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Highly optimized tolerance in epidemic models incorporating local optimization and regrowth
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In the context of a coupled map model of population dynamics, which includes the rapid spread of fatal
epidemics, we investigate the consequences of two new features in highly optimized tolerance~HOT!, a
mechanism which describes how complexity arises in systems which are optimized for robust performance in
the presence of a harsh external environment. Specifically, we~1! contrast global and local optimization criteria
and~2! investigate the effects of time dependent regrowth. We find that both local and global optimization lead
to HOT states, which may differ in their specific layouts, but share many qualitative features. Time dependent
regrowth leads to HOT states which deviate from the optimal configurations in the corresponding static models
in order to protect the system from slow~or impossible! regrowth which follows the largest losses and
extinctions. While the associated map can exhibit complex, chaotic solutions, HOT states are confined to
relatively simple dynamical regimes.
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I. INTRODUCTION

The property of agent based modeling of complex s
tems which has been most widely emphasized has been
emergence of complex behavior from spatiotemporal
namical systems described by simple local rules. In man
the most widely studied examples, complexity is associa
with system wide, self-organization to a critical point@self-
organized criticality~SOC! @1,2## or a bifurcation point near
the ‘‘edge of chaos’’@3#. In both cases, even the gener
random states exhibit long range correlations. However, w
the exception of power law statistics, properties associa
with random configurations fail to capture the basic
tributes of most natural and man-made complex syste
where evolution and deliberate design lead to more reg
structure and higher densities than are achieved rando
@4#. On the other hand, it has been difficult to develop mo
els which capture the emergence of higher level structure
that for most examples which have been studied in this c
text, design features are put in by hand@5–8#.

Recently, highly optimized tolerance~HOT! @9–11# was
introduced as a mechanism for complexity, in which non
neric features do emerge without being introduced direc
Instead, they result from optimization of a design object
in systems consisting of many internal degrees of freed
coupled to an uncertain external environment. HOT emp
sizes robustness to external perturbations as the key me
nism which can lead to structured, high-density configu
tions. HOT leads to power laws, and, more importantly,
systems which are robust to common, designed-for un
tainties, and fragile to design flaws and rare perturbation

While the basic characteristics associated with HOT
shared by a wide variety of systems in engineering, biolo
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and ecology, the deliberate static design methodolog
based on systemwide performance objectives which h
been used in all of the studies to date are much more cle
connected to man-made technologies than to systems w
arise in nature. In ecological and biological settings the d
tinction between a system and its environment is typica
more ambiguous and involves higher levels of feedback,
the question of the scale on which natural selection, and t
evolution, acts is a matter of considerable debate@4,12–15#.

In this paper we address two issues of key importance
biological and ecological applications which were not trea
in the initial investigations of HOT. We still focus on th
simplest possible settings, here consisting of coupled m
motivated by spatiotemporal models of population dynam
subject to external disturbances~infections!. While the maps
can exhibit high period orbits and chaotic solutions, HO
states are associated with much simpler solutions.

In Sec. II we provide a brief review of HOT, focusing o
issues which are relevant for the work presented here
developing a context for our application in epidemics mo
eling. In Sec. III we compare configurations obtained fro
global and local optimization of static fitness. In the conte
of ecology, global optimization loosely corresponds to op
mization of fitness on the scale of an ecosystem as a wh
while local optimization corresponds to some lower lev
optimization on the scale of individual organisms or grou
of organisms. In general, local and global optimization ne
not yield the same configurations~though in our highly sim-
plified setting quite often they do!. However, both local and
global optimization do generally lead to rare, structur
states which differ significantly from generic random co
figurations, and are both robust to common events,
highly sensitive to changes in the pattern of disturbance.

In Sec. IV we move beyond studies of static configu
tions subject to a single epidemic and incorporate regro
of the population through an explicitly time dependent ma
We summarize the behaviors of the model in terms o
d-
©2001 The American Physical Society22-1
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phase diagram. In the deterministic case parameter spa
divided into distinct dynamical regimes which include stab
fixed points, stable periodic orbits, and chaos. We also c
sider stochastic driving, which leads to moderately hig
performance compared to the corresponding determin
case as well as simpler behavior dynamically. While optim
solutions are always associated with simple stable fixed p
solutions, the threat of slow regrowth or extinction followin
a rare event leads the system away from the static opt
where higher initial densities lead to larger losses. Such la
losses would result in extended yield penalties during
growth phase relative to the state which is optimized incl
ing the dynamics. Finally, we conclude in Sec. V with
discussion of potential avenues for future applications of
results.

II. HIGHLY OPTIMIZED TOLERANCE

In this section we provide a brief review of earlier resu
describing HOT in the context of percolation models, whi
serves as a starting point for the work described here@9,10#.
Highly optimized tolerance was initially introduced in th
context of the familiar percolation@16#, forest fire@17#, and
sandpile@1# models studied in the context of self-organiz
criticality @2#. Each of these models consists of a lattice
sites which can be occupied by one~percolation and fores
fire models! or more~sand pile models! particles. The lattice
is also subject to local disturbances, which may ultimat
remove particles from the system via a cascading fail
event, described by local rules for the propagation of fail
in the system. The new ingredient associated with HOT
the introduction of deliberate design or evolution by natu
selection@11# to these models. Design and evolution fav
high yield configurations. Here yield corresponds to the
erage density of particles which remains in the system aft
failure event. In a variety of different scenarios it has be
shown that HOT states have densities well in excess of
corresponding models at criticality. HOT states exhi
power laws, but with exponents which are steeper than th
at criticality. Unlike criticality, HOT is associated with
modular patterned states, corresponding to a set of mea
zero in the space of possible configurations at any den
HOT states are robust to common perturbations, but are
pecially sensitive, or fragile, to design flaws and rare or
anticipated perturbations.

The example which most directly relates to the work d
scribed in this paper is the standard percolation model, m
fied to include propagating failure events. This model h
been studied previously by others in a variety of contex
including fuel limited forest fires and contagious epidem
propagating among stationary organisms. In this paper
focus on issues which arise in developing applications
HOT to the study of population dynamics in ecological sy
tems. Thus we will use the language of epidemics. Howe
our model is sufficiently general that various alternat
analogies would be equally relevant.

In the standard percolation model sites on a lattice
independently occupied by organisms with probabilityr and
vacant with probability 12r. The population density on th
05612
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lattice is thus equal tor, and any configuration with densit
r is equally likely. If an infection strikes a site on the lattic
disease spreads through the connected cluster of ne
neighbor occupied sites, killing all of the organisms in t
cluster. Thus, for a given initial starting density the avera
density of organisms which survives the epidemic is
yield, Y5r2^ loss&, where the angle brackets represent
average over both the distribution of initial infection sit
and the ensemble of possible configurations at densityr. For
the standard percolation model, the configuration at a
given density is random, so that in the limit of an infini
system, the probability distribution describing the relati
likelihood of infection striking different sites on the lattice
irrelevant.

