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Heterogeneous condensation in dense media
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A theoretical description of heterogeneous nucleation kinetics is presented. This description takes into
account the perturbation of the vapor phase initiated by the growing droplets. The form of the density profile
around the growing droplet is analyzed and some special approximations are given. Then the process of
nucleation in the whole system is described. As a result all the main characteristics of the process are deter-
mined analytically.
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[. INTRODUCTION assuming that the probability of this process is very low and
it can be observed only long after the end of nucleation.
Among the numerous examples of first order phase tran- We have to stress that here we are going to present an
sitions the case of condensation stands out because of imalytical theory which does not require computer simula-
relative simplicity. This case is well investigated experimen-tions except for some calculations of universal constants.
tally and is traditionally regarded as the base for applicatiorThis has to be done only once. The period of nucleatien,
of new theoretical methods. The classical theory of condenthe appearance of new droplets difficult to describe ana-
sation(see, for exampld,1]) gives solid ground for further lytically and ordinarily one has to suggest some model ap-
theoretical constructions. Numerous modifications and reproximation to estimate the influence of the vapor consump-
considerationgsee, for exampld,2]) allow one to consider tion by the existing droplets. Sometimes this influence is not
that the case of condensation is well analyzed both theoretimportant and it is shown ifi7] that this situation is rather
cally and experimentally. widespread in laminar tube flows. [@] the theory for this
One cannot state that all problems in the derivation of thecase was given and the methods of describing the global
stationary nucleation rate are completely solved, but thevolution were presented completely.
nucleation rate dependence on supersaturation is reliable at An analytical method to describe most of the nucleation
least in its general features. Certainly, there exist some urprocess was presented 8] on the basis of the balance
known factors involved in the smooth dependence on thequation for some characteristic time scales. The form of the
parameters of external conditions, but they are not very imsize spectrum was postulated and the parameters of this form
portant in the current consideration. were associated with characteristic time scales. Then some
One has to stress that essentially all investigations so fapecial equations to obtain these time scales were formu-
were intended to determine the rate of nucleation and havkated, which gives a way to get all the main characteristics of
not presented the global picture of the phase transition. Thehe nucleation process.
oretical descriptions of the global evolution appeared later Here we are going to determine the form of the size spec-
than the classical theory of nucleation and they were not strum explicitly taking account of the profile of vapor density
numerous as those intended to get the stationary nucleati@round every droplet. The great importance of the problem
rate. One can extract many aspects of the global picture a¥f vapor exhaustion around the droplet was stressed by Reiss
the phase transition. When there is a sufficient quantity ofn [9], where the stationary profiles around droplets were
aerosol in the systerfi.e., there are already existing droplets obtained. Approximation of the stationary profiles was nec-
formed on impuritiesthe evolution description does not re- essary in[9] to get the rate of droplet growth. It will be
quire the process of droplet formation to be taken into acshown that to describe the kinetics of nucleation it is essen-
count. This radically simplifies the problem, and this casetial to use nonstationary profiles of the vapor density around
was investigated ifi3]. The total number of droplets there is the droplet instead of quasistationary ones. The appearance
already known from external conditions. Here this value will of contradiction between the approach[B] and that used
be the matter of investigation. below is explained by the fact that 8] only distances near
We shall determine the number of droplets and their sizehe droplet were considered. To get the rate of growth it is
spectrum by solving the complex nonlinear problem. Be-sufficient to consider only relatively small distances. Below
cause of the difficulties of this problem, only some numericalwe shall be interested in some large distances which have the
calculations have been presented eafHeh|. The scheme of scale of the mean distance between droplets.
calculations presented [5] allowed the authors to establish ~ To start our consideration one has to fix external condi-
in [4] some dimensionless combinations which essentiallfions. We shall analyze condensation after the instantaneous
simplify the numerical procedure used there and allow rathecreation of initial supersaturation, which is very often used in
complex numerical calculations. The sectional model preexperiments. The theoretical investigations of this case are
sented in[6] simplifies the calculations once more and al- also rather numerous. Among them one can extract the de-
lows both nucleation and coagulation to be taken into acscriptions of metastable phase decay by Wakeslhirh by
count. Here we do not consider the process of coagulatior§egal’ [11], and by Kuni and Grinif12]. The process of
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condensation that occurs during a smooth variation of exteressentially nonlinear character. For simplicity we shall as-
nal conditions is considered ifl3]. Nevertheless, all the sume that there is only one type of heterogeneous center and
mentioned theoretical descriptions of a global picture of conthe total number of centers is fixed in time. During the nucle-
densation kinetics have ignored an important feature of thiation process some of the heterogeneous centers become the
process, namely, the exhaustion of a metastable phase nesnters of supercritical droplets that are growing irreversibly
the growing embryo of a new phase has not been taken prop time. But the nucleation process diminishes the number of
erly into account. Certainly, this exhaustion is partially takenfree heterogeneous centétisose unoccupied by droplétsn

into account in the expression for the rate of embryo growthsome cases the total exhaustion of free heterogeneous centers
in the continuous modél.e., in the diffusion regime of em-  nterrupts the nucleation; in some cases partial exhaustion of
bryo growth. This effect has been analyzed in both station-heterogeneous centers seriously diminishes the nucleation

ary and nonstationary aspects in many publications mainly ifyte This effect has also to be taken into account in a theo-

the field of mechanics of continuous media. But the Presence.iicq description.

e o St Smple analyicalceserpion ofeterogeneous conden-
b ’ ation will be presented here with a proper account of all

taken into account in all the mentioned previous theoretical

descriptions of global evolution during a first order phase,f)rqbtl.emS rfnetﬂtloned g\bovet.. As a result, aII.ItIhebmaln characd—
transition. But, as shown ifil4], this gap can lead to large enstics o the condensation process will be  expresse

numerical effects in the description of the whole process. 1vough some parameters of the external conditions and
The reason that this effect has not been considered befofrough the substance parameters by explicit analytical for-
is rather trivial. Even under a spatially homogeneous conmulas. The error of the description presented will be esti-
sumption of the metastable phase the descriptions wer@ated.
rather difficult to solve[13]. The condensation process has The structure of the theory will be as follows. First we
usually been described in the free molecule regime of dropleghall analyze the density profile around a solitary droplet and
growth where there will be no such gap. This was a seriou§onstruct some approximations. This has much in common
restriction of the theoretical description. with the case of homogeneous condensation considered in
In some publications devoted to construction of a global14] and will be considered briefly. Then we shall construct
picture of the phase transitiofsee, for example[15]) the  some models for the kinetics of the process. We have to
regime of droplet growth was the diffusion regime. This re-show that these models estimate the time evolution of the
quires consideration of the gap in the density near the growsystem during the nucleation period from above and from
ing droplet but the vapor consumption was regarded as hdelow. Since these models give similar results one can state
mogeneous in space. Since this effect is very important onghat an approximate description of the nucleation kinetics is
cannot present a reliable description without taking it intogiven. The error of the description is thus estimated. When
account. Here we shall give a more realistic picture of thehe solution has been obtained we can compare it with the
phase transition which takes this gap into account but allowg, mulas given by the previous approach without density

an ana:_ytigal IS°|Lr’1ti°n: - , _profiles and see the numerical effect of the gap near the
Qualitatively the picture of the condensation process '%rowing droplets.

raet:]cerirtizg?zlri‘b? g;ogfzﬁio{,iguc:%ﬂ;g;; {or\ryaat?rn ?(L;ﬂs The small parameter of the theory will be the inverse
P : y quid p 0 vapor e number of molecules inside the critical embryo of a new
tion, which stops the process of nucleation, but the SUPET hase. The small value of this parameter is not a restriction
critical embryos continue to consume the vapor phase. AP ’ ) P L

f our theory—it comes from the validity of the thermody-

the surplus material of the metastable phase will be accumd?' OV ) o
mic approach to calculating the free energy of the critical

lated in the embryos of a new phase. One can say that tHE? . )
process of condensation is how completed. embryo. There is no other reliable way to calculate the free

