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We study the dynamics of the batch minority game, with random external information, using generating
functional techniques introduced by De Dominicis. The relevant control parameter in this model is the ratio
a=p/N of the numbep of possible values for the external information over the nunibef trading agents.

In the limit N—o we calculate the locatiom, of the phase transitiofisignaling the onset of anomalous
responsg and solve the statics far> « exactly. The temporal correlations in global market fluctuations turn
out not to decay to zero for infinitely widely separated times. &6er«, the stationary state is shown to be
nonunique. Fora—0 we analyze our equations in leading orderdnand find asymptotic solutions with
diverging volatility e=0(a~*? (as regularly observed in simulationdut also asymptotic solutions with
vanishing volatilityoc=0(a*?). The former, however, are shown to emerge only if the agents’ initial strategy
valuations are below a specific critical value.
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[. INTRODUCTION integra) techniques introduced ifil0]. After defining the
rules of the game we derive in the linlt—cc an equivalent
The minority game has been the subject of m@@hd at  description in terms of an effective stochastic non-
times heateddebate in the physics literature recently. It wasMarkovian single-agent process, for which we calculate the
originally introduced irf1], as a variation of the El Farol-Bar first time steps. For sufficiently large values @f we can
problem[2], to serve as a simple model for a situation wheresolve the statics exactly under the assumption of absence of
adaptive agents are competing for limited resources. It hagnomalous response. We calculate the peiptwhere this
since attracted much attention, especially as a model for fiassumption breaks down, resulting in a phase transition; our
nancial marketgsee, e.g.[3]). The players in the minority value for a, is identical to that found irf4]. The present
game are trading agents who, at every stage of the gamdynamical approach allows us to study the behavior of the
have to make a decision whether to buy or to sell, on thenarket belowa,. In this region there exist persistent non-
basis of both publicly available informatidne., past market static solutions that cannot be studied by the methoddJof
dynamics, weather forecasts, political developments, or stocBelow «. the market is nonergodic and the initial conditions
prices and their personal strategies. Those agents who findf the agents determine the final stationary state of the mar-
themselves having made the minority decision make a profitket [4,5,13. For «—0 we calculate the market volatility to
while those agents who opted for the majority choice losdeading order ina for the case where the agents are initial-
money. After each round all agents revalue their strategieszed with only weak strategy preferences, leading to a di-
There are many variations on the precise implementation oferging volatility with exactly the scaling exponent
this game, yet most share the same main features of the O(«~?) predicted in[9] on the basis of heuristic argu-
emerging market fluctuations. The important control paramments. We find a critical value for the initial strategy valua-
eter in the model is the ratie=p/N of the numberp of  tions above which this solution no longer exists and is re-
possible values for the external information over the numbeplaced by an alternative solution with a vanishing volatility
N of trading agents. If this ratiex is very large, the agents of the formo=0(a?). Our dynamical approach allows in
exhibit essentially random behavior. This is reflected in theaddition for the calculation of the two-time correlations in
fluctuations of the total bid, which is the sum of all buyersthe global market fluctuations, by definition inaccessible
minus the sum of all sellers. If less external information iswith equilibrium method<replica or otherwisg which are
available(or used to base decisions upon, i.e., for reducedfound to have a persistent component. Numerical simulations
«, the mismatch between buyers and sellers is found to dezonfirm our theoretical results convincingly.
crease, and the market behaves more efficiently. This behav-

ior is now ur_lderstood quite well on th_e basis of the replica Il. MODEL DEEINITIONS
calculations iM4—6] and the crowd-anticrowd theory §7].
The situation is much less clear, however, whehecomes There areN agents playing the game. We will only con-

very small. One possibility is that the market becomes exsider the case wheng is very large, and ultimately take the
tremely efficient, and the number of buyers almost equals thémit N—c. The agents are labeled with roman indi¢efs
number of sellers. Another possibility is that the mismatchk, etc. At iteration round all agents are given the san@s
between buyers and sellers diverges if the amount of shareget unspecifiefipiece of external informatioh,,;y, chosen
(i.e., external information becomes small, and the marketrandomly from a total numbep=aN of possible values,
becomes extremely inefficiefisee, e.g.[8,9]). i.e,,u(l)e{1, ... aN}. Inthe original mode[1] the history
In this paper we solve the dynamics for the original many-of the actual market is used as the information given to the

agent model, using the exact generating functiqgoalpath  agents; however, in[11] it was shown that random
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information gives(almos} the same volatility. Each agent measured individual rounds of the gante a new unitt

hasS strategieR;,=(R%, ... ,R™) e {—1,13°N at her dis- which is proportional to the number of payoff validation up-
posal with which to determine how to convert the externaldates, we arrive at

information into a trading decision, witlae{1, ... S}.

Each componerR/; is selected randomly and independently qi(t+1)=q;(t)—h,— 2 3;8(0), @)

from {—1,1} before the start of the game, with uniform prob-

abilities, and remains fixed throughout the game. The strate-

gies thus introduce quenched disorder into the model. EacWhere J;;=§- & IN72 and h;=¢&-Q/\N72, and with 72
strategy of every agent is given an initial valuation or payoff= ((()#)2) = ((£4)2)=((w*)?); herer?=%. The above par-
Pia(0). Thechoice made for these initial values will turn out ticylar choice of time scaling has been made only because it
to be crucial for the emerging behavior of the market. Givengives the simplest equations later. To make a connection
a choiceu (1) made for the external information presented atyith the original game, one must interpret the evolution of
the start of round, every agent selects the strategy labeled the g (t) as described by Eq2) as the accumulated effect of
by (1) that for traderi has the highest payoff value at that orgerN iterations in the original model. Equatid®) defines
point in time, i.e.,&(l)=arg maxp,(l), and subsequently the version of the minority game analyzed in this paper. Note
makes a binary bid;(I)= R{gﬁ'j . The(rescaleditotal bid at  that Eq.(2) cannot be converted into a continuous time equa-
stagel is defined asA(l)=N~¥2Sb;(1). Next all agents ton, upon replacingq;(t+1)—qi(t) /N by dg/dt. A
update the payoff values of each strateggn the basis of number of agents change their preferred strategy at every

what would have happened if they had played that particulaft€ration of Eq.(2). The size of theiif's will be of the order
strategy: of (half) the step size. In the continuous time limit, in con-

trast, this step size is lost; yet any discretization used to
0 integrate the continuous time differential equation obtained
Pia(l +1)=pia(l) = REVA(). will effectively reintroduce ar(arbitrary) scale for theq's.
We regard Eq(2) as the equivalent of what in the neural

The minus sign in this expression has the effect that straté?@twork literature would be called the “batch” version of

gies that would have produced a minority decision are reth€ conventional “on-line” minority game. For a more de-
warded. tailed discussion concerning the validity of a continuous time

This setup so far allows for an arbitrary number of strat-differential equation for the thermal minority game we refer
egiesS The qualitative behavior of the market fluctuations, t0 [14,4,13. Finally, the magnitude of the market fluctua-
however, is found to be very much the same for all nonexdions, orvolatility, is given by o?=(A?)—(A)?. From the
tensive numbers of strategies larger thai12,9. We there-  starting pointA(l) =N"25[ 0/ +5,(1) &V and on the
fore present results here only for tBe=2 model, where the time scales of the proces2), one easily derives
equations can be simplified considerably upon introducing

for each agent the instantaneous difference between the two 1 1

strategy valuationg; (1) =[p;1(l) — pi2(1)]/2 as well as their (A)= aN\/NZ Si% ¢&'+0 \/_N) )
common partw; = (R;;+ R;,)/2 and the difference between

the strategies,=(R;1—R;,)/2. The strategy actually se- 1 1 1 1
lected in round can now be written explicitly as a function (A= >t z his; + EZ sJ;s;|+0O _> %)
of si(1) =sgrigi(l)], viz., Riz oy = @ +si(1) & , and the evolu- i N

tion of the difference will now be given b
g y Purely random trading corresponds ¢8)=0 and c®>=1.