In the standard percolation model in the thermodynam
limit, a plot of Y vs r increases linearly and monotonical
over the rangeY5r50 up to the critical pointY5r5rc ,
followed by a monotonic decrease over the rangerc<r<1.
At densities below criticality individual infections never lea
to a macroscopic loss. Instead the typical loss cuts off at
size corresponding to the correlation length, which does
scale with the size of the system. For densities above
critical point, the characteristic loss is of order the syst
size, and is associated with infections which hit and spr
through the infinite cluster. In general, yield is related to t
percolation probabilityP`(r):

Y5@12P`~r!#r1P`~r!@r2P`~r!#. ~1!

Here the first term corresponds to the probability that
initial infection misses the infinite cluster, in which case t
full initial density is retained. The second term correspon
to the probability that the infections strikes a site in the in
nite cluster, in which case the loss in density incurred is t
associated with the infinite cluster.

For rc<r<1, P`(r) increases monotonically from zer
to one, withP`(r);(r2rc)

b in the limit r→rc1 @16#. For
r51 the yield is ~trivially ! Y50 because the infection
spreads throughout the system. In all dimensions, the m
mum yield occurs forr5rc , which is the maximum density
at which the system sustains no macroscopic loss. This
havior is qualitatively well captured by the mean-field-lik
form, which we assume describes the percolation probab
as a function of density, throughout the full range of den
ties, for an ensemble of random configurations:

P`~r!5H 0, 0<r<rc ;

@~r2rc!/rc#
1/2, rc<r<1.

~2!

We setrc51/2, based~loosely! on bond percolation in two
dimensions. The specific choice ofrc does not significantly
alter our results. The corresponding yield is simply given
a tent function

Y5H r, 0<r<rc ;

12r, rc<r<1.
~3!

HOT configurations optimize the yield for systems su
ject to a particular distribution of infectionsP( i , j ) and
2-2
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specified constraints on the optimization procedure. In
case of percolation, if the only design parameter is the d
sity r of the initial configuration, the maximum yield occu
at densityrc . However, if more degrees of freedom are
lowed in determining the optimal design, specialized co
figurations can be chosen that produce maximal yieldsY
5r all the way up to the maximum densityr51. This was
studied previously in the context of a forest fire analogy o
two-dimensional square lattice@9#, where large numbers o
design degrees of freedom led to highly stylized, modu
configurations, which, unlike the random case, were s
cially sensitive to the distribution of sparksP( i , j ). In par-
ticular, HOT configurations are robust to common pertur
tions, and fragile with respect to rare perturbations a
changes in the distributions of hits.

In the context of population dynamics, a HOT configur
tion corresponds to optimal spatial clustering of organism
which maximizes the survival of the population in the pre
ence of external infections. Deliberate design could en
into the problem in the case of a managed community
organisms~e.g., a farm!, where optimal yield would relate
directly to profit. Alternatively, in a natural community hig
yield configurations correspond to communities which att
high densities of biomass through specialized traits wh
arise through evolutionary processes@4,18#.

However, considering evolutionary processes acting o
community of organisms introduces many issues which w
not taken into account in the initial studies of static syste
subject to deliberate design. In the following sections of t
paper we will begin to address some of the key issues
fall into this category. The first is the scale on which evo
tion and selection acts. Namely, how do results obtained
systems which are optimized as a whole compare to syst
in which different regions~or species or organisms! are op-
timized individually for their own best outcome? Secon
what is the role of time dependent regrowth on the optim
configuration? That is, if the full growth cycle is included
the estimate of yield, then there may be an additional pen
associated with rare perturbations due to the long period
quired for regeneration. These are the two issues which
study in the remaining sections of this paper in the contex
a simple dynamical map.

III. GLOBAL AND LOCAL OPTIMIZATION IN A
COUPLED MAP REPRESENTATION OF A POPULATION

SUBJECT TO EPIDEMICS

We construct a low-dimensional map which correspon
to the coarse graining of an infinite underlying system. T
map is based on mean-field-like percolation results descr
in the previous section. It is defined by a set of functio
describing the expected size of an epidemic which spre
within a population of organisms following the infection o
an individual site. Compared to previous studies of HO
here we consider a very limited number of design degree
freedom, which will represent the degrees of freedom of
dynamical system. In particular, we consider systems oN
51,2, and 3 designable spatial degrees of freedom. Eac
these degrees of freedom can be thought of as a cell~see Fig.
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1! which is characterized by a densityr i , i 51, . . . ,N. Here
the word ‘‘cell’’ describes a region containing many~essen-
tially infinite! organisms, and the loss within each cell
described by the traditional percolation model of the pre
ous section, along with a coupling between cells which
describe below. That is, we assume each ‘‘cell’’ is char
terized by its densityr i , so that sites within each cell ar
independently occupied with probabilityr i , and that proper-
ties of the cell are given by the ensemble average at
density. We also assume there is a probabilitypi of an infec-
tion striking within cell i, such that the probability of hitting
one of theN cells sums to unity. All structure in the distri
bution of infections which might exist at a resolution whic
exceeds that which defines the boundary of the particular
which is infected is irrelevant~as in random percolation!,
because of the ensemble average of random configura
within each cell which is used to determine losses within
cells.

In our study, parameters of the dynamical system may
tuned to maximize the population density after an infectio
The model is sufficiently general that it could be motivat
by other applications~e.g., toy forests subject to fires!. When
an infection strikes within a cell, some of the density may
lost, and the loss may also spread into neighboring ce
leading to additional damage. We focus on the yieldY, a
measure of the fitness, defined to be the density remain
after an epidemic. For our comparisons between global
local optimization of the fitness we distinguish between
systemwide global yieldY5N21( i 51

N Yi , and the local yield
Yi within each cell. Several previous studies of HOT ha
focused on generalizations of percolation and forest
models which incorporate design of the configuration in
manner which optimizes yield for a given distribution
sparks. The essential feature of these models, preserved
is the tradeoff between high densities, necessary for h

FIG. 1. Schematic representation of the coupled map mode
~a! N51, ~b! N52, and~c! N53 cell cases. Each cell is charac
terized by a densityr i , and has a probability of infectionpi . Epi-
demics can spread between nearest neighbor cells, as represen
the arrows.
2-3
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CARL ROBERT, J. M. CARLSON, AND JOHN DOYLE PHYSICAL REVIEW E63 056122
yields, versus low densities for protection against the spr
of infections.