A global picture of homogeneous condensation with ex-Nergy except the thermodynamic approacto use the
plicit account of the density profiles was presented 4], thermodynamic approach it is necessary to have at least a
where very large numerical effects were observed, but ordifew dozen molecules inside the embryo.
narily the process of nucleation occurs on heterogeneous AlSO, we shall require a barrier character of the nucle-
centers: This fact radically complicates the theoretical de-ation. This means that every embryo has to overcome an

scription due to the centers’ exhaustion. This exhaustion hagctivation barrier of a particular height to begin to grow ir-
reversibly. This height is less than the critical energy for the

homogeneouslypurely fluctuationally formed embryo but

Furth lution includes th _ ; lativel still attains several thermal unit<ertainly, one can imagine
urther evolution includes the consumption of some relatively, gy ation when there is no activation barrier. Then all em-
small embryos by some relatively big ones. It will be seen later tha

when all surplus material is consumed all droplets have approxibryos immediately begin to grow irreversibly. The number of

mately the same size, and we do not analyze this process here. A
description of the further evolution can be given with the help of the

Ostwald ripening theory formulated by Lifshitz and Slezov. 3All microscopic models require very complex calculations that
2Also, it is simpler to observe the heterogeneous case experimegannot be fulfilled directly.
tally. 4All energylike values will be measured in thermal units.
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droplets (i.e., the irreversibly growing embrypswill be The effects of the density profile will be essential also for
equal to the total number of centers and the kinetics of theccount of the heterogeneous centers’ exhaustion and one
process will be relatively simple. cannot directly apply the results §13]. One has to deter-

We shall speak only about the density profiles around thenine the effect of the influence of the centers’ exhaustion
droplet and ignore the heat extraction in the nucleatioreven for the density profile of a solitary droplet.
process. In fact, the mathematical structure of the diffusion ~ We shall call the approach where the law of embryo
equation resembles the structure of a heat transfer equatiogrowth is found from the continuous model but there is no
So all constructions for the condensation heat extraction wilaccount of the profile around the droplets the “additive ap-
be the same as for substance consumption. This effect wipproach” (AA). Then one can formulate the following evident
lead only to some renormalizations. That is why only a fewstatement.
remarks will be made. Some detailed results can be found in Statement 1The duration of the nucleation perfoend
[6]. the characteristic sizes of the droplets at the end of the nucle-
We shall consider the situation of metastable phase decagtion period are greater than those calculated in the AA.
This means that in the initial moment of time all the sub- In fact, the existence of the density profile means that part
stance is in the vapor phase. All heterogeneous centers aoéthe substance is going to be consumed from regions where

free from droplets. there is no droplet formation. This material is consumed
from the gap instead of from unexhausted regions as is sup-
Il. PROFILE AROUND THE SOLITARY DROPLET posed in the AA.

Then having repeated all constructidfi®m [13] one can
Due to the external influence in the initial moment of time see the following®
one can observe a homogeneous mother metastable phasestatement 2The characteristic size of the droplets at the
with particle number density equal to some initial value end of the nucleation period is many times greater than the
no. All heterogeneous centers are distributed rather homogesize of the critical embryo. The main role in vapor consump-
neously in space with the number densify;. A system of tion is played by the supercritical embryos.
unit volume is considered. Statement 3The characteristic duration of the nucleation
The process of condensation can begin only whgns  period is many times greater than the time of relaxation to
greater than the molecule number density in saturated the stationary state in the near-critical region. Thus one can
vapor over a plane liquid. The power of the vapor metastause the stationary rate of nucleation as a measure of the
bility is characterized by the value of the supersaturagion intensity of droplet formation at every current moment of
defined as time.
Because of statement 2 one has to investigate the profile

_n 1 around a growing droplet. The problem is whether one has to

= n, -~ consider the interference of profiles around different drop-

lets. To solve this problem one has to use the small param-

The initial value of the supersaturation is denotedhy eter of the theory. From statement 3 the rate of nucleation is

Almost immediately there will be formed around every equal to the stationary one. This can be taken ffam
center an equilibrium embryo which hag molecules. The
value of v, is relatively smafl and there is no need to con- | .=Znexp — AF)
sider the density profile around the equilibrium embrjos. s=4n '
During the condensation process the number of free het-
erogeneous centergdecreases due to the exhaustion of thewhere AF is the height of the activation barri¢in thermal

free heterogeneous centers, units), 7 is the number of free heterogeneous centeroc-
cupied by the supercritical embryo@ndZ is the Zeldovic
7= Mot N, factor. The Zeldovic factor is a smooth function of the su-

_ N _ _ persaturation that is given by
whereN is the number of supercritical embryos, which will

be called the droplets. Despite the simple form of the last———
relation the effect is very complex becausedepends on

8 . . . . . . _
time in a very complex manner. The period of nucleation is the period of relatively intense for

mation of droplets. It can be proved that the end of this period is

well defined due to the cutoff of the intensity of droplet formation.
%In [13] the AA was formulated for external conditions of dy-

*The validity of this assumption can be ensured by using a passivRamic type. For the situation of decay the required hierarchical

gas. inequalities can be proved in the same way. Note thalL#j there
8In comparison with the characteristic number of molecules insidds no special reference to the types of condition when the required
the droplet during the nucleation period. estimates are proved.

"In fact the gap is rather small and will disappear rather fast. This 1°A barrier character of the nucleation is required here. This
leads to a slight variation of the equilibrium embryo characteristicsmeans that the magnitude of the activation barrier height has the
This variation will act on the gap in reverse, but the final relaxationsame order as the free energy of the homogeneous critical embryos
will be rather rapid. (it might be three on four times smaljer
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W One can see thay is a very sharp function of the super-
Z= A DA saturation. This means that a relatively small decrease of the
e supersaturation leads to an interruption of droplet formation.
2 2
where W is a kinetic factor,Av, is the half-width of the At least for {>{o/2 one can show thad“{/dt">0 and

near-critical region, and v is the width of the equilibrium  there is no long tail of the size spectrum at small intensity of
region. During the nucleation period the valuedtan be dropllet formation. Thls.means that an interruption of the in-
considered as as constant. tensive droplet formation leads to an interruption of new
Due to its rather small size it is reasonable to use for th&roplet formation. So the relative decrease of supergaturation
critical embryo the free molecule regime of substanced”ri“g, the nucleation process is small. One can arrive at the
exchangé? In this regime the expression for the nucleation following statement. , , ,
rate is well known. One has also to note that the critical Statement 4During the nucleation period the relative
embryo is in equilibrium(but an unstable onewith the  variation of supersaturation is small. .
metastable phase, which implies no profiles of vapor density, The last statement shows that there is no need to consider

and the regime of substance exchange has to be the fré@e interference of profiles in order to change the rate of

molecule one. droplet growth(and only the rate of growjh
Under the free molecule regima/ can be calculated as On the basis of the expressions mentioned and the small-
ness of the relative decrease of supersaturation one can see
+1 the validity of the approximation

W=3—V§/3a,
T Is(0)=1s(Lo)exd AF (L) —AF({)]

where v, is the number of molecules inside the critical em-for the nucleation period. Moreover, one can linearize the
bryo, « is the condensation coefficient, height of the activation barrier over the supersaturation and
get
7~12(36mv?) Y vr] 1

dAF(2)
is the characteristic timey, is the volume per one molecule s(0)= IS(gO)EXp( a dg (=¢ (£=%o) |- @
in the liquid phase, and+ is the mean thermal velocity of a 0
molecule. _ . N The validity of the last approximation depends on the par-
The value ofAw. is the half-width of the near-critical ticular type of heterogeneous center but it is valid for the
region and it can be rewritten as majority of heterogeneous center types. For example, this
validity can be directly proved for ions.
_ _ 12 One can explicitly calculate the derivative in the last
Ave Vs(VCEwe)/z X~ FetFy)m expressiort?
wherev is the number of molecules inside the embrlg,is dA_F - L(V — ).
the free energy of the embryo efmolecules, andr. is the d¢ {+10° e

free energy of the critical embryo. In the continuous approxi- . .
mation it can be estimated Bs The smooth character of the last expression shows the valid-

ity of Eq. (1) once morée*

2 112 Then Eq.(1) can be rewritten as
Ave= | 52F 15,2 . (-2
¢ () =1s({o)exp T o ) 2
The value ofA v, can be estimated as
where
dAF {o
Ave= X exp(~F,+Fo) P=—logr| =7 7lveléo) = reldo)].
v<(vgt+vg)/2 é’ =4 gO

whereF, is the free energy of the equilibrium embryo. Both The real value of " is very large®® Certainly, one can con-
Av. and Av, are rather smooth functions of the supersatu-sider the possibility of compensation betwegnand v, in
ration.

