PHYSICAL REVIEW E, VOLUME 63, 056122
Highly optimized tolerance in epidemic models incorporating local optimization and regrowth
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In the context of a coupled map model of population dynamics, which includes the rapid spread of fatal
epidemics, we investigate the consequences of two new features in highly optimized tolg1&ite a
mechanism which describes how complexity arises in systems which are optimized for robust performance in
the presence of a harsh external environment. Specificallyl)w@ntrast global and local optimization criteria
and(2) investigate the effects of time dependent regrowth. We find that both local and global optimization lead
to HOT states, which may differ in their specific layouts, but share many qualitative features. Time dependent
regrowth leads to HOT states which deviate from the optimal configurations in the corresponding static models
in order to protect the system from slo@r impossible regrowth which follows the largest losses and
extinctions. While the associated map can exhibit complex, chaotic solutions, HOT states are confined to
relatively simple dynamical regimes.
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[. INTRODUCTION and ecology, the deliberate static design methodologies
based on systemwide performance objectives which have
The property of agent based modeling of complex sysbeen used in all of the studies to date are much more clearly
tems which has been most widely emphasized has been tlwennected to man-made technologies than to systems which
emergence of complex behavior from spatiotemporal dyarise in nature. In ecological and biological settings the dis-
namical systems described by simple local rules. In many ofinction between a system and its environment is typically
the most widely studied examples, complexity is associateeghore ambiguous and involves higher levels of feedback, and
with system wide, self-organization to a critical pofself-  the question of the scale on which natural selection, and thus
organized criticalit SOQ [1,2]] or a bifurcation point near evolution, acts is a matter of considerable detpdt&2—13.
the “edge of chaos”[3]. In both cases, even the generic, In this paper we address two issues of key importance to
random states exhibit long range correlations. However, witthiological and ecological applications which were not treated
the exception of power law statistics, properties associatetth the initial investigations of HOT. We still focus on the
with random configurations fail to capture the basic at-simplest possible settings, here consisting of coupled maps
tributes of most natural and man-made complex systemsnotivated by spatiotemporal models of population dynamics
where evolution and deliberate design lead to more regulasubject to external disturbancéefections. While the maps
structure and higher densities than are achieved randomlyan exhibit high period orbits and chaotic solutions, HOT
[4]. On the other hand, it has been difficult to develop mod-states are associated with much simpler solutions.
els which capture the emergence of higher level structure, so In Sec. Il we provide a brief review of HOT, focusing on
that for most examples which have been studied in this conissues which are relevant for the work presented here and
text, design features are put in by hdrid-8|. developing a context for our application in epidemics mod-
Recently, highly optimized tolerand¢lOT) [9—11] was  eling. In Sec. Il we compare configurations obtained from
introduced as a mechanism for complexity, in which nongeglobal and local optimization of static fitness. In the context
neric features do emerge without being introduced directlyof ecology, global optimization loosely corresponds to opti-
Instead, they result from optimization of a design objectivemization of fitness on the scale of an ecosystem as a whole,
in systems consisting of many internal degrees of freedomwhile local optimization corresponds to some lower level
coupled to an uncertain external environment. HOT emphaeptimization on the scale of individual organisms or groups
sizes robustness to external perturbations as the key mechef organisms. In general, local and global optimization need
nism which can lead to structured, high-density configuranot yield the same configuratiotthough in our highly sim-
tions. HOT leads to power laws, and, more importantly, toplified setting quite often they doHowever, both local and
systems which are robust to common, designed-for uncemglobal optimization do generally lead to rare, structured
tainties, and fragile to design flaws and rare perturbations. states which differ significantly from generic random con-
While the basic characteristics associated with HOT ardigurations, and are both robust to common events, and
shared by a wide variety of systems in engineering, biologyhighly sensitive to changes in the pattern of disturbance.
In Sec. IV we move beyond studies of static configura-
tions subject to a single epidemic and incorporate regrowth
* Author to whom correspondence should be addressed. Email adf the population through an explicitly time dependent map.
dress: crobert@physics.ucsb.edu We summarize the behaviors of the model in terms of a
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phase diagram. In the deterministic case parameter spacelitice is thus equal tp, and any configuration with density
divided into distinct dynamical regimes which include stablep is equally likely. If an infection strikes a site on the lattice,
fixed points, stable periodic orbits, and chaos. We also condisease spreads through the connected cluster of nearest
sider stochastic driving, which leads to moderately higheneighbor occupied sites, killing all of the organisms in the
performance compared to the corresponding deterministicluster. Thus, for a given initial starting density the average
case as well as simpler behavior dynamically. While optimaldensity of organisms which survives the epidemic is the
solutions are always associated with simple stable fixed poinfield, Y=p—(loss, where the angle brackets represent an
solutions, the threat of slow regrowth or extinction following average over both the distribution of initial infection sites
a rare event leads the system away from the static optimand the ensemble of possible configurations at depsigor
where higher initial densities lead to larger losses. Such largéhe standard percolation model, the configuration at any
losses would result in extended yield penalties during thegjiven density is random, so that in the limit of an infinite
growth phase relative to the state which is optimized includsystem, the probability distribution describing the relative
ing the dynamics. Finally, we conclude in Sec. V with alikelihood of infection striking different sites on the lattice is
discussion of potential avenues for future applications of ouirrelevant.
results. In the standard percolation model in the thermodynamic
limit, a plot of Y vs p increases linearly and monotonically
over the ranger=p=0 up to the critical pointy=p=p,,
II. HIGHLY OPTIMIZED TOLERANCE followed by a monotonic decrease over the rapgep<1.
In this section we provide a brief review of earlier resu'tsAt densities beIOW Cr|t|CaI|ty indiVidUal infeCtionS never Iead

describing HOT in the context of percolation models, whichto @ macroscopic loss. Instead the typical loss cuts off at the
serves as a Starting point for the work described mgf_w] size Corresponding to the correlation Iength, which does not
Highly optimized tolerance was initially introduced in the scale with the size of the system. For densities above the
context of the familiar percolatiofiL6], forest fire[17], and critical point, the characteristic loss is of order the system
sandpile[1] models studied in the context of self-organized size, and is associated with infections which hit and spread
criticality [2]. Each of these models consists of a lattice ofthrough the infinite cluster. In general, yield is related to the
sites which can be occupied by ofigercolation and forest Percolation probabilityP..(p):

fire model$ or more(sand pile mode)sparticles. The lattice

is also subject to local disturbances, which may ultimately Y=[1=P(p)lp+P=(p)lp=P=(p)]. @
remove particles from the system via a cascading failurei_|
event, described by local rules for the propagation of failure
in the system. The new ingredient associated with HOT i
the introduction of deliberate design or evolution by natural
selection[11] to these models. Design and evolution favor
high yield configurations. Here yield corresponds to the av
erage density of particles which remains in the system after . —,<1 p . ically f
failure event. In a variety of different scenarios it has been ' Of PeSP=-, =(p) mc;e_ases monotonically from zero
shown that HOT states have densities well in excess of th& ©N€: WithP-.(p) ~(p—pc)" in the limit p— p.+ [16]. For
corresponding models at criticality. HOT states exhibit? =+ the yield is (trivially) Y=0 because the infection
power laws, but with exponents which are steeper than thos%ore""d_S throughout the SyStefT‘- Ir_1 all d|men_3|ons, the maxi-
at criticality. Unlike criticality, HOT is associated with MUuM .V'eld oceurs fop=p. ’.Wh'Ch is the maximum dens!ty
modular patterned states, corresponding to a set of meas V‘.’h'c.h the s.yst.em sustains no macroscopic IOSS.‘ Th|§ be-
zero in the space of possible configurations at any densit \avior is qualitatively well captured by the mean-field-like