The only macroscopic loss in density is associated w
events involving an infinite connected cluster. At densityr i ,
if an infection hits within celli ~which occurs with probabil-
ity pi!, the probability of hitting an infinite cluster is give
by the percolation probability, Eq.~2!, with r5r i . As be-
fore, we setr i5rc51/2 to be the critical density, associate
with the emergence of an infinite cluster in celli. Qualita-
tively our results are insensitive to the particular value c
sen forrc .

The corresponding expected yieldYi within cell i is given
by Eq. ~1!, which simplifies slightly:

Yi u~hit in i !5r i2P`
2 ~r i !. ~4!

For the one cell case,p151, and this completely define
the static yield map as a function of the initial densityr1. For
two or three cells, this also describes the loss in an individ
cell when it is hit. However, in the two and three cell cas
we must also include terms describing the propagation
epidemics between cells, which we assume is described
the same underlying mean-field-like percolation mechani
When an infection strikes celli, the probability the epidemic
propagates into a nearest neighborj 5 i 61, is given by the
percolation probability in the hit cellP`(r i). When spread-
ing occurs, the loss in cellj is then calculated in a manne
which parallels Eq.~4!, as if j were hit. Here the mean field
assumption implies that loss in cellj depends only on the fac
that the epidemic has spread from celli into j ~so thatj is
also impacted by the epidemic!, and not on terms~associated
with finite-dimensional unstirred systems! which would dis-
tinguish between the spread of disease from an arbitrary
in the cell vs. spread which is initiated at the boundary of
cell. This leads to

Yj 5 i 61u~hit in i !5r j2P`~r i !P`
2 ~r j !. ~5!

This combined with Eq.~4! completes theN52 map.
Finally, in the caseN53 we also need to consider seco

nearest neighbors~cells 1 and 3 are second neighbors of ea
other, but cell 2 does not have a second neighbor!. The prob-
ability that an epidemic will propagate into cellk, which is
displaced two cells from the hit cell (k5 i 62), is given by
the product of the percolation probability in the initial ce
and the cellj which is intermediate betweeni and k. This
leads to

Yk5 i 62u~hit in i !5rk2P`~r i !P`~r j !P`
2 ~rk!. ~6!

These yield maps are written explicitly for the separate ca
N51,2,3 in the Appendix.

Next we compare global and local results for the sta
optimization of the yield. We begin with the caseN51,
which is trivial, but included here for completeness. In th
case, there is only one degree of freedom for the design—
initial density r1 of the cell. Thus there isa priori no dis-
tinction between global and local optimization. A plot
Y5Y1 as a function ofr5r1 for this case has a single max
mum atr51/2, the percolation threshold. This is the ma
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mum density at which the system can be hit, yet sustain
macroscopic loss. At lower initial densities, there is also
loss, but the yield is lower because of the lower initialr1. At
higher initial densities, the yield is less because of the c
associated with the finite probability of hitting the infinit
cluster. This is simply a reiteration of the results we d
cussed for random percolation in Sec. II.

For the caseN52, we definep1512p, and p25p.
Without loss of generality we takep<1/2, so that cell one is
the cell which is more likely to be hit. For the global case w
adjust the densitiesr1 andr2 to produce the maximum glo
bal Y5(Y11Y2)/2. We find that the maximumY always
corresponds tor151/2, andr251 ~see Appendix for de-
tails!. The optimal fitness of the system is attained when
cell which is most likely to be hit is at the percolation thres
old. As previously noted for the caseN51, this corresponds
to the maximum density for which there is no macrosco
loss in the hit cell. In the case of two or more cells, prop
gation between cells is also relevant. At densityr51/2, the
absence of an infinite cluster guarantees that the probab
of an epidemic spreading~macroscopically! is zero. On the
other hand, it is more surprising that the cell which is le
likely to be hit is fully occupied, even forp very close to 1/2
~in which case there is only a small difference in the pro
abilities for the two cells!. Unit occupation density guaran
tees that the less likely cell suffers a complete loss~extinc-
tion! when it is hit.

A plot of Y as a function ofr1 and r2 reveals a single
maximum with a value of Y5(3/22p)/2 at @r1 ,r2#
5@1/2,1#. The maximum becomes increasingly steep ap
decreases. Whenp51/2 the configurations @r1 ,r2#
5@1/2,1/2#,@1/2,1#,@1,1/2# become degenerate. These r
sults for global optimization of the two cell case are deriv
analytically in the Appendix, and are in agreement with
cent simulations of discrete lattice models with two tuna
density parameters, to be presented elsewhere@19#.

Local optimization requires that the densities within ea
cell be adjusted in a manner which maximizes only the lo
fitness within the given cell. Interestingly, in the case of tw
cells for all p, @r1 ,r2#5@1/2,1# is both the maximum of
Y5(Y11Y2)/2 with respect to joint variation ofr1 andr2,
as well as the local maximum ofY1 with respect tor1 and of
Y2 with respect tor2. This universal agreement of the glob
and local optima is a special feature of the two cell case
we raise the density of cell one above 1/2, the maxim
lossless, propagationless value, then cell one suffers du
its better than 50% chance of sustaining a hit. Setting
density in cell one to 1/2 decouples the two cells in t
optimization problem, so that maximizing the local yield
cell two also optimizes the global yield for the system as
whole.

The specific optimal density assignments do not in g
eral agree for the local and global optima when we consi
additional degrees of freedom in the design. However, in
estingly we still find that the local and global maxima bo
correspond to individual cells tuned to one or the other of
specific densities of 1/2 or 1. In Figs. 2~a1!– 2~a3! we illus-
trate the global maximum ofY5(Y11Y21Y3)/3, where the
probability of a spark in each cell is given bypi . We plot
our results as a function ofp1 andp3, with p2512p12p3.
2-4
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Separate graphs are used to illustrate the optimal dens
@r1 ,r2 ,r3# in each of the cells. White indicatesr i51/2 and
black indicatesr i51.

The three corners of the triangle correspond to ca
where one of thepi is equal to 1, and the other two are zer
Here the optimal solution is clearlyr i51/2 with the other
two r i51. The rest of the outermost triangular bounda
corresponds to regimes wherepi50 for onei. Even though
there are only two cells with a nonzero probability of bei
hit, these cases are not equivalent to the two cell case,
cause of the possibility of loss propagating into celli even if
it is never directly hit. The solution is clearly symmetric wi
respect to interchange ofp1 andp3. Solutions withp251 are
least likely in the phase space, because of the relativ
higher potential total losses due to the possibility of nea
neighbor loss through propagation on both sides.

