~ €

maximal Lyapunov exponent= In 8. As expected, finite Xi(D=(1=&)x(O+ X1 (D +Xi+2(D], 9

amplitude disturbances can grow faster than infinitesimal

ones: wheret andi are the discrete temporal and spatial indides,

is the lattice sizei(=—L/2,... L/2), x;(t) the state vari-

N&)>N(8—-0)=) for 0<o=5™ @ able, andse[o:l](measures the gtreh(gih of the diffusive

where s%tindicates the threshold at which saturation effectsc@UPliNg. F(x) is a nonlinear map of the interval ruling the

set in. An even more interesting situation is represented biPc@! dynamics. , ,
the circle mapF (x)=a+x mod 1. This map is marginally In order to understand how the information spreads along

stable(i.e., A =0), but it is unstable at finite scales. Indeed, the chain, let us consider/ two replicas of the same system,
the FSLE is given by (8)= &/(1— 8)In[(1—8)/8], which is X(t)_Z{Xi(t_)} andx'(t)=_{xi (t)}_, that initially d|f_fer on_Iy In
positive for 0< < 1/2. Therefore at small, but finite, pertur- @ Single site of the latticée.g.,i=0) of a quantityd,, i.e.,
bations a positive growth rate is observed in spite of the

(margina) stability against infinitesimal perturbations. As a x{ (0)=x(0)| =Ax;(0)=dg 8 0, (10)
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understood by limiting the analysis to the tangent space. The
evolution in tangent space is obtained by linearizing @4,

ie.,
S+ 1) =F' Go(0)] 80+ 5154 2(1)
—26x(t) + 5Xi1(t)]], (13
_250200150100-5oio 50 100150200250 whereF’ is the first derivative of a one-dimensional chaotic

map. Let us again consider as initial condition for the evolu-
tion of Eq.(13) a localized perturbation as E(LO) with d,
infinitesimal. The spatiotemporal dynamics of the tangent
vector{x;(t)} is determined by the interaction and compe-
tition of two different mechanisms present in EG3): the

- ' : haotic instability and the spatial diffusion.
where 6, ¢ is the Kronecker Ita. In haoti m the® . o
ere s is the Kronecker's delta a chaotic system the As a first approximation, the effects of the two mecha-

perturbation will typically grow locally and spread along the isms can be treated as independent. The chaotic instability

g?ﬁag?én-l-cgeﬁgl dp henomena can be studied by considering ﬂ%ads to an average exponential growth of the infinitesimal

disturbance éxq(t)|~d, exgAt]. On the other hand, the spa-
tial diffusion, due to the coupling, approximately leads to a
spatial Gaussian spreading of the disturbankéx;(t)]
~|6%o(t)|/ 47Dt exp(—i%4Dt), whereD = £/2. Combining

It has to be stressed that the full nonlinear dynamics contribthese two effects one obtains
utes to the evolution oAx;(t). S
The spreading of this initially localized disturbance can be 1 exd M — '_) (14)
characterized in terms of the velocity of information propa- J2mst 2et)’
gationVp [2,4]. As shown in Fig. 2Ax;(t) can grow only
within a light cone, determined by, . For velocities higher  Since the chaotic nature of the phenomenon will typically
thanV, the disturbance is instead damped. This individuatesnduce fluctuations, E¢(14) can only describe the average
a sort of predictability “horizon” in space-time, i.e., an in- shape of the disturbance. Moreover, E@4) holds only
terface separating the perturbed from the unperturbed regiowhen the perturbation is infinitesimal, since when the distur-
The velocityV, can be directly measured by detecting thebance reaches finite values a saturation mechafisra to
leftmosti,(t) and the rightmost,(t) sites for which at time the nonlinearities sets in preventing the divergence of
t the perturbationAx;(t) exceeds a preassigned threshold.|8x;(t)].
The definition ofV,, is the following: To verify the validity of Eq.(14), we studied the evolu-
tion of localized perturbations of a homogeneous spatiotem-
V.= lim "mir(t)—h(t) poral chaotic state, in particular coupled logistic and tent
p 2t ' maps have been considered in the regime of “fully devel-
oped turbulence’{2]. First, the system is randomly initial-

where the limitL —o has to be taken first to avoid bound- 1Z€d and let to relax for a relatively long transient. At this

aries effects. The velocit§12) does not depend on the cho- stage two replicas of the same system are generated and to
sen threshold valug®,4,10. one of the two a localized perturbatigas in Eq.(10)] is

Since the dynamics of the difference figltl) is not con- adde_d. The evolutior) of_the difference fieldl) is then
fined in the tangent space, non linearities can play a crucidf'onitored at successive times. In order to wash out the fluc-
role in the information propagation. Indeed, we will see thatUations, the shape of the disturbance is obtained averaging
the evolution of the disturbances strongly depend on the cor2V€r many distinct realizations. o .
sidered mag=(x) and in particular on the shape ®(4). In As one can see from Fig. 3, EQL4) is fairly well verified
the next subsection propagation in CML's with local chaoticfo 1arge enough coupling while it fails at smadl [20].
maps for which\ (8)<\ V3§ is discussed. Local maps for These discrepancies are due to the finite spatial resolution

which the condition(7) holds will be the subject of Sec. (thatin CML's is always fixed to 1), since for small diffu-
Il B. sivity constant the discretization of the Laplacian becomes

inappropriate. The expressigh4) for disturbance evolution
has been already proposed in RgZl] for CML’s in two
dimensions. Deviations from Edq14) have been observed
Since in this subsection we consider CML'’s for which thealso in Ref.[21], but attributed to anomalous diffusive be-
local instabilities are essentially dominated by the behaviohaviors. It has to be remarked that expresgibd) is valid
of infinitesimal perturbations, most of the features can beonly at short times, since asymptotically—¢<) the infini-