HOT states are robust to common perturbations, but are 2. Which we assume describes the percolation probability

pecially sensitive, or fragile, to design flaws and rare or unds a function of density, throughout the full range of densi-

anticipated perturbations. ties, for an ensemble of random configurations:
The example which most directly relates to the work de-
scribed in this paper is the standard percolation model, modi- Pw(p)=[
fied to include propagating failure events. This model has
been studied previously by others in a variety of contexts,
including fuel limited forest fires and contagious epidemics\We setp.= 1/2, basedloosely on bond percolation in two
propagating among stationary organisms. In this paper weimensions. The specific choice pf does not significantly
focus on issues which arise in developing applications oflter our results. The corresponding yield is simply given by
HOT to the study of population dynamics in ecological sys-& tent function
tems. Thus we will use the language of epidemics. However,
our model is sufficiently general that various alternative
analogies would be equally relevant.
In the standard percolation model sites on a lattice are
independently occupied by organisms with probabjitsgnd HOT configurations optimize the yield for systems sub-
vacant with probability - p. The population density on the ject to a particular distribution of infection®(i,j) and

ere the first term corresponds to the probability that the
nitial infection misses the infinite cluster, in which case the

ull initial density is retained. The second term corresponds
to the probability that the infections strikes a site in the infi-

nite cluster, in which case the loss in density incurred is that
gssociated with the infinite cluster.

0, O=p=p;

12 2

pe=p=<1l.

[(p—pc)pc

P O<p=pc;

Y= 3
{1—p, pesp=<1. )
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specified constraints on the optimization procedure. In the (a)
case of percolation, if the only design parameter is the den-

sity p of the initial configuration, the maximum yield occurs

at densityp.. However, if more degrees of freedom are al-

lowed in determining the optimal design, specialized con-

figurations can be chosen that produce maximal yiefds

=p all the way up to the maximum densipy=1. This was

(b)
studied previously in the context of a forest fire analogy on a ke~
two-dimensional square lattid®], where large numbers of
design degrees of freedom led to highly stylized, modular
configurations, which, unlike the random case, were spe- , |

(©

cially sensitive to the distribution of sparle(i,j). In par-
ticular, HOT configurations are robust to common perturba-
tions, and fragile with respect to rare perturbations and

c
changes in the distributions of hits. ke kN

In the context of population dynamics, a HOT configura- @ @ @
tion corresponds to optimal spatial clustering of organisms,
which maximizes the survival of the population in the pres- A A1

ence of external infections. Deliberate design could enter ) )

into the problem in the case of a managed community of FIG. 1. Schematic representation of the coupled map model for
organisms(e.g., a farm, where optimal yield would relate (@ N=1,(b) N=2, and(c) N=3 cell cases. Each cell is charac-
directly to profit. Alternatively, in a natural community high t€rized by a density;, and has a probability of infectiop; . Epi-
yield configurations correspond to communities which attaindem'cs can spread between nearest neighbor cells, as represented by

high densities of biomass through specialized traits Whicﬁhe arrows.

arise through evolutionary procesgéslg). 1) which is characterized by a densjiy, i=1, ... N. Here
However, considering evolutionary processes acting on ghe word “cell” describes a region containing marfgssen-
community of organisms introduces many issues which wergally infinite) organisms, and the loss within each cell is
not taken into account in the initial studies of static systemsjescribed by the traditional percolation model of the previ-
subject to deliberate design. In the following sections of thispus section, along with a coupling between cells which we
paper we will begin to address some of the key issues thajescribe below. That is, we assume each “cell” is charac-
fall into this category. The first is the scale on which evolu-terized by its density;, so that sites within each cell are
tion and selection acts. Namely, how do results obtained fojndependently occupied with probability, and that proper-
systems which are optimized as a whole compare to systemfes of the cell are given by the ensemble average at that
in which different regiongor species or organismare op-  density. We also assume there is a probabjitgf an infec-
timized individually for their own best outcome? Second,tion striking within celli, such that the probability of hitting
what is the role of time dependent regrowth on the optimapne of theN cells sums to unity. All structure in the distri-
configuration? That is, if the full growth cycle is included in pytion of infections which might exist at a resolution which
the estimate of yield, then there may be an additional penaltgxceeds that which defines the boundary of the particular cell
associated with rare perturbations due to the |Ong periOd '8vhich is infected is irre|evan(a5 in random perc0|ati()n
quired for regeneration. These are the two issues which Wgecause of the ensemble average of random configurations
study in the remaining sections of this paper in the context ofyithin each cell which is used to determine losses within the

a simple dynamical map. cells.
In our study, parameters of the dynamical system may be
ll. GLOBAL AND LOCAL OPTIMIZATION IN A Eﬁ:‘ed to dmﬁx'm'iﬁ the lpOp“'at'o'I” ﬂen_sny aﬁt;rba” '”f.ecnorc‘j'
COUPLED MAP REPRESENTATION OF A POPULATION o e rr?o e 'Sl_ sufficiently ge”fra that 'L.COU f.e g‘\;)r:'vate
SUBJECT TO EPIDEMICS y other applicationge.g., toy forests subject to firedVhen