Next we consider local optimization for the three c
case. Because the cells no longer decouple, a configura
which is a maximum of someYi with respect to the corre
spondingr i will not in general be a maximum for the othe
two $Yj , r j% pairs. Thus to define a local maximum we se
solutions @r1 ,r2 ,r3# which simultaneously maximize th
corresponding@Y1 ,Y2 ,Y3#. These represent local maxima
two distinct senses. First, we set our criterion for optim
configurations@r1 ,r2 ,r3# based only on a fitness criterion i
which r i is tuned to maximizeYi , rather than the globa
yield Y5(Y11Y21Y3)/3. Second, for eachYi we seek val-
ues of r i which locally maximizeYi(r i) in the sense tha
]Yi /]r i50 and]2Yi /]r i

2,0, or the appropriate boundar
local maximum conditions]Yi /]r i,0 at r i51/2 or
]Yi /]r i.0 at r i51 ~which is what we find to be the loca
maxima in our solutions!. Points in phase space which sa
isfy these criteria would correspond to local attractors fo

FIG. 2. Optimal solutions for the static case withN53, plotted
as a function ofp1 ~vertical axis!, and p3 ~horizontal axis!, span-
ning the full range from 0 to 1, withp2512p12p3. The top row
illustrates solutions for cell one, the middle row for cell two, a
the bottom row for cell three. Black indicatesr i51, and white
indicates densityr i51/2. Gray indicated degenerate solutions,
described in the text.~a1!–~a3! illustrate the globally optimal solu-
tion for each of the three cells.~b1!–~b3! illustrate the locally op-
timal solutions.~c1!–~c3! indicate the regions where these two s
lutions overlap.
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dynamical system in which the flow is governed by loc
gradients.

For general functions@Y1 ,Y2 ,Y3#, there need be no loca
optima of the sort we have defined~in which case there
would be no stationary fixed points in a dynamical syst
governed by gradient flows!. However, for our case thes
kinds of triple local optimal solutions~i.e., for Y1 , Y2, and
Y3) always exist. These are illustrated in Figs. 2~b1!–2~b3!.
As in the other cases we have considered, all of the opt
have eachr i equal to either 1/2 or 1. Again black corre
sponds tor i51, white tor i51/2, and now gray to regions
where these are degenerate local optima. For eachi there is a
local maximum inYi(r i) at r i51 whenpi,1/2, and a local
maximum atr i51/2 whenpi.1/2. There are local maxima
at bothr i51/2 and 1 when all threepi are simultaneously
less than 1/2. In this case, there are exactly two degene
solutions ~the details are derived in the Appendix! which
correspond to@r1 ,r2 ,r3#5@1,1/2,1# and@1/2,1,1/2#. Both of
these solutions decouple the three cells, and prevent epid
ics from spreading.

There are a variety of qualitative and quantitative simila
ties between the global and local optima. First, the opti
are identical over exactly 2/3 of the phase space, as il
trated in Figs. 2~c1!–2~c3!. These correspond to regions ne
the corners of the phase space, where one of thepi signifi-
cantly outweighs the others, and the center, where ther
degeneracy of the local maxima. Thus the qualitative va
tion of the solutions over the phase space is similar. M
importantly, however, the general feature that both local a
global optimization select densities of either 1/2 or 1 in ea
of the cells illustrates a common departure from generic r
dom configurations. Both global and local optimization
the two and three cell cases lead to average yields~for all but
the case of exactly equal probabilities! which exceed that
associated with the one cell case, which is optimized at c
cality. Furthermore, as the number of cellsN51,2,3 in-
creases, the yield for the globally optimized case avera
over all possible values of thepi also increases from 1/2
(N51) to 5/8 (N52), to 575/864 (N53) ~the average yield
for the locally optimized configuration whenN53 is 91/
144!, indicating increased average fitness with increas
tunable degrees of freedom in the design@19#.

While the locally optimized configurations are not alwa
identical to the corresponding global solutions, they do sh
all the features identified previously in Refs.@9–11# as being
common to HOT systems. In all cases, the configurations
highly nongeneric, with high densities and yields, consist
only of densities tuned to 1/2 and 1 in various combinatio
depending on the probabilities. Both global and local opti
are sensitive to changes in thepi . This combination of high
yields but potential sensitivities to rare events or errors
estimating the relative probabilities of hitting different ce
is an example of the ‘‘robust, yet fragile’’ character mo
essential in HOT. Our systems are too small to exhibit pow
law distributions, the least general and least important f
ture of HOT. However, optimization does lead to heavy ta
in this case associated with the fact that in all optimiz

s
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solutions there is at least one cell with the density set to
which insures finite probability of a loss of macroscopic de
sity.

IV. THE DYNAMICS OF REGROWTH

So far we have focused on static configurations, o
mized either globally or locally for yield, with respect t
variations in the initial density. Next we consider a genera
zation of the map, which combines the previous yield m
describing the density in each cell after an infection strik
the system, with a growth map which gives the new den
in terms of the old density in any cell which does not sust
a loss. For simplicity, we return to the case of two ce
where the global and local spatial optima were equivale
This also allows us to separate the question of local vs glo
spatial optimization treated in the previous section from
local vs global maxima in the yield which arise in the tim
dependent problem. The time dependent map will be ge
alized to include additional spatial degrees of freedom
future publications.

During a given iteration, the growth map applies only
cells which do not suffer a loss through either a direct hit
the spread of an infection from another cell. The growth m
is loosely based on a continuous, deterministic representa
of the dynamics of some underlying birth and death proce
We will assume this process is confined to each cell in
vidually, so that no cell can be repopulated based on resi
densities in other parts of the system.

We model the change in population density with tim
using an exponential growth mapG(r i

(n)) which saturates a
a maximum densityMi , which we will take as the design
parameter

r i
(n11)5G~r i

(n)!5H ar i
(n) if r i

(n)<Mi /a,

Mi if r i
(n)>Mi /a.

~7!

