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Linear and nonlinear information flow in spatially extended systems
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Infinitesimal and finite amplitude error propagation in spatially extended systems are numerically and theo-
retically investigated. The information transport in these systems can be characterized in terms of the propa-
gation velocity of perturbationsVp . A linear stability analysis is sufficient to capture all the relevant aspects
associated to propagation of infinitesimal disturbances. In particular, this analysis gives the propagation veloc-
ity VL of infinitesimal errors. If linear mechanisms prevail on the nonlinear onesVp5VL . On the contrary, if
nonlinear effects are predominant finite amplitude disturbances can eventually propagate faster than infinitesi-
mal ones~i.e., Vp.VL). The finite size Lyapunov exponent can be successfully employed to discriminate the
linear or nonlinear origin of information flow. A generalization of the finite size Lyapunov exponent to a
comoving reference frame allows us to state a marginal stability criterion able to provideVp both in the linear
and in the nonlinear case. Strong analogies are found between information spreading and propagation of fronts
connecting steady states in reaction-diffusion systems. The analysis of the common characteristics of these two
phenomena leads to a better understanding of the role played by linear and nonlinear mechanisms for the flow
of information in spatially extended systems.
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I. INTRODUCTION

It is well recognized that chaotic dynamics generate
flow of information in bit space: due to the sensitive depe
dence on initial conditions one has an information flow fro
‘‘insignificant’’ digits towards ‘‘significant’’ ones @1#. In
spatially distributed systems, due to the spatial coupling,
has an information flow both in bit space and in real spa
The flow in bit space is typically characterized in terms
the maximal growthl rate of infinitesimal disturbances~i.e.,
of the maximal Lyapunov exponent!, while the spatial infor-
mation flow can be measured in terms of the maximal vel
ity of disturbance propagationVp @2–5#.

The evolution of a typical infinitesimal disturbance
low-dimensional systems is fully determined once the ma
mal Lyapunov exponent is known. The situation is mo
complicated in spatiotemporal chaotic systems, where infi
tesimal perturbations can evolve both in time and in space
this case a complete description of the dynamics in the
gent space requires the introduction of other indicators, e
the comoving Lyapunov exponents@6# and the spatial and
the specific Lyapunov spectra@7#.

Nevertheless, the complete knowledge of these Lyapu
spectra is not sufficient to fully characterize the irregu
behaviors emerging in dynamical systems, this is particula
true when the evolution of finite perturbations is concern
Indeed, finite disturbances, which are not confined in
tangent space, but are governed by the complete nonli
dynamics, play a fundamental role in the erratic behavi
observed in some high-dimensional system@8–12#. A rather
intriguing phenomenon, termed stable chaos, has been
ported in Ref.@9#: the authors observed that even a linea
1063-651X/2001/63~5!/056201~13!/$20.00 63 0562
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stable system~i.e., with l,0) can display an erratic behav
ior with Vp.0.

The first attempts to describe nonlinear perturbation e
lution have been reported in Ref.@13#. However, in these
studies the analysis was limited to the temporal growth r
associated with second order derivatives of one dimensio
maps. A considerable improvement along this direction
been recently achieved with the introduction of the finite s
Lyapunov exponent~FSLE! @14#: a generalization of the
maximal Lyapunov exponent able to describe also finite a
plitude perturbation evolution. In particular, the FSLE h
been already demonstrated useful in investigating hi
dimensional systems@12#.

The aim of this paper is to fully characterize the infin
tesimal and finite amplitude perturbation evolution in sp
tiotemporal chaotic systems. Coupled map lattices~CML’s!
@15# are employed to mimic spatially extended chaotic s
tems. The FSLE is successfully applied to discriminate
linear or nonlinear origin of information propagation
CML’s. Moreover, a generalization of the FSLE to como
ing reference frame~finite size comoving Lyapunov expo
nent! allows us to state a marginal stability criterion able
predictVp in both cases: linear or nonlinear propagation.
parallel with front propagation in reaction-diffusion@16,17#
~nonchaotic! systems is worked out. The analogies betwe
the two phenomena authorize to draw a correspondence
tween ‘‘pulled’’ ~‘‘pushed’’! fronts and linear~nonlinear! in-
formation spreading.

The paper is organized as follows. In Sec. II the FSLE
introduced and applied to low-dimensional systems~i.e., to
single chaotic maps!. Section III is devoted to the descriptio
and comparison of linear and nonlinear disturbance propa
tion observed in different CML models. The finite size c
©2001 The American Physical Society01-1



nd
ite

IV
o

a
e

ar

ca

rd
n

lly

t
tc
s-

lo
to

-

ny

yp
an

-

nt

two

al

rete
sets
r
ete
p:

-
s

n of

the

p,

he
-

sti-

ns
al
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moving Lyapunov exponent is introduced in Sec. IV a
employed to introduce a generalized marginal stability cr
rion for the determination ofVp . A discussion on informa-
tion propagation in non chaotic systems conclude Sec.
The analogies between disturbance propagation in cha
systems and front propagation connecting steady states
analyzed in Sec. V. The Appendix is devoted to the estim
tion of finite time corrections for the computation of th
FSLE in extended systems. Finally, some conclusive rem
are reported in Sec. VI.

II. FINITE SIZE LYAPUNOV EXPONENT:
LOW-DIMENSIONAL MODELS

Let us introduce the FSLE by considering the dynami
evolution of the state variablex5x(t) ruled by

ẋ~ t !5f„x~ t !…,

wheref represents a chaotic flow in the phase space. In o
to evaluate the growth rate of noninfinitesimal perturbatio
one can proceed as follows: referencex(t) and perturbed
x8(t) trajectories are considered. The two orbits are initia
placed at a distanced(0)5dmin , with dmin!1, assuming a
certain normd(t)5uux8(t)2x(t)uu. In order to ensure tha
the perturbed orbit relaxes on the attractor a first scra
integration is performed for both the orbits until their di
tance has grown fromdmin to d0 ~where 1@d0@dmin). This
transient ensures also the alignment of the perturbation a
the direction of maximal expansion. Then the two trajec
ries are let to evolve and the growth of their distanced(t)
through different preassigned thresholds (dn5d0r n, with n
50, . . . ,N and typically 1,r<2) is analyzed.

After the first threshold,d0, is attained the timest(dn ,r )
required ford(t) to grow fromdn up todn11 are registered.
When the largest thresholddN ~which should be obviously
chosen smaller than the attractor size! is reached, the per
turbed trajectory is rescaled to the initial distancedmin from
the reference one.