an infection strikes within a cell, some of the density may be

We construct a low-dimensional map which corresponddost, and the loss may also spread into neighboring cells,
to the coarse graining of an infinite underlying system. Thideading to additional damage. We focus on the yi¥|da
map is based on mean-field-like percolation results describegheasure of the fitness, defined to be the density remaining
in the previous section. It is defined by a set of functionsafter an epidemic. For our comparisons between global and
describing the expected size of an epidemic which spreadscal optimization of the fithess we distinguish between the
within a population of organisms following the infection of systemwide global yieléy =N"*=N ,V;, and the local yield
an individual site. Compared to previous studies of HOT,Y; within each cell. Several previous studies of HOT have
here we consider a very limited number of design degrees dbcused on generalizations of percolation and forest fire
freedom, which will represent the degrees of freedom of oumodels which incorporate design of the configuration in a
dynamical system. In particular, we consider system&lof manner which optimizes yield for a given distribution of
=1,2, and 3 designable spatial degrees of freedom. Each gparks. The essential feature of these models, preserved here,
these degrees of freedom can be thought of as dsmslFig. is the tradeoff between high densities, necessary for high
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yields, versus low densities for protection against the spreathum density at which the system can be hit, yet sustain no
of infections. macroscopic loss. At lower initial densities, there is also no
The only macroscopic loss in density is associated witHoss, but the yield is lower because of the lower inifigal At
events involving an infinite connected cluster. At dengity  higher initial densities, the yield is less because of the cost
if an infection hits within celli (which occurs with probabil- ~associated with the finite probability of hitting the infinite
ity p;), the probability of hitting an infinite cluster is given cluster. This is simply a reiteration of the results we dis-
by the percolation probability, Eq2), with p=p;. As be- ~ cussed for random percolation in Sec. Il.
fore, we sefp;=p.=1/2 to be the critical density, associated _FOr the caseN=2, we definep,=1-p, and p,=p.
with the emergence of an infinite cluster in cellQualita- Without IOS.S OT general_|ty we talqaz§ 1/2, so that cell one is
tively our results are insensitive to the particular value Cho-thef cell which IS more likely to be hit. For the glo_bal case we
sen forpe. Bal Y= (v+ 4 Yo)/2 e e hat the maximun aiways
. . .- S =(Y1+Y,)/2.
py LI COTSSPONING P YNNI Gl IS 0NN Cospontis ) 112, a1 et Appeni o -
' tails). The optimal fitness of the system is attained when the
o 2 cell which is most likely to be hit is at the percolation thresh-
Yilhitini)=pi=P=(p). @ old. As previously noté/d for the cade=1, ?his corresponds
to the maximum density for which there is no macroscopic

the static yield map as a function of the initial dengity For loss in the hit cell. In the case of wo or more cells, propa-

. ; : L ation between cells is also relevant. At dengity 1/2, the
two or three cells, this also describes the loss in an |nd|V|duagbsence of an infinite cluster guarantees that the probability

cell when it is hit. However, in the two and three cell cases f an epidemic spreadingnacroscopicallyis zero. On the

For the one cell casg;=1, and this completely defines

abilities for the two cells Unit occupation density guaran-
tees that the less likely cell suffers a complete I@sginc-
tion) when it is hit.

A plot of Y as a function ofp; and p, reveals a single
maximum with a value ofY=(3/2—p)/2 at [p1,p>]
=[1/2,1]. The maximum becomes increasingly steeppas
decreases. Whenp=1/2 the configurations|[pq,p-]
=[1/2,1/2],[1/2,1],[1,1/2] become degenerate. These re-

.%ults for global optimization of the two cell case are derived
in the c_eII vs. spread which is initiated at the boundary of thecgﬁtlysi(rﬁﬂlyatligrgzeo?ggi?gtlg’I :trt]i(iearme Olge?grv?lﬁg] E/Cé \?thhakr)?e
cell. This leads to density parameters, to be presented elsewHE

propagates into a nearest neighlperi =1, is given by the
percolation probability in the hit celP..(p;). When spread-
ing occurs, the loss in cejlis then calculated in a manner
which parallels Eq(4), as ifj were hit. Here the mean field
assumption implies that loss in cgliepends only on the fact
that the epidemic has spread from celhto j (so thatj is
also impacted by the epidemj@nd not on termgassociated
with finite-dimensional unstirred systemshich would dis-

Yoo l(hitini) = pi— Po.(p)P2(p:). 5 Local o_ptimizqtion requires that the d.enlsities within each
j=i=a|(hitini)=p; (p)P=(p) © cell be adjusted in a manner which maximizes only the local
This combined with Eq(4) completes théN=2 map. fitness within the given cell. Interestingly, in the case of two

Finally, in the casé=3 we also need to consider second c€lls for all p, [p1,p,]=[1/2,1] is both the maximum of
nearest neighborgells 1 and 3 are second neighbors of eachY = (Y1+ Y2)/2 with respect to joint variation of; andp,,
other, but cell 2 does not have a second neightidre prob- ~ as well as the local maximum &f; with respect tg, and of
ability that an epidemic will propagate into cédl which is Y2 With respect tg,. This universal agreement of the global
displaced two cells from the hit celk&i+2), is given by and Io_cal optima is a special feature of the two cell case. If
the product of the percolation probability in the initial cell, We raise the density of cell one above 1/2, the maximum

and the cellj which is intermediate betweenand k. This lossless, propagationless value, then cell one suffers due to
leads to its better than 50% chance of sustaining a hit. Setting the

density in cell one to 1/2 decouples the two cells in the
Yi—i=o|(hitini)=p,— Pw(pi)Pm(pj)Pi(pk), (6)  optimization problem, so that maximizing the local yield in
cell two also optimizes the global yield for the system as a
These yield maps are written explicitly for the separate casewhole.
N=1,2,3 in the Appendix. The specific optimal density assignments do not in gen-
Next we compare global and local results for the staticeral agree for the local and global optima when we consider
optimization of the yield. We begin with the ca$¢=1, additional degrees of freedom in the design. However, inter-
which is trivial, but included here for completeness. In thisestingly we still find that the local and global maxima both
case, there is only one degree of freedom for the design—theorrespond to individual cells tuned to one or the other of the
initial density p; of the cell. Thus there ia priori no dis-  specific densities of 1/2 or 1. In Figs(a®)— 2(a3 we illus-
tinction between global and local optimization. A plot of trate the global maximum of = (Y,+Y,+Y3)/3, where the
Y=Y, as a function op=p, for this case has a single maxi- probability of a spark in each cell is given Ip;. We plot
mum atp=1/2, the percolation threshold. This is the maxi- our results as a function gf; andps, with p,=1—p;—ps.
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Global Local Overlap dynamical system in which the flow is governed by local
b gradients.
(al) (®1) (1) For general functiongY,Y>,Y3], there need be no local
pl pl optima of the sort we have defindih which case there
‘ ‘ a would be no stationary fixed points in a dynamical system

governed by gradient flowsHowever, for our case these

@) ®2) ‘ @ kinds of triple local optimal solution§.e., forY,, Y,, and
P Y3) always exist. These are illustrated in FiggbD—2(b3).
% D As in the other cases we have considered, all of the optima
| have eachp; equal to either 1/2 or 1. Again black corre-
‘ sponds top; =1, white top;=1/2, and now gray to regions
(a3) ®3) (c3) where these are degenerate local optima. For etdre is a
p3 . local maximum inY;(p;) atp;=1 whenp;<1/2, and a local
‘ ‘ N maximum atp; = 1/2 whenp;>1/2. There are local maxima