We will also define a more general object, the volatility ma-
trix B s

qi(1+1)=q()— &V Qe+ N2 e:si(1) ], (1)
: Ew=(A— (A I[AC— (AN, (5)

with @=N"28e; € R*N. It has been observed in numeri- which measures the temporal correlations of the market fluc-
cal simulations(see, e.g.[13]) that the magnitude of the tuations. Note that?==,. In the case where the average
market fluctuations remains almost unchanged if a largeid (A) is zero(which will turn out to happen in the present
number of bids are performed before a reevaluation of thenode), the volatility measures the efficiency of the market.
strategies is carried out. This is the motivation for us to studyzero volatility implies that supply and demand are always at
a modified (and simpley version of the dynamics of the the same level, and that the market is extremely efficient. A
game, where, rather than allowing the strategy payoff valutarge volatility implies large mismatches between supply and
ations to be changed at each round, only the accumulategemand, and is the signature of an inefficient market.
effect of a large number of market decisions is used to

change an agent’s strategy payoff valuations. This amounts Ill. THE GENERATING EUNCTIONAL

to performing an average in the above dynamic equations

over the choices to be made for the external information. If There are two compelling reasons for studying the dy-
we also change the time unit accordingly frdmwhich ~ namics of the minority gaméMG). First, dynamical tech-
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nigues do not rely on the presence of a Lyapunov functionBy taking suitable derivatives of the generating functional
so that the MG can be studied for small Secondly, it is  with respect to the conjugate variablgs one can generate
clear from simulation$13] (see also the figures belowhat, ~ all moments ofq at arbitrary times. Upon introducing the
at least on the relevant time scales, the stationary state of trﬁlo short hand notations

minority game can depend quite strongly on the initial con-

ditions. One canonical tool to deal with the dynamics of the

present problem is generating functional analysis as intro-

duced by De Dominicid10], originally developed in the a1 S qter, xie 1 >
disordered systems community study spin glasses, in par- W= N 4 G(OE, Xt TN A S
ticular. This formalism allows one to carry out the disorder T T
average(which here is an average over all stratepiead

take theN—c<e limit exactly. The final result of the analysis T T 5= _ w5
is a set of closed equations, which can be interpreted a%s well asDg=1;[dg(t)/ v2m], Dw=IL,[dw/y2m],

describing the dynamics of an effective “single agent” and Dx=II[dx/y2] (with similar definitions forDg,

[10,16. Due to the disorder in the process, this single agenPW, andDX, respectively, the generating functional takes
will acquire an effective “memory,” i.e., she will evolve the following form:
according to a nontrivial non-Markovian stochastic process.

First we rewrite Eq(2) as a Chapman-Kolmogorov equation
describing the temporal evolution of an ensemble of marketsz[ ] = f DwDWDx DX exp i >, [W/ W+ XExt
tu

le(q):fdq’W(qlq’)pt(q’), WO X)) fDqu 04(q(0))

where, in the absence of noise, the transition probability den-
sity is simpl —i o .
y Py xeprT S E. §i”2t [WfLQi(t)ﬁLXfLSi(t)]]
o
W(Q|Q')ZH 5(qi_qi’+hi+; Jijsj,>

><exp<i ; {Gi(D[gi(t+1)—ai(t)— 6;(1)]
dq i , )
=fwexr{2 lQi<OIi—Qi +hi+; Jijsi>

+¢i(t)Qi(t)})a (6)

with the shorthands/ =sgriq/]. The moment generating

z}l]r;célc;rslal for a stochastic process of the present type is dev'vhere we have introduced auxiliary driving forcégt) to

generate averages involving(t) (these can be removed

_ later).
Z[¢]=<exp[u2 2 ¢i<t>qi<t>}>
IV. DISORDER AVERAGING
- f l_t[ [datW(act+1)[a(t)]po(a(0)) At this stage we can carry out the disorder averages, to be
denoted as -, which involve the variables!=7%(R4
- —RA) and Q#=N"2725 (R +RY) only. For times that
X i(H)agi(t) |. 2 W1 2
eXF{IZ 2| vl )} do not scale withN one obtains

IS [W#qmtwf‘si(t)])

7VYN wi

[
exp — >, WAQK—
T tu

:li—[ eXF{\I/_%Z Wi (Ry+Ry) —(Ry— Rz)[W{LCIi(tH')A(#Si(t)]})

1
=exp( -5 > [WEAWE + WL o Wh + 2%EK W + XECy %]+ O(NO)
utt’
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where we have introduce®, =N"13;s(t)si(t"), Ky ing fields{6;(t),;(t)}, and using the built-in normalization
=N"1Z5()§i(t"), and Ly =N"1Z;8;(t)§;(t'). We iso-  Z[0]=1, we find that at the relevant saddle point

late these functions via the insertion of appropridtiinc-

tions (in integral representationand define the correspond- —,

ing shorthand notation DC=1I,.,[dCy. /\27w], DK C“'_,\Illinw N 4 2 (si(Osi(t")), ©)
=My [dKy /V27], andDL=1/[dLy /\27] (with simi-

lar definitions forDC, DK, and DL, respectively. Upon

assuming simple initial conditions of the fornpy(Q) G“'_,\Il'inxﬁE aa(t )<S(t)> (10
=1I;po(q;), thei-dependent terms in the disorder-averaged

generating functional(6) are now found to factorize fully 1 g2 -

over theN traders, and we arrive at an expression of the Ly = lim — > —Z[0]=0. (11
following form: N—oe N 7T (D6 (L")

N . . - o The first two are recognized as representing disorder-

Z['ﬁ]:f [DC DC][DK DK][DL DL]eN¥*+®+aI+OomD, averaged and site-averaged correlation and response func-
7 tions. At this stage the generating fields are in principle no

longer needed. We will put;(t)=0 and 6,(t)= 6(t), and

The subdominar®(N°) term in the exponent is independent find our expression fof) simplifying to

of the generating field§y;(t)} and{6;(t)}. There are three

distinct leading contributions to the exponent in Ef). The 0=

first is a “bookkeeping” term, linking the two-time order

parameters to their conjugates:

n JDq DQpo(a(0))

S e . - xexpl 12 a(a(t+1)—a(t) - 6(t)]
W=i 2 [CoorCovr+ KoK+ Lipr L1 % t

tt’

The second reflects the statistical properties of the players’ XeXD( —IE [s(t)Crers(t’) +s(t) Ky B(L")
arsenal of strategies:
d=aln f Dw DWDx DRex;{iZ [ W W, + KX+ Wi X ] AL q(t")] (12)
t
1 Extremization of the extensive exponeft+ ® +Q of Eq.
Xexg — = > [WWir + Wil Wy + 2%K o Wy (7) with respect to{C,C,K,K,L,L} gives the saddle-point
2% equations
B ) _9(s().
+§(tctt’§(t’]) ) (8) Ctt/—<S(t)S(t )>,(, Gttr—W, (13
The third term, which contains the generating fields, will 100 <, 100 L —ﬂ, (14)

ttr ’ tt'— o tt’
describe thénow stochasticevolution of the strategy valu- ICivs K Il

ationsq(t) of a single effective agent: wheread ;= 0. The effective single-trader averages),