Here we assume the vapor to be an ideal gas and suppose the
HSince the characteristic size of the droplet during the nucleatiofpossibility of presenting the free energy of critical and equilibrium
is many times greater that the critical size it is quite reasonable t§mbryos as an analytical function of the inverse embryo radius.
use the diffusion regime of growth for the characteristic droplets. %A concrete value of the free energy derivative is not essential.
12y, is usually smaller thar v, and an explicit summation for ~ **Since the value of, in going to infinity here the value df is
Av, is quite reasonable. also going to infinity.
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the expression foF'. Then one has to mention that due to thewhere
barrier character of nucleation at least- v.=Av.. Having
estimatedA v, as the homogeneous valae/.~ v2° one can
see thaf’>1 in any case.
The small value of" ~* will be very important in further
constructions. is some constant. The last expression is written in the sta-
We see that the essential dependence on supersaturatitionary approximation. The nonstationary effects have been
occurs through the height of the activation barrier. This al-investigated in many publications in detail and here they are
lows one to give the interpretation of the stationary rate ofrather small(see, for exampld,9]).
nucleation as the probability for the given embryo to over- One can see that the rate of droplet growth is proportional
come the activation barrier. After the interpretation ghs a  to {. So the rate of growth can be changed only by a relative
probability we can apply it to an arbitrary spatial point of a variation ofZ. Then according to statement 4 one can see the
spatially inhomogeneous system. To use this interpretatiofollowing.
the natural requirement is a weak unhomogenity of a system, Statement 5The rate of droplet growth during the nucle-

2\-13 vy |
K:(g)il 47THDCD(%>

namely, the volume of the regions where ation period can be approximated as a constant.
The last statement is extremely important because it al-
{(r)—={(r+y4Dty) -1 lows us to analyze the profile of the density initiated by a
Z(r) solitary droplett® Now we are going to consider this prob-
lem.
is violated has to be relatively small. Heeis the diffusion The approximately constant value of the supersaturation

coefficient, ands is the time of relaxation in the near-critical allows us to integrate the law of growth and to get
region, which can be estimated according to Zelddticas

A2 v(t)= 1%,
VC
ts~ W where
One can use instead of the time Av,Z %, which can be P ] Y2(2¢n.D)\3?
interpreted as the mean time to overcome the near-critical y=(4m) A 3

region.

Both these estimates are valid. Actually we need themand t is the duration of irreversible growth for the given
only for those regions where the intensity of the droplet for-droplet. Consider a spherical system of coordinates with the
mation is not too small in comparison with the initial inten- center in the center of the droplet. The diffusion equation is
sity. Certainly, the required property is observed in theseyritten as
regions.

Now we have to turn to determining the rate of embryo
growth. According to statement 2 above, the characteristic EZDAH
size of the droplets is rather large. Then it is more reasonable

to use the diffusion regime of droplet growth. At intermedi- \pare A s the Laplace operator. The diffusion coefficiént
ate Knudsen numbers one has to use an interpolation law fog supposed to be approximately constéhere is a lot of a

the rate of embryo growtkfor example, se¢l17,4]). It will assive gas and the density of a gas mixture is approximately
be important that all expressions for the embryo growth lea onstant

to an avalanche of substance consumption. The boundary conditions are
The avalanche character of substance consumption means
that the quantity of substance accumulated by a droplet in- n|,—.=n(),
creases strongly in time. The most evident manifestation of
the avalanche consumption can be seen in the free molecule
regime of substance consumption. The weakest effect can be
seen in the diffusion regime of substance consumption. The ) )
force of the iteration convergence i3] is based on this WhereRg is the radius of the droplet. The values and
property. The property of avalanche consumption will be ex(*) are known parameters. The variablés the distance
tremely important in further constructions also. That is whyfrom the center of the embryo.

we take the diffusion regime, to have the worst situation and The Stationary approximation is suitable for the rate of
to grasp errors in all possible cases. droplet growth. The errors are analyzed 1¥] and they are

In the diffusion regime of vapor consumption the law of Small. But the stationary solution cannot give a reasonable
growth for a dropleti.e., for a supercritical embryaan be ~ result for the density far from the droplet. The stationary

n|r:Rd:n0° 1

written in the following way: solution is
% _ K§V1/3
dt ’ 18The interference of the density profiles will be analyzed later.
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Rq dRy th
n(r)=n(e) = —=[n(=)=n.] 3 ~ TR
and has a very long tail. This tail leads to the infinite value ofand
sz 4mr?[n(e)—n(r)]dr, 1220
0 v,

which must be the integrated excess of the substance, whiahhich is a small value according to E@). So the stationary
must be in the droplet. This contradiction shows that it isform of the profile in the regiom<Ryl is proved.

absolutely impossible to use the stationary approximation for SinceI’>1 and at leasi’>| one can see that in the
the density profile around the droplet. One has to introduceegionr <IR, there is no formation of new droplets. Thus

another approach. this region is not interesting for the theory and one can ob-
One can see that if the first boundary condition is changederve only the region>IRy.
to The previous notation is rather important; this property

allows one to use the model with a point source. One can

consider only distances greater thidy, but at these dis-

then the rate of embryo growth will not be essentiallytamces the drop]et can b? mterpreteq as a point source of
vapor consumption. Certainly, the point approximation of a

—TY
change_d. But the leven()(1-T7) is th_e level when . droplet cannot give an expression for the rate of droplet
nucleation stops. So one can see that during the nucleation

. . X . rowth because the boundary conditionratR, is absent.

period there is no interaction between droplets through .
. ut the rate of growth is already known and can be used
change of the growth rate. Certainly, two droplets can appear. . .
o irectly as a known function of time. Thus

too close and act upon one another but the probability ofj
such a coincidence is very small. That is why one can come dv
to the principle of separate growth of droplets during the — =\t12
nucleation period. dt

Now one has to prove that at the distances (5-R}0) where
from the droplet one can observe a quasistationary profile.
One has to note that

Nl —=n(*)(1-T"1)

A= 25/2’7TU |1/2§3/2n§c/2D 3/2_

lv,<1, 4 . . .
V1= @ The action of a point source of vapor consumption can be

whereu, is the partial molecular volume in the vapor phase.described in a simple and suitable manner by the Green func-
This last ratio is very smallfor example, it is 0.001 for ton formalism. The Green functio®, for the diffusion
water in normal thermodynamic condition8ut unlike[ -t €quation can be written in the form
one cannot consider it in all cases as zero. Now one can 124Dt
introduce a formal parametémwhich attains some large val- — exp(—r )

G=0)—7 -
ues (47Dt)

I>1 Then one can get the density profile by a simple integration,

but satisfies the condition

t Ax2 r2
=)~ | ampii e g |

v
12— <1. (5) _ _
Uy After obvious transformations one can come to
According to Eq.(4) it is possible to do this. Lo— ¢
In the regionr <IR, the stationary profile is established o V2lmv v, f(B), (6)
after 0
I2R2 where
th="2p r
. B=
It is necessary to show that V4Dt
Ry(t+t,) — Ry(t and
_ a(t+1tp) —Ry( )<1.
Rq(t) w1 1\12
f =j< - ) exp( —x%)dx.
In fact, (B) Ay p(—x%)
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1(8)

FIG. 1. The form off(B).