at bothp;=1/2 and 1 when all threg; are simultaneously
FIG. 2. Optimal solutions for the static case wiih=3, plotted  less than 1/2. In this case, there are exactly two degenerate
as a function ofp; (vertical axig, and p; (horizontal axig, span-  solutions (the details are derived in the Appengiwhich
ning the full range from 0 to 1, witp,=1—p;—ps. The top row  correspond tdp,,p,,p3]=[1,1/2,1 and[1/2,1,1/2. Both of
illustrates solutions for cell one, the middle row for cell two, and these solutions decouple the three cells, and prevent epidem-
the bottom row for cell three. Black indicatgg=1, and white  j~g from spreading.
indicates density;=1/2. Gray indicated degenerate solutions, as There are a variety of qualitative and quantitative similari-
described in the textal)—(a3 illustrate the globally optimal solu- ties between the global and local optima. First, the optima
tion for each of the three cell$b1)—(b3) illustrate the locally op- . . ) ' .
timal solutions.(c1)—(c3) indicate the regions where these two so- are 'd?”“‘?a' over exactly 2/3 of the phase spacg, as illus-
lutions overlap. trated in Figs. &1)—2(c3). These correspond to regions near
the corners of the phase space, where one opth&gnifi-
Separate graphs are used to illustrate the optimal densitiegntly outweighs the others, and the center, where there is
[p1,p2,ps] in each of the cells. White indicatgg=1/2 and  degeneracy of the local maxima. Thus the qualitative varia-
black indicates;=1. . tion of the solutions over the phase space is similar. More
The three corners of the triangle correspond to casegnportantly, however, the general feature that both local and
where one of thgp; is equal to 1, and the other two are zero. giqh| optimization select densities of either 1/2 or 1 in each
Here the optimal solution is clearly;=1/2 with the other of the cells illustrates a common departure from generic ran-

two Pi:]--dT}:e re;t of thﬁ oute(;n;ost tne_mgular tt;:)umilf‘rydom configurations. Both global and local optimization of
corresponas 1o regimes whepe= o for oneél. Even thoug the two and three cell cases lead to average yidtsall but

there are only two cells with anonzero probability of bemgthe case of exactly equal probabiliieshich exceed that
hit, these cases are not equivalent to the two cell case, bea'ssociated with the one cell case, which is optimized at criti-
cause of the possibility of loss propagating into ¢edven if ' P

it is never directly hit. The solution is clearly symmetric with cality. Furthermore, as the number C,)f ,Ce“F 123 in-
respect to interchange pf, andps. Solutions withp,=1 are  C'€aSes, the yleld for the globally opt!mlzed case averaged
least likely in the phase space, because of the relativegver all possible values of thp; also increases from.1/2
higher potential total losses due to the possibility of nearestN=1) to 5/8 N=2), to 575/864 =3) (the average yield
neighbor |OSS through propagation on both Sides. for the |0ca||y Optimized Configuration wheN=3 is 91/
Next we consider local optimization for the three cell 144), indicating increased average fitness with increasing
case. Because the cells no longer decouple, a configuratidinable degrees of freedom in the desjda].
which is a maximum of som¥&; with respect to the corre- While the locally optimized configurations are not always
spondingp; will not in general be a maximum for the other identical to the corresponding global solutions, they do share
two{Y;, p;} pairs. Thus to define a local maximum we seekall the features identified previously in Ref8—11] as being
solutions [ p1,p2,p3] which simultaneously maximize the common to HOT systems. In all cases, the configurations are
correspondingY,,Y,,Y3]. These represent local maxima in highly nongeneric, with high densities and yields, consisting
two distinct senses. First, we set our criterion for optimalonly of densities tuned to 1/2 and 1 in various combinations
configurationg p1,p,,p3] based only on a fitness criterion in depending on the probabilities. Both global and local optima
which p; is tuned to maximizeY;, rather than the global are sensitive to changes in the. This combination of high
yield Y=(Y;+Y,+Y3)/3. Second, for each; we seek val- yields but potential sensitivities to rare events or errors in
ues of p; which locally maximizeY;(p;) in the sense that estimating the relative probabilities of hitting different cells
aYildp;=0 andd?Y;/dp?<0, or the appropriate boundary is an example of the “robust, yet fragile” character most
local maximum conditionsdY;/dp;<0 at p;=1/2 or essential in HOT. Our systems are too small to exhibit power
dY;1dp;>0 atp;=1 (which is what we find to be the local law distributions, the least general and least important fea-
maxima in our solutions Points in phase space which sat- ture of HOT. However, optimization does lead to heavy tails,
isfy these criteria would correspond to local attractors for an this case associated with the fact that in all optimized
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solutions there is at least one cell with the density set to 1, When we combine the growth model with the loss map,
which insures finite probability of a loss of macroscopic den-we complete the dynamical system describing the evolution
sity. of a population subject to epidemics. Analogous spatiotem-
poral versions have been considered previously without in-
IV. THE DYNAMICS OF REGROWTH corporating design or optimizatiof23]. Here we consider
) ) _ _optimization of the time average yield with respect to the
‘So far we have focused on static configurations, optisatyration density in the growth map, for each cell. This is
mized either globally or locally for yield, with respect t0 the dynamical analog of the calculation performed in Sec. .
variations in the initial density. Next we consider a generali-  ag pefore, we find that the yield is optimized both locally
zation of the map, which combines the previous yield mapgnq globally when the cell which is hit most oftéassumed
describing the density in each cell after an infection strikesq pe cell ongis at density 1/2. For any growth rate this
the system, with a growth map which gives the new density.oresponds to setting the saturation denBltyfor that cell
in terms of th<=T old_ qensny in any cell which does not sustamequa| toM, = 1/2 since this results in no net loss when the
a loss. For simplicity, we return to the case of two cellsqg| s infected, thus no net change in the population, so that
where the global and local spatial optima were equivalentye pajance between birth and death is preserved. Thus, after
This also allows us to separate the question of local vs globgle saturation density is reached the first time in cell one, it
spatial optimization treated in the previous section from th§emains fixed at that value for all remaining tirf@nd can
local vs global maxima in the yield which arise in the time {,,s pe ignored This again decouples the optimization

dependent problem. The time dependent map will be genegsropiem for the two cells, so that the local and global spa-
alized to include additional spatial degrees of freedom INjally optimized solutions are identical.

future publications. Settingp,=1/2, the hit magEq. (4)] for cell two simpli-

During a given iteration, the growth map applies only t0jes hecause the only events which result in any net loss in

cells which do not suffer a loss through either a direct hit ory, o system are the rare sparks which hit cell two. In this case
the spread of an infection from another cell. The growth map ’

is loosely based on a continuous, deterministic representation ") M1/
of the dynamics of some underlying birth and death process. (1) T(pl)y = P2 P2 =2e
We will assume this process is confined to each cell indi- P2 P2 1-pV, piM=1/2,
vidually, so that no cell can be repopulated based on residual

densities in other parts of the system.