1 generated by taking derivatives of E{.2), are defined as
0= NE In{f Dq D@ py(q(0)) follows (note thats(t) =sgrq(t)]):

| [Dg ML{a}]fT{q}]
(tHD-=Tpqmiqy

xexp(ig act)[act+ 1)—q(t>—0i(t)]>

i M[{q}]=po(q<0>)exp( - S(t)én's(t'))
xexp(ig Si(Hat) —i X [s()Curs(t’) '
tt’
xf quxp(—iE q<t>£m<t'>)
tt’

+s<t>r‘<mq<t'>+q<t>£m<t’>])}

with  s(t)=sgiq®],  Dq=TI[dq(t)/\27], Dw Xex‘]( 22 A att+ D =g - e
=1I,[dw,/\27], andDx=1I[{dx,/\27] (and similar defi-

nitions forD§, DW, andDX). The form of Eq.(7) is suitable 2 ~ ,

for a saddle-point integration in the thermodynamic lifdit B K S| |- (19

—oo, With a modest amount of foresight we defi@g,, = o
—iKy . Upon taking derivatives with respect to the generat-Upon elimination of{C,K,L} via Eq. (14), we have now
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obtained exact closed equations for the disorder-averaged

correlation and response functions in tié—oo limit: Po(CI(O))f Dg

namely, Eq.(13), with the effective single-trader measure

(15). 1 A -1 T™N-17 act!
xext —3a2 GOII+G)'DO+GT M a(t)

V. SIMPLIFICATION OF THE SADDLE-POINT
EQUATIONS ><exp( P> q(t)
t

The above procedure is quite insensitive to changing
model details; alternative choices made for the statistics of 1,
traders’ strategies would simply lead to a different form for +a2 (1+G)ys(t )} ) (16)
the function® (8), whereas changing the update rules for the !
strategy valuations of the traddiesg., by making these non-
deterministic, as if14,4]) would affect only the details of
the termQ) (12). We now work out our equations for the

q(t+1)—q(t)— (1)

This describes a stochastic single-agent process of the form

present choice of model. Focusing firstdnwe perform the qt+1)=q(t)+6(t)— «a 2 (1+ G);t,1 sgriq(t’)]
X integrals, yieldingll;8[X;+w;], and after performing the t'<t
remainingX integrations we get 4 \/En(t). (17)

A . A Causality ensures thaB,;,=0 for all t’=t [so that (
cp:amf Dw DWGXD('Z WtWt> +G),'=0 for t'>t], and 7(t) is a Gaussian noise with
zero mean and with temporal correlations given by

1 t t’ :E ’
Xex% - _z [WtWt'+WtLtt’Wt’_2Wtht’Wt’ <77( )77( )> tt

24
" S=(+G)"'DI+G") % (18)
+WtCtI’Wt’]>- The correlation and response functions defined by E3js.
and (10) are the dynamic order parameters of the problem,
and must be solved self-consistently from the closed equa-
The Gaussian integration ovew,} gives tions
, a(sgra(t)]).
1 i Cu=(sgriq(t)a(t’)])., Gn/zw- (19
<D=——alndetD+alnf 11
2 t |27

Note thatM[{q}] as given by Eq(16) is normalized, i.e.,
/DgM[{q}]=1, so the associated averages reduce to
) (f[{a}].)=/DaM[{a}1f[{a}]. The solution of Eq.(19)
can be calculated numerically with arbitrary precision, with-
) out finite size effects, using a technique describeflLiA.

1
XeX[{ - EE WtLtt'Wt’

tt’

Finally, in Appendix A we calculate the disorder-
averaged rescaled average h@ and volatility matrix
B ={(AAL) —(A){Ay), for N—co, as defined previously
where the entries of the matri® are given byDy =1 in Egs. (3) and (5). Note that objects such as\,) must
+Cy . We now take the derivative ob with respect to  asymptotically become self-averaging, i.e., independent of
Lw . as dictated by Eq(14), and subsequently put &lly:  the microscopic realization of the disorder; herég)(A,)

><exp< - %Z W[ (1=iK)TD " Y(1= 1K) Jpr Wy

tt’

—0. This gives —(A)) (A, for N—oo. We find the satisfactory result that
the average bid is zero, and that the volatility maif@ad
[=—1Lia(1-iK) D(1—iKT)" Y thus also the ordinary single-time volatilit = Ey,) is pro-

portional to the covariance matrid8) of the noise in the

) ) dynamics(17) of the effective single agent:
and Iim _,o®=—a Trin(1-iK), so that

lim (A)=0, limE, =33, . (20)
K'=-a(1-iK)™*, C=0. N—ee N
Thus the noise termy(t) in the single-agent proceg4?)
We now write our final result in terms of the response func-represents the overall market fluctuations, and the covariance

tion (10), via the identityK=iG, and find our effective matrix (18) informs us of both single-time volatility and the
single-trader measud[{q}] of Eq. (15) reducing to temporal correlations of the market fluctuations.

056121-5



J. A. F. HEIMEL AND A. C. C. COOLEN PHYSICAL REVIEW B3 056121

VI. THE FIRST TIME STEPS for larger times, and finds that, without perturbations, both
the system variableg(t) and the noise variables(t) will
remain frozen for time$<1/\/a, the only remaining uncer-
tainty in the noise being the realization ¢f0):

For the first few time steps it is possible to calculate
the order paramete(tsorrelation and response functigrad
the volatility explicitly, starting from the effective single-
trader measur€l16). Note thatD,,=1+C, and thatCy

=1 for anyt. Significant simplifications can be made by a(t)=do+tVan(0)+O(at) (a—0).
using causality. For instance, we always have G) ! - . )
=3 ._o(—1)"G", with causality enforcing !f sgn dol#sgr 7(0)], the system vylll defrefaze at the first
instance wheré>|qo/7(0)Va|. Since(0) is a zero aver-
[G"]y=0 for t'>t—n. (21)  age Gaussian variable, one should therefore for smaik-

pect half of the population of tradefthose with nonprofit-
At t=0 this immediately allows us to conclude thap, able initial random strategy choige® commence strategy
=Dgo=2. We now obtain from Eq(16) the joint statistics at chances at time scalés-O(a~?), whereas the other half

timet=1: will continue playing the game with theiffor now profit-
able initial strategy choices at least up te-O(a ™ 1).
p(a(1)[q(0)) It is also interesting to analyze the case where the game is
initialized in atabula rasamanner(which appears to have
= exp—{a(1)~a(0) = 0(0)+asgr{q(0)]}/4a). (22)  been common practice in the literatyree., p(q(0))=48[q
2\am —Qo] with go=0", and where we have no perturbation

) ) fields, i.e.,6(t)=0. Now the above results reduce to
Equation (22), in turn, allows us to calculateCyg

=(sgria(0)a(1)]). and G1o=(sgrid(1)])./96(0): Cio= —erMiVal, Gig=(am) Y2

Cio=— f dq(0)p(a(0)) 5
2m=1—em%J;}————e’”ﬁ

Va  1q(0)|+6(0)sgrid(0)] Ve
X erfl ——— ,

2 2Ja

2 2
Sy=2- —e “Y1-efiVa])+ —e *2
1 am am
Gio=— \/wa dq(0)p(a(0))
) The negative value of the correlation functi@, implies
xexp —[asgriq(0)]—q(0)— 6(0)]/4a}. that for short times the traders will exhibit a tendency to

alternate theiftwo) strategies. Let us now inspect the limit-
ing behavior of the above expressions for large and small
values ofa. For largea one obtains

We can now move to the next time step, again using Eq
(21), where we need the noise covarian&ag and . ,:

S10= > [1-G+0(G?)]yDy[1-GT+0O(GT)?],10 lim Cio=—1, lim Gyo= lim ,,=0.
tt’ a—o a—® a—©
=1+ Ci1072Gy, For smalla, on the other hand, we find
311= 2 [1-G+0(G)]y Dy [1-GT+0(G")?]yy Ja 1
7 Cio=— —=+0(a%?), Gyp=——=+0a),
tt 10 \/; ( ) 10 \/E ( )

=2-2G;J 1+ Co]+2[G;0)>

Although this procedure can in principle be repeated for an 1 i _i_ i 0
arbitrary number of time steps, generating exact expressions =1 ! \/EJFO(\/Z)’ uT \/ﬂ+o(a )-
for the various order parameters iteratively, the results be-

come increasingly complicated when larger times are ingg ,(1)=0(a" ), whereasy(0)=0(a®). We also find
volved.