It is important that the profile dependence taandr is now

via B.

The concrete form of (B) is drawn in Fig. 1 in dimen-

PHYSICAL REVIEW &3 056123
o>1.

The last condition is not necessary for further constructions,
but it will be rather important for manifestation of the profile
effects in the nucleation process. The last condition is also
the most doubtful one becausg/v,<1 and one has the
combination of two large parameters with generally un-
known result. It is necessary to stress that the condition
v,/v,<1 is not as strong aB?>1. In the framework of the
thermodynamic descriptioh’>1 is the main condition re-
quired andv,/v,<1 is a supplementary condition that
slightly simplifies the theory.

In the situation of homogeneous condensation one has a
hidden contradiction between the thermodynamic description
and the relatively intensive nucleation. Since in homoge-
neous condensatioAF=F.~v2° the limit v—o means
AF—o and the rate of nucleation goes to zero. So there is a
contradiction between the thermodynamic limit in the critical
embryo description and the observable rate of nucledfion.

sionless units. One can get f6(3) an expression through |, e case of heterogeneous condensation there is no

special functions:

f(B)=3T(3)exp —BHW(3,5:8%).

HereT is the Gamma function andf is the confluent hyper-

geometric function.

One can get the asymptotes fif3) at small and large

values of 8. At small values,

such contradiction when there are some active centers of
condensation. Then the height of the activation barrier has no
direct connection with the number of molecules inside the
critical embryo. For example, the half-width of the near-
critical region estimated from the homogeneous value is
~ %% and goes to infinity whem— o, but the free energy
decreases at the boundary of the near-critical region only by
one thermal unit. So in a certain sense the case of heteroge-

71 neous condensation is preferable for theoretical description.
f(B)~——, (7) As a compensation for this advantage one has to note that
2 B both statements 1 and 2 are based on a homogeneous esti-

which corresponds to the stationary soluti(@). At large

values of3 one arrives at

1 . _ n2
f(ﬁ)=exq—32)z—ﬂafo x1’2exp(—x)dx~%.

mate for the activation barrier height. These properties can
be violated. But since these statements are based on very
strong inequalities one can accept their validity.

Now one can analyze the profile of the intensity of droplet
formation around the already formed droplet. This profile of
the nucleation rate is a rather sharp function which has a

® steplike behavior.

One can see that this asymptote differs radically from the
stationary solution, namely this tail behavior gives conver-

To show this property we shall introduce two characteris-
tic values of 8 (B and By,) by the relations

gence of the integral fofs. Certainly, the Green function )
formalism ensures a precise value @rwhich is introduced exp(—3)
e @ f(,BS,)=x/7T/2\/vU/v|T2,

here as an external object.

Now we are going to construct an approximation for the
nucleation rate around the growing droplet. One can see that exp(})
according to Eq(2) the behavior of the supersaturation is N o T 2
important  when ¢o—(<(2-3),,/T. When (,—¢ F(Bin) = /2w, o=
=(2-3)¢o /T the intensity of droplet formation is negligibly

small. From Eq(1) one can see that
ls(£(r)=1s(lo)exd —T V2w lv,f(B)].
Then one can extract the positive parameter

U
o=I?—
v

which will be important in further constructions.
Becausd'>1 one can easily see that

In the region B> B the rate of nucleation essentially
coincides® with the unperturbed valuky(¢,). In the region
{<{sn the rate of nucleation is negligible in comparison with
the unperturbed value, i.d.4(Z(r))<ls({o)-

At some moment the valuesBg and By, are related to
the space distances; andry, by the expressions

This is not very small.
180ne can easily see the monotonic charactef(¢).
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I = Bsp/4DTt, as the exhausted region where there is no longer nucleation
and the region
Ifin= ,Bfln \/4Dt- ,3>ﬂeff
Wheno=>1 one can arrive at as the region where the rate of nucleation is unpertufbed.
f(By) <1 One has to choos@ carefully. The problem is the pos-
S ' sibility of existence of a long tail of the density profile. To
f(Ba) <1 grasp the situation of small values @fone has to introduce
" Beft in an integral manner.
and One can introduce the excess of the nucleationAhtdy
the formula
Bse> 1,
S Alg=I fm 1—ex;{—w) 4mr2dr
Brin>1. * %Jo Lo ’
Then one can use the asympté8 and see that wherelg is the unperturbed rate of nucleation. On the basis
of this expression one can get the excesNafue to the
| Bst— Biinl _ 1 <1 existence of the solitary profile. This value will be denoted
Bstt Bin  4Bstfin AN, and can be found as
. I'( r)
|7 5= finl _ 1 <1, ANg,=1s j f ;< T&—¢n) A4qrr?drdt’.
rst+ I fin 4ﬂst,fin fo

The real picture of nucleation occurs on the time scale. At1aving used Eq(6) one arrives at
a fixed space point one can introduce two characteristic
: . Al=4m(4Dt)%
timestg andty, by the expressions s s

r2 Xf {1—exd —T'V2/m\v,lv,f(B)]}B*dB.
tSt:W’ 0
S
) The parametel y2/7\v, /v, has a constant value.
to = r The valueANg, can be presented as
" 4B% D

ANg,=4m(4Dt)%2
Beforetg one cannot observe any deviation of the nucleation

rate from the unperturbed value. Aftgf, the rate of nucle- % thx{l_exq_rmmf(ﬂ)]}
ation is very small. oJo

One can get for the relative deviation

X B2dgdt’.
= tf'”__tS‘ The steplike approximation of the nucleation profile will lead

tst fin to

the expression Beft
Alg(ﬁeﬁ)=4w(4Dt)3/2|Sf X2 dx.
1 0
5~ .

Bstfin The valueBq; has to be determined from
So the relative deviation is small. Even in the situation of A12(Be) =Al.
small o one can show with the help of asymptd® that the s
value of 5 is rather small. Certainly, the value o3¢ depends o™ 2/ v, /v,.

The steplike behavior of the intensity profile allows one to  the value 0f B leads to
introduce some characteristic paramesgi and to consider ¢
the regior® (o= 2 BogD V22

B<Bef One can state that inside the volume

%At o<1 the value ofB. can be greater thaBg and By, - 20N all casesBei™ Biin -
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Vest= %Wrgf‘f Ryl ’

Atjnit~ BogD ™
there is no nucleation and outside this volume the rate of ¢
nucleation is unperturbed. Thus one can imagine that arounghis time interval is many times shorter than the duration of
every solitary droplet there is an exhausted regi&mR) the nucleation period.
where no nucleation is observed and around the ER there is Rather rapidly after the moment of formation every drop-
the unexhausted regiotUR) where the nucleation remains |et forms an ER of such a size that it guarantees that the rate
unperturbed. The whole space now is divided into two reof growth of the given droplet cannot be perturbed by vapor
gions. consumption initiated by other droplets.

The volumeVgy grows in time in the following way:

32 ll. KINETIC MODELS OF GLOBAL EVOLUTION
Veff:_ WBgffD 3/21:3/2'
3 Now one can construct the picture of nucleation in the
whole system. The main problem is to take into account the

In the free molecule regim¥e will grow even faster. interference of the density profiles. Interference through the

For Bert one can get the simple expression rate of growth is absent, but there is a simple overlapping of
o profiles. This overlapping leads to deviation of the total
ﬁ§ﬁ=3f0 {1—exd —TV2/m\v,lv,f(B)1}B%dB nucleation rate over the volume from those calculated taking
account of the additive excess around every droplet.
or The overlapping of ER'deven when this approximate
. formalism is useflis very complex and cannot be directly
ﬂgﬁ:?)J' {1—exp[—al’2\/%f(,8)]}[32d,8. taken into account.in a precise manner. In.s.tead of using
0 some long expressions that cannot be explicitly calculated
one can act in another manner. First some simple approxi-
For AN, one can obtain mate models for the kinetics of the nucleation process will be
t t formulated. These models estimate the nucleation character-
ANgo=14(L0) fodt’veﬁ=ls(§0) fodt’éwrgﬁ. istics from below and from above and lead essentially to

similar results. So it will be shown that the complex details
of ER overlaps have no strong influence on the real charac-
teristics of the phase transition.