We model the change in population density with time
using an exponential growth m@(pi(”)) which saturates at
a maximum densityM;, which we will take as the design
parameter

8

which describes a simple symmetric tent mgg$") about
1/2 with slope=1.

The dynamical system thus simplifies to a composition of
Egs.(7) and(8). Compared to the static case, it is no longer
optimal for the second cell to have a density of unity. The
growth map presumes that repopulation occurs within the
_ 7) cell, and unit densityachieved through setting the saturation
M; if p{"=M/a. densityM,=1) would result in complete extinction within

the cell after the first hit. Furthermore, the larger the density
Here p{" represents the density in célafter n time incre-  in the second cell, the greater the loss, and thus the longer it
ments, whilep("" ") represents the density after+1 time  takes to repopulate. Optimal solutions for the dynamical
increments, assuming the cell is lossless in the time intervgiroblem balance maximizing the density in cell two under
betweem andn+1. In terms of a more complex, spatiotem- the more common circumstances when the first cell is in-
poral model of population dynamicg, represents the aver- fected, and minimizing the loss due to rare events which
age growth rate of an unsaturated population subject to cominfect the second cell.
peting birth and death processes &mdrepresents the steady  Initially, we simplify our analysis by removing stochas-
state population which results when these processes contieity from the sparking process and focusing on a periodic,
into balance. For example, in the contact prodg$$-22,  deterministic, sequence of hits. We assume cell one ibl hit
one of the most well studied spatiotemporal stochastic protimes, followed by a single hit on cell two, and then repeat
cesses, sites become occupied when neighboring sites giviee sequence. This defines the peribet 1 of the hit map.
“pirth” to offspring, and sites become vacant as a result ofOn average, this corresponds to a relative probabityf
“death.” We can construct a correspondence in which ourhitting cell two, wherep=1/(N+1). For the dynamical
parametere is roughly analogous to the birth ra¢since it  map, we optimize the saturation density, for fixed N,
controls the growth rate at low densitiesind, oncea is  assuming fixed growth rate>1. If we allow « to vary, it
fixed, thenM; is determined by the death rate, which leads to(trivially) takes the maximum possible value, in order to re-
the steady state density=M; . On the other hand, when the populate the system as rapidly as possible. Thus we fix
cell is hit by an infection or when an epidemic propagatesa=1.1, and optimize yieldY (equivalentlyY, in the second
into the cell during a particular time increment, the yield cell sinceY, is fixed at 1/2 with respect to the only non-
maps of the previous section give the density at the end dfivial growth parameter parametit,=M.
the interval. The hit map is obtained explicitly by replacing In Fig. 3 we present a summary of the various dynamical
pi with p{™ andY; with p("*¥) in Egs.(4)—(6). behaviors of the model, plotted in three different ways. Fig-

(n) (n)
ap; if pi’<Mil/a,
pi(n+1) G(Pi(n))
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1 of a sufficiently large. The staircase curve which cuts
(@) through the stable fixed point portion of the diagram, corre-
02 sponds to the optimal value ofl for eachN. Figure 3b)
illustrates the values of yiel®f, as a function ofM and N
0.8 2 <2
M over the same range shown in Figa@ where contours of

or optimal constant shading in the grayscale correspond to con¥tant
For eachN (a vertical slice of the contour plptthe maxi-
06 mum Y, defines the optimaM values composing the stair-
case curve in Fig. (@). Finally, Fig. 3c) illustrates the opti-
0.5 T mal yield Y, as a function olN, obtained by optimizing over
M. These are th¥, values which correspond to the staircase

curve describing the optimdll values in Fig. 8a).

The optimized solutions lie entirely within the stable fixed
point region. The fact that the optimil increases withN in
a stepwise manner is a consequence of the discrete nature of
our map, and the imposed periodicity of the hit process. To
understand the plateaus we assume a stable fixed point solu-
tion. Starting from the lowest density-IM, definek to be
the number of growth steps required to reach the saturation
densityM. The cell will therefore spentl—k steps at the
saturation valueM. This leads to an analytical solution for
80 100 &7 the yield

Yé: 0.7749

(b)

k iterates

(c) Y2=(1—M)(r1+a+a2+---+a’<*1\)+(N—k)M
09 ] 9

ak—1

a—1

+(N—K)M (10)

08 | ] _(1_
optimal (1 M)(

o<

03 so that

05 1 ' Y,  [a*-1
M a—1

+N—k (11)

& 20 40 60 80 100

N =N-—f(k) (12)

FIG. 3. Dynamical behaviors and optimal solutions for the twoyhere

cell case with time dependent regrowth) lllustrates the dynami-
cal phase diagram, as a function of the saturation deiitf cell
two, and the period of the hit mavhich is N+ 1), with a=1.1. f(k)=k+
The behaviors fall into three distinct regimes: stable fixed points
(the white regiol, periodic solutionggray), and chaotic solutions  Sincea>1, (k) is a monotonically increasing function kf
(black). The staircase curve which lies within the stable fixed pOim(equivaIentlyﬁYZ/aM is monotonically decreasing witk).
regime describes optimal values Mffor eachN. (b) illustrates the We are interested in th® which maximizesY, for a
corresponding values of yieMin the form of a gray scale contour given N. Because time is discretk,takes only integer val-

plot, yvhere black corre_sponds to the Iow_é!stalue_s, and white to Ues, so we are not guaranteed that a solutiom¥g/aM
the highesty values.(c) illustrates the maximum yiel as a func- . . - . . .
=0 will exist. Instead, the maximuni, is associated with

tion of N, and ds to théval the stai . ) : :
(gn Of N, and coresponds to tevalles on the slalrcase clirve in finding theM which gives rise to a sign change diY,/dM,

from positive to negative. This corresponds to finding khe
ure 3a) illustrates a phase diagram, plotted as a function ofor which f(k—1)<N=f(k). When we find the optimak
M and N, illustrating the different dynamical regimes. The Which satisfies this inequality, the sign changeYgfat op-

majority of the phase space consists of simple, periodic soimality implies 9Y,/dM=<0 for thisk, so that in order to
lutions, in which the period of the densip§” coincides with ~MaximizeY, we choose the minimurkl consistent with this

the periodN+1 of the hit map. We will refer to these as value ofk. Butk is the number of iterates before the solution

stable fixed points, and they occupy the white region in Fig'€aches saturation, so by definition{M) &~ *<M which
3(a). The gray regions corresponds to periodic attractors, s €quivalent to
which the period ofp{" is an integer multiple greater than

unity of the hit map periodN+1, and the black region cor- M= ;
responds to chaotic solutions, which are excluded for values 1+at7k