It is interesting, however, to inspect further some special 2
limits. We first turn to the(trivial) case wherex is very < M >=211+ iglﬁ i200=0(a0),
small, p(q(0))=5[q(0)—de], and qq is finite. Provided Jam Jam am
|go|> Ve as a—0, we immediately deduce from the above
results that limy_ o Cyo=1, lim,_G1,=0, and lim,_ ;o  from which it follows that 7(1)=— 7(0)/Jam+0(a®),
=lim,_o21;=2. Hence we find in leading order im that  and hence we can write the first steps of the effective single-
g(1)=q(0) andn(1)= 7(0). One easily repeats the argument agent equatiorfl?7) as

7(1)+
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q(1)=q(0)— a sgiq(0)]+ Van(0) o=lim__olim._..(0[[G(t)|— €]}, will give the asymptotic
fraction of frozen agents in the originBlagent system, for
=an(0)+0(a), N—o. The dynamical equation of the rescaled effective
agent can be written as
a(2)=0q(1)— asgid(1)]+aGsgria(0)]+ Van(l) f
1 @
== 7(0)/m+0(Va). (=70 + 2 ()
t' <t
Thus also Cyo=(sgrig(0)q(2))).=O(J) and Cyp o
:<sgr[q(l)Q(2)]>*:—l+O(\/E). We observe that for small - 2 E (1+ G);tl” sgrg(t")]. (23)

« the first two time steps are driven predominantly by the t'<t t

noise component in Eq(17). This noise component in- .

creases in strength and starts oscillating in sign, resulting if the game has reached a stationary state, tk&p

an effective agent that is increasingly likely to alternate its=G(t—t), Cyy=C(t—t"), andZ, =X (t—t’), by defini-

strategies. Equivalently, this implies that in the initial tion. We will assume in this section that the stationary state

N-agent system an increasiffigiction of the population of is one without anomalous response, i.e., temporary perturba-

agents will start alternating their strategies. tions will not influence the stationary state and decay suffi-
Let us finally inspect the initial behavior of EqL7) for ~ ciently fast, such that lim. .. =< /G(t) =k exists. This con-

the intermediate regime whepq(0))=8[q—qo] with qq dition will be met if there is just one ergodic component; it is

=0(+a), to which (as we have segralso forg,=0(a®  the dynamical equivalent of replica symmetry being stable

about half of the traders will automatically be driven in due (S€€, .9.{19]) in a detailed balance model. We now define

course. We now pulj,= /@, and find in leading order g=Ilim,_..q(t) (assuming this limit exisjsand take the limit
t—o in EqQ. (23). Under the assumption of absent anomalous

response, we can use the two lemmas in Appendix B to

Cyo=erf[L [Go|T++, Gio= e Tofdp... simplify the result to
aTT
G=— — s+ Va (24)
G=— 7 StVan
_ 2 ~Ga _ 2 BHE Ltk
210___e qo +, Ell__e qO G
aT am with the averagess=Ilim, .7 '3,_.sgf@] and 7#

=lim, . 7 3,-,7(t). The variance of the zero-average

Thus we have([77(1)+(aw)‘l’ze‘ag"‘n(O)]Z):O, so also  Gaussian random variabbe follows from Eq.(18):
~2

7(1)=—(am) Y% %"*5(0), in leading order fora—0. .

This then, together witlg(1)=O(+/a) [which immediately 2= lim — 1+G) D1+ G 17..,

follows from Eq.(22)], leads us to () ’tz 2 I ) D )

=
=7t/ ’
7,7 = t'sr

q(z):_W—lfze‘a§/477(0)+0(\/a). =(1+k)"? 1+ lim i,E E Cuw

= ' ’
77— IS7i<s

We thus find that foigo=0(/a) also the initial conditions
are more or less washed out by the internal noise generated =(1+ k)*2[1+<52>]_ (25)
by the process, within just two iteration steps.

Note that(s?)=lim,_., 7 1=,-,C(t)=c.

VII. THE STATIONARY STATE FOR a>a, The effective agent is frozen #0, in which cases
=sgnq]. This solves Eq(24) if and only if |7|>Ja/(1
+k). If | 7|<\/a/(1+k), on the other hand, the agent is not
rozen; nowg=0 ands=(1+k)»/\/a. We can now calcu-
Yate c=(s?) self-consistently, upon distinguishing between
the two possibilities:

For generale, not necessarily small, the arguments used
in the second part of the previous section do not hold. In
stationary state, along with agents that will change strateg
(almos} every cycle, there will generally also be agents find-
ing themselves consistently in the minority group, which will

consequently play the same strategy over and over again. For 2 2
the latter “frozen” group(a term introduced if18]), the c=< ol | 9| — ﬂ >+< 0 Va B (1+Kk)"n >
differences between the valuations of the two available strat- 1+k 1+k a

egies(i.e., the values off;) will grow more or less linearly in ] o o ]
time, whereas the “fickle” agents will have values for Working out the Gaussian integrals describing the statics of

q; very close to zero. In order to separate the two groupg? With variance(25) then gives
— 21 /ﬂe—a/2(1+c)
27« '

efficiently we introduce the rescaled valuggt) =q;(t)/t.

Frozen agents will be those for which lim,g;(t)#0. c=1—( 1+c er{ | «

Similarly, the effective single-agent procesgl?) is 2(1+c)

transformed viaT(t)=q(t)/t, where now the quantity (26)
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FIG. 1. Asymptotic average=lim,_..7~ *2-,C() of the sta- FIG. 2. Fractiong=1—erf[\/a/2(1+c)] of frozen agents in the

tionary covariance. The markers are obtained from individual simustationary state. The markers are obtained from individual simula-
lation runs performed with a system Nf=4000 agents and various tion runs performed with a system bf=4000 agents and various
homogeneous initial valuatiofiehereq;(0)=q(0)], and in excess  homogeneous initial conditions, whegg0)=q(0), and inexcess

of 1000 iteration steps. The solid curve to the right of the criticalof 1000 iteration steps. The solid line to the right of the critical

point is the theoretical prediction, given by the solution of ).  point is the theoretical prediction, obtained from the solution of Eq.
The dotted curve to the left is its continuation into thea. re-  (26). The dotted curve to the left is its continuation into the
gime (where it should no longer be corrgct < a, regime(where it should no longer be corrict

From this equation the value @fcan be obtained numeri- ,

cally. For largea the solution behaves as~a 1. In Figs. (sm)= ‘/—I'm > 2 (n(t") Gy

1 and 2 we show the solution of E(R6) and the fraction TUsr

¢ of frozen agents, given according to the theory #y =kya(7?). (28)

=(0[| 5| — Jal(1+k)])=1—erfJa/2(1+c)], as functions

of @, together with the values for and ¢ as obtained by The variance(%?) is given in Eq.(25). We calculate the

carrying out numerical simulations of the minority game.remaining object{sz) similarly to our calculation ot, by

