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Analysis of front interaction and control in stationary patterns of reaction-diffusion systems
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We have analyzed the stability of one-dimensional patterns in one- or two-variable reaction-diffusion sys-
tems, by analyzing the interaction between adjacent fronts and between fronts and the boundaries in bounded
systems. We have used model reduction to a presentation that follows the front positions while using approxi-
mate expressions for front velocities, in order to study various control modes in such systems. These results
were corroborated by a few numerical experiments. A stationary single front or a patterm Wwihts is
typically unstable due to the interaction between fronts. The two simplest control modes, global control and
point-sensor contrdpinning), will arrest a front in a single-variable problem since both control modes, in fact,
respond to the front position. In a two-variable system incorporating a localized inhibitor, in the domain of
bistable kinetics, global control may stabilize a single front only in short systems while point-sensor control
can arrest such a front in any system size. Neither of these control modes can stahiliferg@npattern, in
either one- or two-variable systems, and that task calls for a distributed actuator. A single space-dependent
actuator that is spatially qualitatively similar to the patterned setpoint, and which responds to the sum of
deviations in front positions, may stabilize a pattern that approximates the desired state. The deviation between
the two may be sufficiently small to render the obtained state satisfactory. An extension of these results to
diffusion-convection-reaction systems are outlined.
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[. INTRODUCTION a bounded one-dimensional reaction-diffusion system, and
apply them in various control procedures. The stability
The problem of finite-dimensional control of systems thatanalysis is based on model reduction to a model for front
are described by partial-differential equatiofBDE) has  positions and on approximate solutions of front velocity and
been attracting considerable attention, especially for applicaf front interaction under conditions where separations be-
tions of reaction and diffusio[]]__z[l and fluid-flow processes tween fronts is finite. Our interest in the control of these
[5]. The traditional approach in chemical engineering prob-Systems stems from the novelty of the problem and from our
lems of control is to use a finite, preferably small, discreti-€Xpectations that control methodologies developed for
zation of the under|ying PD[EB]?]_ Sharp Spatia| variations diffusion-reaction systems may be applied for certain control
in the state variable make the use of large discretization mod?roblems that arise in diffusion-convection-reaction systems
els unavoidable. The dissipative nature of the underlyind11l, as we comment in the conclusion of this work. The
PDEs and numerous studies of the spectrum of the eigenvapatterns emerge or are destroyed due to the interaction of the
ues of the linearized system suggest that the long term dyactivator (x) with various control mode$\) or various in-
namics is low dimensional. Several approaches for moddnibitors (y). The activator, typically described by the
reduction have been suggested; recent approaches weaction-diffusion equation
based on the central manifold theord®2]. While these
approaches may be powerful, they do not support any quali- X = X= FXGY) N, Xelo=X[L =0, (1a
ta}tive understanding of the system behavior to suggest eﬁhway admit front solution when the source functiefifx,y)
clent mOdeS of control. . N=0) is bistable. We verify that a single stationary front
Stat|onary fronts are key elements n the emergence of o pattern of several stationary fronts of systéla) is
stationary or moving patterns and fpllowmg_thelr motion Is & enerically unstable due to front interaction. We then study
natural approach for model reduction. Various mechanismg, joys stabilizing and destabilizing effects and approximate

have bgen sggggsted for the emergence of statipnary Patteiy, poundaries of existence of such fronts and patterns under
in reaction-diffusion systems, and some are reviewed belownhese conditions

While analytical results exist for a single front in unbounded The destabilizing forces we address are due to front inter-
systems[9,10], the behavior of a realistic boundétinite- 5 ion or due to an inhibitoy), which is localized and slow
size system with several fronts cannot be predicted analytl-(8<1)’ which typically accounts for oscillatory kinetics in

cally in most cases; moreover, numerical simulations are teﬁigh- and low-pressure catalytic systefag]. Its description
dious as front motion and front interaction is extremely slow.