Herer i
(n) represents the density in celli after n time incre-

ments, whiler i
(n11) represents the density aftern11 time

increments, assuming the cell is lossless in the time inte
betweenn andn11. In terms of a more complex, spatiotem
poral model of population dynamics,a represents the aver
age growth rate of an unsaturated population subject to c
peting birth and death processes andMi represents the stead
state population which results when these processes c
into balance. For example, in the contact process@20–22#,
one of the most well studied spatiotemporal stochastic p
cesses, sites become occupied when neighboring sites
‘‘birth’’ to offspring, and sites become vacant as a result
‘‘death.’’ We can construct a correspondence in which o
parametera is roughly analogous to the birth rate~since it
controls the growth rate at low densities!, and, oncea is
fixed, thenMi is determined by the death rate, which leads
the steady state densityr i5Mi . On the other hand, when th
cell is hit by an infection or when an epidemic propaga
into the cell during a particular time increment, the yie
maps of the previous section give the density at the end
the interval. The hit map is obtained explicitly by replacin
r i with r i

(n) andYi with r i
(n11) in Eqs.~4!–~6!.
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When we combine the growth model with the loss ma
we complete the dynamical system describing the evolu
of a population subject to epidemics. Analogous spatiote
poral versions have been considered previously without
corporating design or optimization@23#. Here we consider
optimization of the time average yield with respect to t
saturation density in the growth mapMi for each cell. This is
the dynamical analog of the calculation performed in Sec

As before, we find that the yield is optimized both local
and globally when the cell which is hit most often~assumed
to be cell one! is at density 1/2. For any growth ratea this
corresponds to setting the saturation densityM1 for that cell
equal toM151/2 since this results in no net loss when t
cell is infected, thus no net change in the population, so
the balance between birth and death is preserved. Thus,
the saturation density is reached the first time in cell one
remains fixed at that value for all remaining time~and can
thus be ignored!. This again decouples the optimizatio
problem for the two cells, so that the local and global sp
tially optimized solutions are identical.

Settingr151/2, the hit map@Eq. ~4!# for cell two simpli-
fies, because the only events which result in any net los
the system are the rare sparks which hit cell two. In this ca

r2
(n11)5T~r2

(n)!5H r2
(n) , r2

(n)<1/2,

12r2
(n) , r2

(n)>1/2,
~8!

which describes a simple symmetric tent mapT(r2
(n)) about

1/2 with slope61.
The dynamical system thus simplifies to a composition

Eqs.~7! and~8!. Compared to the static case, it is no long
optimal for the second cell to have a density of unity. T
growth map presumes that repopulation occurs within
cell, and unit density~achieved through setting the saturatio
densityM251) would result in complete extinction within
the cell after the first hit. Furthermore, the larger the dens
in the second cell, the greater the loss, and thus the long
takes to repopulate. Optimal solutions for the dynami
problem balance maximizing the density in cell two und
the more common circumstances when the first cell is
fected, and minimizing the loss due to rare events wh
infect the second cell.

Initially, we simplify our analysis by removing stochas
ticity from the sparking process and focusing on a period
deterministic, sequence of hits. We assume cell one is hN
times, followed by a single hit on cell two, and then repe
the sequence. This defines the periodN11 of the hit map.
On average, this corresponds to a relative probabilityp of
hitting cell two, wherep51/(N11). For the dynamical
map, we optimize the saturation densityM2 for fixed N,
assuming fixed growth ratea.1. If we allow a to vary, it
~trivially ! takes the maximum possible value, in order to
populate the system as rapidly as possible. Thus we
a51.1, and optimize yieldY ~equivalentlyY2 in the second
cell sinceY1 is fixed at 1/2! with respect to the only non
trivial growth parameter parameterM2[M .

In Fig. 3 we present a summary of the various dynami
behaviors of the model, plotted in three different ways. F
2-6



o
e
s

s
ig
,
n
-
ue

ts
re-

t

-

se

d

re of
To
solu-

tion

r

n

wo

int

in

r

in
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ure 3~a! illustrates a phase diagram, plotted as a function
M and N, illustrating the different dynamical regimes. Th
majority of the phase space consists of simple, periodic
lutions, in which the period of the densityr2

(n) coincides with
the periodN11 of the hit map. We will refer to these a
stable fixed points, and they occupy the white region in F
3~a!. The gray regions corresponds to periodic attractors
which the period ofr2

(n) is an integer multiple greater tha
unity of the hit map periodN11, and the black region cor
responds to chaotic solutions, which are excluded for val

FIG. 3. Dynamical behaviors and optimal solutions for the t
cell case with time dependent regrowth.~a! Illustrates the dynami-
cal phase diagram, as a function of the saturation densityM of cell
two, and the period of the hit map~which is N11), with a51.1.
The behaviors fall into three distinct regimes: stable fixed po
~the white region!, periodic solutions~gray!, and chaotic solutions
~black!. The staircase curve which lies within the stable fixed po
regime describes optimal values ofM for eachN. ~b! illustrates the
corresponding values of yieldY in the form of a gray scale contou
plot, where black corresponds to the lowestY values, and white to
the highestY values.~c! illustrates the maximum yieldY as a func-
tion of N, and corresponds to theY values on the staircase curve
~a!.
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of a sufficiently large. The staircase curve which cu
through the stable fixed point portion of the diagram, cor
sponds to the optimal value ofM for eachN. Figure 3~b!
illustrates the values of yieldY2 as a function ofM and N
over the same range shown in Fig. 3~a!, where contours of
constant shading in the grayscale correspond to constanY2.
For eachN ~a vertical slice of the contour plot!, the maxi-
mum Y2 defines the optimalM values composing the stair
case curve in Fig. 3~a!. Finally, Fig. 3~c! illustrates the opti-
mal yieldY2 as a function ofN, obtained by optimizing over
M. These are theY2 values which correspond to the stairca
curve describing the optimalM values in Fig. 3~a!.

The optimized solutions lie entirely within the stable fixe
point region. The fact that the optimalM increases withN in
a stepwise manner is a consequence of the discrete natu
our map, and the imposed periodicity of the hit process.
understand the plateaus we assume a stable fixed point
tion. Starting from the lowest density 12M , definek to be
the number of growth steps required to reach the satura
densityM. The cell will therefore spendN2k steps at the
saturation valueM. This leads to an analytical solution fo
the yield

~9!

5~12M !S ak21

a21 D1~N2k!M ~10!

so that

]Y2

]M
52S ak21

a21 D1N2k ~11!

5N2 f ~k! ~12!

where

f ~k![k1S ak21

a21 D . ~13!

Sincea.1, f (k) is a monotonically increasing function ofk
~equivalently]Y2 /]M is monotonically decreasing withk).

We are interested in theM which maximizesY2 for a
given N. Because time is discrete,k takes only integer val-
ues, so we are not guaranteed that a solution to]Y2 /]M
50 will exist. Instead, the maximumY2 is associated with
finding theM which gives rise to a sign change in]Y2 /]M ,
from positive to negative. This corresponds to finding thek
for which f (k21),N< f (k). When we find the optimalk
which satisfies this inequality, the sign change ofY2 at op-
timality implies ]Y2 /]M<0 for this k, so that in order to
maximizeY2 we choose the minimumM consistent with this
value ofk. But k is the number of iterates before the solutio
reaches saturation, so by definition (12M )ak21<M which
is equivalent to

M>
1

11a12k
. ~14!

s

t
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FIG. 4. Solutions for the den-
sity r2

(n) vs timen, for N56, and
a51.1. In ~a! M50.571, which
corresponds to the optimal cas
In ~b! M50.6392, which is the
largest value ofM for which we
still obtain a stable fixed point
~i.e., the period ofr2

(n) equals that
of the hit map. In~c! M50.7177,
which is the highest yield period
two solution. In ~d! M50.9,
which is in the chaotic regime. In
this case, the density never hit
the saturation value, and the yiel
is lower than any of the othe
cases illustrated.
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Since the maximumY2 corresponds to the minimumM, the
optimal M is defined by the case of equality

M5
1

11a12k
. ~15!