FIG. 2. Evolution ofAx;(t), for a chain of coupled tent map
lattices with a coupling:=2/3. The initial perturbation is taken as
in Eq. (10) with dy=10"8,

Ax;(t) =[x/ (1) =x;(t)|=|F (x| (t—1))— F (x;(t—1))|.
(12)

| 6%;(t)|~dg

12

t—oow Lo

A. Linear mechanisms
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FIG. 3. Average evolution of perturbations for a CML of logis- ¢ ¢

tic maps [f(x)=4x(1—-x)] for (@ £=1/3 and (b) &=1/10. FIG. 4. Comparison between the directly measured propagation
(Ax;(t)) is reported as a function of in a lin-log scale at different velocities V=V, (circles and the predictior(18) (boxeg for a
times (from bottom to topt=10,20,30,40). Deviations from a CML of logistic maps with(a) a=3.9 and(b) a=4, and of tent
straight line correspond to deviation from the Gaussian shapemaps with(c) a=2 (d) a=1.8. Lattices of 4 10" maps has been
(Ax;(t)) is obtained as an average over ¥@alizations, for each used.
one Ax;(0) has been chosen as in E40) with dy=10"". For
comparison the predictiofl4) is also reporteddashed lines

=./2¢e\, (18)

which, as shown in Fig. 4, is indeed very good apart from
some deviations foe~0 ande~ . In Sec. V we will re-

tesimal leading edge of the propagating froak;(t)| as-
sumes an exponential profifé1].

of V|, can be obtained for infinitesimal perturbations by the
evaluatlon of the so-called maximal comoving Lyapunov ex-
ponentsA (v) [6]. The time evolution of an initially localized

(infinitesima) disturbancg10) in a reference frame moving bo
with velocity v can be expressed as

€hehaves as a front connecting a stable and an undiabla-
stablg fixed point in a nonchaotic reaction diffusion system.
Let us briefly recall that another methabt suffering for
undary problemsto determine the comoving Lyapunov
exponent has been introduced in R@2]. The method relies
on the computation of specific Lyapunov exponen{s)
associated to an exponentially decaying perturbagisith

by following the perturbation along the world line=vt one ~ SPatial decay ratg:). In other words one assumes that the
can easily measure the corresponding comoving Lyapunogpatmtemporal evolution of an infinitesimal disturbance can
exponentA (v) (for more details see Ref§6,22)). The in-  be written as
formation propagation velocity is the maximal velocity for

which a disturbance still propagates without being damped.

Therefore it can be defined through the following marginal
stability criterion[6]:

| 8%;(t)]~doe @), (15)

| 8%;(t)]~doeh (Wt (19

Since the asymptotic leading edge of the front separating
perturbed from unperturbed part of the chain has an expo-
nential shape, the above assumptid®) is appropriate to
study its evolution.
where the velocity has been now indicated within order It is straightforward to show that the comoving Lyapunov
to stress that it has been obtained via a linear analysis. Feixponents are related to the specific ones via a Legendre
the maps considered in this section the identity=V, is  transform[22], all the data concerning comoving exponents
always fulfilled. reported in this paper have been obtained with such a
As shown in Ref[6], in a closed system with symmetric method. Moreover, a further result concerns the linear veloc-
coupling A=A (v) has typically a concave shape, with the ity \, , it can be showf11] that its value corresponds to the
maximum located at =0 [in particularh=A(v=0)]. An  minimal propagation velocityV(u)=\(u)/u associated
approximate expression can be obtained Aqw), by sub-  with perturbations of the forni19), i.e.,
stitutingi =vt in Eq. (14) and by comparing it with Eq15):

A(V)=0, (16)

A A
VL—min—('u) =t (20
u M ML

A(v)=N—0v?/2¢. (17

This parabolic expression féx(v) suffers of the same limits
mentioned for the Gaussian approximatidd) for the dis-
turbance evolution. Anyway, from E@L7) an analytical pre-
diction can be obtained fov, :

where u, and\ =A(u.) represent the spatial decay rate
and the temporal growth rate of the leading edge, respec-
tively. The expressiof20) for the linear velocity is identical
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Axi(t)
=
A

100 200 3000

10-14 L

FIG. 5. The same of Fig. 2 for a lattice of coupled shift maps 10716 . . .
with 8=1.03,e=1/3. 0 50 100 150 200
i

to the one derived for propagation of fronts connecting a

FIG. 6. Evolution of the perturbatiofx;(t) for a CML of shift
stable to an unstable steady stg28]. Vot perturbationx;(t) !

maps with e=1/3 and B=1.04 at four different timest
=250,450,650,1000. The solid lines are the expected Gaussian
B. Nonlinear mechanisms shape(14). The decay rate of the asymptotic exponential profile is