First one can consider the common feature of all models.

This feature is concerned with the exhaustion of free hetero-
geneous centers.
One can see thahN, is growing in time rather rapidly. The rate of nucleatioh depends on timé and on spatial
That is, this property illustrates the feature of avalanche conpointr (the last behavior is the most compleso it is rea-
sumption during a first order phase transition as applied tgonable to consider the meéowver spacgvalue ofl, denot-
heterogeneous nucleation. ing it by {I). For(l) one can write the expression

For those situations where>1 one can get

One can easily integrate the last expression and get

64
ANso=14(Zo) 7p mBHD A

W,
s = 1o, ©
Bett™ Bst™ Brin Wiot 7tot
and B¢ is determined by the simple equation wherel is the unperturbed rate of nucleation. H&Vg, is

the volume of the region where the rate of nucleation is
1 unperturbed, i.e., the total UR of the whole system. The
2 \_ p3 S ’ . .
expl(— Betr) = Beit Vv [0V T2 value W,y is the total volume of the systefit equals unity
and is written only to clarify the consideratipn

The last equation can easily be solved by iteration since Then since
Be>1 and exptp?) is a very sharp function. t
When the principle of separate growth was discussed N:L(')(t’)dt'

some remarks were made. The reason given for the absence

of inter_action between droplets was the low probability of 5q can get

appearing too close to one another due only to the smallness .

of the space volume. Now one can see that the growing ER — "t
. ; X L 7= Ntot f (H(t")dt'.

also helps to exclude interaction. The essential deviation of 0

supersaturation from the ideal can be seen in the region

<Ry4l. This means that the distance between the dropletd the differential form the last relation can be written as

with interference must be of the ordeRg. Then the time

distance between the moments of formation of these droplets dzy n

must be shorter than dt
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and with the help of Eq(9) it can be rewritten as which can be rewritten after the obvious renormalization
’ 3/2\2/5 ;
d7 7 Woee —at, t'—at’ wherea=(1,% wﬂeﬁD 225 in the universal
— =, form
dt Mot Wiot
t
After integration of the last expression one arrives at Wiree= 1—[ dt’ (t—t") ¥ Wyee.
0
three(t ) | , .
7= Mot X | 2 dt (100  One should note that in the general case the system of nucle-
0 tot 7ot ation equations can be solved with the help of methods pre-

nted in[13]. First one can solve the guasihomogeneous
uation (it is a Volterra equatioft with a rather simple
kernel which allows one to apply the Laplace transformation
% solve iy, and then on the base of the quasihomogeneous
equatlon one can find the final rather precise expression us-
ing Eq. (10) as the formula for,.

Another variant is to solve numerically the universal
equation forWyee honr

One should note that the heterogeneous centers are néz
distributed homogeneously with respect to the @R UR).
Only free heterogeneous centers are distributed homog
neously with respect to the ER. This fact has also to be taken
into account.

The problem is to determine the value\Wf... In differ-
ent models it will be given in different forms.

A. The model without overlap

t
. W =1— | dt’(t—t")%W, .
One can write free honi J’ o ( )" Whree hom

Wiree™ Wiot— Wexn As a result one has the universal functiee hom Then

: . .__one can findy as
whereW,,, is the volume where there is no further formation g

of droplets. Very approximately one can present it as the sum t Wee honft’) o
of all ER’s around all already existing droplets, 7= 7ot €X f —dt )

Wiot Mot
W~ >, Vet The last expression leads to the formula ¢or
i
tW, t') |
(the sum is taken over all already formed dropleGer- ()= Wrree homexr{ -a” fm—odt IO)
Wit 0 Wit ot

tainly, the last approximation is rigorous only when there is
no overlap of the ER’s around different droplets.

Having used the expression folq one arrives at The justification for such an approach is analogoufl].

The physical reason is very simple: when there is no exhaus-
¢ 32 tion of heterogeneous centers then the solution is found pre-
Wexh:f dt’(1)(t") gwﬁgﬁDa’Z(t—t’)S’Z. (11)  cisely; when there is an essential exhaustion of centers there
0 is no need to knowW;. With high precision because the
converging force ofl is extremely high.
Now we shall take into account the effect of overlapping.
This can be done rather approximately.

After using the expression fail) one comes to the closed
system of nucleation kinetics equations

7 Wiee 32

Wiree= Wior— fo dt’'—

Mot Wiot loz 3 Be Ds/z(t_t,)yz' B. The model with chaotic overlap
The matter under discussion is the correct expression for
tWyedt') | Wiee, Which cannot be found absolutely precisely. Now a
7= Mot €X f Wiot Kmdt reasonable expression f@v;.. will be presented. Certainly,
this will lead to a more complex equation, which will be
Now we have to introduce the quasihomogeneous limitmore difficult to solve.
When there is no essential exhaustion of the heterogeneous One can use the differential approach to write the expres-
centers a balance equation for them is not necessary. Ongjon for We.. Having written the obvious relation
the balance equation for the substance molecules has to be
considered. Equatiof12) has the same form as in the homo- deree= _ dWexn
geneous caséafter some proper renormalizationghat is dt dt ’
why we shall call it the quasihomogeneous equation.

In the quasihomogeneous limit this system can be reduce@ne has to invent an approximation fW,,/dt. Here the
to approximation

= I:I (Wfree)- (12)

free

32
Wiee= W, —fd' | D¥At—t")%?,
free tot 0 Wtot 0 3 Wﬁeff ( )

2The nonlinear generalization.
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AW, 02 Ve Wrree The last system can be rewritten after the obvious renor-
dt  dt Wi, malization as
(0]
will be used(the sum is taken over all dropletdt corre- F(t)=ftexr:[—F(t’)](t—t’)3’20(t’)dt’Eﬁ(F,0),
sponds to the following approach: The probability of the 0

absence of overlap of the new parts of the ER around a given

droplet with other ER’s is proportional to the free volume of B t , -

the system. This supposition seems to be rather reasonable. o(t)=exg —A 0 exf —F(t)]dt" |=6(F),
The valuedX;V¢;/dt can be rewritten as

where (t) = n(t)/ 7, andA is some known parameter. This

dEiVeff:z d Vet system can be solved by iterations defined as
dt ; dt .
. . Fir1=F(F;,0),
This can be easily expressed throughas
=0(Fy)
dv 3 [t 32 Oi1=
e“=—f dt'(I)(t) 5 mBeD¥At—t)"? . N
i 2 )o 3 with Fy=0,0=1. For F;,6; one can get the chains of in-
(13 equalities
due to Eq.(11). Then Fo<Fy <Fy<: <F< - <Fy < -<F3<Fy,
dWexh 32 3 12 Or< Og< < Oy s <o < << Oy << 0y < O
<|>(t = 77:8effD (t—t") " dt Wyed t) 1= 03 2i+1 2i 2= Yo
Thus one can estimate errorshn and 6; .
and One can also use other methods analogous to those de-
. scribed in[13].
deree §J (I)(t’)3—2 7B DYt —1t") 2t W o 1). The similarity of the condensation equations in the AA
S dt 3 eff e and in the second model is extremely important for the tran-

sition toward the collective character of vapor consumption,
Having used an expression fdp one arrives at which is analyzed if13]. The physical reason for the con-
dw. 3 ftw 32 sidere_d model is_ the chaotic overlap of ER’s_that_ is, the
free_ 2 free, 77 ¢ chaotic overlap lies at the base of the approximation used
dt 2 )o Wit ° 7ot 3 here. But due to the spherical form of every ER the overlap
3 3 T is not absolutely chaotic. What can be done in such a situa-
X7 BeD At —t") ot Wired 1). tion? In the next model we shall show that the actual type of
overlap is not very important.
To finish with the second model we shall show the same
method of its solution as for the first model. One can also
formulate the quasihomogeneous equation as

Together with Eq.(12) the last equation forms the closed
system of nucleation equations in the second model.
The previous equation can be integrated, which gives

tWied t') | (t") 32
D3/2t t’ 3/2dt/ t 32
o W Vg 3 PP Fhon(t) = foexr{—Fhom(t'ﬂlogwﬁiﬁDs’z(t—t')S’zdt'.