By repeating the above procedureN times, for each
thresholddn , one obtains a set of ‘‘doubling’’ times~this
terminology is strictly speaking correct only ifr 52)
$t i(dn ,r )% i 51, . . . ,N and one can define the average of a
observableA5A(t) on this set of doubling times as:

^A&e[
1

N (
i 51

N
Ai ,

whereAi5A„t i(dn ,r )…. The averagê•••&e does not coin-
cide with an usual time average^•••& t along a considered
trajectory in the phase space, since the doubling times t
cally depend on the considered point along the trajectory
on the thresholddn . The two averages are linked~at least in
the continuous case! via the following straightforward rela
tionship @18#:

^A~ t !& t5
1

TE0

T

dt A~ t !5
^At&e

^t&e
, ~1!
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whereT5( i 51,N t i(dn ,r ) and ^t(dn ,r )&e5T/N.
A natural definition of the finite size Lyapunov expone

l(dn) is the following @14#:

l~dn![ K 1

t~dn ,r !L
t

ln r[
1

^t~dn ,r !&e
ln r . ~2!

The last equality stems from the relationship among the
averages reported in Eq.~1!.

In the limit of infinitesimal perturbationdn and of infinite
T ~or N ) the FSLE converges to the usual maxim
Lyapunov exponent

lim
N→`

lim
dn→0

l~dn!5l. ~3!

In practice, at small enoughdn , l(dn) displays a plateau
;l. Moreover, one can verify thatl(dn) is independent of
r, at least for not too larger @14#.

In Eq. ~2! continuous time has been assumed, but disc
time is the most natural choice when experimental data
~typically sampled at fixed intervals! are considered. In orde
to generalize the FSLE’s definition to the case of discr
time dynamical systems, let us consider the following ma

x~ t11!5F„x~ t !…,

wherex is a continuous variable, andt assumes integer val
ues. In this caset(dn ,r )5t has simply to be interpreted a
the minimum ‘‘integer’’ time such thatd(t)>dn11, and,
since nowd(t)/dn is a fluctuating quantity, the following
definition is obtained:

l~dn![
1

^t~dn ,r !&e
K lnS d~t!

dn
D L

e

. ~4!

A theoretical estimation of Eq.~4! is rarely possible, and in
most cases, one can only rely on a numerical computatio
l(dn). However, in the following we will report two simple
cases for which an approximate analytic expression for
FSLE can be worked out.

Let us first consider the tent map

F~x!5122Ux2
1

2U,
where xP@0:1#. This is a one-dimensional chaotic ma
sincel5 ln 2 is positive.

Due to the simplicity of this map, one can estimate t
expression~4! analytically obtaining the following approxi
mation:

l~d!. ln 22d, ~5!

valid for not too larged values. The maximal Lyapunov
exponent is correctly recovered in the limitd→0 and the
above expression reproduces quite well the numerical e
mate of the FSLE@see Fig. 1~a!#. An important point to
stress is that for this map the finite amplitude perturbatio
grow with the same rate or slower than the infinitesim
1-2
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LINEAR AND NONLINEAR INFORMATION FLOW IN . . . PHYSICAL REVIEW E 63 056201
ones. The contraction of perturbations at large scales is
to saturation effects related to the attractor size. A sim
dependence of the FSLE on the considered scale is obse
for the majority of the chaotic maps~logistic, cubic, etc.!, as
we have verified.

One can wonder if there are systems for which, at va
ance with the behavior~5!, the finite size corrections leads t
an enhancement of the growth rate at large scales. As sh
in Ref. @11#, the shift mapF(x)5bx mod 1 represents a
good candidate. Also in this case it is possible to obtain
analytical expression for the FSLE, whend,@1/(r 1b)#,

l~d!5
1

12d F ~122d!ln b1d lnS 12bd

d D G , ~6!

which again correctly reproduces the numerical data@see
Fig. 1~b!# and in the limitd→0 reduces to the correspondin
maximal Lyapunov exponentl5 ln b. As expected, finite
amplitude disturbances can grow faster than infinitesim
ones:

l~d!.l~d→0!5l for 0,d<dsat, ~7!

wheredsat indicates the threshold at which saturation effe
set in. An even more interesting situation is represented
the circle mapF(x)5a1x mod 1. This map is marginally
stable~i.e., l50), but it is unstable at finite scales. Indee
the FSLE is given byl(d)5d/(12d)ln@(12d)/d#, which is
positive for 0,d,1/2. Therefore at small, but finite, pertu
bations a positive growth rate is observed in spite of
~marginal! stability against infinitesimal perturbations. As

FIG. 1. l(d) versusd for the tent map~a! and the shift map
with b52 ~b!. The continuous lines are the analytically comput
FSLE and the boxes the numerically evaluated one. The two m
are displayed in the insets.
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consequence, the circle map can exhibit behaviors that
be hardly distinguished from chaos under the influence
noise, since small perturbations may be occasionally dri
into the nonlinear~unstable! regime and therefore amplified
Of course, the role of noise can be played by coupling w
other maps, e.g., it has been found that coupled circle m
display behavior resembling~for some aspects! that of a cha-
otic system @11#. This phenomenon becomes even mo
striking in certain coupled stable maps where, even if
maximal Lyapunov exponent is negative@9#, one can have a
strong sensitivity to noninfinitesimal perturbations@19# ~see
Sec. IV B for a detailed discussion!.

The two maps here examined for which Eq.~7! holds
have a common characteristic: they are discontinuous. H
ever, in order to observe similar strong nonlinear effects, i
sufficient to consider a continuous map with high, but fini
first derivativeuF8u values@10#. In this respect a simple ex
ample, that will be examined more in detail in Sec. IV,
represented by the map

F~x!55
bx, 0<x,1/b,

12c~12q!~x21/b!, 1/b<x,
b1c

bc
,

q1dS x2
b1c

bc D ,
b1c

bc
<x<1;

~8!

with b52.7, d50.1, q50.07, andc5500. Forc→` the
map ~8! reduces to the one studied in Ref.@9#. For the map
~8! the FSLE dependence ond is similar to that observed fo
the shift map.

III. INFORMATION SPREADING IN SPATIALLY
DISTRIBUTED SYSTEMS

In this section we will examine the mechanisms beh
the information flow in spatially distributed systems. In pa
ticular, the influence of linear and nonlinear effects on info
mation~error! spreading will be analyzed. As a prototype
spatially distributed system coupled map lattices~CML’s!
@15# are considered:

xi~ t11!5F„x̃i~ t !…

x̃i~ t !5~12«!xi~ t !1
«

2
@xi 21~ t !1xi 11~ t !#, ~9!

wheret and i are the discrete temporal and spatial indicesL
is the lattice size (i 52L/2, . . . ,L/2), xi(t) the state vari-
able, and«P@0:1# measures the strength of the diffusiv
coupling.F(x) is a nonlinear map of the interval ruling th
local dynamics.

In order to understand how the information spreads alo
the chain, let us consider two replicas of the same syst
x(t)5$xi(t)% andx8(t)5$xi8(t)%, that initially differ only in
a single site of the lattice~e.g., i 50) of a quantityd0, i.e.,

uxi8~0!2xi~0!u5Dxi~0!5d0d i ,0 , ~10!

ps
1-3
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MASSIMO CENCINI AND ALESSANDRO TORCINI PHYSICAL REVIEW E63 056201
whered i ,0 is the Kronecker’s delta. In a chaotic system t
perturbation will typically grow locally and spread along th
chain. These phenomena can be studied by considering
difference field

Dxi~ t !5uxi8~ t !2xi~ t !u5uF„x̃i8~ t21!…2F„x̃i~ t21!…u.
~11!