In this section we investigate the case of coupled maps fd‘rLNLNl'M’ noticeably greater than the linear vajue=0.42.

which A (8)>\(0) in some interval of. As noticed in Sec. . . .
Il, this behavior can be observed in chadtibsolutely un- M)>X\. Asit can be clearly seen in Fig. 6, the perturbation
stablé maps, as well as in stable and marginally stable mapd$ Well reproduced by the linear approximatiti#) until the

Let us first analyze chaotic maps, nonchaotic ones will beamplitut_:i? of the perturbation reaches a critical vaile
discussed in Sec. IV B. ~0(10™ ") above which the nonlinear effects set in. At this

For these systems it is possible to havg>V, , this stage the. nonlinear ir)stabilitit_as begin to pu;h the frontllead—
means that the disturbance can still propagate also in th&d to an increase of its velocity and deforming the profile of
velocity range[V, ,V,], even if the corresponding comoving the perturbgnon. T_h|s bec_:omgs ex_ponennal'at muqh shorter
Lyapunov exponents are negative. Therefore, the linear mafiMes than in the linear situation discussed in previous sub-
ginal stability criterion(16) does not hold anymore. We want S€ction. Moreover, when the propagation is dominated by
to stress that the conditidf) is necessary, but not sufficient Nonlinear mechanisms the spatial decay rag of the
to ensure tha¥/,>V, , since all the details of the coupled asymptotic leading edge will be greater of the linear ex-
model play also an important role. pected vaIuepL_: this result can be explained again invoking

In Fig. 5 the spatiotemporal evolution of an initially lo- he analogy with propagation of fronts connecting steady
calized disturbance of a chain of coupled shift maps is re_states[ll]_. To better cla_nfy the difference betwee_n the linear
ported. As shown in Ref24], when the coupling <1/2 the and nonlinear mechanisms we show the behaviohxft)
maximal Lyapunov exponent for such model coincides with
that of the single mapnamely,A = In(B)] and if 3>1 the
system is chaotic. Initially the perturbation, that is still infini-
tesimal, spreads with the linear velocify above defined. At
later time it begins to propagate faster with a velodity
>V, . Comparing Fig. 5 with Fig. 2, one can see that the
second stage of the propagation sets in when the bulk of the__
perturbed region reaches sufficiently high values. As a matte’
of fact the initial stage of propagation disappears if we ini-

tialize the two replicas with a disturbance of amplitude 1072
O(1). From these facts it is evident that the origin of the 1074 | \‘_
information propagation characterized Wy>V should be 18 }
due to the strong nonlinear effects present in this type of 1077 E? i
CML. 10718 1 A 1 N R
The behavior at long times can be understood by consid- 0 200 400 600 800 1000 1200 1400 1600 1800 2000
ering the dependence af(5) on the disturbance amplitude t

as sh0\_/vn in Fig. (b): actually the figurg refers_ to_the single  FG. 7. Time evolution of Axo(t) (solid lin® and Ax(t)
map with =2, but the shape ok(6) is qualitatively the  (gashed ling for i =V,t with V,=1/3. In this last case the data for

same also for the coupled system and for otfevalues.  two different chain configurations are reported. The map used is the
Until the perturbation is infinitesimal()=\ and the linear  shift map with=1.1, e =1/3, andL=2x 10°. For these param-

analysis applies, when the disturbance becomes bigger tharegrs one has/|=0.250 andV,=0.342. Note that between
certain amplitudes™" the growth will be faster, since now =200 andt=>500 for Ax;(t) the numerical precision is reached.
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along the world linei =Vt for two different velocities:V, 1 A

=0 andV,_<V,<V,. From Fig. 7, one observes for the A(én,v)=m Inj<-|) (24)
zero-velocity situation an exponential increase of the pertur- nie nie

bation With_rate)\ until it_ eventua!ly_ _saturates. Fc_Jr the case,here the dependence on the velodityderives from the
cqrrespondmg tp velocity/, an initial exppnentlal decay employed norm(23). Note that we have used E@) due to
with rate A(V;) is seen, followed at later times by a resur- yhe " giscreteness of the temporal evolution. In the limit of

gence of the disturbance. The successive evolution of thery small perturbation the FSCLE reduces to the comoving
perturbation is no more exponential and exhibits strong ﬂUCLyapunov exponent

tuations. These features suggest that in order to generalize
the criterion(16) to nonlinear driven information spreading imA(s,v)=A(v), (25)
the growth of finite amplitude perturbations in a moving ref- 5-0

erence frame should be analyzed.
and, forv =0 one has the FSLE().

Actually there are finite time effects which prevents the
limit (25) to be correctly attained. This is related to the fact
that the FSCLE’s can be obtained only via finite time mea-

In this section we introduce the finite size comoving surements. In the Appendix we show how one can include
Lyapunov exponentFSCLE that is a generalization of the such finite time corrections.