In the limit of N→`, M→1, and the second cell approach
unit density, which agrees with the results obtained in
static case. BecauseM is given in terms of the integer value
of k, and is independent ofN, we obtain the steps in Fig
3~a!. If we replace the map with a continuous time mod
this peculiar behavior does not occur. The corresponding
timal yield does not have a steplike structure, and inst
increases smoothly and monotonically withN as shown in
Fig. 3~c!. In this case, asN increases across a step, addition
time is spent at the saturation density, since the numbe
iterations associated with regrowth remains fixed, increas
the yield, even for fixedM.

Other, more complex solutions are possible for the m
though they always correspond to lower average dens
than the optimal stable fixed point solution. The gray reg
in Fig. 3~a! describes a family of periodic solutions of high
periods. For example, a period two solution can be obtai
for certainN, by choosingM sufficiently high that the growth
map requires two periods of the hit map before the den
repeats. There is a second, local maximum in the con
plot @Fig. 3~b!#, corresponding to the highest yield perio
two solutions. Chaotic solutions lie within the black wed
in Fig. 3~a!. If a is taken sufficiently large, chaotic solution
no longer exist at all. The condition for the existence
chaotic solutions is derived below.
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Figures 4 and 5 provide a more detailed picture of th
dynamics. Figure 4 illustrates several sample solutionsr2

(n)

vs n of the discrete time series. All of the results correspo
to one fixed period of the hit map,N1157, but different
values ofM. We choose this value ofN, because it illustrates
the full range of dynamical behavior, including chaos, alo
the corresponding vertical slice of the phase diagram@Fig.
3~a!#. Figure 4~a! illustrates a stable fixed point that corre
sponds to the optimal value ofM, and thus lies on the stair
case of optimal solutions in Fig. 3~a!. After three iterations
of the growth map, the density saturates, remaining at d
sity M for three more iterates, and then falling to dens
12M when cell two is hit, after which the cycle repeat
Figure 4~b! corresponds to a larger value ofM, which is the
largestM for which a period one solution is still observe
before the bifurcation to period two. This corresponds to
solution on the boundary between the white and gray regi
in Fig. 3~a!. Figure 4~c! is the maximum yield period two
solution, on the period two crest in the contour plot for yie
@Fig. 3~b!#. In Fig. 4~c!, beginning with the minimum density
of 12M , over the first half period the density increas
steadily to 1/2. At that point, the cell sustains a hit, but
loss, since the density is at the percolation threshold. O
the second half period, the density continues to grow, rea
ing saturation after four time increments. Subsequently,
density remains pinned at the saturation value ofM before
the next hit, which drops the density back to 12M , and the
cycle repeats. While the maximum density achieved dur
the cycle~here the valueM ) clearly exceeds that of the op
timal solution in Fig. 4~a!, the average density is less. F
nally, Fig. 4~d! corresponds to a value ofM which is taken
2-8
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FIG. 5. Bifurcation diagrams and yield curves as a function ofM for fixed values ofN, anda51.1. The bifurcation diagrams illustrat
scatter plots of the yield averaged over each single period of the hit map, while the yield curves are the corresponding infinite time
from which we can extract the optimal yield and correspondingM value for each case.~a! and ~c! are the bifurcation diagram and yiel
curve, respectively, forN56. ~b! and ~d! are the bifurcation diagram and yield curve, respectively, forN520. ~e! corresponds to
N5100, where there are stable fixed points for almost allM @up to M5(1.1100)/(111.1100)# so there is almost no distinction between t
average yield over a single period and the infinite time average.
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from the chaotic regime. In this case, the density never
peats and never reaches saturation~if it did it would have to
be a periodic solution, rather than chaotic!, and the infinite
time average yield is extremely low—significantly low
than even the densityr51/2 associated with the percolatio
threshold.

In Fig. 5 we illustrate a series of bifurcation diagram
@Figs. 5~a!, 5~b!, and 5~e!# and the corresponding yield plot
@Figs. 5~c!, 5~d!, and 5~e!# as a function ofM for fixed N.
Figs. 5~a! and 5~c!, and 5~b! and 5~d! are paired plots for two
distinct choices ofN. Figures 5~a! and 5~c! are obtained for
the N value used in Fig. 4. In the case of Fig. 5~e!, the
bifurcation diagram and the yield plots are essentially ind
05612
-

-

tinguishable, so only one plot is included~higher period so-
lutions do exist for thisN, but they are squeezed so far to th
right in the bifurcation diagram that they are not visible!. To
obtain the bifurcation diagram for a givenN, we compute the
yield ^Y2&N11 averaged over each individual periodN11 of
the hit map. The results are plotted in the form of a sca
plot as a function ofM, where a stable fixed point corre
sponds to one point, a period two solution to two poin
higher period solutions to more points and eventually a c
otic solution to an infinite number of points in the scatt
plot. The corresponding yield plots are simply the infin
time average of the scatter plot data which compose the
furcation curves, so that the curves are identical for sta
2-9



tw
ve

on

s,
Fi

e
in

s

s
o

e
ne
l-
re
rre
in
n
i

to
a
a

la
th
ly
s

-
b
d

-
si

fo

ate
ity, a
ice

ent

dic

. As
y
lu-

the

h-
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fixed points@as is essentially the case throughout Fig. 5~e!#,
the yield is the average of the two branches in the period
regime, and so on. From the maxima of these yield cur
we extract the optimalM for eachN, defining the staircase
curve in Fig. 3~a!. For the values ofN taken for Figs. 5~a!–
5~d! the stable fixed point undergoes a series of bifurcati
to higher period solutions, and, forN sufficiently small, as in
Figs. 5~a!–5~b!, there is a bifurcation to chaotic solution
which are dense, represented by the solid black box in
5~a!.