: . . - is as follows:
The purpose of this work is to derive approximate solu-
tions for the stability and dynamics of stationary patterns, in yi=eg(X,y). (1b)
Reaction-diffusion systems with a localized inhibitdre.,
*Corresponding author. Email address: Eg. ()] may admit stationary front solutions, whé(x,y)
cermsll@tx.technion.ac.il +N=g(x,y)=0 is bistable, but these are highly unstable.
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Stabilizing effects can be imposed by external control or by We will consider uniforms and space-dependent actua-
long-ranged inhibitors, as described in the following. tors. We consider first the simplest controller structure, a
(i) Instantaneous global interaction or global control, inspace independent actuatgr=1. The simplest controller

which the actuator responds to deviations of the spatiallshould be based on a single measurem@&bal control
averaged sensor like A(t)=xs—{X), is based on certain average property, as dis-
cussed above. In point-sensorcontrol x is measured at a
single point Z*, preferably at the front positionA(t)
=X¢(Z*)—x(Z*). This control mode is sometimes referred
to aspinning In a single-front pattern, and for small devia-
where () denotes the spatial average axgdis the desired tions, the two control modes actually respond to the front
setpoint, may stabilize a single front. In that case the setpoirosition, as we show below in the analysis of the two strat-
is a parameter and with largg the system instantaneously egies. We then turn to study space-dependent actuators,
adjusts its\ to satisfy the setpoint. A strong interaction in a where we try to stabilize a certain pattern with a qualitatively
long system will eliminate an unstable homogeneous solusimilar actuator.

tion. That implies that a fixed part of the surfa¢®lf in the We employ below the simplest oscillatory kinetics model,
symmetric casglies in the upper state. Patterns due to such.e., a cubic activator source function

interaction were analyzed and simulated to account for ob-

servations of patterns in electrochemical systdi®], in f=—x3+x+y

catalytic wires or ribbons controlled to maintain a constant

resistancg 14,15, in catalytic disks suspended in a well- coupled with a linear balance on the inhibitég(x,y)).
mixed fluid phase and in dc-discharge systése=[12] fora  Many of the numerical and analytical studies of patterns due
recent review of catalytic systemsGlobal interaction in to long-range interaction typically employed such kinetics

chemical reactors may be induced by convection or by mix{14,17-2Q and showed that patterns simulated with a real-
ing of the reactant fluid phase. istic model, using a bistable activator kinetic balance and a

(i) In the limit of infinite gain B—) the global- Monotonic inhibitor balancgl5], were quite similar to those
interaction condition may be incorporated into the originalobtained with the cubic kinetics. The advantages gained by
equation, by integrating qua) and expressing, to form analyzing this simple model is that it obeys certain symme-
an integrodifferentia| equation of the forp‘q_xzz:f(xly) tries, which will be employed fOl’_ patte_rn CIaSSif_ication, and
—(f(x,y)); (X)=Xs. that several of its asymptotes, including the fixedcase,

Equations(1) and (2) have been extensively investigated have been analyzed before for one- or two-dimensional sys-
as a model of the catalytic oscillator subject to global inter-tems[18].
action or global control. We test here the efficiency of global ~ The structure of this work is the following: In Sec. Il we
control for stabilizing desired patterns. We mention belowderive an approximate solution for front velocity in a
three other mechanisms that may lead to stationary patterf®unded system and then use it to study the stability of pat-
but we do not employ them here: In a system with nonuniterns with one, two, or any number of fronts of the single-
form propertiesh (z), gradients il may arrest a front of an  Variable probleniEq. 1(a)] without or with various stabiliz-
opposite inclination and a periodiqz) may stabilize a sta- INg modes. In this section we consider the two control
tionary multifront pattern. In the classical Turing mechanismstrategies with a uniform actuator. Control strategies for sta-
patterns emerge when the activatey is short-ranged while bilizing multifront patterns are implemented in Sec. Ill; spe-
the inhibitor's(\) diffusivity is sufficiently large to arrest the Cifically we try to develop a methodology that uses a single
propagation of fronts of the activator. Other mechanisms inSPace-dependent actuator and as few and as simple sensors
volve convectiori16] and the behavior of such a system will &S possible. In Sec. IV we introduce the slow and localized
be studied elsewhere. inhibitor (y) and study its effects and the relevant control

We are looking now to design a controller of systétn ~ Procedures.
with as few sensors as possible and possibly with a single
actuator. While continuous measurements of the spatial II. FRONT INTERACTION (SINGLE VARIABLE )
state-variablge.g., temperatujeprofile may be possible in
certain cases, it is still technically challenging in most cases While certain analytical and approximate results exist for
and we rely on localized sensors or on average propertiethe velocity of fronts in systems of the form,—x,,

A=B(Xs=(X)), )

The controller we design is of the form =f(x,\), these apply typically for an unboundédfinitely
long) system with fixed coefficienté\). Since we are inter-
N—\*=BAX(1)](2). 3) ested in the behavior of finite-size systems, and in systems

where the distance between adjacent fronts is not too large,
we review now the correction to front velocity.