One observes excellent agreement between theory and efistinguishing between frozen and nonfrozen agents and by

periment above a critical value,, which we will calculate  using the two identities=sgrj »] (for frozen agentsands

below. = 5(1+k)/a (for the nonfrozen onesboth of which fol-
From the time-averaged asymptotic correlationwe  low immediately from Eq(24). This results in

next move on to calculate the integrated resporkse

=lim,_.. 3,=,G(t). Since the occurrence of the Gaussian B Vo JZ 7?(1+k)

noise termy(t) in Eq. (17) is (apart from a factor) similar (sm)=1 6| |~ 1+k 7]+ 1+ 1+k 7 Ja

to that of an external field, we can write the response func-

tion asGy =« Y9 sgrig(t)/an(t’)),. Integration by parts 1+c { \/T
in this expression generates =——er =
P g (1+k) Ve 2(1+c)
<asgr[q(t)]/(?17(t’)>*=z E;tl,,(sgr[q(t)]n(t”»* Insqrtion into Eq_(28), together with Eq(25), then.gives the
I desired expression for the integrated response:

and hence, 1 a N
K erf[Va/2(1+c)]

Ja E (n(t) n(t"))Gl =(sgia(t)]1n(t)).. (27)  with the value ofc to be determined by solving Ed26).
Equivalently, usingp=1—erf[\a/2(1+c)], we get

Averaging over the two time$ and t’ now gives, in a 1-¢

stationary state, upon using again the assumption of k= a— 1+¢ (30
absent anomalous response and the familiar notational

conventions  s=lim, ., 7 '3, sgriq(t)] and n  The integrated respondeis positive and finite, and hence
=lim,_.. 7 1S, n(t) our solution(based on this properntyis exact, fora> a..

(29
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Here « is the point at whictk diverges, which is found to
happen when the fraction of fickle agents equal#\ccord-
ing to Egs.(26) and (29), we can writea, as a.=erf[x],
wherex is the solution of the transcendental equation

1 .
erf[x]—2—me . (3D

This equation is identical to that derived[i] (for a stochas-

tic version of the gameusing replica calculations. The re-

sulting value isa.~0.337 40. Belowx, there might well be

PHYSICAL REVIEW E 63 056121

1+¢ 1 ~
2_ — ) lim — 1
20%= g2 T (4 ¢)7|ng7 tZt (1+8),,

X (sgrg(t")1sgia(t") )s(1+ Gt

+¢ 1
:(1+—k)2+(1_¢)1lm7

— 00

2
X2 <[2 <ﬂ+é>n,lsgr[a<t'>]] > . (34
ST st f

multiple ergodic components, i.e., more than one stationary

solution of our fundamental order parameter equati@:ss.

VIIl. STATIONARY VOLATILITY FOR  a>a,

In contrast to the persistent order parametand its rela-
tive k, the volatility matrix (5), to be calculated within our
theory from expression§l8) and (20) and in a stationary
state of the Toeplitz formE,,=E(t—t'), generally in-

We note that the sunit,<t(1l+(~3)t_t,l sgrq(t)] is the re-
tarded self-interaction term in Eq1l7). Such a term is a
familiar ingredient of disordered systems with “glassy” dy-
namics(see, e.g.;20]), and generally acts as the mechanism
that drives the system to a frozen state. Hence, self-
consistency of the distinction between frozen and fickle trad-
ers dictates that the retarded self-interaction term can be
large for frozen traders, but must be sm#linot abseny for

volves both long-term and short-term fluctuations. This befickle ones. Our approximation now consists in consequently

comes apparent when we work dd(t) using Eq.(18) and

disregarding the retarded self-interaction for the fickle trad-

the results of Appendix B. We separate in the functiGhs ers:
and G the persistent from the nonpersistent terms, C4t)
=c+C(t) andG(t)=G(t) (there is no persistent response

for a>a), and find ﬁ

o

zt (1+G), sgrid(t')]=0 for |7,|<1+k.
1+c 1 ~ 1 o~

220 = gz lim=2> > (1+6),},, Cov

S =y Thus we retain for fickle traders only the instantanebtus
=t term in 3, —(1+G),. sgrg(t')], and find the(exac)

=Ty -1
X(H+GT)t”u' (32 expression(34) being replaced by the approximation
Clearly, the asymptoti¢stationary value of the volatility

2 — : : 1+¢ 1
o“=F,(0) cannot be expressed in terms of persistent order o2= +2(1-¢).
parameters only. It requires solving our coupled saddle-point 2(1+k)? " 2
equations(19) for C,» and G, for large times but finite
temporal separations—t'. The persistent market correla- Thjs turns out to be a surprisingly accurate approximation of
tions, however, are found to be expressible in terms of perg,o volatility for a> a., as can be observed in Fig. 3.
sistent order parameters: Only in the limit «@— can we expect to be able to go
beyond Egs(33) and (35), and work out expression82)
and(34) exactly. This requires calculating the response func-

tion G(7) for small 7, which we will set out to do next. Since
] ) ) . ., We assume absent anomalous response we may choose trivial
Above a., this quantity can be recognized as the “energy” initial conditions. We also choose the perturbation figlfly

per agenH/N used in the replica calculatiofd]. In orderto ¢4 he nonzero only for a given tinte- =, wherer>0. From
find the volatility we separate the correlations at stationarity=q (17) we now derive

into a frozen and a fickle contribution:

(35

1+c

E(m):m. (33

Clt—t') = B(sgHATA )+ (1— S){(sgTOTN ) Iy o r[q(t)]zsgr[ LSS
t\/— t <
= §+(1— $)(sgfa) 1sgiT(t) g - oo
and hence —Ta > (1+G),pmsoia(t)]|. (36)
t't"<t

Clt—t")=¢—c+(1—¢)(sgri(t)1sgria(t’) ).
Hence, for vanishingly small perturbationt—7), and
Insertion into Eq.(32) and puttingt=0 then gives upon taking the— oo limit,
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FIG. 3. The volatilityo as a function of the relative number
=p/N of possible values for the external information. The markers
are obtained from individual simulation runs performed with a sys-
tem of N=4000 agents and various homogeneous initial conditions
whereq;(0)=q(0), and inexcess of 1000 iteration steps. The solid

FIG. 4. The oscillatory componentof the covariancésee Eq.
(40)]. The markers represent the results of individual simulations,
performed withN=4000 agents and various homogeneous initial
tonditions, wherey;(0)=q(0), andafter in excess of 1000 itera-

curve fora> a. is the approximate expressidd5). Below «a, the tion steps.
approximate asymptotic solutions of Eqg&l) (solid) and (62) IX. THE STATIONARY STATE FOR a<a,
(dashed are drawn. . . .
When the amount of external information available for
agents to base their actions upG@re., the value ofa) be-
G(r)=— 2\a im 1 S {8 - sVa|[asgrig(t’)] comes small, the behavior of the market is found to become
1+k ., tJZ, 1+k|| d6(t"'—7) strongly dependent on initial conditions. Numerical simula-
tions show that below the sequencg Gy is unbounded,
sva i 1 > an(t") and that within the limits of experimental accuracy:
+ - - — ).
297 k| M v & Gei—n)

lim X, (1+G),'=0, (39)

We observe thaty=s\/a/(1+k) is precisely the condition o

f(_)r a trader to be fickle, in the Ianguage pf the effective Ciyoi=C+d(—1)7 for 7#0 (40)

single agent. Secondly, from causality it follows that ’

lim, .t 13y dn(t')/196(t—7)=lim_.. tflE:enTH (with C;=1, by definition. Figure 4 sho_vvs th.e asymptotic

X an(t")/d6(t—7)=0. Hence our result can in a stationary values ofd as measured during numerical simulations, for

state be written as different values ofa and q(0). Oneclearly observes the
dependence on initial conditions, as already seen in e.g.,
simulations of Ref[13].