It has to be stressed that the full nonlinear dynamics cont
utes to the evolution ofDxi(t).

The spreading of this initially localized disturbance can
characterized in terms of the velocity of information prop
gationVP @2,4#. As shown in Fig. 2,Dxi(t) can grow only
within a light cone, determined byVp . For velocities higher
thanVp the disturbance is instead damped. This individua
a sort of predictability ‘‘horizon’’ in space-time, i.e., an in
terface separating the perturbed from the unperturbed reg

The velocityVp can be directly measured by detecting t
leftmost i l(t) and the rightmosti r(t) sites for which at time
t the perturbationDxi(t) exceeds a preassigned thresho
The definition ofVp is the following:

Vp5 lim
t→`

lim
L→`

i r~ t !2 i l~ t !

2t
, ~12!

where the limitL→` has to be taken first to avoid bound
aries effects. The velocity~12! does not depend on the cho
sen threshold values@2,4,10#.

Since the dynamics of the difference field~11! is not con-
fined in the tangent space, non linearities can play a cru
role in the information propagation. Indeed, we will see th
the evolution of the disturbances strongly depend on the c
sidered mapF(x) and in particular on the shape ofl(d). In
the next subsection propagation in CML’s with local chao
maps for whichl(d)<l ;d is discussed. Local maps fo
which the condition~7! holds will be the subject of Sec
III B.

A. Linear mechanisms

Since in this subsection we consider CML’s for which t
local instabilities are essentially dominated by the behav
of infinitesimal perturbations, most of the features can

FIG. 2. Evolution ofDxi(t), for a chain of coupled tent map
lattices with a coupling«52/3. The initial perturbation is taken a
in Eq. ~10! with d051028.
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understood by limiting the analysis to the tangent space.
evolution in tangent space is obtained by linearizing Eq.~9!,
i.e.,

dxi~ t11!5F8„x̃i~ t !…H dxi~ t !1
«

2
@dxi 11~ t !

22dxi~ t !1dxi 21~ t !#J , ~13!

whereF8 is the first derivative of a one-dimensional chao
map. Let us again consider as initial condition for the evo
tion of Eq. ~13! a localized perturbation as Eq.~10! with d0
infinitesimal. The spatiotemporal dynamics of the tang
vector$dxi(t)% is determined by the interaction and comp
tition of two different mechanisms present in Eq.~13!: the
chaotic instability and the spatial diffusion.

As a first approximation, the effects of the two mech
nisms can be treated as independent. The chaotic instab
leads to an average exponential growth of the infinitesim
disturbanceudx0(t)u'd0 exp@lt#. On the other hand, the spa
tial diffusion, due to the coupling, approximately leads to
spatial Gaussian spreading of the disturbance:udxi(t)u
'udx0(t)u/A4pDt exp(2i2/4Dt), whereD5«/2. Combining
these two effects one obtains

udxi~ t !u'd0

1

A2p«t
expS lt2

i 2

2«t D . ~14!

Since the chaotic nature of the phenomenon will typica
induce fluctuations, Eq.~14! can only describe the averag
shape of the disturbance. Moreover, Eq.~14! holds only
when the perturbation is infinitesimal, since when the dist
bance reaches finite values a saturation mechanism~due to
the nonlinearities! sets in preventing the divergence
udxi(t)u.

To verify the validity of Eq.~14!, we studied the evolu-
tion of localized perturbations of a homogeneous spatiote
poral chaotic state, in particular coupled logistic and te
maps have been considered in the regime of ‘‘fully dev
oped turbulence’’@2#. First, the system is randomly initial
ized and let to relax for a relatively long transient. At th
stage two replicas of the same system are generated an
one of the two a localized perturbation@as in Eq.~10!# is
added. The evolution of the difference field~11! is then
monitored at successive times. In order to wash out the fl
tuations, the shape of the disturbance is obtained avera
over many distinct realizations.

As one can see from Fig. 3, Eq.~14! is fairly well verified
for large enough coupling while it fails at small« @20#.
These discrepancies are due to the finite spatial resolu
~that in CML’s is always fixed to 1), since for small diffu
sivity constant the discretization of the Laplacian becom
inappropriate. The expression~14! for disturbance evolution
has been already proposed in Ref.@21# for CML’s in two
dimensions. Deviations from Eq.~14! have been observe
also in Ref.@21#, but attributed to anomalous diffusive be
haviors. It has to be remarked that expression~14! is valid
only at short times, since asymptotically (t→`) the infini-
1-4
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tesimal leading edge of the propagating frontudxi(t)u as-
sumes an exponential profile@11#.

For what concerns the propagation velocity, an estima
of Vp can be obtained for infinitesimal perturbations by t
evaluation of the so-called maximal comoving Lyapunov e
ponentsL(v) @6#. The time evolution of an initially localized
~infinitesimal! disturbance~10! in a reference frame moving
with velocity v can be expressed as

udxi~ t !u;d0eL(v)t, ~15!

by following the perturbation along the world linei 5vt one
can easily measure the corresponding comoving Lyapu
exponentL(v) ~for more details see Refs.@6,22#!. The in-
formation propagation velocity is the maximal velocity f
which a disturbance still propagates without being damp
Therefore it can be defined through the following margin
stability criterion@6#:

L~VL![0, ~16!

where the velocity has been now indicated withVL in order
to stress that it has been obtained via a linear analysis.
the maps considered in this section the identityVp5VL is
always fulfilled.

As shown in Ref.@6#, in a closed system with symmetri
coupling L5L(v) has typically a concave shape, with th
maximum located atv50 @in particularl5L(v50)]. An
approximate expression can be obtained forL(v), by sub-
stituting i 5vt in Eq. ~14! and by comparing it with Eq.~15!:

L~v !5l2v2/2«. ~17!

This parabolic expression forL(v) suffers of the same limits
mentioned for the Gaussian approximation~14! for the dis-
turbance evolution. Anyway, from Eq.~17! an analytical pre-
diction can be obtained forVL :

FIG. 3. Average evolution of perturbations for a CML of logi
tic maps @ f (x)54x(12x)# for ~a! «51/3 and ~b! «51/10.
^Dxi(t)& is reported as a function ofi 2 in a lin-log scale at different
times ~from bottom to top t510,20,30,40). Deviations from a
straight line correspond to deviation from the Gaussian sha
^Dxi(t)& is obtained as an average over 103 realizations, for each
one Dxi(0) has been chosen as in Eq.~10! with d051027. For
comparison the prediction~14! is also reported~dashed lines!.
05620
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VA5A2«l, ~18!

which, as shown in Fig. 4, is indeed very good apart fro
some deviations for«'0 and«'1. In Sec. V we will re-
derive Eq. ~18! by assuming that the chaotic perturbatio
behaves as a front connecting a stable and an unstable~meta-
stable! fixed point in a nonchaotic reaction diffusion system

Let us briefly recall that another method~not suffering for
boundary problems! to determine the comoving Lyapuno
exponent has been introduced in Ref.@22#. The method relies
on the computation of specific Lyapunov exponentsl(m)
associated to an exponentially decaying perturbation~with
spatial decay ratem). In other words one assumes that t
spatiotemporal evolution of an infinitesimal disturbance c
be written as

udxi~ t !u;d0el(m)t2m i . ~19!