Technically it implies thaty(z) should be constructed once  In a frame of a coordinate moving with the front,

in the required space-dependent shape. In chemical reactors

this can be implemented by installing spatially varying resis- u=z—ct,
tance if resistive heating is employed, or by varying the heat-
transfer area when heat exchange is employed. the system is described by
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FIG. 1. Front interaction in a finite domain: the figure shows one — du

front (solid line) at Z; and another imaginary mirror-imaged one

(broken ling at Z, (dimensionless variables and parameters Now, for conditions where..=0 the right-hand side can be
calculated if the profile is knowfas we show below for a
cubicf). The first term on the left can be approximated with
x,(u), since(x3,) is positive and the correction due xg is
small. Otherwise, the right-hand side can be approximated as

— Xy~ Xygu=TF(X,\). (4)

If c.. is the front velocity in an infinitely long system and o _ _
X_, X, are the stable solutions 6fx,\)=0, which are also O(xu) = Fx(*)[X2(0) =X, ][x2(0) +x3(0)/2 3X+/2]('8)

the edge states in an unbound system, then after multiplying

Eq. (4) by x, and integrating we find When the front profile is not known we note that far from the
front the profile approaches asymptotically the steady solu-
tions of f(x,\)=0 as

T 1.
_C“f_m xgdu— 7%

=Jx+f(x,)\)dx. (5)

x u=2Z;—, (x;=x)=C,exd—p(u=2y)],
2p,=c+c—4f,(x,),

For the derivation below we impose no-flux conditions at the 9

boundaries and the second term in the equation above is U—Z;——%, (Xx—x_)=C_exdp_(u—2y)],

zero. Analytical expressions exist in a few cases only, but let

us assume that the front is Aatand its shape is described by 2p_=—c+c?—4f (x_),

X=X, (U—2).

Strictly speaking, fronts of constant speed and shape d@herep_ and—p, <0 are the eigenvalues of E@) at the
not exist in bounded systems, but we assume the system t@o stable state$x_ andx.). Now, for the symmetry as-
be sufficiently large. Now, to find the interaction betweensumed for the two frontss,(z)=x,(—z), C,=C_. Con-
two fronts, or similarly the interaction with the walls, where sequently, x.,—x;(0)=C. exp{p, Z;)=x,—X,(0) (recall
no-flux conditions apply, let assume the existence of twahatz,<0), and
fronts, one atz=Z, separating a “cold” zone on the left

from a “hot” one and another, its mirror image, &4 (Fig. , 36(x) Lo
1). The corresponding solutions, in the absence of a second C~— +W9 P+fa, (10
u

front, would have beenx;=x.,(u—2Z;) and x,=xX.(Z,
—u). A reasonable approximation of a pulse composed o

. i . tI'hus, in the general multifront case the velocity of an as-
two mirror-image fronts, is

cending front Eq.(10) can be generalized to account for
interactions on the left and the right

X(U)=x1(U;Zq) +[Xo(U; Z2) — X4 ] (6) C—C.,=a_e P-A_qy e 2P+Zr (11)

. . . o _whereZ, Z, are the distance@n absolute valugto the clos-
since it describes correctly each front individually, as theirgg; hoyndaries on the left and right, respectively. When an-
separation diverges to infinity. Without loss of generality let i1 o front exists on the left or the right than, is half the
us place the fronts af;=—Z,, so thatx(u) acquires its  jistance between the fronts !

maximum atu=0 due to symmetry. We can integrate now
Eqg. (4) from —o to 0. Substitutingx(u) from Eq. (6) and

treating the correction as a perturbation and expanding the A. Approximate front profile

right-hand side of Eq(4), as f(x)="f(xy)+ fu(x1)[Xz(u) For the simple cubid = —x3+x+\ that we use below,
—X, ], which is valid in the vicinity ofZ,, we can substitute and around\ =0, conditions at which the front is stationary
x(u) into Eq. (5) and find in an infinitly long system ¢..=0),
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C1 . . i B. Front interaction
We want to study whether a pattern incorporating one,
1073} two, or several stationary fronts is stable and what kind of
control measures can be applied to stabilize it. We show that
10741 in the absence of control the fronts are attracting or repelling
each other and that global control can stabilize a single front
1075} but is unable to stabilize a multifront pattern as fronts will
move in a way that maintains the setpoint.
10—6 . . . Consider a multifront system, with fronts &t,Z,,...,
3 35 4 4.5 (|__z1) etc. In the absence of global or local control and in a uniform

system we can approximate the position of all fronts and
FIG. 2. Comparison of simulatedstars and approximated their interaction by the set of ordinary differential equation