Comparing Fig. 4, with Figs. 5~a! and 5~c! the optimal
solution in Fig. 4~a! corresponds to the maximum yield valu
in Fig. 5~c!, which is on the branch of stable fixed points
Fig. 5~a!. The stable fixed point in Fig. 4~b!, corresponds to
the termination of the stable fixed point branch, at the on
of the bifurcation to period two in Fig. 5~a!, and the first
local minimum in the yield in Fig. 5~c!. Fig. 4~c! correspond
to the second local maximum in the yield in Fig. 5~c! ~which
is slightly kinked—a result of the discrete time dynamic!,
which is the peak yield period two solution. The period tw
solutions exist over a range ofM, given roughly by
@0.63,0.75#. In Fig. 5~a! we see the two branches of th
period two solutions which bifurcate from the period o
branch. The values of̂Y&N11 on the two arms, are the va
ues ofr2

(n) averaged over each period of the hit map requi
to complete the period two cycle. The upper branch co
sponds to the half period which contains the saturation po
r2

(n) , and taken alone typically has higher yield than any o
of the period one solutions. However, the lower branch,
which the density is rebuilding following the sharp drop
r2

(n)512M , always has a sufficiently low average yield th
the time average yield of the period two cycle is never
high as the optimized period one solution. Figure 4~d! is
embedded in the chaotic regime, which appears solid b
in Fig. 5~a!, In this case, the density never repeats, and
infinite time average yield is extremely low—significant
lower than the density associated with criticality as illu
trated in Fig. 5~c!.

For higher values ofN, the chaotic regime no longer ex
ists. We can analytically determine the phase boundary
standard techniques in dynamical systems theory. The
namical system which describesN growth cycles in the sec
ond cell, followed by a single hit is defined by the compo
tion of the growth and hit map

T+GN~r2
(n)!55

aNr2
(n) , if r2

(n)<
1

2aN
,

12aNr2
(n) , if

1

2aN <r2
(n)<

M

aN
,

12M , if r2
(n)>

M

aN
.

~16!

Figure 6 shows a representation of this map. Note that
r2

(n)51/2aN, T+GN(1/2aN)51/2, this implies that all iter-
ates ofT+GN(r2

(n)) remain less than 1/2.
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Since a.1, the only stable fixed point isr2* 512M .
This point only exists for

M

aN
<12M , ~17!

and its basin of attraction isr2P(0,1#. So, atM5aN/(1
1aN)1« ~where « is a small positive real number!, r2*
loses its stability, and other dynamics are possible.

A key feature of our map is that as soon as one iter
reaches the plateau associated with the saturation dens
stable periodic orbit is inevitable. For an appropriate cho
of parameters this can be avoided. Indeed for

M

aN
>1/2, ~18!

the dynamics gets trapped in the regionr2<1/2 and eventu-
ally gets trapped in a smaller embedded region

r2PF12
aN

2
,
1

2G . ~19!

Once confined within this region, the map reduces to a t
map. The Lyapunov exponentl is related to the slopeaN,
leading tol5N ln a. BecauseN>1 anda.1, we have a
positive Lyapunov exponentl.0. This implies that for
M /aN>1/2, the solutions are chaotic, with no stable perio
orbits allowed.

In Figs. 5~b! and 5~d! we illustrate a bifurcation diagram
and the time average yield corresponding toN520 which is
a case where high period orbits, but no chaos is observed
in the caseN56, the optimal stable fixed point globall
optimizes the yield. The bifurcations to higher period so
tions are represented by multiple branches in Fig. 5~b!. This
leads to additional local optima in yield vsM, which have
systematically decreasing values ofY2 at the local peaks as
M increases, also corresponding to increasing period of
solution.

FIG. 6. The composition ofN Growth mapsG and 1 tent mapT
vs r2

(n) . If M /aN>1/2 only chaotic solutions are possible throug
out the entire intervalr2P(0,1#. A stable fixed pointr2* 512M
exists for M /aN<12M . This graph is for 0<r2

(n)<1 and 0
<T+GN(r2

(n))<1.
2-10
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Figure 5~e! corresponds to a very high period hit ma
N5100, so that cell two is hit only once every 101 events.
this case, we observe stable fixed point solutions for alm
all M @up to M5(1.1100)/(111.1100)], so that the yield
^Y2&N11 averaged over one period of the hit map also c
responds almost entirely to the infinite time average. T
time average yield in the second cell approaches unity in
limit of large N, at a rate which increases with increasinga,
werea allowed to vary.

Finally, in Fig. 7 we compare our results for the period
case with the corresponding results for the analogous
chastic map. In the stochastic case, we setp51/(N11), so
that with probabilityp cell two is hit, and with probability
12p regrowth occurs~i.e., cell one is hit, but the density i
1/2 so no loss or propagation occurs as before!. This defini-
tion of p guarantees that on average the second cell is h
the same rate as in the corresponding periodic case.

For p51/7,1/21, and 1/101~i.e., the stochastic analog
corresponding to theN values in Fig. 5!, the stochastic cas
leads to relatively simpler curves for the time averageY2 vs
M than we obtained for the deterministic, periodic hit map
Figs. 5~b!, 5~d!, and 5~e!. As illustrated in Fig. 6, in the
stochastic case, for eachp we observe a single maximum i
Y vs M, so that all of the structure associated with hi
period and chaotic solutions is lost. The maximum is shif
to a slightly higher value ofM than in the corresponding
periodic case. This is easily understood by considering
leading order effect of fluctuations in the hit sequence on
stable fixed point optimal solution@e.g., Fig. 4~a!#, which sits
at the saturation densityM, until a hit occurs, at which poin
it drops to 12M , and is subsequently repopulated. If tw
sequential hits occur relatively closer together than th
would in the periodic case, the net loss is less because
density has already dropped, lowering or eliminating the l
compared to the periodic case. On the other hand, if
sequential hits are relatively farther apart, the system is
served at the saturation density longer. Both of these eff
lead to larger average yields for the stochastic case comp
to periodic hits.

FIG. 7. Yield vs the saturation densityM for the stochastic case
We present results which correspond to the same relative prob
ity p for hitting cell two as in the deterministic cases illustrated
Figs. 5~c!, 5~d!, and 5~e!. Compared to the deterministic case, t
optimal yields are slightly higher, and all of the structure associa
with periodic solutions and chaos is lost.
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V. CONCLUSION

A variety of low-dimensional dynamical systems ha
been studied in the context of population dynamics@24#. Ex-
amples include the classic Lotka-Volterra equations wh
describe competing populations in ecology@25#, as well as
the logistic map@26# which attempts to describe complex
ties which can arise within an individual population. Simil
to ours, these maps can exhibit rich and varied dynam
behavior, including periodic and chaotic solutions. Howev
these and other previous studies have focused primarily
the dynamics which arise as a consequence of internal in
actions within a community, ignoring interactions of th
community with the external environment. Our model co
bines the study of a relatively simpler dynamical system
scribing the isolated community~the exponential growth and
saturation map!, with a coupling to external perturbation
The resulting map can exhibit complex solutions, though
high yield HOT states are always confined to the simpl
regime in which the period of the solution is the same as
period associated with external perturbations.