Since the asymptotic leading edge of the front separa
perturbed from unperturbed part of the chain has an ex
nential shape, the above assumption~19! is appropriate to
study its evolution.

It is straightforward to show that the comoving Lyapun
exponents are related to the specific ones via a Lege
transform@22#, all the data concerning comoving exponen
reported in this paper have been obtained with such
method. Moreover, a further result concerns the linear ve
ity VL , it can be shown@11# that its value corresponds to th
minimal propagation velocityV(m)5l(m)/m associated
with perturbations of the form~19!, i.e.,

VL5min
m

l~m!

m
[

lL

mL
, ~20!

where mL and lL5l(mL) represent the spatial decay ra
and the temporal growth rate of the leading edge, resp
tively. The expression~20! for the linear velocity is identical

e.

FIG. 4. Comparison between the directly measured propaga
velocities Vp5VL ~circles! and the prediction~18! ~boxes! for a
CML of logistic maps with~a! a53.9 and~b! a54, and of tent
maps with~c! a52 ~d! a51.8. Lattices of 43104 maps has been
used.
1-5
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MASSIMO CENCINI AND ALESSANDRO TORCINI PHYSICAL REVIEW E63 056201
to the one derived for propagation of fronts connecting
stable to an unstable steady state@23#.

B. Nonlinear mechanisms

In this section we investigate the case of coupled maps
which l(d).l(0) in some interval ofd. As noticed in Sec.
II, this behavior can be observed in chaotic~absolutely un-
stable! maps, as well as in stable and marginally stable ma
Let us first analyze chaotic maps, nonchaotic ones will
discussed in Sec. IV B.

For these systems it is possible to haveVp.VL , this
means that the disturbance can still propagate also in
velocity range@VL ,Vp#, even if the corresponding comovin
Lyapunov exponents are negative. Therefore, the linear m
ginal stability criterion~16! does not hold anymore. We wan
to stress that the condition~7! is necessary, but not sufficien
to ensure thatVp.VL , since all the details of the couple
model play also an important role.

In Fig. 5 the spatiotemporal evolution of an initially lo
calized disturbance of a chain of coupled shift maps is
ported. As shown in Ref.@24#, when the coupling«<1/2 the
maximal Lyapunov exponent for such model coincides w
that of the single map@namely,l5 ln(b)] and if b.1 the
system is chaotic. Initially the perturbation, that is still infin
tesimal, spreads with the linear velocityVL above defined. At
later time it begins to propagate faster with a velocityVP
.VL . Comparing Fig. 5 with Fig. 2, one can see that t
second stage of the propagation sets in when the bulk of
perturbed region reaches sufficiently high values. As a ma
of fact the initial stage of propagation disappears if we i
tialize the two replicas with a disturbance of amplitu
O(1). From these facts it is evident that the origin of t
information propagation characterized byVp.VL should be
due to the strong nonlinear effects present in this type
CML.

The behavior at long times can be understood by con
ering the dependence ofl(d) on the disturbance amplitud
as shown in Fig. 1~b!: actually the figure refers to the sing
map with b52, but the shape ofl(d) is qualitatively the
same also for the coupled system and for otherb values.
Until the perturbation is infinitesimall(d).l and the linear
analysis applies, when the disturbance becomes bigger th
certain amplitudedNL the growth will be faster, since now

FIG. 5. The same of Fig. 2 for a lattice of coupled shift ma
with b51.03, «51/3.
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l(d).l. As it can be clearly seen in Fig. 6, the perturbati
is well reproduced by the linear approximation~14! until the
amplitude of the perturbation reaches a critical valuedNL

;O(1024) above which the nonlinear effects set in. At th
stage the nonlinear instabilities begin to push the front le
ing to an increase of its velocity and deforming the profile
the perturbation. This becomes exponential at much sho
times than in the linear situation discussed in previous s
section. Moreover, when the propagation is dominated
nonlinear mechanisms the spatial decay ratemNL of the
asymptotic leading edge will be greater of the linear e
pected valuemL : this result can be explained again invokin
the analogy with propagation of fronts connecting stea
states@11#. To better clarify the difference between the line
and nonlinear mechanisms we show the behavior ofDxi(t)

FIG. 7. Time evolution ofDx0(t) ~solid line! and Dxi(t)
~dashed line!, for i 5V2t with V251/3. In this last case the data fo
two different chain configurations are reported. The map used is
shift map withb51.1, «51/3, andL523103. For these param-
eters one hasVL50.250 andVp50.342. Note that betweent
5200 andt5500 for Dxi(t) the numerical precision is reached.

FIG. 6. Evolution of the perturbationDxi(t) for a CML of shift
maps with «51/3 and b51.04 at four different timest
5250,450,650,1000. The solid lines are the expected Gaus
shape~14!. The decay rate of the asymptotic exponential profile
mNL;1.47, noticeably greater than the linear valuemL50.42.
1-6
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along the world linei 5Vt for two different velocities:V1
50 and VL,V2,Vp . From Fig. 7, one observes for th
zero-velocity situation an exponential increase of the per
bation with ratel until it eventually saturates. For the ca
corresponding to velocityV2 an initial exponential decay
with rateL(V2) is seen, followed at later times by a resu
gence of the disturbance. The successive evolution of
perturbation is no more exponential and exhibits strong fl
tuations. These features suggest that in order to gener
the criterion~16! to nonlinear driven information spreadin
the growth of finite amplitude perturbations in a moving re
erence frame should be analyzed.

IV. FINITE SIZE LYAPUNOV EXPONENT:
EXTENDED SYSTEMS

In this section we introduce the finite size comovi
Lyapunov exponent~FSCLE! that is a generalization of th
FSLE to a moving reference frame. First of all let us defi
the FSLE for an extended system: in this case exactly
same definition given in Sec. II applies, apart from so
ambiguities in the choice of the norm to employ for meas
ing the distanced(t) of the perturbed,x8(t)5$xi8(t)%, from
the unperturbed replica,x(t)5$xi(t)%. A natural choice
could be to perturb randomlyx(t) and to look for the dou-
bling times associated to the evolution of the distance

D̃~ t !5
1

L (
i 52L/2

L/2

uxi8~ t !2xi~ t !u; ~21!

an alternative choice consists in perturbing a single site
the chain, let us sayi 50, at timet50 and to evaluate the
‘‘single site’’ norm

Dx0~ t !5ux08~ t !2x0~ t !u. ~22!