(solid line front velocity as a function from its distance from the (ODE)
boundary(single-variable systemnl, =20; dimensionless variables

dz;
and parametejs i *C(Zi_1,Zi+1,\), (14)
u-— Zp—u where \ is a space-independent parameter that affects the

Z u—272
X, = *tanh——, xlztanh—l, X,=tanh . i o i .
V2 V2 V2 motion. A positive velocity denotes expansion of the upper

(12)  state; the plusminus sign in Eq.(14) applies then to a front

separating a higlilow) state on the left from a lowhigh)
The velocity for the two fronts situation described above isone on the rightFig. 1); the velocity of an ascending front is
obtained by substitution in E410), yielding for the velocity — described by Eq13) while for that of a descending front we

of the first front should exchang&, andZ, . We will always assume that the
first front separates a low state from a high one so that the
24 minus/plus signs apply to fronts of odd/even numbers, when
—cy=—e (L2772 (13)  numerating the fronts from the left. Equati¢h4) can be
V2 written now (wherea_=a,=a, p_=p,=p) as
while c,=c; due to symmetry. A rigorous derivation of this dz; _ _
expression can be found [21]. To test this expression we qt G- e At ae B (19

simulated the motion of a front in a bounded syst@isize
L=20) and calculated its velocitat the inflection pointas  with positive or negative signs as before. Equati@b) is
the distance from the edge is varying, showing excellentinalyzed below to study front interaction by analyzing the
agreement with Eq(13) (Fig. 2). For the present case, stability of a single stationary front and of two orsuch
f (x_)=fy(x,)=—2 and from Eq.(9) p3~(—4f,)/4=2 fronts, in the absence or presence of various control modes.
where we assumed that<f, (recall thatc,,=0 atA=0);
thus,a_=a,=a, p-=p;=p. C. Single front

The velocity of front solutions of Eq(la) with f=(x_

—x)(x—x)(x—x_), in an infinitely long system, is Consider now a single front solution 2&Z,, separating

a lower statgon the lefj from a higher one. The front posi-

G = (X, +X_— 2X)IV2, tion is described now by Eq15) with Z,=L—-2Z,, or

(see[10]). The upper and lower branches 6fx,\)=0, qi = ¢(@1MZ))=F(Zy)
A<1, are approximately described by.=x; 3~ *+1+\/2
(by Taylor's expansionand the intermediate solution is
~—N\, and for small\,

(16)
C=C,+ae Ph—qe 2PL-21),

Now, we consider the control-free system and several modes
C.=3N/V2=pN\. of interaction or control and analyze the system dynamics in

each case.
The front width (A) is approximated as the inverse slope (a) In the absence of contrahe stationary front position
[(X4—X_)/xy], which can be determined from-x,, (c.=0) is unstable since JF/9Z,;=2pae 2P?
=f(x,\) by multiplying it by 2x, and integratindas in Eq.  +2pae 2Pt~ >0 whereZ=Z,, the stationary front po-
(5)] from u=—= to 0 or x3|o=2ff(x,\)dx, where the sition; for this symmetric case, where the front is equally
boundaries of integration ix are x_ and x;~—\. With  attracted to the left and right boundaries 0 whenzZ,=L
A~0 we find A~2v2. [A simpler approach for the cubic —Zg and 9F/9Z,=4pae P-. The front will move then to
source function is to wuse the analytical profile, one of its boundaries, accelerating as the boundary is ap-
x=tanh{/?2).] proached.
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(b) We show first that in the genergderfect global- X(Z*)=x;+ (dx/d2)¢(Z* — Z,),
control case B— «) the control may stabilize the front: The
space-averagexican be approximately determined from Xs=Xs(Z*) =Xt + (dX/d2)1(Z* — Z15),

L(X)=(Z1=AI2)X_(N) + (L —=Z1 = A72)X . (N) + A(Xgrony) and assuming that the front shape is unchangge x;s,
(17)  etc), the control strategy leads to
while the setpoint follows, similarly, A(t) =Xs—X(Z*) = — (dX/d2){[ Z1s— Z4],