o

ak—l)
] (13

(14
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1 T T T T T T 1

(a) (b)
08 1 08 1
08| I )0t
p2 ¢ V V vV YV V V V V p2 FIG. 4. Solutions for the den-
04 1 I 04 ) sity p" vs timen, for N=6, and
a=1.1. In () M=0.571, which
02 1 02 ¢ 1 corresponds to the optimal case.
In (b) M=0.6392, which is the
0 . . . - . . 0 . . s s . ‘ largest value oM for which we
0 10 20 30 40 50 60 70 0 10 20 30 40 50 60 70 still obtain a stable fixed point
n (i.e., the period op$” equals that
1 i i i i of the hit map. In(c) M=0.7177,
(d) which is the highest yield period
0.8 two solution. In (d) M=0.9,
’ which is in the chaotic regime. In
this case, the density never hits
(n?-6 1 the saturation value, and the yield
is lower than any of the other
204 cases illustrated.
0.2
0 — e 0 . : - :
0 10 20 30 40 50 60 70 0 50 100 150 200
n n
Since the maximunY, corresponds to the minimuid, the Figures 4 and 5 provide a more detailed picture of these
optimal M is defined by the case of equality dynamics. Figure 4 illustrates several sample solutjg}is
vs n of the discrete time series. All of the results correspond
M= 1 (15) to one fixed period of the hit mapN+1=7, but different

values ofM. We choose this value &, because it illustrates
the full range of dynamical behavior, including chaos, along
In the limit of N— o, M—1, and the second cell approachesthe corresponding vertical slice of the phase diagf&ig.
unit density, which agrees with the results obtained in the3(a)]. Figure 4a) illustrates a stable fixed point that corre-
static case. Becaud# is given in terms of the integer values sponds to the optimal value ™, and thus lies on the stair-
of k, and is independent dfl, we obtain the steps in Fig. case of optimal solutions in Fig.(&. After three iterations
3(a). If we replace the map with a continuous time model,of the growth map, the density saturates, remaining at den-
this peculiar behavior does not occur. The corresponding opsity M for three more iterates, and then falling to density
timal yield does not have a steplike structure, and instead —M when cell two is hit, after which the cycle repeats.
increases smoothly and monotonically wikhas shown in  Figure 4b) corresponds to a larger value i, which is the
Fig. 3(c). In this case, abl increases across a step, additionallargestM for which a period one solution is still observed
time is spent at the saturation density, since the number dfefore the bifurcation to period two. This corresponds to a
iterations associated with regrowth remains fixed, increasingolution on the boundary between the white and gray regions
the yield, even for fixedV. in Fig. 3(@. Figure 4c) is the maximum yield period two
Other, more complex solutions are possible for the mapsolution, on the period two crest in the contour plot for yield
though they always correspond to lower average densitigd=ig. 3(b)]. In Fig. 4(c), beginning with the minimum density
than the optimal stable fixed point solution. The gray regionof 1—M, over the first half period the density increases
in Fig. 3(a@) describes a family of periodic solutions of higher steadily to 1/2. At that point, the cell sustains a hit, but no
periods. For example, a period two solution can be obtainetbss, since the density is at the percolation threshold. Over
for certainN, by choosingM sufficiently high that the growth the second half period, the density continues to grow, reach-
map requires two periods of the hit map before the densityng saturation after four time increments. Subsequently, the
repeats. There is a second, local maximum in the contowlensity remains pinned at the saturation valuéviobefore
plot [Fig. 3(b)], corresponding to the highest yield period the next hit, which drops the density back te- M, and the
two solutions. Chaotic solutions lie within the black wedgecycle repeats. While the maximum density achieved during
in Fig. 3@). If « is taken sufficiently large, chaotic solutions the cycle(here the valueM) clearly exceeds that of the op-
no longer exist at all. The condition for the existence oftimal solution in Fig. 4a), the average density is less. Fi-
chaotic solutions is derived below. nally, Fig. 4d) corresponds to a value & which is taken
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FIG. 5. Bifurcation diagrams and yield curves as a functioiMdbr fixed values ofN, anda=1.1. The bifurcation diagrams illustrate
scatter plots of the yield averaged over each single period of the hit map, while the yield curves are the corresponding infinite time averages,
from which we can extract the optimal yield and correspondihgalue for each caséa) and(c) are the bifurcation diagram and yield
curve, respectively, foN=6. (b) and (d) are the bifurcation diagram and vyield curve, respectively, Nor 20. () corresponds to
N= 100, where there are stable fixed points for almosMaJlup to M = (1.12%9/(1+ 1.1°9 ] so there is almost no distinction between the
average yield over a single period and the infinite time average.

from the chaotic regime. In this case, the density never retinguishable, so only one plot is includékigher period so-
peats and never reaches saturatibit did it would have to  lutions do exist for thidN, but they are squeezed so far to the
be a periodic solution, rather than chagtiand the infinite  right in the bifurcation diagram that they are not visjbl€o
time average yield is extremely low—significantly lower obtain the bifurcation diagram for a givéh) we compute the
than even the density=1/2 associated with the percolation yield (Y,)\ ., averaged over each individual peribid- 1 of
threshold. the hit map. The results are plotted in the form of a scatter
In Fig. 5 we illustrate a series of bifurcation diagramsplot as a function ofM, where a stable fixed point corre-
[Figs. 5a), 5(b), and Fe)] and the corresponding yield plots sponds to one point, a period two solution to two points,
[Figs. Hc), 5(d), and 5e)] as a function ofM for fixed N. higher period solutions to more points and eventually a cha-
Figs. Ha) and 5c), and b) and 5d) are paired plots for two otic solution to an infinite number of points in the scatter
distinct choices ofN. Figures %a) and 5c) are obtained for plot. The corresponding yield plots are simply the infinite
the N value used in Fig. 4. In the case of Figeh the time average of the scatter plot data which compose the bi-
bifurcation diagram and the yield plots are essentially indisfurcation curves, so that the curves are identical for stable

056122-9



CARL ROBERT, J. M. CARLSON, AND JOHN DOYLE PHYSICAL REVIEW B3 056122

fixed points[as is essentially the case throughout Fig) b

the yield is the average of the two branches in the period two
regime, and so on. From the maxima of these yield curves
we extract the optimaM for eachN, defining the staircase
curve in Fig. 3a). For the values oN taken for Figs. ta)—