+ const.

In Wee= —

Then 5 can be approximately found as
Because of the initial conditions the value of the constant is

equal to zero. Having introduced the functioR= B ! _F , qt’
tjln Wiree, ONE can get foF, 7 the following system of equa- 7= Mot €X 0 X~ Fhonlt')] ot v
ions:

. , The quasihomogeneous equation can be renormalized. After
F(t):f exf —F(t)]l, ’7: ) 3—277B§ﬁD3’2(t—t’)3’2dt’, the renormalizatioz— at,t’ —at’ where
0

32 2/5
3
t lo a=|loz WﬁeﬁDS/z)
7= 7ot €X _J exd —F(t")] T dt’
0 . L
o one can transform the quasihomogeneous equation into the

One can see that the system of condensation equations §giversal form
identical to the system of condensation equations in the AA. .
Il'r[]v;/ﬁs g;;?grlﬁt\?vlﬁﬁ %r;agfzfgge%ﬂ. Certainly, the parameters INWiee nor(t) = _f Wiee nont)(t—t")32dt’.
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C. The model with formation of droplets inside the ER results of the iteration procedure. Combining these two re-
The third model will show that the role of the overlap is sults, one can see that the second model is close to the first
not so essential as might be imagined initially. Suppose thdi€ration (i-e., to the modified third modgin the situation
new droplets can also appear in the ER of the already existVith large power in the kernel where the third model is suit-
ble.

ing droplets. Then instead of E¢L3) one has to use o ) . _
Now it is possible to explain why the overlap is not so

2 dVer 3 oom(t’) 3 3 1 imp(_)rtant as might be imagined. Since the power of the. ker-
T Efo t'ly 7 3 TBerD T (1175 nel is large and one can observe avalanche consumption of
' ot the vapor phase, one can see the following qualitative pic-
Then ture. (1) During the whole period of nucleation the total ER
is small and there is no problem of overldp) At the end of
dWeyn 3 [tp(t') 32 . . T the nucleation period the total ER will occupy the ess_ential
TR Ef I0? 7 BeD T (t—t") At Wyed1) part of the volume and a few moments Iat.er it occupies all
0 Thot the volume of the system. This process is rather rapid. It
and stops the nucleation. This picture shows that there is no
strong influence of the overlap on the nucleation process
AW e 3t pt') 32 (except for the final moments of the nucleation peridgit
—=— —f — mBDIAt—t") Y2t Wiedt). in the final moments only a few droplets can be formed, so it
dt 2Jo " Mot 3 is not very important to know the overlap in the final mo-

ments of the nucleation period.

The nucleation description is now complete. One can use
both the second and the third models to get the nucleation
edescription. How to solve these equations is also described
here. Now we can turn our attention to a more accurate

/ method which does not give an analytical expression for the
n(t')32 . ., 32 : o . . :

gwﬂeﬁD (t—t")%2dt’ + const. size distribution of droplets but gives more precise universal
results for all essential characteristics of the nucleation pe-

Together with Eq.(12) the last equation forms the closed
system of nucleation equations in the third model.

The material balance equation of the system can be int
grated to give

t
InVVfree:_f lo
0 Ttot

riod
From the initial conditions the constant in the last equation is
equal to zero. Having introduced the functiBr= —In Wee

one can get foF, 7 the following system of equations: D. The universal solution
, The main idea of the theory presented [it8] was to
F(t)= ft|0 ) 3_27”83 DY2(t—t")3dt’ consider the quasihomogeneous equation, to get a universal
Mot 3 eff ' solution, and then on the basis of this solution to calculate

the number of free heterogeneous centers. As a result one
t lo can get an expression f@n and can calculate the total num-
7= ot exp( —f exg —F(t")]—dt’|. ber of droplets appearing during the nucleation process.
0 Mot Here we follow the same idea, but develop it further. It is

This system corresponds to the first iteration in the solutionnOt necessary to formulate the universal quasihomogeneous

of the second model by the method of iterations described iﬁquaﬂon' Instead of the universal equation one can formulate
. . . a universal model.
[13]. These iterations are also mentioned above. #dhe The model will be the followin
whole set of iterations has been takesee details ifn13]). ) The rate of leation) g'b found
One can slightly modify the model and suppose that in the (i) The rate of nucleatioKi) can be found from
expression fory one can use the same approximationior
as in the equation foW;.. Then the last system of equa- (H=1y Wee
tions will precisely correspond to the first iteration in the tot. 7tot
iteration solution. One need not analyze these models in de- o ) i
tail following [13] but just note that all these solutions are (i) With intensity I the droplet appears at an arbitrary
very similar. p0|r_1_t. of the system. .
Now one has to explain why the third model is rather (iil) The valueWy,. can be found by exclusion of all ER’s
accurate. One can do it only with the help of results obtaine@round the already existing droplets.
in [16]. There was noted that when the power of the kernel (iV) If the point is occupied by the ER of any droplet then
(t—t') is rather large the solution of the quasihomogeneou$€ new droplet cannot be formed. .
equation depends weakly on the actual value of the power. It (V) The sizereq of the ER grows in time according to
is also important that when the power of{t’) is extremely
high the ER of the givefirst) droplet formed inside the ER F o= 2BeD A2
of another(second droplet cannot go outside the ER of that
(secondl droplet. The third model is absolutely adequate in  (vi) The initial conditions are the absence of droplets and
this situation. The same feature can be seen directly from théhe random distribution of centers.

Whree l
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With the proper renormalization of timeand sizer one  ters of droplets. Because of the high force of convergence in
can cancel all coefficients. Then this process will be a unithis situation this result can be obtained without any precise
versal one and as a result the valueWdf.. is a universal information about the behavior of supersaturatiemen in-
function of time. Then one can directly apply Ed2) and cluding the quasihomogeneous case the opposite case
get the number of free heterogeneous centafter the  when the exhaustion of heterogeneous centers during the first
proper renormalizatiorf? This number is the main result of moments of the nucleation period is not essential one can use
the approximate separation principle. All other quasi-the quasihomogeneous behavior of supersaturation.
integrals of the further evolution can be obtained in the same This property can be viewed as an approximate separation
manner. of the heterogeneous and homogeneous problems. It is based

The modification for dynamic conditioj43] requires us-  only on the avalanche consumption of the metastable phase.
ing instead ofl ; the valuel ; exp(ct) with some parameter  So there are no objections to seeing this effect also with the
determined by external conditions and changing the lowedensity profiles considered here. Thus it is rather important
limit O of integration to—c [13]. The main constructions of to get the solution in the quasihomogeneous situation and to
the theory will be exactly the same but the forms of theclarify whether it can be presented in a universal form.

characteristic curves will be radically changed. The universal form of the quasihomogeneous solution can
be easily seen in the situation with density profiles also. In
IV. NUMERICAL RESULTS the AA there was no specific space scale because the con-