LXs=(Z1s— AI2)X(N*) +(L—Z15— A/2)X (N¥) A=N*=K(Z1=Z;5), K=B(dxd2)y, =
+
A{Xfront)» (18 where we usually sef,;;=7*.

where \* is the set value of the parameter that induces a The gain with the point-sensor control is independent of
stationary front. Assuminxon) = (X +x_)/2 and expand- the system length, and it can stabilize any single-front pat-

ing Xo (\) =Xo (V) + (dXo /AN) (A —N%), where tern of single-variable systems. Note that in the general case
(dx. /d\) is evaluated along=0, and subtracting the two the actual gain depends on the sensor location, and the larg-
equations we find est gain is achieved at the front position, where we set our
sensor. Adjusting a system to a new set front position will
N—A*=K(Z;—Z15), require us to relocate the sensor location.
Ko XL (N*)=X_(\*) 19 D. Two fronts
Zy(dx_/dN) +(L—Z55)(dx, [dN) - Consider a two-front pattern, separating domains with

While global control operates as feedback control of theIOW' high, and low states, when numerating them along the

front position, the gain power declines within this case; system coordinate. The steady front positions for this sym-

since the destabilizing effect of the boundaries declines exr_netnc case, aré;;=L/4=L—Z,, and the dynamics is de-

ponentially[Eq. (16)] perfect global control is sufficient to scribed by

stabilize the front. dz,
(c) Consider now the generdfinite B) case ofglobal Wz—cl(Zl,Zz,)\)zFl(Zl,Zz,)\),
interaction In that case we need to estimate the dependence
X+ (N). That may not be simple for arbitrary kinetics and we dz
pursue it for case witltubic kinetics:Sincex.,.~*1+\/2 d—2=02(21.22,?\)= Fo(Z1,Z5,N),
and L(X)=(Z,—A/2)(=1+N/2)+(L—Z,—A/2)(1+\/2) t
+A(—\/2), where the last term is the approximate value for apz —p(Ze-24) (24)
the front, then(x)=\/2+1—2Z;/L. Thus N/2=(x)—1 C1=C.tae TH—ae 72 T,

+2Z,/L, but we also sek =B(xs—(x)), yielding o — o PZ21) 4 g 2P(L-2))
2= Cs .

—1+2Z,/L). (200  We consider now the dynamics of the system in the absence
of control and with global interaction or control of infinite
gain, showing that in both cases the steady structure de-
scribed above is unstable

JE dc, dx (@) To show that this structure is unstable in the absence
> aiaiere d7+2ape‘2”zl+ 2ape P2 of control (\=0), we conduct a linear stability analysis of

1 1 Eq. (24) to find that the Jacobian matrix

B
BEET-7R

The front position is stable whefi~/9Z,<0, where

dc, 3 d» 4 B A(F{,F5) -1
— =, ==, 21 _ 172 -pL/2
dA V2 le L2+B ( ) (9(21122) ape (_1 3 ) (25)

In the symmetric casex(=0) the front is positioned at the has positive eigenvalues. The fronts will either attract or re-
center,Z,,=L/2, and pel each other until a homogeneous state is established.

(b) Applying perfect global contro{(x)=xs, infinite B)
aimed at setting L(x)=(Z;—A/2)x_+(Z,—Z,—A)x,
+(L—2Z,—A/2)X_+2A{Xson) = LXs, We find that withx..
=+1+A/2 then\=2(Lxs+L+2Z,—2Z,)/L and

JF

B 3
_ —pL =
7, 4B(2+B)L +4ape P, B a (22

(d) In point-sensor contrelwith small deviations from the

setpoint, we can approximatg(z) ~x;+ (dx/dz);(z—Z1s) J=A< -1 1 iC 3 _1) A:(d& f)
wherex;=X(Z,) is the state at the front positiodx/dz is -1 -1 3/ dn L)’
evaluated at the front, and we have ignored changes due to

the control parameter. Consequently, C=(ape P“?), (26)
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FIG. 3. The simulatedstarg and approximated value required
for igniting a single-variable system by perturbing it in the form of
a pulse(shown in Fig. 1 of size Z,—Z; and the corresponding
midpointx value (L =20; dimensionless variables and parameters

showing that for all set of parameters the system is unstabl

(its eigenvalues are@, —2A+4C). A two-front structure
cannot be stabilized in a simple way.