We have verified that the two norms~21! and ~22! give
equivalent results for what concerns the evaluation ofl(d).
In this paper we will limit to consider the norm~22!.

In order to measure the FSCLE in a reference frame m
ing with velocityv, we have simply measured the differen
~22! along a world linei 5vt, i.e.,

Dxi c1[vt]~ t !5uxi c1[vt]8 ~ t !2xi c1[vt]~ t !u, ~23!

where @•••# denotes the integer part andi c is introduced
below.

The FSCLE is then estimated as in Sec. II. Once a se
thresholdsdn5r nd0, with n50, . . . ,N, is chosen and the
perturbation is initialized asDxi(0)5dmind i ,0 with dmin
!d0. A preliminary transient evolution is performed in ord
to allow to the perturbed orbit to relax on the attractor. At t
end of this short transient the positioni c where the perturba
tion reaches its maximum is detected, this point is taken
the vertex of the light cone from which all the consider
world lines i 5vt depart.

The FSCLE is then defined as
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L~dn ,v !5
1

^t~dn!&e
K lnS D

dn
D L

e

, ~24!

where the dependence on the velocityv derives from the
employed norm~23!. Note that we have used Eq.~4! due to
the discreteness of the temporal evolution. In the limit
very small perturbation the FSCLE reduces to the comov
Lyapunov exponent

lim
d→0

L~d,v !5L~v !, ~25!

and, forv50 one has the FSLEl(d).
Actually there are finite time effects which prevents t

limit ~25! to be correctly attained. This is related to the fa
that the FSCLE’s can be obtained only via finite time me
surements. In the Appendix we show how one can inclu
such finite time corrections.

In the next subsections we will give evidences that
marginal linear stability criterion ~16! can be generalized
with the aid of the FSCLE in the following way:

max
d

$L~d,v !%50 for v>Vp , ~26!

whereVp can be eitherVL , if the information propagation is
due to linear mechanisms, or greater thanVL , when nonlin-
ear mechanisms prevail on the linear ones. Forv.Vp one
has L(d,v)50, since due to the definition of the FSCL
negative growth rate appear to be 0.

A. Chaotic systems

Let us first consider chaotic systems for whichVp[VL ,
in this case

max
d

$L~d,v !%5L~v !

and the generalized criterion~26! reduces to the linear on
~16!. As already stressed in Sec. III B, shift coupled ma
represent a prototype of the class of chaotic models
which Vp can be eventually bigger thanVL . For this model
the behavior ofL(d,v) for various velocities is reported in
Fig. 8.

For v,VL , we observe thatL(d,v);L(v) up to a cer-
tain value of the disturbance amplitudedNL, above which the
FSCLE increases and exhibits a clear peak at some highd
value. From Fig. 8~a! it is clear thatdNL ~which denotes the
set in of the regime dominated by nonlinear mechanism!
decreases for increasing velocities and finally vanishesv
5VL . This behavior is reasonable since, as shown in Fig
initially the disturbance evolves along the chain followin
the linear mechanism characterized byL(v), but as soon as
in the central sited.dNL the nonlinear mechanism begins
be active. Thus a nonlinear front is excited and this inva
the linear region propagating with a velocity higher thanVL ,
therefore the higher isv the smaller is the scale at whic
nonlinear effects are observed.

In the intervalVL<v<Vp @see Fig. 8~b!#, L(d,v) is still
positive and its maximal value decreases for increasingv.
1-7
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The FSCLE vanishes forv5Vp as Fig. 9~a! shows. In this
velocity rangeL(v) is always negative, therefore the inst
bilities observed in a reference frame moving with veloc
higher thanVL have a fully nonlinear origin. The residua
fluctuations present inL(d,v) are essentially due to the lim
ited statistics. Indeed the nonlinear growth as shown in Fi
is extremely fluctuating.

In Fig. 9~a! the dependence of maxd$L(d,v)% on v for
coupled shift maps is reported, as expected it vanishes
actly for v5Vp . For v,VL a nonmonotonous behavior o
maxd$L(d,v)% is observable, this is probably due to the co
plex interplay of linear and nonlinear effects. Forv.VL , the
behavior is smoother and a monotonous decrease is
served. As discussed in Sec. II, the discontinuity presen
the shift map is not necessary in order to observe nonlin
mechanisms prevailing on linear ones.

As an example of continuous map exhibiting an inform
tion propagation velocityVp.VL the map~8! is considered.

FIG. 8. L(d,v) as a functiond for various velocities. The data
refer to the coupled shift maps withb51.1 and«51/3, with these
parametersVL;0.250 andVp;0.342. In ~a! results for velocities
v,VL are reported, namely~from top to bottom!, v50, v50.10,
andv50.16. The straight lines indicateL(v). In ~b! velocities in
the range@VL :Vp# are reported, from the topv50.25, v50.286,
v50.30, v50.33, v50.34. Chains of lengths fromL5104 up to
L5105 have been employed and the statistics is over 23103 dou-
bling times.
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This type of CML has been already studied in Ref.@10#: it
has been observed that in a certain parameter rangeVp can
be finite even if the map is nonchaotic. Moreover, also in
chaotic regime there is a window of parameters whereVp
.VL , with our parameters choicel'0.182.0.

Also in the present case we observe an overall behavio
the FSCLE resembling that of the coupled shift maps. T
main point that we want to remark is that in the limitv
→Vp L(d,v)→0, as shown in Fig. 9~b!. At variance with
the shift map~that is an everywhere expanding map! the
considered map shows contracting and expanding interv
Therefore the disturbances during their spatiotemporal e
lution can be alternatively expanded or contracted. This le
to strong fluctuations in the FSCLE values, that are diffic
to remove.

As a matter of fact we observed that even for velocit
slightly larger thanVp L(d,v) can be nonzero. But the sta

FIG. 9. maxd L(d,v) ~dashed line with points! versusv com-
pared withL(v) ~continuous line!. ~a! Results for coupled shift
maps with the same parameters as Fig. 8, the vertical lines indic
VL'0.250 and the measured~12! propagation velocity Vp

'0.342. ~b! Data for the coupled maps~8! with parametersb
52.7, d50.1, q50.07, andc5500 and with coupling«52/3, the
vertical lines indicatesVL'0.39 andVp'0.59. In this second cas
chains of lengthL523104 have been considered and the statist
is over 23104 doubling times. The reported values for maxd L(d,v)
refer to an average over five values ofd around the peak position o
L(d,v).
1-8
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tistics of these anomalous fluctuations is extremely low,
ferring to the parameters reported in Fig. 9~b! for v50.6
.Vp50.59 we observed an expansion~instead of the ex-
pected contraction! of disturbances in the 0.5% of the stu
ied cases. For higher velocitiesL(d,v) is zero for any con-
sideredd.