FSLE to a moving reference frame. First of all let us define In the next subsections we will give evidences that the
the FSLE for an extended system: in this case exactly thenarginal linear stability criterion (16) can be generalized
same definition given in Sec. Il applies, apart from somewith the aid of the FSCLE in the following way:

ambiguities in the choice of the norm to employ for measur-

ing the distance’(t) of the perturbedx’ (t)={x/(t)}, from max{A(8,v)}=0 for v=V,, (26)

the unperturbed replicax(t) ={x;(t)}. A natural choice °

could be to perturb randomiy(t) and to look for the dou-  whereV,, can be eitheW, , if the information propagation is
bl|ng times aSSOCiated to the eVOlUtion of the distance due to |inear mechanismsl or greater thq_n When non”n_
ear mechanisms prevail on the linear ones. o1V, one
has A(6,0)=0, since due to the definition of the FSCLE

A(t)= T i:ZL/Z Ix{ (1) =xi(D)]; (21)  negative growth rate appear to be 0.

IV. FINITE SIZE LYAPUNOV EXPONENT:
EXTENDED SYSTEMS

L2

an alternative choice consists in perturbing a single site of A. Chaotic systems

the chain, let us say=0, at timet=0 and to evaluate the  Let us first consider chaotic systems for whi¢gp=V,
“single site” norm in this case

A =
AXo(t) = [xg(t) =Xo(1)]. (22) max{A(d,0)}=A(v)

We have verified that the two normi@1) and (22) give and the generalized criteriaf26) reduces to the linear one
equivalent results for what concerns the evaluation@f).  (16- As already stressed in Sec. Il B, shift coupled maps
In this paper we will limit to consider the nor(22). rep_resent a prototype of thg class of chaotlc_ models for
In order to measure the FSCLE in a reference frame movWhich V,, can be eventually bigger thary . For this model
ing with velocityv, we have simply measured the difference the behavior ofA(4,v) for various velocities is reported in
Fig. 8.

(22) along a world linei =vt, i.e.,
Forv<V,, we observe thah (6,v)~A(v) up to a cer-

Ax. (t)=|x’ (1) —x ()| 29) tain value of the disturbance amplitud®", above which the
ictlvt] ictlvt] it lvtlA /1 FSCLE increases and exhibits a clear peak at some higher
value. From Fig. &) it is clear thats"- (which denotes the
where[ - - -] denotes the integer part ang is introduced set in of the regime dominated by nonlinear mechanjsms

below. decreases for increasing velocities and finally vanishes at
The FSCLE is then estimated as in Sec. Il. Once a set of V. This behavior is reasonable since, as shown in Fig. 5,
thresholdss,=r"8,, with n=0, ... N, is chosen and the initially the disturbance evolves along the chain following

perturbation is initialized asAx;(0)= 6indi o With &y,  the linear mechanism characterized dfv), but as soon as
<&, A preliminary transient evolution is performed in order in the central sites> 8" the nonlinear mechanism begins to
to allow to the perturbed orbit to relax on the attractor. At thebe active. Thus a nonlinear front is excited and this invades
end of this short transient the positionwhere the perturba- the linear region propagating with a velocity higher thgn
tion reaches its maximum is detected, this point is taken atherefore the higher is the smaller is the scale at which
the vertex of the light cone from which all the considerednonlinear effects are observed.
world linesi=uvt depart. In the intervalV <v<V, [see Fig. 80)], A(5,v) is still

The FSCLE is then defined as positive and its maximal value decreases for increasing
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FIG. 9. maxA(Sv) (dashed line with poinjsversusv com-
pared withA(v) (continuous ling (a) Results for coupled shift
maps with the same parameters as Fig. 8, the vertical lines indicates
V ~0.250 and the measuredl?) propagation velocityV,
~0.342. (b) Data for the coupled map&) with parametersh
=2.7,d=0.1,g9=0.07, andc=500 and with coupling:=2/3, the
vertical lines indicate®, ~0.39 andV,~0.59. In this second case
chains of lengti.=2x 10* have been considered and the statistics
is over 2x 10* doubling times. The reported values for ax s,v)
refer to an average over five values®éround the peak position of
A(6,0).

FIG. 8. A(4,v) as a functions for various velocities. The data
refer to the coupled shift maps wiig=1.1 ande = 1/3, with these
parameters/| ~0.250 andV,~0.342. In(a) results for velocities
v<V_ are reported, namelffrom top to bottom), v =0, v=0.10,
andv =0.16. The straight lines indicat&(v). In (b) velocities in
the rangg Vv _:V,] are reported, from the top=0.25, v =0.286,
v=0.30, v=0.33,v=0.34. Chains of lengths frorh = 10" up to
L=10° have been employed and the statistics is overl2® dou-
bling times.

The FSCLE vanishes far=V, as Fig. 9a) shows. In this
velocity rangeA (v) is always negative, therefore the insta- This type of CML has been already studied in Rdf0]: it
bilities observed in a reference frame moving with velocityhas been observed that in a certain parameter r&gean
higher thanV, have a fully nonlinear origin. The residual be finite even if the map is nonchaotic. Moreover, also in the
fluctuations present i (5,v) are essentially due to the lim- chaotic regime there is a window of parameters whége
ited statistics. Indeed the nonlinear growth as shown in Fig. 2>V, with our parameters choice~0.182>0.
is extremely fluctuating. Also in the present case we observe an overall behavior of

In Fig. 9a) the dependence of mgA(Sv)} onv for  the FSCLE resembling that of the coupled shift maps. The
coupled shift maps is reported, as expected it vanishes exnain point that we want to remark is that in the limit
actly forv=V,. Forv<V_ a nonmonotonous behavior of —V, A(d,v)—0, as shown in Fig. @). At variance with
maxs{A(S,v)} is observable, this is probably due to the com-the shift map(that is an everywhere expanding mape
plex interplay of linear and nonlinear effects. kor V| , the  considered map shows contracting and expanding intervals.
behavior is smoother and a monotonous decrease is of-herefore the disturbances during their spatiotemporal evo-
served. As discussed in Sec. I, the discontinuity present ifution can be alternatively expanded or contracted. This leads
the shift map is not necessary in order to observe nonlineao strong fluctuations in the FSCLE values, that are difficult
mechanisms prevailing on linear ones. to remove.