E. Local ignition of a cold system

A transition from the lower to the upper stater vice

PHYSICAL REVIEW E 63 056120

3 -1 0 0
-1 2 -1 0 0
J o -1 2 -1 0
ape ™| 0 0 -1 2 0 28)
0 0 0 0O -1 3
For n=4, for example,
3 -1 0 0
1 -1 2
ape | 0 -1 29
0 o -1 3

A stability analysis of these systems reveals thatritieont
stationary pattern is unstable. With time fronts will coalesce
and disappear, pair by pair, until a homogeneous steady state
is established.

(b) Can infinite-gain global control stabilize such a pat-
tern? Qualitatively we know that it is impossible since the
(éontrol cannot affect the motion of a pair of adjacent fronts
moving in the same direction. The overall balarifer an
evenn) is

L<X>:(Zl_A/2)X_ + (Zz_zl_A)X+ + (Z3_22_A)X_
+-(L—=Zy— A/2)X_ +NA(Xgrone) =L Xs (30

versa can be induced by applying a local perturbation in theWith X===1+X/2 and(Xpony = (X+ +x-)/2 yields

form of a pulse. How wide should this pulse be? If we view

it as two fronts, and they are a distance & apart in an
infinitely long system, then front velocity will approximately
follow Eq. (24) and we require that,=c.(\)— ae 2P?
>0, providing us with the minimal value of that will as-
sure expansion of the pulse. This expression was compar

with numerical results that located the boundary of an ex

panding and shrinking domains, after a symmetric pise
in Fig. 1) was imposed initially. Excellent agreement is ob-
tained with numerical result§=ig. 3).

F. n fronts

The system is described now by H45) with
ZitZiy_ Zi—Zi1

Z1=Zi— 5 5 excepti=1, Z,=24,
(27)
Zi+Ziq Zi1—Z;
Z.= > = > except
i=N, Z=L-2Z.

(@) In the absence of controh=c.,.=0) the stationary
front positions equally divide the size system and are de-
scribed by z,;=L/2n, Z,s=3L/2n, Z;,s=(2i—1)L/2n.
The Jacobian matrix of Eq§12) and(27) is tridiagonal with

2(Zl+Z3+ "_22_24_' °

)
L .

2

Xg+ 1+ (31

When the distances between the fronts are sufficiently large
the stability will depend om only. The system is described
dz;/dt==*c,(\). Note thatd(Z;+Z; ,1)/dt=0 and the

‘control cannot command the separation between fronts.

Thus, a structure of stationary frontsif>1) cannot be
stabilized by global control, even with sufficient separation
between the front, and we expect this conclusion to hold for
finite separation. In the absence of control even a single sta-
tionary front cannot be stabilized.

G. Stabilizing asymmetric fronts

Let us consider a single stationary front solution of Egs.
(1) and (2) and study the effect of varyings. The
asymptotic solution in a large system has been outlined in
several paper$22] showing that ag is varied the front
position changes in order to maintain the setpoint but the
system maintains =0 in order to maintain a stationary front
(c.=0). Numerical solutions for a finite system have also
been outlined and the bifurcation diagram ofvs (x) has
been portrayed showing stable and unstable branches of so-
lutions[23]. In the unstable solution the front rests close to
the edge but the attraction exerted by the edge is stronger
than the stabilizing effect of the controller. This control
scheme has been applied in numerous studies of catalytic
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kinetics on thin wires in order to maintain “isothermal” con- space dependent, we can expaf(c,\)=f(X,\g) + f (N
ditions, before it was realized that this scheme leads to sym—2\,) and the front velocity in a finite but sufficiently long
metry breaking in systems that admit bistability. system is approximately

Here we want to approximate the solution to this system ) q
and find the shortest system that maintains a single stationary P X
front. The front position is described by E(.6) with \ in ~Calxy) = Lf Fx.No)dx+ fo fA(A=Xo) g7 dz (39)
Eq. (20) and the boundary of stability of the front is given by
setting Eq.(219 to zero. The two conditions can be written where dx/dz is approximated from the front at,. Note

as that, if dx/dzis an even function, as in the culficase, and
b for odd A\ (2), i.e.,N\(Zs—2)=—\(z—Z,), the correction to
2, > L+ a1 the fron.t velocity is n|I._ Note, the_lt for,s=L/2 the forcing .
(@ E 2 (Lxs=L+22)E=1=0, control is an odd function and will not affect the front posi-
tion.
E=eP(L-2Z9 p= 4_'3 B pL Now, suppose the front deviates from its desired position
’ al B+2 " Zis to certainZ, or alternately suppose that is shifted
(32) relative to its steady position: Then, with the step function
(b) 2pE?—bE+2p=0. y(z2)=H(z—Z,)— 3 the second term on the right of Eq.