) ] ) . sumption took place homogeneously at all space points of
Numerical simulation plays at least two important rolesthe system. Here in the situation with density profiles there is
here. The first is the standard comparison with the approxian elementary space scale and one can choose the space scale
mate models to observe their quality. The second is morgy ensure that the linear size of the ER around the droplet is

specific and is concerned with some universal dependenm%ﬁowingﬂ as tY2 without any additional coefficients. The

in the nucleation kinetics. S time scale has to be chosen so that in the initial free volume
In the additive approach to the nucleation kinetics it wa equal to the total volume of the systemne can see the

shown that an adequate approach can be presented on Stg}?pearance of one droplet in the unit of time. Since the func-

basis of the quasihomogeneous solut[d]. Despite the tjonal dependencies of the nucleation rate and of the radius

: (14)

such an approach. The formal reason is the careful analysisioplems. Thus we see that here the pseudohomogeneous

of the iteration procedure proposed|it3]. The final result  case allows a universal description.

for the total nhumber of droplets appearing in the nucleation The process of exhaustion of the heterogeneous centers

process is given by the second iteratigee the iterations of gestroys this universality and one has to act d48}.2° The

typeain [13]) for the relative number of free heterogeneoustotal number of droplets has to be approximately calculated

centers. This iteration is based only on the first iteration foryg

the supersaturation. There the value of the supersaturation is

calculated without taking account of the heterogeneous cen- Nrom

ters’ exhaustion. So one can see that the final result can be Niotal™ Mot 1—exr( - )

obtained on the basis of supersaturation in the quasihomoge- ot

neous approximation. This approximation can be more so- , o ,

phisticated than the first iteration, that is, it was usefil] whereNnomis the number of droplets appearing in the quasi-

where the precise quasihomogeneous universal solution wA9mogeneous situatiamith the same parametgrshis for-

chosen as the basis for the final results. mulfi can also be used for all approximate models described
The physical reason for such behavior is rather simple8arlier. , _ o _

The main role in vapor consumption is played by droplets of For the numerical simulation it was convenient to con-

relatively large sizes. We have already remarked on this facgider a cubic box of side 10 units. The rate of ER growth is

Moreover, due to the avalanche character of the vapor corhosen as

sumption the main role is played by the relatively large drop-

lets that are formed in the first moments of time of the nucle- dR 10022

ation period. When the effect of center exhaustion is already dt

essential in the first moments of the nucleation pefididen

at the end of the nucleation period all centers will already beyhere R is the radius of the ER. The rate of nucleation is

exhausted. The result is evident—all centers will be the CeNchosen to have one attempt at new drop|et formation in the

system duringlt=0.002. The spatial position of this attempt
is determined by a random procedure. It may lead to a posi-
22Th|s will Complete the quasihomogeneous approach method. tIOI’] |n one Of the ER'S and then no droplet W|” be formed In

ZMore precisely one can define these “first moments of time” as
2/5 of the nucleation period duratignnder the free molecule re-
gime it is 1/4 of the nucleation period duratiohe reason for ~ ~‘Certainly the power has to be conserved.
such concrete values can be seen from the iteration procedure.  ?°Here we use a slightly simpler and more approximate method.
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FIG. 2. The cross section of the system &t0.5 for the quasi- FIG. 3. The cross section of the systentatl for the quasiho-
homogeneous situation. mogeneous situation.

the opposite situation when the point indicated is outside th
ER’s of all droplets already existing there will be formation
of a new droplet.

Small (in comparison WithNpg,=504.8. Pictures for 7y
=50 are drawn in Figs. 5-7 fae=1.5, 3, and 6. One can see

that the number of ER’s is smaller than in the quasihomoge-

One has to stress that the random procedure ordinaril}‘eoUS case. The size of the ER’s when the free volume is
used in computer simulations has one specific negative feay ¢t exhausted is larger than in the quasihomogeneous
ture. In the standard numerical procedures the next randm@ase The time necessary to cover the whole volume with
coordinate is calculated on the basis of the previous ones. ’s. is greater than in the quasihomogeneous case. This
if the current coordinate lies near the center of an alread)éOeS not mean that the duration of the nucleation peri.od i
existing ER then the next coordinate will also be near thgq ot (simply, all centers will be exhausted and this means
center of another ER. These correlations lead to the necess e end of nucleation Moreover, the duration of the nucle-

Ution period in the situation with a relatively small number of

the ngmber_ of droplets appearing in the quaS'homOgeneoLf?eterogeneous centers will be shorter than in the quasihomo-
situation will be near 500. Nevertheless the mean Sq“arﬁeneous case

flut_:lfﬁatlon W'lll t.’e about 20. d h | One can also see that the avalanche character of the vapor
e correlations mentioned are not the only source of,nqmption in the whole systefnot by a solitary droplet
fluctuations?® Careful consideration shows that the error in- here will be smoother than in the quasihomogeneous case
troduced by the substitution of zero boundary conditions forCertainIy, in the quasihomogeneous case the appearance of

peT‘Od‘C ones has the same power as thg mean square €Mghme new ER'’s helps to consume the vapor phase in the
This can be seen directly by numerical simulation. It is ex- valanche manner. But in the situation with a small number

plained by the obvious fact that the characteristic overlap of¢ canters there is no need to consider the process carefully

Froﬂles Ihs about the fl’neand profile S|z|e. Y}/eh_Sh?ll call tE'Sbecause the exhaustion of centers leads to the obvious result

eature the property of “moderate overlap.” This fact can be ¢ -,nqensation—the number of droplets equals the number

proved analytically. of centers

50126 méaan valuk(Ja of éhe totaldql_roplgt?:]_numlberHS equ;\l 0 it is evident that the main object of our interest will be the
.8(under zero boundary conditiong his value has to be quasihomogeneous case. The relative rate of nucleation in

put into the previous formula. .. . this case is shown in Fig. 8. Here the rate of nucleation is
The avalanche character of vapor consumption is '"us'averaged over 1@0=0.2 and over 16 attempts. So the rate

trated by Figs. 2—4. Three different mom-en.ts of time of nucleation here is a rather smooth function.

=05, 1, and 1.5 are fc?}osen as cha(rjacterlstlr; V?jlueﬁ' dThe The relative rate of nucleation is compared in Fig. 8 with

space cross section of t e,system Is drawn. The dashed rgyo 1\odels described above. The rate of nucleation defines

gions correspond to the ER'’s of the droplets already existingye spectrum of sizes when the role of the size of the embryo

The black regions correspond to the overlap of ER's. is played by some characteristic that has a rate of growth
Now the effects of exhaustion of the heterogeneous C€Mhdependent of the size. For the diffusion regime this char-
ters will be considered. The number of heterogeneous centefS.aristic is the number of molecules to the pover

in this system is arbitrary. Certainly the effects of their ex- One can see in Fig. 8 three different curves and some
haustion will be important when the number of centers isyitary noints. The solitary points correspond to the numeri-
cal simulation of the quasihomogeneous case and the three
curves correspond to the three models in the quasihomoge-
%6To prevent these correlations one has to use some special raneous case.

dom procedures. The shortest spectrum is for the first model. This line is
2’For technical reasons, this occurs only when the distance bedoubled. This occurs because the ideal variant of the first
tween the neighboring centers is odd. model is also drawn. This ideal variant corresponds to
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FIG. 4. The cross section of the systentatl.5 for the quasi- FIG. 6. The cross section of the systentat3 for 7;,,=50.
homogeneous system.

bution of the centers of the ER’s of such droplets is also

Wiree/ Wiora=1 in the subintegral function. The coincidence random. This model certainly gives an estimate from above
of the two lines means that the main role in the first model isfor the nucleation process. A simple calculation shows that
played by the relatively large droplets that were formed athe total number of droplets is only 25% greater than the
Wrree= Wiotal - result of the estimate from above. As a conclusion one can