B. Nonchaotic systems

On the basis of the linear analysis discussed in Sec. I
the propagation of disturbances should be present onl
chaotic systems. For nonchaotic onesl<0 and from Eq.
~16! one trivially obtainsVL50. On the other hand, in th
class of systems for whichl(d)>l there are also stable an
marginally stable systems. Therefore, a propagation
solely to nonlinear terms can still be present@9–11#. In this
section we want to discuss the possible employ of the FS
to characterize these maps.

Before entering into the description of the FSLE comp
tation in such systems, it is of interest to recall an import
phenomenon which appears in stable systems: the so-c
‘‘stable chaos’’@9#. Stable systems asymptotically evolve t
wards trivial attractors~i.e. fixed points, periodic, or quas
periodic orbits!. However, in spatially extended systems
may happen that the time needed to reach the asymp
state is very long: it has been found that in certain sta
CML the transient time diverges exponentially with the nu
ber of elements of the chain@8#. Moreover, this transient is
characterized by a quasistationary behavior allowing for
investigation of the properties of the model with statistic
consistency. In Ref.@9# it has been shown that a chain
coupled maps of the type~8!, considered in their discontinu
ous limit ~i.e., for c→`), is nonchaotic but still exhibits
erratic behaviors. This is associated to a non-zero infor
tion spreading within the system.

As far as the computation of the FSLE for these syste
is concerned, some remarks are worth to be done. The
nition of the FSLE in terms of error doubling times cannot
used in a straightforward manner to determine negative
pansion rates. Another important point is that, at varia
with the case of chaotic maps, finite perturbations should
now considered in order to observe an expansion.

These two points impede a straightforward implemen
tion of our method to study these systems. Indeed, if
starts with too small perturbations the propagation does
manifest, while if one initializes the system with a fini
perturbationl(d) cannot be estimated with the required a
curacy. Indeed, the only way to have an independence
l(d) from the initial conditions is to initialize the system
with infinitesimal perturbations and then to follow them un
they become finite due to the dynamics of the system~see
Ref. @14# for a detailed discussion!.

The coupled~8! maps forc→` have been recently ana
lyzed by Letz and Kantz@19# in terms of an indicator similar
to the FSLE~i.e., able to quantify the growth rate of nonin
finitesimal perturbations!. This indicator turns out to be
negative for infinitesimal perturbations and becomes posi
for finite perturbations. This means that a finite perturbat
of sufficient amplitude can propagate along the system du
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nonlinear effects. This confirms what was previously o
served in Ref.@11# for marginally stable systems.

In Fig. 10 we show the behavior of a quantityI (dn) simi-
lar to l(dn) which has been obtained as follows. We cons
ered two trajectories at an initial distancedn , after one time
step evolution the distanced between the trajectory is mea
sured. Then one of the two trajectories is rescaled at a
tancedn from the other, keeping the direction of the pertu
bation unchanged, and the procedure is repeated se
times and for several values ofdn . Then we averaged
ln(d/dn) over many different initial conditions obtainin
I (dn). For dn→0, this is nothing but the usual algorithm fo
computing the maximal Lyapunov exponent@25#.

As discussed in Ref.@14# this method suffers from the
problem that whendn is finite one is not able to correctly
sample the measure on the statistically stationary state
deed a finite perturbation will generically bring the trajecto
out from the ‘‘attractor.’’ Nevertheless the result is in goo
agreement with the one obtained in Ref.@19# and confirms
that at the origin of the perturbation propagation in this s
tem there should be a mechanism very similar to the
discussed for the shift map. Further studies related to
‘‘stable chaos’’ phenomenon have been recently perform
@26#.

V. ANALOGIES WITH FRONT PROPAGATION
IN REACTION DIFFUSIONS SYSTEMS

The perturbation evolution in spatially distributed syste
can be described as the motion of an interface separa
perturbed from unperturbed regions. In this spirit, one c
wonder if and to what extent it is possible to draw an an
ogy between the evolution of this kind of interface and t
propagation of fronts connecting steady states in reac
diffusion systems. As already noticed in Ref.@11#, the two
phenomena display many similarities. In the following w
will discuss the similarities and differences, in particular w
will introduce a simple phenomenological model which c
help us in highlighting the analogies.

Let us start by recalling the basic features of fronts pro
gation in reaction diffusion systems with reference to t

FIG. 10. I (d) as a function of the amplitude perturbation in
lin-log scale for the discontinuous coupled maps~8!, in the limit
c→`, with «51/3 andL535. The map is reported in the inse
The negative maximal Lyapunovl520.105 is recovered at sma
scales. For the computation details see the text. In the inset
single map is shown.
1-9
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Fisher-Kolmogorov-Petrovsky-Piscounov~FKPP! equation
@16#

] tu~z,t !5D]zz
2 u~z,t !1G@u~z,t !#, ~27!

where u(z,t) represents the concentration of a react
which diffuses and reacts, the chemical kinetics is given
G(u). Typically the functionG(u)PC1@0,1# @with G(0)
5G(1)50] exhibits one stable (u51) and one unstable
(u50) fixed point. Once the system is prepared on the sta
state@u(z)50 ;z#, an initial ~sufficiently steep! perturba-
tion @e.g., a step functionu(z,t50)5Q(z2z0)] will give
rise to a smooth front moving with a velocityVp , that will
connect the unstable and the stable fixed points: as a r
the stable state will invade the unstable one. This equa
admits many different traveling solutions that are typica
characterized by their propagation velocities, however fo
sufficiently steep initial perturbation of the unstable state
selected front is unique and its velocityVp is bounded in the
interval @Vmin ,Vmax#, where

Vmin52ADG8~0! ~28!

and

Vmax52AD sup0,u,1H G~u!

u J . ~29!

If G(u) is concave sup0,u,1$G(u)/u% is attained atu50
~i.e., sup0,u,1$G(u)/u%5G8(0)] and theselected velocity
is always the minimum one: the front is ‘‘pulled’’ by th
growth of infinitesimal perturbations of the unstable sta
Otherwise, if G(u) is convex one can observe a veloci
Vp.Vmin : the front is now ‘‘pushed’’ by the growth of finite
amplitude perturbations. These results are known as
Aronson and Weinberger theorem@27# ~for more details see
Ref. @17#!. The velocityVmin can be easily obtained by pe
forming a linear analysis of Eq.~27! and by employing a
marginal stability criterion@23#.