As an example of continuous map exhibiting an informa- As a matter of fact we observed that even for velocities
tion propagation velocity/,>V, the map(8) is considered. slightly larger tharvV, A(6,v) can be nonzero. But the sta-
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tistics of these anomalous fluctuations is extremely low, re- 1

ferring to the parameters reported in FighPfor v=0.6 08 |

>V,=0.59 we observed an expansi@nstead of the ex- < O ]

pected contractionof disturbances in the 0.5% of the stud- 06 ¥ 04py ] A\

ied cases. For higher velocitiés(5,v) is zero for any con- 04 P ]

sidereds. 0 0.20.40.60.8 1 \
02 r X f’ J

B. Nonchaotic systems 0 bossooossoosoooosoooead ||
On the basis of the linear analysis discussed in Sec. Ill A 0 T T 105 10% 107 102 107 10°
the propagation of disturbances should be present only in ]

chaotic systems. For nonchaotic oness0 and from Eqg.
(16) one trivially obtainsV, =0. On the other hand, in the
class of systems for whick( )=\ there are also stable and

marginally stable systems. Therefore, a propagation du‘Ia'he negative maximal Lyapunov=—0.105 is recovered at small

SOle!y to nonlinear tgrms can still be. presgdit-11]. In this scales. For the computation details see the text. In the inset the
section we want to discuss the possible employ of the FSLI;ingle map is shown.

to characterize these maps.

Before entering into the description of the FSLE compu-ponlinear effects. This confirms what was previously ob-
tation in such systems, it is of interest to recall an importanserved in Ref[11] for marginally stable systems.
phenomenon which appears in stable systems: the so-called |, Fig. 10 we show the behavior of a quantits,,) simi-
“stable chaos”[9]. Stable systems asymptotically evolve to- |ar to )\ (5,) which has been obtained as follows. We consid-
wards trivial attractorsi.e. fixed points, periodic, or quasi- ered two trajectories at an initial distanég, after one time
periodic orbits. However, in spatially extended systems it stepy evolution the distancé between the trajectory is mea-
may happen that the time needed to reach the asymptotigred. Then one of the two trajectories is rescaled at a dis-
state is very long: it has been found that in certain stablgance s, from the other, keeping the direction of the pertur-
CML the transient time diverges exponentially with the num-p5tion unchanged, and the procedure is repeated several
ber of elements of the cha(8]. Moreover, this transient is tmes and for several values of,. Then we averaged
characterized by a quasistationary behavior allowing for thqn((%n) over many different initial conditions obtaining
investigation of the properties of the model with statistical|(5n)' For 8,—0, this is nothing but the usual algorithm for
consistency. In Ref{9] it has been shown that a chain of computing the maximal Lyapunov expondas.
coupled maps of the typ@), considered in their discontinu- As discussed in Refl14] this method suffers from the

ous !|m|t (|.e.., for c—.>oc_), is nonchaotlc but still exh|b|ts problem that whery, is finite one is not able to correctly
erratic behaviors. This is associated to a non-zero informagample the measure on the statistically stationary state. In-
tion spreading within the system. deed a finite perturbation will generically bring the trajectory

_ As far as the computation of the FSLE for these systemg, i from the “attractor.” Nevertheless the result is in good
is concerned, some remarks are worth to be done. The defigreement with the one obtained in REF9] and confirms
nition of the FSLE in terms of error doubling times cannot beinat 4t the origin of the perturbation propagation in this sys-
used in a straightforward manner to determine negative €Xum there should be a mechanism very similar to the one

pansion rates. Another important point is that, at variancgiscyssed for the shift map. Further studies related to the

with the case of chaotic maps, finite perturbations should begipie chaos” phenomenon have been recently performed
now considered in order to observe an expansion. 26].

These two points impede a straightforward implementa-
tion of our method to study these systems. Indeed, if one
starts with too small perturbations the propagation does not
manifest, while if one initializes the system with a finite
perturbation\ (6) cannot be estimated with the required ac- The perturbation evolution in spatially distributed systems
curacy. Indeed, the only way to have an independence afan be described as the motion of an interface separating
A (6) from the initial conditions is to initialize the system perturbed from unperturbed regions. In this spirit, one can
with infinitesimal perturbations and then to follow them until wonder if and to what extent it is possible to draw an anal-
they become finite due to the dynamics of the sysfeee ogy between the evolution of this kind of interface and the
Ref.[14] for a detailed discussion propagation of fronts connecting steady states in reaction

The coupled8) maps forc—o have been recently ana- diffusion systems. As already noticed in REf1], the two
lyzed by Letz and Kantg19] in terms of an indicator similar phenomena display many similarities. In the following we
to the FSLE(i.e., able to quantify the growth rate of nonin- will discuss the similarities and differences, in particular we
finitesimal perturbations This indicator turns out to be will introduce a simple phenomenological model which can
negative for infinitesimal perturbations and becomes positivéelp us in highlighting the analogies.
for finite perturbations. This means that a finite perturbation Let us start by recalling the basic features of fronts propa-
of sufficient amplitude can propagate along the system due tgation in reaction diffusion systems with reference to the

FIG. 10. I(8) as a function of the amplitude perturbation in a
lin-log scale for the discontinuous coupled m&gs, in the limit
c—, with e=1/3 andL=235. The map is reported in the inset.