The longest spectrum corresponds to the second modedtate that two suitable estimates from below and above are
This curve is very close to the intermediate curve whichobtained.
corresponds to the third model. The approximate coincidence The proximity of the last estimate to the real solution
of the second and third models shows that both of them argstifies the supposition that the main role in vapor consump-
valid and the role of the relatively large droplets here is thetion belongs to the droplets of relatively large sizes appear-
main one. One also sees that even the first model is not todg when the system is essentially free of ER’s. This suppo-
far from the real solution. This allows us to present rigoroussition can also be justified in an analytical manner.
estimates for the nucleation rate. One can see that the second and third models are rather

Now we going to present rigorous analytical estimatesclose to the real solution but do not coincide with it. There
from below and from above for the evolution during the are at least two reasons for the deviation. The first is the
nucleation period. Certainly the first model is an estimate opresence of strong correlations in a real system—if two ER’s
the real process from below. It gives a number of dropletsverlap in some moment of time then the power of the over-
about 20% less than the numerical simulation. An estimat¢ap can only grow in time. It does not have a random char-
for the nucleation rate from above can be obtained in thecter as stated in the second and third models.
following way. From the first model it follows that until This effect can be taken into account in a rather simple
=0.52 (this case is essentially drawn in Fig. the rate of manner. It is sufficient to consider two spheres and calculate
nucleation is near the ideal value and the deviation is lesthe power of the overlap as a function of distance and fitne
than 15%. So one can say that the periodt€.0.52 corre- is a simple geometrical problemUnfortunately the answer
sponds to the absence of overldpe first model is the esti- can be written only in a very complicated form. If we have
mate from above Thus one can consider the process wherawo ER’s with radii R, and R, with a distancel between
the total volume is exhausted only by the ER’s of the drop-their centers ant>max®;,R,), then the volume of overlap

m f !

1Il
FIG. 5. The cross section of the systentatl.5 for 7,,=50. FIG. 7. The cross section of the systentat6 for 7,,=50.

it ’” |
erm{m ) ””H
mu’”"” (

056123-15



V. KURASOV PHYSICAL REVIEW E 63 056123

0.1

8 ¢ 6w

FIG. 10. Relative error of the quasihomogeneous approach in

FIG. 8. Comparison of different models in the quasmomoge-the second model.

neous situation.
How can one overcome all these problems? In fact, one

27R3 has no need to do it analytically. A simple numerical simu-
VoverzT(l—Z COS@p,+COS ;) lation takes into account all these effects and gives a univer-
sal solution. Really we need only one number—the total

ZWRS number of droplets that have formed. This can be given by

+ 3 (1—2 cosg,+CoS ¢,), the numerical simulation. Then one can forget about all the

mentioned difficulties.
Now one can analyze the heterogeneous case explicitly. A
suitable approximation is given by E(L4). One has to sub-
2 o ia stitute instead oy, the number of droplets given by the
—R3+Ri+I corresponding model.
2R, | ' The relative error of approximatiofi4) is drawn in Fig. 9
for the first model, in Fig. 10 for the second model, and in
R4 R242 Fig. 11 for the third model. It is rather small for all models.
12 For the third model it is practically negligible. This is be-
2R,| cause the third model is based on the approximation of cha-
otic overlap.
Certainly, this result cannot lead to a simple form of the One can perform the same analysis for the numerical
balance equation. It will be difficult to solve it analytically. simulation. In Fig. 12 the relative error ¢f4) for numerical

The second reason for the deviation is the moderate ovegimulation is drawn. Here in Eq(14) the value Niy,

lap problem. This property means that actually there is an=504.8 from the numerical simulation is used. The result is
interaction through overlapping in an ensemble of severatompared with a computer simulation of heterogeneous con-
droplets. Earlier this property was extrac{dd] in terms of  densation. This simulation is rather simple. One can take the
a special effective length of the ER. Now we see that thiprocedure for the quasihomogeneous case but place the cen-
property is rather general. The way to solve this problemer of the new droplet with probability)/ 7,,;. Every time
proposed inf18] is very complicated and leads to some un-this point is outside the ER we reduegas n— 7— 1.

certain relations. One can see that the relative error is very small. We do
not use an average over many attemipkss is the reason
why there is no smooth curyd¢o see that the error of Eq.
(14) has the scale of the mean square error of the numerical
simulation?® So there is no need to use a more sophisticated
approach.

The solution of the problem is now completed. Generali-
zation for conditions of dynamic type is absolutely analo-
gous to[14]. The convergence due to avalanche consumption
is weaker and one has to use instead of the approximation
(14) a more sophisticated procedure describedlig]. The
universal constants used [A3] have to be calculated by
numerical simulation with the density profiles taken into ac-
count. Generalization to the arbitrary regime of droplet

where

COSp,=

COSp,=

0.1

6

tot
Nhom

FIG. 9. Relative error of the quasihomogeneous approach in the
first model. 28Here there is a system with 500 droplets.
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FIG. 11. Relative error of the quasihomogeneous approach in FIG. 12. Relative error of the quasihomogeneous approach in
the third model. the universal simulation.

growth can be done as jti4]. The generalization is based on  To use the thermodynamic approach the initial power of
the similarity of the functional forms obtained here and inthe mother phase metastability has to be relatively small.
the AA. This similarity lies at the base of the universality Together with the Maxwell rule this leads to the following
property formulated if16,18|. final result for the phase transition: Only a relatively small
One can see that the theory of condensation with profilepart of the system volume is occupied by the new phase.
taken into account presents a picture that is quite differenThis is not in contradiction with the property that the whole
from the AA. Nevertheless, in many situations the result ofvolume is occupied by ER'’s. The final state of the system is
experiment coincides with the result of the AA. One has toan essentially saturated mother phase and a small volume
explain this coincidence although it is a rather formal one. In(distributed over the whole systenoccupied by a new
any experiment it is more convenient to have a small systemhase. As a result one can see that the process of substance
and to get many droplets. The rate of nucleation has to beonsumption(extraction leads to saturation in a volume
taken as a rather high one. So the supersaturation is relativetglatively large in comparison with the volume of the new
high and the parameter * is not a real small parameter of embryo phase. The mother phase cannot be undersaturated
the theory?® Thus as shown ifiL8] the AA gives the correct (then the embryos would disappgaBince even the mother
qualitative result despite the wrong basis of considerationphase has to be spread over almost all the volume of the
The reason lies in the fact that at smalinost of the material system, the mean distance between two neighboring embryos
is in the tail of the profile. The tail of the profile is rather thin of the new phase is many times greater than the mean size of
and can be taken into account by the AA. The correctiorthe embryo. Thus one can state that the embryo produces an
term for the AA at small can also be found ip18]. effective perturbation over relatively large distances in com-
An important feature to mention is the movement of theparison with the size of the embryo. To have an interruption
embryo boundaries. This problem has been widely discusse@ relative interruption in comparison with the ideal nucle-
in the determination of the rate of regular growth for super-ation rat¢ of the new phase formation, one needs a very
critical embryos. In different systems the effect of the bound-small reduction of the power of metastabilityThis reduc-
ary movement on the rate of growth is different. We notetion can be attained only at distances which are very large in
that in the theory presented here the rate of the embrygomparison with the embryo linear si¥eThus one can use
growth is an external value which is supposed to be kndwn. the point source approximation as was done in the first part
Another problem is to take adequate account of the effecdf this paper and forget about the boundary moveriehhe
of boundary movement in the method of constructing thenegligible character of the boundary movement is now
ER. If part of the volume is occupied by the liquid phase ofproved for all possible systems.
the given embryo, one cannot use the Green function of an The heat extraction and account of all other intensive pa-
empty space in an absolutely precise manner. In the first parhmeters of the description can be performed gd$]n
of this paper we already showed that the effect is small. Here
we shall present abstract arguments for this conclusion.
31The relative reduction has to fie * whereI'>1 is the scale of
the number of molecules in the critical embryo.
#tis not necessary for the consideration presented here, but it has*Because the profile is sharper than in the stationary solution.
to be small for a thermodynamic description of the critical embryo. 33The effect of the boundary movement on the embryo growth
30t is really known for essentially all systems. rate is taken into account as an external parameter.
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