The subject of our analysis is the spreading of pertur
tions in a chaotic media. In order to compare our case w
the FKPP, we should consider the time evolution of the d
ference of two chaotic trajectories$Dxi(t)% i 51,L . However,
the nature of the two phases separated by the front is
different from the FKPP case. The interface separates
unstable (Dxi50) state from a ‘‘statistically stable’’ one
With the term ‘‘statistically stable’’ we mean that behind th
front, in the bulk of the perturbed regionDxi(t) does not
converge to a stable fixed point~as for the FKPP! but it
fluctuates in a stationary way around an average value.
suggests that a good model for reproducing this dynam
evolution would be a FKPP with a stochastic kinetics@28#.
However, many similarities with FKPP can be established
neglecting the chaotic fluctuations and considering the a
age shape of the front@11#. In practice, this can be done b
averaging the perturbation evolution over many different i
tial conditions.

Once the chaotic fluctuations are neglected, one can
press the average perturbation growth in any site of the c
via the following mean-field approximation:
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ui~ t11!5 exp@l„ũi~ t !…#ũi~ t !, ~30!

wherei,t are the discrete space and time indices andũi5(1
2«)ui1«/2(ui 111ui 21). Here,ui(t) indicates the ‘‘aver-
age’’ Dxi(t) andl(u) the corresponding FSLE~at least for
positive growth rates!. In the limit u→0 l(u)→l, while,
for u;O(1), l(u) should reflect the saturation effects ass
ciated to the nonlinear map. In the infinitesimal limit (u
→0) one essentially recovers the model discussed in R
@29#.

By passing to continuous variables is possible to sh
that Eq. ~30! can be reduced to Eq.~27! ~at least at the
leading order!. In order to transform Eq.~30! in its continu-
ous version, let us introduce infinitesimal spatial and tem
ral resolutionsdx anddt, and assume that the diffusive sca
ing holds, i.e.,dx25dt. Limiting to the first order expansion
in dt ~second order indx), one easily shows that the con
tinuous counterpart of Eq.~30! is

] tu5l~u!u1
«

2
]xx

2 u, ~31!

which is nothing but Eq.~27! with

l~u!5
G~u!

u
, ~32!

and D5«/2. As a consequence of the identity~32!, one
should observe a pulled dynamics for the chaotic front ifl
>l(u) ;u>0, and a pushed one could occur only
maxu$l(u)%.l. This can be considered as a reformulation
the Aronson and Weinberger theorem@27# in the context of
information propagation. The velocity bounds~28!,~29! can
be now identified withVa5A2«l, i.e., Eq.~18!, the first one
and with

Vs5A2« max
u

$l~u!% ~33!

the second one. We stress again that the lower velo
bound is indeed represented byVL and that it coincides with
Va only for sufficiently strong diffusive coupling«.

Another interesting point that we can investigate via
numerical simulation of the mean field effective equati
~30! is the dependence of the propagation properties on
specific shape ofl(u). For instance, as previously conje
tured, we expect that if a monotonous decreasingl(u) is
considered one should observe linear propagation, only.
deed, numerical integrations of the model~30!, with the
choice l(u)5A2Bu, being A and B positive constants,
show that Vp5Va5A2«A, where A corresponds to the
maximal Lyapunov of the effective model. A generalizatio
of this simple model would require to considerA and B as
fluctuating quantities generated by suitable stochastic p
cesses. But while for the choice ofA one can have some hin
@29#, this is not the case forB.

Let us now consider the nonlinear propagation case, as
have previously seen a necessary condition in order to h
Vp.VL is that maxu$l(u)%.l for some finiteu. As for the
1-10
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LINEAR AND NONLINEAR INFORMATION FLOW IN . . . PHYSICAL REVIEW E 63 056201
actual value of the selected velocity, this will depend on
value of the diffusive coupling and on the specific shape
l(u). In the following we will examine the dependence
Vp on two quantities that characterizel(u): the difference
umaxd l(d)2lu and the scaledNL at which the nonlinear ef-
fects set in.

As a first example let us considerl(u) as a step function

l~u!5H A, 0,u,dNL,

B, dNL<u,dsat,

2C, u>dsat,

~34!

whereA, B, andC are positive quantities, withB.A, while
dNL and dsat are amplitude thresholds. The parameterA is
nothing but the Lyapunov exponent,B mimics the nonlinear
terms leading to an enhancement of the growth rate, and
last term mimics the damping of the perturbation due to
saturation effects. In Fig. 11 it is reported the behavior of
propagation velocity for the model~30! with l(u) given by
Eq. ~34! for various values ofB, onceA and C are fixed.
From the figure is evident that ifB,A thenVp[Va ~i.e., we
are in the linear regime!, while as soon asB.A an increase
of Vp with respect toVa is observed.

In the whole examined parameter rangeVp is always rea-
sonably approximated byVs , but smaller. By increasingB
one observes an increase of the difference between the
sured velocity and the linear prediction. These results c
firm that the condition~7! is indeed a necessary condition
order to observe nonlinear propagation of information.

We will now investigate the role ofdNL in determining
the propagation velocity. It is quite obvious that modeli
the dynamics via Eqs.~30! and~34! the nonlinear effects will
disappear in the limitdNL→dsat and this is indeed confirme
by the simulations~see Fig. 12!. In order to examine a les
obvious situation, a modification of the expression~34! is
also considered. In this second casedsat5d0

sat1dNL is as-
sumed, therefore by varyingdNL the extension of the ampli
tude interval over which the nonlinear mechanism is act

FIG. 11. Propagation velocities~symbols! for the model~30!
with l(u) given by Eq.~34! as a function ofB5 ln(r2), with «
51/3, A5 ln1.1 andC5A. The threshold values are fixed todNL

51023 andd sat50.53 and a chain of 43104 sites has been used
The curves refer toVa5A2«A ~solid line! andVs5A2«B ~dashed
line!. Note that in the linear caseB,A there is perfect agreemen
between the measured velocity and the prediction.
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will not be modified~being fixed tod 0
sat). But also in this

second caseVp→Va for increasingd NL, this indicates that
the smaller are the perturbation amplitudes affected by
nonlinear mechanisms the stronger will be the nonlinear
fect on the velocity:Vp→Vs for dNL→0.

Typically, in generic CML’s by varying a control param
eter both the differenceumaxd l(d)2lu as well asdNL will
change. Moreover, even the definition ofd NL for a continu-
ousl(d) is not obvious. In order to understand the validi
of the mean-field approximation~34! in a more realistic case
we consider the shift map. In particular, forl(u) we em-
ployed the analytical expression~6! valid for the single un-
coupled map.

The FSLE for coupled shift maps is actually differe
from Eq. ~6!, but we are neglecting correlations among d
ferent sites and effects due to the specific measure assoc
to the system. Nevertheless, a numerical integration of
~30! equipped with Eq.~6! reproduces semiquantitatively th
features observed for a lattice of coupled shift maps~see Fig.
13!. In particular, also the simple mean-field model~30! with

FIG. 12. Propagation velocitiesVp as a function ofdNL for the
model ~30!,~34! with «51/3, A5 ln(1.1), B5 ln(1.3), C5A, d 0

sat

50.53. The crosses refer to the cased sat5d 0
sat, while the boxes

refer to the cased sat5d 0
sat1dNL. The two lines correspond toVa

5A2«A andVs5A2«B.