5(d) the stable fixed point undergoes a series of bifurcations
to higher period solutions, and, fof sufficiently small, as in
Figs. 5a)—5(b), there is a bifurcation to chaotic solutions,
which are dense, represented by the solid black box in Fig. "M\
5(a). e
Comparing Fig. 4, with Figs. (8 and 5c) the optimal 2 .
solution in Fig. 4a) corresponds to the maximum yield value ' (n)
in Fig. 5(c), which is on the branch of stable fixed points in P;
Fig. 5(@). The stable fixed point in Fig.(8), corresponds to .y
the termination of the stable fixed point branch, at the onset F(In(); 6. TheNcomposmon ol Growth mapsG and 1 tent mait

of the bifurcation to period two in Fig.(8), and the first Y>P2 - If M/a"=1/2 only chaotic solutions are possible through-
local minimum in the yield in Fig. &). Fig. 4(c) correspond out :hefen,t\'/lr'/e 'Sf;vfsze(T%.l]' A Stsb.'e ];'Xed@Epo('nr;tizlzl_dMo

to the second local maximum in the yield in Figch(which iX'TiéN(Or(n))fl\ + IS graph Is for &pz7=2 an

is slightly kinked—a result of the discrete time dynamjcs P /=2

which is the peak yield period two solution. The period two
solutions exist over a range ofl, given roughly by Th
[0.63,0.75. In Fig. 5a we see the two branches of the
period two solutions which bifurcate from the period one
branch. The values d@fY)y, 1 on the two arms, are the val-
ues Ofp(zn) averaged over each period of the hit map required
to complete the period two cycle. The upper branch corre- , ) o N
sponds to the half period which contains the saturation point§”dNIts basin of attraction ip,(0,1]. So, atM =« /(}

pt" , and taken alone typically has higher yield than any onet @) +¢& (where e is a small positive real numberp;

of the period one solutions. However, the lower branch, in/0Ses its stability, and other dynamics are possible.

which the density is rebuilding following the sharp drop to A key feature of our map is that as soon as one iterate
pMM=1—M, always has a sufficiently low average yield that reaches the platea_u _as_sou_ated with the saturation den5|_ty, a
the time average yield of the period two cycle is never a table periodic orbit is inevitable. For an appropriate choice

high as the optimized period one solution. Figur@l)4is of parameters this can be avoided. Indeed for
embedded in the chaotic regime, which appears solid black

ToG"(p}")

Since a>1, the only stable fixed point ip5=1—M.
is point only exists for

M

a,N

<1-M, (17)

in Fig. 5(a@), In this case, the density never repeats, and the M>1/2 (18)
infinite time average vyield is extremely low—significantly aV ’

lower than the density associated with criticality as illus-

trated in Fig. %c). the dynamics gets trapped in the regjoy=1/2 and eventu-

For higher values oN, the chaotic regime no longer ex- ally gets trapped in a smaller embedded region
ists. We can analytically determine the phase boundary by

standard techniques in dynamical systems theory. The dy- a1
namical system which describdsgrowth cycles in the sec- p2€|1= 55| (19
ond cell, followed by a single hit is defined by the composi-
tion of the growth and hit map Once confined within this region, the map reduces to a tent
map. The Lyapunov exponeitt is related to the slope™,
( 1 leading toA=NIn a. BecauseN=1 anda>1, we have a
aNpfV, it s —, positive Lyapunov exponenk>0. This implies that for
2a M/aN=1/2, the solutions are chaotic, with no stable periodic
1 M orbits allowed.

ToGN(pM)={ 1—aNpi, if ——x=<pi<

2 T In Figs. §b) and 8d) we illustrate a bifurcation diagram
a @

and the time average yield correspondind\te 20 which is
M a case where high period orbits, but no chaos is observed. As
1-M, if p(Z“)>—N_ in the caseN=6, the optimal stable fixed point globally
a optimizes the yield. The bifurcations to higher period solu-
(16)  tions are represented by multiple branches in Fi).5This
leads to additional local optima in yield \M, which have
Figure 6 shows a representation of this map. Note that fosystematically decreasing valuesf at the local peaks as
piV=1/2aN, ToGN(1/2aN)=1/2, this implies that all iter- M increases, also corresponding to increasing period of the
ates OfTOGN(p(Zn)) remain less than 1/2. solution.

\
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1 " T " " V. CONCLUSION
0.8 r p =1/101 I A variety of low-dimensional dynamical systems have
/pﬂm been studied in the context of population dynaniiz4|. Ex-
06 | ] amples include the classic Lotka-Volterra equations which
<k> describe competing populations in ecold@p], as well as
041 p=17 the logistic mag 26] which attempts to describe complexi-
ties which can arise within an individual population. Similar
02 to ours, these maps can exhibit rich and varied dynamical
0 behavior, including periodic and chaotic solutions. However,

0.5 06 07 _ 08 09 1 these and other previous studies have focused primarily on
ics whi i u i i -
M the dynamics which arise as a consequence of internal inter

FIG. 7. Yield vs the saturation densib for the stochastic case. actions within a community, ignoring interactions of the
We present results which correspond to the same relative probabifommunity with the external environment. Our model com-
ity p for hitting cell two as in the deterministic cases illustrated in bines the study of a relatively simpler dynamical system de-
Figs. Hc), 5(d), and 8e). Compared to the deterministic case, the scribing the isolated communitghe exponential growth and
optimal yields are slightly higher, and all of the structure associatedaturation map with a coupling to external perturbations.
with periodic solutions and chaos is lost. The resulting map can exhibit complex solutions, though the

high yield HOT states are always confined to the simplest

Figure 5e) corresponds to a very high period hit map, regime in which the period of the solution is the same as the
N= 100, so that cell two is hit only once every 101 events. InPeriod associated with external perturbations.
this case, we observe stable fixed point solutions for almost We should mention the following result obtained in Refs.
all M [up to M=(1.1299/(1+1.1199], so that the yield [27-29: “Optimal periodic orbits of chaotic systems occur
(Y,)n+1 averaged over one period of the hit map also cor-at low period.” This result is restricted to thiaotic regime
responds almost entirely to the infinite time average. ThéVe are interested in the whole picture, stable orbits included.
time average yield in the second cell approaches unity in théh our case, the optimal periodic orbit for thenole dynami-
limit of large N, at a rate which increases with increasimg ~ cal regimeis also a low period orbita fixed poin}, but a
were « allowed to vary. stable orbit away from the chaotic regime.