V. ANALOGIES WITH FRONT PROPAGATION
IN REACTION DIFFUSIONS SYSTEMS
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I[:llz?er-Kolmogorov-Petrovsky-P|scouno(\FKP9 equation u(t+1)= exg A (U;(1)u; (1), (30
—n 42 wherei,t are the discrete space and time indices (1

#0(2,)=Daz0(z,H) +CLo(Z.V)], @ —ge)u;+e&/2(uj L1+ Uj_;). Here,u;(t) indicates the “aver-
where 6(z,t) represents the concentration of a reactan@de” Axi(t) andA(u) the corresponding FSLEat least for
which diffuses and reacts, the chemical kinetics is given byPositive growth rates In the limit u—0 A (u)—A, while,
G(#6). Typically the functionG(6) e C'[0,1] [with G(0) for u~0O(1), A (u) should reflect the saturation effects asso-
=G(1)=0] exhibits one stable {=1) and one unstable ciated to the nonlinear map. In the infinitesimal limi (
(6=0) fixed point. Once the system is prepared on the stable>0) one essentially recovers the model discussed in Ref.
state[ (z) =0 Vz], an initial (sufficiently steep perturba-  [29]- _ . .
tion [e.g., a step functior®(z,t=0)=0(z—2zy)] will give By passing to continuous variables is possible to show
rise to a smooth front moving with a velociy,, that will ~ that Eq.(30) can be reduced to Eq27) (at least at the
connect the unstable and the stable fixed points: as a resiftading ordex. In order to transform Eq30) in its continu-
the stable state will invade the unstable one. This equatioRUS Version, let us introduce infinitesimal spatial and tempo-
admits many different traveling solutions that are typically'al resolutionsix anddt, and assume that the diffusive scal-
characterized by their propagation velocities, however for ag holds, i.e.dx*=dt. Limiting to the first order expansion
sufficiently steep initial perturbation of the unstable state thdn dt (second order inix), one easily shows that the con-
selected front is unique and its velochy, is bounded in the ~ tinuous counterpart of E430) is
interval [ Vin »Vimaxl, Where

&
_ Z 92
V.. —2DG'(0) 28) du=nx(u)u+ Zaxxu, (3D
and which is nothing but Eq(27) with
G(0) G(u
Vmax:2 \/D SUR)<0<1(T]- (29) )\(U): EI ) , (32)

If G(0) is concave sup.y~1{G(6)/6} is attained atV=0  and D=¢/2. As a consequence of the identitg2), one
(i.e., sUp<y<1{G(0)/6}=G'(0)] and theselected velocity should observe a pulled dynamics for the chaotic front if
is always the minimum one: the front is “pulled” by the ;)\(u) Yu=0, and a pushed one could occur 0n|y if
grOWth of infinitesimal perturbations of the unstable Sta.te.ma)%{}\(u)}>)\_ This can be considered as a reformulation of
Otherwise, ifG(6) is convex one can observe a velocity the Aronson and Weinberger theorg@v] in the context of
Vp>Vmin: the front is now “pushed” by the growth of finite jnformation propagation. The velocity boun¢28),(29) can

amplitude perturbations. These results are known as thge now identified wittv,= \2eX, i.e., Eq.(18), the first one
Aronson and Weinberger theord@7] (for more details see gnq with

Ref.[17]). The velocityV,,, can be easily obtained by per-
forming a linear analysis of Eq27) and by employing a V= [2e max{\(u)} (33
marginal stability criteriof23]. u

The subject of our analysis is the spreading of perturba-
tions in a chaotic media. In order to compare our case witihe second one. We stress again that the lower velocity
the FKPP, we should consider the time evolution of the dif-bound is indeed represented Wy and that it coincides with
ference of two chaotic trajectorigax;(t)};—;, . However, Va only for sufficiently strong diffusive coupling.
the nature of the two phases separated by the front is now Another interesting point that we can investigate via a
different from the FKPP case. The interface separates apumerical simulation of the mean field effective equation
unstable Ax;=0) state from a “statistically stable” one. (30) is the dependence of the propagation properties on the
With the term “statistically stable” we mean that behind the specific shape ok (u). For instance, as previously conjec-
front, in the bulk of the perturbed regiofx;(t) does not tured, we expect that if a monotonous decreasitg) is
converge to a stable fixed poiitas for the FKPP but it ~ considered one should observe linear propagation, only. In-
fluctuates in a stationary way around an average value. Thideed, numerical integrations of the mod&0), with the
suggests that a good model for reproducing this dynamicaghoice A(u)=A—Bu, being A and B positive constants,
evolution would be a FKPP with a stochastic kineti@§]. =~ show thatV,=V,=2¢A, where A corresponds to the
However, many similarities with FKPP can be established bynaximal Lyapunov of the effective model. A generalization
neglecting the chaotic fluctuations and considering the averof this simple model would require to considérand B as
age shape of the froffL1]. In practice, this can be done by fluctuating quantities generated by suitable stochastic pro-
averaging the perturbation evolution over many different ini-cesses. But while for the choice Afone can have some hint
tial conditions. [29], this is not the case fdB.