> . (37 We will now use Egs(39) and (40) asansdze i.e., we

fi will construct special self-consistent stationary state solu-

) ) ~ tions of the fundamental order parameter equati¢h®

For a—o our stationary order parameter equations givewhich obey Eqs(39) and(40), as well as the stationary state

(1-¢)/(1+k)—1. Furthermore, fora—c all traders conditionsC, =C(t—t’) andG, =G(t—t’). First we ana-

will become fickle, so(d sgr{q(t)]lae(t—T)>ﬁ—>é(r). This lyze the statistical properties of the Gaussian noj$g in

leaves for @—o only the trivial solution for Eq.(37):  the single-agent equatiofl7). From Egs.(39) and (40) it

lim,_..G(7)=0 for all . Insertion into our exact expres- [0lloWs that the noise covariance mati8) obeys

g o 2Ve=¢) [osgiqn)]
(1= 1k "\ Taeit—n

t—o

sion (32) for the stationary volatility matrix gives lim (p(t+7) 7(t))=(—1)"dy?*+(1—c—d)
too
lim E(t)= L im C(t)
o 2 2, xZ (14+G) Yt+ 1 (1+G) Y1),
and hence (41)
lim lim o=1. (39 in which
Qoo t—son
This is the random trading limit. 722( (1+G)TH(- 1" (42)
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From Eg.(41) one can derive, in turn, that the noise vari- X. THE LIMIT a—0

ables must asymptotically take the form Let us finally investigate the situation near=0 more

p(t)=(— 1)tyz\/a+ étVl—c—d, t—w=, (43 closely, where we may use the experimental observation that
c+d~1, which implies that all agents will be either frozen
wherez and{£(t)} are zero-average Gaussian variables, withor oscillating. We puic= ¢ (the fraction of frozen agents
(z%)=1, (z&(t))=0, and andd=1-¢, and choose homogeneous initial conditions
with g(0)>0. We now find 5(t)=(—1)'yz\(1— ¢) and
our two solution types are given by

q—3 yzva(l—¢)(—1)', frozen,
From Eq.(39) we know that lim .. lim,_.(&(t+ 7)&(t)) q(t)= . 3 -
=0, i.e., in the stationary state tiét) decorrelate for large lal<z Ma—z5Va(1-¢)], oscilating,
temporal separations. For sufficiently largeand without
external perturbations, EqL7) now acquires the form

lim(&t+ &)= (1+G) " Lt+n(1+G)~L1).
t—o0 t

provided the following conditions for existence are met:

q(t+1)=a()+ yzyad(~ D+ £ Va(l-c— ) a1z 72Va(1 =), frozen,
. la|<3 y[a—z65Va(1—¢)], oscillating, (49
—aX (1+G), sgriq(t)]. (44)
t'<t ya>yzo\1- ¢. (50)

Frozen agents are those for which [gg(f)] is independent of

time; due to Eq(39) these will not experience the last term Neara=0 we also know, due te+d=1, that

in Eq. (44). However, due to the properties of the noise in the t4 O=(—1)7(1— 2t e 51

a<a. regime(and in contrast to the situation with> ), (n(t+7)n(t)=(—1)"(1-¢)y°, t—ew, (51

even frozen agents will now have lim, q(t)/t=0. Inser- SN S Fary

tion into Eq.(44) shows that frozen solutions of the follow- 7(O=(=1yzV1=¢, t=, (52

ing form exist: and that lim_..o?=3 (1—¢)y? In order to eliminate
the remaining parameterg and ¢ we note that time trans-

—n_1 / _ t
q()=9-3 yzJad(-1) (45) lation invariance guarantees the validity of the relation

provided sgfqg(t)]=sgriq] for all t, soq andd must obey Z(GN(M(~1)'=[2G()(~1)1", and hence

d=1-c, |a|>|3 yzVad|. (46) y=(1+1)"%, T=> Gt) (-1 (53)
t

Oscillating agents, on the other hand, are those for which
sgriqt)]=a6(—1), with 6==+1. Insertion into Eq.(44)  The quantityl’ can, in turn, be expressed in termsjofipon
shows that oscillating solutions of the following form exist: inserting Eqs(51) and(52) into Eq.(27). We obtain

a(t)=q+3 ydla—z5ad](—1)' (47) Va(1= ) y(1=y)(— D)= lim(sgid(t+n)]n(1))..
t—ow
provided sgfg(t+1)]=—sgriq(t)] for all t, soq andd must
obey Working out the average on the right-hand side, by separat-

ing frozen from fickle solutions, gives for larde

d=1-c¢, 9y[a—z5\Jad]>0, |g|<}y[a—z5ed].
! =y (48) (sgriq(t+ ) ]7(t)).= P(sgria(t+ 7)]n(t))s+(1— )

Note that, if rigorously frozen and/or rigorously oscillating X(sgriqg(t+7)]n(t))q
agents were asymptotic solutions of E44), then the corre- .
lations would come out a€(7)=¢+(1—¢)(—1)" (with =yV(1=¢)(=1){p(—-1)

¢, as before, denoting the fraction of frozen aggrasd we B "\
would find c+d=1. Figures 1 and 4, however, show that X(sgialz)y+ (1= N az)q}-

this simple relation holds only near=0. Away from «  gince in a stationary state the correlation function

=0 there will therefore be solutions describing fickle agents<sg,{q(t)]n(t,)>* can only depend on—t’, we must con-
that change strategy at intervals intermediate betwe@sl | de that(sgriglz),=0 and that either

cillating) and infinity (frozen. This can be understood on the

basis of Eq.(44), where due to the noise terg{t) (with a lim y(1-¢)=0 or y=1—(1— ) a(62); (59
finite temporal correlation lengthihere will forc+d<1 al- a—0

ways be a nonzero probability of nearly frozen agents chang-

ing strategy occasionally, and of nearly oscillating agents notin leading order fora— 0). Multiplication of both sides of
changing strategy occasionally. the second equation if54) by y\/a shows that it automati-
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cally ensures the validity of the second condition of Exf)). Finally, we can use our observations regarding the first few
The first equation of54) will satisfy the second condition of time steps(Sec. V) of the process in order to obtain an
Eq. (50) as long asy>0. estimate foP(q). These showed for smadl that initially (i)

In order to proceed we need to calculate the persisterfor small |q(0)|=0(\/«) the system is driven toward the
termq in the proposed solutions, which can be seen as remsscillating state,(ii) for large |gq(0)|=0(a®) the system
resenting their effective initial conditions. It incorporates tends to freezdjii) the transient processes are dominated by
both the true initial conditions and the effects of the tran-the (Gaussiahnoise term in Eq(17), and(iv) the noise term
sients of the dynamics, which initially will not be of the is automatically being “amplified”(either via a diverging
simple form(44). Exact evaluation would require solving our response function, or via accumulation over tjin@ an ef-
order parameter equations for arbitrary times, which is notective O(a®) contribution. Note thati) and (ii) confirm
feasible. However, one can proceed for now on the basis ahat q can indeed be seen as the sumqg0) and the net
the postulate that the properties of the long-term attractoreffect of the transient processes, and tlidt) and (iv)