FIG. 13. Information propagation velocities for the shift ma
with «51/3: ~boxes! linear velocitiesVL and ~crosses! directly
measured nonlinear ones. The two lines correspond toVa ~18! ~dot-
ted line! and to the propagation velocity for the model~30! with
l(u) given by Eq.~6! ~solid line!. The dashed curve with asterisk
is Vs5A2« maxd$l(d)%.
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MASSIMO CENCINI AND ALESSANDRO TORCINI PHYSICAL REVIEW E63 056201
the choice~6! is able to forecast the observed transition fro
nonlinear to linear behavior forb→2.

Concluding this section we can safely affirm that Eq.~30!
is a reasonable model to mimic the perturbation evolution
a mean field level, neglecting the spatiotemporal fluctuati
and correlations. In the same fashionl(u) can be considered
as an ‘‘effective’’ nonlinear kinetics for the perturbation ev
lution.

VI. FINAL REMARKS

In this paper information~error! propagation in extended
chaotic systems has been studied in detail. In particular,
have analyzed the relevance of linear and nonlinear me
nisms for the propagation phenomena in spatiotemporal
otic coupled map lattices. Linear stability analysis is not
ways able to fully characterize disturbance propagation. T
is particularly true for ~marginally! stable systems with
strong nonlinearities, where finite size perturbations are
sponsible for information spreading in the system. When
nonlinear effects prevail on the linear ones the propaga
velocity of informationVp can be higher than the linear ve
locity VL . A necessary condition for the occurrence of info
mation spreading induced by nonlinear mechanisms has
expressed in terms of the finite size Lyapunov expon
~FSLE!. We have also shown the existence of strong ana
gies between error propagation and front propagation
reaction-diffusion models. In particular, the abovemention
necessary condition is analogous to the Aronson and W
berger theorem@27# for front connecting stable and unstab
steady states. In the linear and nonlinear case, the prop
tion velocity Vp can be identified via an unique margin
stability criterion involving finite size Lyapunov exponen
defined in a moving reference frame. This result general
the corresponding linear criterion expressed in terms of
maximal comoving Lyapunov exponents for the identific
tion of VL @6#.

These results can be of some interest for the synchron
tion and the control of extended systems. It has been rece
shown that the synchronization of coupled extended syst
is strongly influenced by nonlinear effects. In particular, t
synchronization time exponentially diverges with the syst
size, even in nonchaotic situations, provided thatVp.0 @30#.
We believe that in these systems the appropriate indicato
characterize such transition would be the ‘‘transvers
Lyapunov exponent@31#, once extended to finite scales. A
far as control schemes are concerned, since they rely ma
on linear analysis@32#, new nonlinear methods~e.g., based
on the concept of FSLE’s! should be introduced in order t
control the erratic behaviors due to fully nonlinear mech
nisms.

A further aspect that should be addressed in future w
concerns the extension of the applicability of the FSLE a
to linearly stable systems: a candidate in this respect co
be the indicator recently introduced in Ref.@19#. Finally, it is
reasonable to expect that the present analysis is not limite
discrete models but that it can be applied to continuous
tended systems described in terms of PDE’s, e.g., to
complex Ginzburg-Landau equation.
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APPENDIX

In any numerical computation of the Lyapunov expone
one is forced to use a finite time approximation for an infin
time limit. Nevertheless, provided that the convergence
the asymptotic value is fast enough, this is not a dram
problem. As a matter of fact, in low-dimensional system
very fast convergence to the asymptotic value is usually
served. However, this problem manifests more dramatic
in high-dimensional systems, where the time to align alo
the direction of maximal expansion could be very lo
@29,33,34#.

In the present case this problem is complicated by the
that the FSLE is intrinsically a finite time indicator. Indee
the time a perturbation takes to grow from a valued to rd is
finite unlessd→0. However, for the CML models here ana
lyzed and for initially localized perturbation~10! it is pos-
sible to evaluate the corrections to apply to the FSCLE,
timated at finite time, in order to recover, for sufficient
small d, the expected limitL(v). These corrections allow
for a faster convergence of the FSCLE to its asymptotic v
ues.

For the sake of simplicity we consider maps with const
slope, e.g., the shift mapF(x)5bx mod 1, and the CML
defined in Eq.~9!. In this case~for «,1/2) the maximal
Lyapunov exponent of the CML coincides with that of th
single map@24#; i.e., l5 ln b. We will limit to the casev
50 ~i.e., to the FSLE!, since the extension to genericv is
straightforward. As shown in Refs.@33,35# the finite time
evolution of an infinitesimal perturbationd0 initially local-
ized in i 50 can be expressed at timeT as the sum of the
contributionsM (m,T) associated to all the paths connecti
the space-time point (i 50,t50) to the point (i 50,t5T),
i.e.,

dxi 50~T!

d0
5bT (

m50

T

M ~m,T!, ~A1!

wherem is the number of ‘‘diagonal links’’ connecting (i ,t)
to (i 61,t11) present in the path of lengthT. Each path
@m,T# of length T with m diagonal links contributes to the
above sum with a term

M ~m,T!5N~m,T!S «

2D m

~12«!T2m, ~A2!
1-12
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where N(m,T) is the multiplicity associated to each pa
@m,T# ~for more details see@35#!. As can be seen from Eq
~A1! the finite time Lyapunov exponentlT will be given by

lT5
1

T
lnUdx0~T!

d0
U5 ln b1

1

T
lnU (

m50

T

M ~m,T!U. ~A3!

the first contribution is the asymptotic one, while the seco
one will vanish in the limitT→` and it is the finite-time
correction to evaluate. This second contribution can be
merically estimated by considering the finite time evoluti
of the Lyapunov eigenvector$Wi(t)% associated to the maxi
mal Lyapunov exponent, once it is initialized asWi(0)
5d0d i ,0 . The evolution of$Wi(t)% in the tangent space i
ruled by the following equation:

Wi~ t11!5bF ~12«!Wi~ t !1
«

2
@Wi 21~ t !1Wi 11~ t !#G .

~A4!
t.

a

l-

t.

.

05620
d

u-

In order to evaluate the finite time corrections, one sho
iterate at the same time Eq.~A4! ~with b fixed to one! and
the two replicas required for computingl(d) ~see Sec. II!.
Then the estimation of the FSLE should be modified in
following way:

l~d!5
1

^t~dn ,r !&e
K lnS udxi@ t1t~dn ,r !#u

udxi~ t !u D
2 lnS uWi@ t1t~dn ,r !#u

uWi~ t !u D L
e

. ~A5!

The case of maps with nonconstant slope is computation
much heavier. Since for each different path the local mu
plier F8( x̃i) will be different and they will depend on th
particular trajectory under consideration@33,35#. As a matter
of fact we have observed that if the multipliers are equa
distributed among positive and negative values, the fin
time corrections essentially cancel out.
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