Once the chaotic fluctuations are neglected, one can ex- Let us now consider the nonlinear propagation case, as we
press the average perturbation growth in any site of the chaihave previously seen a necessary condition in order to have
via the following mean-field approximation: Vo>V is that may{\(u)}>\ for some finiteu. As for the
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FIG. 11. Propagation velocitiesymbols for the model(30)
with N(u) given by Eq.(34) as a function ofB= In(r,), with ¢
=1/3, A= In1.1 andC=A. The threshold values are fixed 8"
=10"% and §%3=0.53 and a chain of % 10* sites has been used.
The curves refer t&/,= \2¢A (solid line) andV,= \2¢B (dashed
line). Note that in the linear cas<A there is perfect agreement
between the measured velocity and the prediction.
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FIG. 12. Propagation velocitieg, as a function ofsN" for the
model (30),(34) with £=1/3, A= In(1.1), B= In(1.3), C=A, &5
=0.53. The crosses refer to the ca$&= 55", while the boxes
refer to the cas& = 532+ 6", The two lines correspond 14,

=2eA andVs=\2¢B.

will not be modified(being fixed tod5%). But also in this

actual value of the selected velocity, this will depend on theSécond cas/,—V, for increasings™", this indicates that
value of the diffusive coupling and on the specific shape ofh€ smaller are the perturbation amplitudes affected by the
A(u). In the following we will examine the dependence of nonlinear mechanisms the stronger will be the nonlinear ef-

V,, on two quantities that characteriagu): the difference
|max;\(8)—\| and the scaleN at which the nonlinear ef-
fects set in.

As a first example let us considefu) as a step function:

A, Oo<u<dM,
Nu)y=4 B, MN=u<s? (34)
—C, u=

whereA, B, andC are positive quantities, witB> A, while
SNt and 5% are amplitude thresholds. The paramefeis
nothing but the Lyapunov exponeii,mimics the nonlinear

terms leading to an enhancement of the growth rate, and tf‘@
last term mimics the damping of the perturbation due to the}e

saturation effects. In Fig. 11 it is reported the behavior of th
propagation velocity for the modé€B0) with A(u) given by
Eq. (34) for various values oB, onceA and C are fixed.
From the figure is evident that B<A thenV,=V, (i.e., we
are in the linear regimewhile as soon aB>A an increase
of V, with respect tov, is observed.

In the whole examined parameter ranggis always rea-
sonably approximated by, but smaller. By increasing

one observes an increase of the difference between the mea-
sured velocity and the linear prediction. These results con-

firm that the conditior(7) is indeed a necessary condition in
order to observe nonlinear propagation of information.

We will now investigate the role o8Nt in determining
the propagation velocity. It is quite obvious that modeling
the dynamics via Eq$30) and(34) the nonlinear effects will
disappear in the limiy, — 52t and this is indeed confirmed
by the simulationgsee Fig. 12 In order to examine a less
obvious situation, a modification of the expressi@4) is
also considered. In this second ca8®= 532+ 6"\ is as-
sumed, therefore by varying\" the extension of the ampli-

fect on the velocityVV,— V, for sN-—0.

Typically, in generic CML'’s by varying a control param-
eter both the differencemax;\(8)—\| as well asés™" will
change. Moreover, even the definition - for a continu-
0uUs\ () is not obvious. In order to understand the validity
of the mean-field approximatioi34) in a more realistic case
we consider the shift map. In particular, fafu) we em-
ployed the analytical expressidf) valid for the single un-
coupled map.

The FSLE for coupled shift maps is actually different
from Eq. (6), but we are neglecting correlations among dif-
ferent sites and effects due to the specific measure associated
to the system. Nevertheless, a numerical integration of Eq.
0) equipped with Eq(6) reproduces semiquantitatively the
atures observed for a lattice of coupled shift m@e= Fig.

e13). In particular, also the simple mean-field mod&) with

0.8

0.7

FIG. 13. Information propagation velocities for the shift map
with £=1/3: (boxes linear velocitiesV, and (crosse} directly
measured nonlinear ones. The two lines corresporvy, (d.8) (dot-
ted line and to the propagation velocity for the mod8D) with
N(u) given by Eq.(6) (solid line). The dashed curve with asterisks

tude interval over which the nonlinear mechanism is actives V¢= \2e max;{\(5)}.
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VI. FINAL REMARKS