We should mention the following result obtained in Re
@27–29#: ‘‘Optimal periodic orbits of chaotic systems occu
at low period.’’ This result is restricted to thechaotic regime.
We are interested in the whole picture, stable orbits includ
In our case, the optimal periodic orbit for thewhole dynami-
cal regimeis also a low period orbit~a fixed point!, but a
stable orbit away from the chaotic regime.

In constructing the map we had in mind a coarse-grain
representation of an underlying many-degree-of-freed
percolation model or contact process, in which a birth a
death process governs repopulation of individual cells, a
infections spread rapidly throughout connected clusters.
deed, using a microscopic description of this kind we ha
begun to perform preliminary studies of the issues discus
in this paper. In that case, optimal design corresponds
tuning the local birth and death rates based on global or lo
yield criteria. With design, it is possible to obtain solutio
which significantly outperform uniform or random system
although compared to our simple map, these simulations
much longer to converge.

It would also be useful to explore in detail the sensitiviti
of our results to the features of the map we have defined
this context, it would be of particular interest to incorpora
optimization and coupling to external perturbations in mo
els traditionally used in ecology. In ecological modeling, s
bilizing features are occasionally put in by hand to mo
fully capture realistic biological phenomena and structu
interactions. Could such features arise from robustness?
thermore, environmental impact studies focus on sensiti
of systems to environmental change, corresponding loo
to a nonstationaryP( i , j ). If ecosystems are HOT, and ther
fore tuned for robustness in a manner which reflects th
historical environmental conditions, then they may be hyp
sensitive to change in a manner which is not accurately
flected in models which do not take the synergy between
system and its environment into account.
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APPENDIX

In this Appendix, we present a more detailed descript
of the one, two, and three cell maps discussed in Sec. II.
also give the explicit forms of the global and local yie
functions for the three cell case. We derive the local optim
solutions for the three cell degenerate case~Fig. 2!, as well
as the local and global optimal solution for the two cell ca
which is always@r1 ,r2#5@1/2,1#.

1. Detailed one, two, and three cell maps

The one-dimensional~1D! hit map ~static case! is given
by

Y15r12P`
2 ~r1!. ~A1!

Similarly, the 2D hit map~static case! is given by

if hit cell one:H Y15r12P`
2 ~r1!,

Y25r22P`~r1!P`
2 ~r2!,

~A2!

if hit cell two:H Y15r12P`~r2!P`
2 ~r1!,

Y25r22P`
2 ~r2!,

~A3!

Notice that these equations are symmetric. Indeed, we
replacer1 by r2, andr2 by r1 in Eq. ~A2! and we get Eq.
~A3!.

A similar treatment for the three cells case yields

if hit cell one:H Y15r12P`
2 ~r1!,

Y25r22P`~r1!P`
2 ~r2!,

Y35r32P`~r1!P`~r2!P`
2 ~r3!,

~A4!

if hit cell two:H Y15r12P`~r2!P`
2 ~r1!,

Y25r22P`
2 ~r2!,

Y35r32P`~r2!P`
2 ~r3!,

~A5!

if hit cell three:H Y15r12P`~r3!P`~r2!P`
2 ~r1!,

Y25r22P`~r3!P`
2 ~r2!,

Y35r32P`
2 ~r3!.

~A6!

2. Global and local yields

The total yield in the three cell case is given by
05612
-

,
x

n
e

l

,

an

Y5p1@r11r21r32P`
2 ~r1!2P`~r1!P`

2 ~r2!

2P`~r1!P`~r2!P`
2 ~r3!#1p2@r11r21r3

2P`~r2!P`
2 ~r1!2P`

2 ~r2!2P`~r2!P`
2 ~r3!#

1p3@r11r21r32P`~r3!P`~r2!P`
2 ~r1!

2P`~r3!P`
2 ~r2!2P`

2 ~r3!#. ~A7!

The yield in cell one, cell two, and cell three, respective
are

Y15p1@r12P`
2 ~r1!#1p2@r12P`~r2!P`

2 ~r1!#

1p3@r12P`~r3!P`~r2!P`
2 ~r1!#, ~A8!

Y25p1@r22P`~r1!P`
2 ~r2!#1p2@r22P`

2 ~r2!#

1p3@r22P`~r3!P`
2 ~r2!#, ~A9!

Y35p1@r32P`~r1!P`~r2!P`
2 ~r3!#

1p2@r32P`~r2!P`
2 ~r3!#1p3@r32P`

2 ~r3!#.

~A10!

3. Derivation of the optima in the gray region of Fig. 2

The gray region of Fig. 2 is characterized by

p1,1/2, p2,1/2, and p3,1/2. ~A11!

We also impose

p11p21p351. ~A12!

It is easy to prove that the triplets (1/2,1,1/2) and (1,1/2
are degenerate local optima in this region. For example,
(1/2,1,1/2), we substitute this solution into]Yi /]r i and us-
ing Eqs.~A11! and ~A12!, we obtain

]Y1 /]r152p12p21p3,0, ~A13!

]Y2 /]r25p12p21p3.0, ~A14!

]Y3 /]r35p12p22p3,0. ~A15!

This proves that (1/2,1,1/2) is a local optimum. A simil
procedure illustrates the corresponding results for (1,1/2
No other triplet satisfies the conditions for being an op
mum. For example, trivially, the triplet (1,1,1) can never
an optimal solution for any@p1 ,p2 ,p3#, since it always pro-
duced zero yield. Also, we can easily verify the tripl
(1/2,1/2,1/2) is never optimal:

]Y1 /]r15122p1 , ~A16!

]Y2 /]r25122p2 , ~A17!

]Y3 /]r35122p2 . ~A18!
2-12
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Optimality requires that~A16!, ~A17!, and~A18! all be less
than 0. This would require allpi.1/2, which is impossible.
Therefore, (1/2,1/2,1/2) is never an optimum.

4. Derivation of optimal solution †r1 ,r2‡Ä†1Õ2,1‡ in the static
two cell case

If r1>1/2 andr2>1/2, the yield is

Y5~12p!@12r21r12A2r221~2r121!# ~A19!

1p@12r21r12A2r221~2r121!#, ~A20!

and this surface in 3D space has a maximum forr151/2 and
r251 giving Y53/22p. If r1<1/2 andr2>1/2, then
ed

d
,

c

05612
Y5~12p!@r11r2#1p@12r21r1#) ~A21!

5r11~122pr2!1p. ~A22!

This takes a maximum value of 3/22p for r151/2 andr2
51. Finally, if r1>1/2 andr2<1/2, then

Y5~12p!@12r11r2#512p1~2p21!r11r251
~A23!

for r151/2 andr251/2. Therefore, we get the two optima
densities ofr151/2 andr251 giving an optimal yield of
Y53/22p.
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