Finally, in Fig. 7 we compare our results for the periodic  In constructing the map we had in mind a coarse-grained
case with the corresponding results for the analogous staepresentation of an underlying many-degree-of-freedom
chastic map. In the stochastic case, wepsetl/(N+1), so  percolation model or contact process, in which a birth and
that with probabilityp cell two is hit, and with probability death process governs repopulation of individual cells, and
1—p regrowth occurdi.e., cell one is hit, but the density is infections spread rapidly throughout connected clusters. In-
1/2 so no loss or propagation occurs as beforais defini-  deed, using a microscopic description of this kind we have
tion of p guarantees that on average the second cell is hit a§egun to perform preliminary studies of the issues discussed
the same rate as in the corresponding periodic case. in this paper. In that case, optimal design corresponds to

For p=1/7,1/21, and 1/101i.e., the stochastic analogs tyning the local birth and death rates based on global or local
corresponding to th&l values in Fig. 5 the stochastic case yie|d criteria. With design, it is possible to obtain solutions
leads to relatively simpler curves for the time avera@evs  hich significantly outperform uniform or random systems,

M than we obtained for the deterministic, periodic hit map inalthough compared to our simple map, these simulations take
Figs. 8b), 5(d), and Fe). As illustrated in Fig. 6, in the .o longer to converge

stochastic case, for eaghwe observe a single maximum in It would also be useful to explore in detail the sensitivities

Y vs M, so that all of the structure associated with high )
) . X . : . . f our results to the features of the map we have defined. In
period and chaotic solutions is lost. The maximum is shifted . . . : .
his context, it would be of particular interest to incorporate

to a slightly higher value oM than in the corresponding mizati q ling t ‘ I perturbai . d
periodic case. This is easily understood by considering th plimization and coupling to external perturbations in mod-
Is traditionally used in ecology. In ecological modeling, sta-

leading order effect of fluctuations in the hit sequence on th&'S ! ; )
stable fixed point optimal solutidie.g., Fig. 48)], which sits ~ Pilizing features are occasionally put in by hand to more
at the saturation densityi, until a hit occurs, at which point fully capture realistic biological phgnomena and structured
it drops to 1- M, and is subsequently repopulated. If two interactions. Could such features arise from robustness? Fur-
sequential hits occur relatively closer together than the)ﬁhermore, environmental impact studies focus on sensitivity
would in the periodic case, the net loss is less because tHd systems to environmental change, corresponding loosely
density has already dropped, lowering or eliminating the los$o a nonstationary(i,j). If ecosystems are HOT, and there-
compared to the periodic case. On the other hand, if twdore tuned for robustness in a manner which reflects their
sequential hits are relatively farther apart, the system is prelistorical environmental conditions, then they may be hyper-
served at the saturation density longer. Both of these effectsensitive to change in a manner which is not accurately re-
lead to larger average yields for the stochastic case compardiécted in models which do not take the synergy between the
to periodic hits. system and its environment into account.
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Y=pilp1+pa+ps—P2i(p1) —P.(p1)Pi(p2)
—Po(p1)Polp2)P2(p3) 1+ pal p1t patps
—P..(p2)PZ(p1) — P2(pa) — Po(p2) P2(p3)]

and EPRI/DoD through the Program on Interactive Complex

Networks.

APPENDIX

In this Appendix, we present a more detailed descriptio

n

+palp1tpat ps—Pulp3)Pulp2) PA(p1)
—P..(p3)P%(p2) —Pi(pa)]. (A7)

The yield in cell one, cell two, and cell three, respectively,

of the one, two, and three cell maps discussed in Sec. Il. wa'e

also give the explicit forms of the global and local yield

functions for the three cell case. We derive the local optimal

solutions for the three cell degenerate céSig. 2), as well
as the local and global optimal solution for the two cell case
which is alwayq p;,p,]=[1/2,1].

1. Detailed one, two, and three cell maps

The one-dimensiondllD) hit map (static casgis given
by

Y1=p1—PZ(py). (A1)
Similarly, the 2D hit map(static casgis given by
if hit cell one'[ Yi=p1Pulpy), (A2)
1 Yo=po—P(p1)Pi(p2),
o Y1=p1—P.(p2)P2(p1),
if hit cell two: 5 (A3)
Yo=po—P%(p2),

Y1=palp1—P2(p1) 1+ Pl p1— Pl p2) P2(p1)]

+Pal p1— P(p3) P p2) P2 (p1) ], (A8)

Yo=pilp2—P.(p1)P2(p2) 1+ Pl p2— P2(p2)]

+pal p2— Pa(p3) Pa(p2)], (A9)

Y3=pilpa—P(p1)P=(p2)P%(p3)]

+Pal p3— Pul(p2) P2(p3) 1+ pal ps— P2 (p3) 1.
(A10)

3. Derivation of the optima in the gray region of Fig. 2

The gray region of Fig. 2 is characterized by

pi<1/2, p,<1/2, andps<1/2.  (Ald)

We also impose

p1t+pot+psz=1. (A12)

Notice that these equations are symmetric. Indeed, we can

replacep, by p,, andp, by p; in Eq. (A2) and we get Eq.
(A3).
A similar treatment for the three cells case yields

Y1=p1—P2(py),
Y2=p2—P..(p1)P2(p2),
Y3=p3—P..(p1)Pl(p2) P2(p3),

if hit cell one:
(A4)

Y1=p1—P.(p2)Pi(p1),
Y2=pa—P2(p,),
Y3=p3—P..(p2)P2(p3),

if hit cell two: (A5)

Y1=p1—P..(p3)Pul(p2)P2(p1),
Yo=po—Po(p3)P2(p2),
Y3=p3z—PZ(ps).

if hit cell three:
(A6)

2. Global and local yields
The total yield in the three cell case is given by

It is easy to prove that the triplets (1/2,1,1/2) and (1,1/2,1)
are degenerate local optima in this region. For example, for
(1/2,1,1/2), we substitute this solution in&;/dp; and us-

ing Egs.(Al1l) and (A12), we obtain

IY3/9ps=pl—p2—p3<O0. (A15)

This proves that (1/2,1,1/2) is a local optimum. A similar
procedure illustrates the corresponding results for (1,1/2,1).
No other triplet satisfies the conditions for being an opti-
mum. For example, trivially, the triplet (1,1,1) can never be
an optimal solution for anyp4,p»,ps], since it always pro-
duced zero yield. Also, we can easily verify the triplet
(1/2,1/2,1/2) is never optimal:

(9Y1/(?p1=l_2p1, (A16)
0"Y2/0p2:1_2p2, (Al?)
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Optimality requires thatA16), (A17), and(A18) all be less

than 0. This would require afy;>1/2, which is impossible.

Therefore, (1/2,1/2,1/2) is never an optimum.

4. Derivation of optimal solution [p,p,]=[1/2,1] in the static
two cell case

If p1=1/2 andp,=1/2, the yield is
Y=(1-p)[1-p2tp1—V2p—1(2p;—1)] (A19)
+p[1-potp1—2p2—1(2p;—1)],

and this surface in 3D space has a maximumnpfot 1/2 and
po,=1 giving Y=23/2—p. If p;=<1/2 andp,=1/2, then

(A20)
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Y=(1=p)[p1+p2]+p[1—ps+tpi]) (A21)

=p1+(1—2ppy) +p. (A22)
This takes a maximum value of 3/ for p;=1/2 andp,
=1. Finally, if p;=1/2 andp,=<1/2, then

Y=(1-p)[1-p1t+p2]l=1-p+(2p—1)p;+p,=1
(A23)

for p;=1/2 andp,=1/2. Therefore, we get the two optimal
densities ofp;=1/2 andp,=1 giving an optimal yield of
Y=3/2—p.
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