(viz., the Gaussian variabig are uncorrelated with the value subsequently suggest representing the transient processes
of g. The conditiong49) and(50) then simply state whether by adding a single effective Gaussian variable. Hence

a value ofg, generated independently phccording to some for small « it would appear sensible to writeP(q)
distribution P(q), is compatible with a given attractor. Al- _ (A 57} ~1g-[a-a(01%2A% \yhich converts Eqs(57) and
though we will not be able to generate all possible stationar3(58) into

solutions of the procesd7), we will show how two quali-

tatively different solutions, one with a diverging volatility for 1 ) ) 5

a—0 and one with a vanishing volatility far— 0, can both ola+2A?=—g 20°(0/(e7at2A%)

be extracted from our equations. &

The first type of solution is obtained for lin,q ¢= ¢q
<1. Now one finds, in leading order im, that o=

—sgriyz] and that y=(|z|)sy(1— ¢o)/a. The conditions

(49 and(50) reduce in leading order to the complementary

We conclude thatr can be written in terms of the solutign
of a transcendental equation

’ 1 [2 2 0 1/2
pair o= \/—_ qy( )—2A2 . 20%(0)= %e‘y. (59
o
lal>3 ylz|Va(1- o), frozen, (55)
. - For |q(0)|—0 we find thato= (a7) Y2J1—27A?; hence
la|<3 ylzlVa(1—¢), oscillating. (56)  we must obviously requird ?>< 1/27r. The associated value
. for ¢q then follows from
This, in turn, allows us to calculat¢, and({|z|):
0)+ Ax|
dz > =fDxer|q(—. 60
#o= [ da P(q)fEe 2207 |q| - £ yl2| Va(1- @)1 bo . (€0
V2|4 Since we cannot calculate or estimate the widtlof the
=f dg P(q)erff ——————|, effective Gaussian noise term without solving our order pa-
Wa(l-¢) rameter equations for short timgA could even depend on
g(0)], it is quite satisfactory that several interesting proper-
dqP(q) [ dZz] _ 2 ties of the solution are found to be independentAofFor
(Izhi=| w—— e’ inst | finds a diverging volatility of the f
1— ¢, 27 instance, one always finds a diverging volatility of the form
o=0(a"?), and there is a critical valug.=(2me) *?
X 0% ylz| Ja(1—¢o)—|al] ~0.242 such that fofq(0)|>q, the solution no longer ex-

ists. This solution is clearly the type of volatile state that has

V2 - been reported regularlsee, e.g.[8,9]) upon observing nu-
=—f dg P(q)e2a7/7 (1= o), merical simulations. We have now found, however, that
(1= ¢o) J whether or not it will appear depends critically on the choice

- . 1 — made for the initial conditions. Numerical simulations indeed
We eliminatey in favor of o=3v2yy1—¢, and end up appear to support the existence and predicted magnitude of a
with the following simple closed equation for.

critical valueq.~0.242(see Fig. 5; fully conclusive experi-

— %02 ments, howevetwith even smaller values af), would re-
U:f dq P(q) € _ (57) quire impractical amounts of CPU time and/or memory in
Jam order to meet the requiremenis- andN—c for increas-
ingly small values ofa, and are presently ruled out. In the
The associated value fab, then follows from limit q(0)—0 one can easily carry out the integrals in Eq.
l _(60), giving A=(2m) " Y2sin} w¢o]. Elimination of A via
¢>o:J’ dq p(q)ery{i]_ (58  insertion into o=(am) Y2/1-27A then leads to the
oa simple relation
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8.00 — x . : (1+G) Yt)=—g(1—-g)* L t>0,
SO s which implies= - o(1+G) ~1(t) =0, provided 6<g<2. We
o 0=0.025 can now calculatey from Eg. (53) and find lim,_qvy
6.00 0a=00125 1 =2/(2—g). Thus we obtain, provided2g=0(a?),

V2 1—
o= [a+0(a), x=lim—2
2—g @0

We also note that the scaling propetty=1—O(«) implies
that P(0)=lim o P(q)=0(+/a), since allq values of or-
derq=O(\/E) will contribute to the fraction + ¢ of fickle
agents, giving + ¢=0(P(0)\a). We can now calculate
lim,_ o g upon explicitly inspecting the effect of a perturba-
tion of a frozen state. Sinc&(t>0)=g we may restrict
ourselves to considering the effect on [sgt+1)] of a per-
turbation at timet, giving in leading order fox— 0

q(0)

FIG. 5. Experimental evidence in support of the existence of a

critical value for the initial strategy valuatiom(0) below which a

lim g=lim lim

<% soriq+ 3 ayze(—1)'+ e]>

high-volatility solution exists. The connected markers represent the

results of measuring the volatility in individual simulations, per-
formed with N=4000 agents and initial conditions whegg(0)

=(q(0), andafter in excess of 1000 iteration steps. CPU time and

memory limitations prevent us from doing reliable and conclusive
experiments forr<<0.0125; the available data, however, are clearly

not in conflict with our theoretical predictiog.,~0.242 (vertical

a—0 a—060—0
—2 im(B[a+} ayzyk(~ 1))
a—0
=2 limP(0)=0.
a—0

Hence, since the frozen state has=0(a°), we find

dashed ling which follows from Eq.(59). lim y=1 and
aﬂo -

o= 8270 600 ago—0. (61 772 \2rak O, a0 ©2
Ja

Explicit calculation of the prefactor in Eq62) would re-
quire taking our calculations beyond the leading ordet,in
gime of Fig. 3, with¢, as measured in simulatiofsee, e.g. in order to findx. Equation(62) is the low-volatility solution
Fig. 2). The power ofx in Eq. (61) is observed to be correct. ShOWnN in thea<a regime of Fig. 3, withx as measured in
The observed difference between theory and experiment witiimulations(see, e.g., Fig. )6 Again the power ofx in Eq.

regard to the prefactor can be understood as a reflection ¢f2) 1 %bserved to be correct. TEe remainin% diffe;ence be-
our approximationct+d~1: this amounts to disregarding MWeen theory and experiment with regard to the prefactor can

deviations from the idealized purely frozen or purely oscil-292in be understood as a reflection of our approximation

lating behavior, which can indeed be expected to give an” d=~1, which induces a structural underestimation of the

approximate theory thaeven for smalla) slightly underes-  volatility.
timates the volatility.
We note that the condition lip1,o <1 for the above

reasoning to apply can in fact be weakened to,lifa/(1 In this paper we have solved a “batch” version of the
— ¢)=0. The above solution ceases to hold, however, at theninority game with random external information, using gen-
point where the fractionp of frozen agents scales @=1  erating functional analysi®r dynamic mean field theoryas
—ka+0(a?), in which case we have to turn to the first introduced by De Dominicis, which allows one to carry out
option in Eq.(54), rather than the second. This is consistentthe disorder averages in a dynamical context. Since the dy-
with our previous observation that small values|qf0)|  namics of the game is not described by a detailed balance
lead to a relatively small fraction of frozen agerignd a  type of stochastic process, equilibrium statistical mechanical
large volatility), whereas for larggg(0)| such a solution will  tools cannot be applied directly. Phase transitighsreseny
break down in favor of states with a larger fraction of frozenmust be of a dynamical nature. The disorder in the minority
agents. Since we can now no longer use the second equatigame consists of the microscopic realization of the repertoire

This is the high-volatility solution shown in the<e«, re-

XI. DISCUSSION

in (54) to determiney and hence find the volatilityor
=3v2vy\{1— ¢, we have to return to E453). A fully frozen
state, which fora—0 will indeed be described by this second
type of solution(since lim,_,q ¢= 1), must necessarily have
G(t>0)=g. This is consistent with ouansaze since it
gives

of randomly drawn trading strategies of thieagents. Upon
taking the limit N—o one ends up with an exact non-
Markovian stochastic equation describing the dynamics of an
effective single agent17), whose statistical properties are
identical to those of the original systetaveraged over all
realizations of the disorderThe key control parameter in
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existence of a critical value for the initial strategy valuations,

0 q(0)=1 abovg which the system will revert to a state with yanishing
o g(0)=10 volatility. Our theoretical predictions find quite satisfactory
confirmation in numerical simulations.