In this paper informatiorferron propagation in extended APPENDIX
chaotic systems has been studied in detail. In particular, we
have analyzed the relevance of linear and nonlinear mecha- In any numerical computation of the Lyapunov exponents
nisms for the propagation phenomena in Spatiotempora| ch&ne is forced to use a finite time approximation for an infinite
otic coupled map lattices. Linear stability analysis is not al-time limit. Nevertheless, provided that the convergence to
ways able to fully characterize disturbance propagation. Thighe asymptotic value is fast enough, this is not a dramatic
is particularly true for(marginally stable systems with Problem. As a matter of fact, in low-dimensional systems
strong nonlinearities, where finite size perturbations are revery fast convergence to the asymptotic value is usually ob-
sponsible for information spreading in the system. When théerved. However, this problem manifests more dramatically
nonlinear effects prevail on the linear ones the propagatioff? high-dimensional systems, where the time to align along
velocity of informationV,, can be higher than the linear ve- the direction of maximal expansion could be very long
locity V, . A necessary condition for the occurrence of infor- [29,33,34. _ _ _
mation spreading induced by nonlinear mechanisms has been In the present case this problem is complicated by the fact
expressed in terms of the f|n|te Size Lyapunov exponenthat the FSLE is IntrlnSICally a f|n|te time |nd|Cat0r. Indeed
(FSLE). We have also shown the existence of strong analothe time a perturbation takes to grow from a value r 5 is
gies between error propagation and front propagation ”ilnlte unlessé—0. However, for the CML models here ana-
reaction-diffusion models. In particular, the abovementionedyzed and for initially localized perturbatioi0) it is pos-
necessary condition is analogous to the Aronson and Weirfible to evaluate the corrections to apply to the FSCLE, es-
berger theoreni27] for front connecting stable and unstable timated at finite time, in order to recover, for sufficiently
steady states. In the linear and nonlinear case, the propag@mall 6, the expected limitA(v). These corrections allow
tion velocity V,, can be identified via an unique marginal for a faster convergence of the FSCLE to its asymptotic val-
stability criterion involving finite size Lyapunov exponents UES.
defined in a moving reference frame. This result generalizes For the sake of simplicity we consider maps with constant
the corresponding linear criterion expressed in terms of th&lope, e.g., the shift map(x)=pBx mod 1, and the CML
maximal comoving Lyapunov exponents for the identifica-defined in Eq.(9). In this case(for e<1/2) the maximal
tion of vV, [6]. Lyapunov exponent of the CML coincides with that of the
These results can be of some interest for the synchronizingle map[24]; i.e., A= In 5. We will limit to the casev
tion and the control of extended systems. It has been recently O (i.e., to the FSLE, since the extension to geneticis
shown that the synchronization of coupled extended systenfgraightforward. As shown in Ref$33,39 the finite time
is strongly influenced by nonlinear effects. In particular, theévolution of an infinitesimal perturbatiod, initially local-
synchronization time exponentially diverges with the systenized ini=0 can be expressed at tinfeas the sum of the
size, even in nonchaotic situations, provided t¥gt-0 [30]. contributionsM (m, T) associated to all the paths connecting
We believe that in these systems the appropriate indicator the space-time pointi €0t=0) to the point {(=0t=T),
characterize such transition would be the “transverse”i.e.,
Lyapunov exponent31], once extended to finite scales. As
far as control schemes are concerned, since they rely mainly

-
on linear analysi$32], new nonlinear methodg.g., based OXi=o(T) 4TS MmT) (A1)
on the concept of FSLEJsshould be introduced in order to do M=0 e

control the erratic behaviors due to fully nonlinear mecha-

nisms.

A further aspect that should be addressed in future workvherem is the number of “diagonal links” connecting ,{)
concerns the extension of the applicability of the FSLE alsdo (i£1t+1) present in the path of length. Each path
to linearly stable systems: a candidate in this respect coulgm,T] of length T with m diagonal links contributes to the
be the indicator recently introduced in REE9]. Finally, itis  above sum with a term
reasonable to expect that the present analysis is not limited to
discrete models but that it can be applied to continuous ex- "
tended systems described in terms of PDE’s, e.g., to the _ & \T-m
complex Ginzburg-Landau equation. M(m,T)—N(m,T)(2> (1=e) ", (A2)
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where N(m,T) is the multiplicity associated to each path In order to evaluate the finite time corrections, one should

[m,T] (for more details seg35]). As can be seen from Eq.
(A1) the finite time Lyapunov exponeit; will be given by

T

20 M(m,T)

m=

1 16%(T)

)\T:?In do

. (A3)

= | 1I
= n,8+?n

the first contribution is the asymptotic one, while the second

one will vanish in the [imitT—c and it is the finite-time

correction to evaluate. This second contribution can be nu-
merically estimated by considering the finite time evolution

of the Lyapunov eigenvectdiV,(t)} associated to the maxi-
mal Lyapunov exponent, once it is initialized &%,(0)
=dpdj 0. The evolution of{W;(t)} in the tangent space is
ruled by the following equation:

Wi(t+1)=5 (1—s>wi<t>+§[wi1<t)+wi+1<t>]]
(A%)

iterate at the same time E(A4) (with g fixed to one and
the two replicas required for computing ) (see Sec. )
Then the estimation of the FSLE should be modified in the
following way:

. LICSCEN]

(7(8n.1))e) n( |oxi(t)]

|Wilt+ T(én,r)]|)>
— A5
( wol )/, (A5)
The case of maps with nonconstant slope is computationally
much heavier. Since for each different path the local multi-

plier F’'(x;) will be different and they will depend on the
particular trajectory under consideratif88,35. As a matter

of fact we have observed that if the multipliers are equally
distributed among positive and negative values, the finite
time corrections essentially cancel out.
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