The fact that we can analyze the stationary state of Eq.
] (17), in spite of it describing a non-Markovian stochastic
process, suggests that the present method should also be suit-
able to deal with models where the external information de-
pends on time, or on the previous behavior of the agents, as
in the original mode[1,22].

(I-¢)a| °
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FIG. 6. Experimental evidence for the existence of the limit
=lim,_o(1— @)/« for the low-volatility solution. The markers are
obtained from individual simulation runs performed with a system

of N=4000 agents and initi_e_ll valuations_of the focn(O):q(_O) First we calculate lig_...(A,) using expressioni3). We
_>qc (to evoke the Ipw-volatlllty stai)e_and in excess of lOQO |t_era- note that we obtaiA,) simply by making the replacement
tion steps. The solid curve to the right of the critical point is the exp{iEtiz/fi(t)qi(t)]—>(7'/aN)EMXt“ in the right-hand side of Eq.

theoretical prediction, obtained from the exact equati@@& and . “ . .
S . (6). The disorder average is carried out as before, but instead
=1— + > . i
¢=1—-erf[Ja/2(1+c)] describing then> « regime. The dotted of Eq. (7) we now obtain

curve to the left is its continuation into the< « regime(where it
should indeed no longer be correct

APPENDIX A: EXPRESSIONS FOR AVERAGE BID
AND VOLATILITY

<At>=7'f [DC DC][DK DK][DL DL]

this problem is the ratiax=p/N of the number of possible

values qf the external information over the num_ber of agents. XeN[‘I’+‘1>+Q]+O(NO)ef¢/af Dw D\ Dx D% x;
We find a phase transition at,~0.337 40, signaled by

the onset of anomalous response, in agreement with the . . ~

value reported recently if4]. The method used if4] de- ><exp(|§S: [WsWs+XsXs+WsXS])

pends on the fact that for their stochastic version of the mi-

nority game a Lyapunov function exists. Our approach does xexg — 52 [WeWg + Wl oo Wer
not have this constraint and can be easily applied to those 25 - S e

variations of the game where a Lyapunov function is not
available, thus opening up a wider range of models for analy- + 2% K g We/ +$<SCSS,§<S,]> :
sis (see, e.g.[3]). Above a. (where anomalous response is
absent we can solve the stationary state of the system ex-

actly, giving exact expressions for quantities such as the fracV—Vhere we have used permutation invariance with respect to

tion of frozen agentgwhich is zero fora— but increases # (after the disorder averapeThe integral is dominated by

o . . 0 .
with decreasingy), the persistent two-time correlations, and the Ia_\mldllarsaolldtletﬁo![nt. gm;;e H@(N") term n tf|1e eprh_
the persistent correlations in the total bid. The volatility nent is identical to that in E7), we can now simply use the

(which is itself not an order parameter of the systean be  dentity Z[0]=1 to show that

calculated to a very good approximation. Abowg, our .

method and that of6,4] are likely to describe the same be- lim (A)= Te“b/“f Dw DWDx DX x;
havior[21]. Below a., i.e., in the region of complex dynam- N—ee

ics (inaccessible by the replica approadb]), our present

method still applies. In this region we demonstrate the exis- ><exp< 12 [WoWsF KXo+ WeXs]
tence of multiple stationary states, and derive expressions for s

the relevant observables in leading orderadras a—0. We 1 . -
show, more specifically, that the occurrence and practical ><ex;< _Eg [WeWs: +2iRG g Wer

observability of a diverging volatility fox—0 (as reported
in, e.g.,[8,9]) is crucially dependent on the overall degree of
a priori preference for specific strategies exhibited by the
agents at=0, which may explain the different observations
regarding thex—0 behavior that have been reported in theThe last step follows immediately from the antisymmetry of
literature [13]. More specifically, our theory points at the the integrand under overall reflection.

+§(SCSSI$(SI]) =0. (Al)
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To determine the disorder-averaged volatility matrix, whichNer « becomes identical toA;A;/) due to Eq(Al) and the

self-averaging property, we first work out the dominant terms in (Bg. Using limy_...(aN) 1= (22 , we obtain the
relatively simple expression

1
lim (AAL)= lim —— D% ([x+ QH 7][x\s+ QH 7]).
N— oo N— o 2aN M

We calculate this average by making the replacemer[tiEgmfi(t)qi(t)]—>(2aN)‘12M<[>q“+Q"/T][xt‘f+Q“/r]> on the right-hand
side of Eq.(6). Repeated integration by parts over thg’ shows that we may equivalently put xp; ¢(t)qi(t)]
—>(2aN)*12M\7v#\7\rt‘f. Following the steps we also took in calculati(dy) now gives

lim (AtAt,)— “f Dw DWDx DX W W,/ exp{iz [v‘vsws+>“<sxs+wsxs])
S

N—o

1
X ex[( ) 2 [WeWgr +2iX Gy W + S\(SCSS')A(S'])

ss/

I 1. _ -
1 DWWy W,/ ex;{ — 5 Ze W (1+ G)'D 1(HG)]SS,WS,)

1
/DW exp( — 5 3ss[(1F G)'D 1+ G)]Ss,v‘vs,)

=3[(0+G) DI+G") 1]y . (A2)

APPENDIX B: CONSEQUENCES OF ABSENCE 1
OF ANOMALOUS RESPONSE - 2 a, by—ab

Tt<r

Lemma 1 Consider two bounded sequences of real num-
bersA; andb, . Because, is bounded, there exists a number
b such that lim_.(1/7)3<,b;=b. Define a,=3-,A;,
and assume that lim,.. a,=a. Then

2 a,— b+ E a,{b—ab
<7—K

Tt —K

2 a,_ by +

Tt 7—K

E (a,——a)by
Tt<7—K

1
lim =, > A_;by=ab.

T— 00 Tt<7’t <t

b——E b)

Tt<r—K
- . KCaCp
Proof. Upon substituting—t+t’ we find ST . 2 (a,_t—a)by
<7—N
+]al b__ E b=
Tt<r—K
_E Z A t’bt’_ E by 2 A= Z a,_by.
Tis7 /<t Tov<r t=r—t' Tisr
Hence the limit is as claimed. |

Lemma 2 SupposeGg=G(s—t) e R, where G(t)=0
The sequence} and{b} are bounded, so there exist num- for all t<0 and with lim_ .2;-,G(t)=k, and suppose
bersC, and C, such that|a,|<C, and|b,|<C, for all t  lim,_. 7~ 13,-,s(t)=s. Then for allne N
=0. The sequencf} converges t@, so for anye>0 there
exists aK such that for alt>K |a;,—a|<e€/3C,. We now
chooseM such that for allz>M |(1/7)2<,b;—b|<e€/3|a] lim = 2
t_

' 2 (GMys(t’)=k"s.
andKC,Cy/7<e€/3. Then we find for allr=>M

T—00 t’
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Proof. The proof proceeds by induction. Far=0, the  The sequence,=2 -(G™)S(t') satisfies the conditions
statement is trivially true. Suppose now that it is true for allof Lemma 1, application of which gives
n=m. Then

T T
lim = >SS (G™L),s(t) lim% > (G h)s(t') =kkMs=k™"1s,
s T =177 T T1=1 g
1 T
=lim =X, > G(t—t") > (G™us(t). Hence the claim holds fam+ 1, and by induction it is now
o T =1 {1y t<t” proved for alln. L
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