(33) is simply the integral over the displacement
Solving Eg.(32a will yield the front position while(32b)
yields the stability boundary. The latter exists only fof fL()\_)\ )%dz
>16p?, which yields the shortest system that can be stabi- Jo o dz
lized, and the corresponding front position is described by
E=bl/4p. _ Zisdx
=BA(1) , G797 BAMDIX(Z19 —x(Z)] (34
1
Il CONTROL STRATEGIES and for small deviations the correction i9IX{d2z)¢(Zs
Recall that we are looking now to design a controller with —Z,) (recall thatf,=1 here.
as few sensors as possible and possibly with a single actuator Now, A(t) may be chosen again to follow a global-
of the form control or a point-sensor strategy but witk(t)>0, e.g.,
A(t)~[xs—x(Z*)]? and following Eq. (32 A(t)~(Z;s
N—=A*=BAX(t)]¥(2). —Z,)? and for small deviationsh =BA(t)¢(z)~(Z;s
—Z,)3. While this term will not affect the linear stability
We have already tested two control strategies with uniformanalysis it will affect the motion and arrest the front when
(homogeneoysactuators: The actual effect of both strategiesthe cubic term is comparable to the linear one. To analyze

on a single-front pattern can be described by this situation note that there usually exists a destabilizing
force, which for small deviations is of the linear form
N—N*=K(Z1—2Zq) v(Z,s—2Z4). [The destabilizing force is either due to edge

effects, Eq.(16), or due to other effects such as a localized

[Egs. (19) and (20)] and both strategies cannot stabilize ainhibitor as we will demonstrate in Sec. [NThe stabilizing
multifront pattern. Global control is a simple approach that isforce, from Eq.(34), is of the formBb(Z,s—Z;)3, whereb
insensitive to front position but its gaiiK) is limited in large  is a constan{~(dx/dz)f2]. Thus
systems. Point sensor control is another simple approach
with a gain that is independent of system length but is highly d(Z1s—2Z4)
sensitive to the front position. dt

The available controller design methods teach us how to
construct a controller for multifront patterns. That typically =~ Simple inspection shows that the desired solution
requires several actuators. We consider now a control strat=Z,5 is unstable, but there exists another solution 2 (
egy with asinglenonuniform(heterogeneousactuator. This —Z;)>=v/Bb, with a corresponding\ =Bb(Z;—Z;)*
inclination controluses an actuator that imitates the patternf = »*%(Bb)Y?] which is stable. This approach leads, there-
structure, i.e., the roots af(z)=0 and the slopes off are  fore, to a different steady-state profile, but with increasing
identical to those of(z). That will stabilize the front, if gains(B) the difference between these steady states dimin-
A(t)>0, since any front motion will be counteracted. In theishes €;s—Z;—0\—0).
inclination control of a single-front pattern let us choose These results were verified by simulations of the full
W(z)=H(z—Z,5) —1/2, whereH(2) is the Heaviside func- reaction-diffusion equatiofila) subject to contro[Eq. (3)]
tion, or ¢(z)=—cogwz/L]. This control strategy is too with ¥(z)=H(z—Zs)—1/2 starting with a small perturba-
elaborate for a single-front structure and is tested heréion to the front solution. The simulatiori&ig. 4(@)] show
mainly to apply it for multifront patterns. that indeed the front is arrested by the control, and the pro-

Note that now\ is space dependent and we need to concess is faster with larger gairBf, but the corresponding
sider the expression for front velocity. Wha(iz) is slightly ~ front position ¢;) and \ deviate slightly(10 2 to 10 3)

=c=1(Z15—Z1)—Bb(Z1s-Z;)%. (35
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FIG. 4. Stabilizing a onefa), two- (b), and four-front(c) pattern(L =20, 40, and 40, respectivelyn a single-variable model using a
single space-dependent Heaviside form actudtoiSimulations show the stationary and perturbed pattéirst rows, solid and broken
lines) and the response to a small perturbation of the left-front posiden second roy; the control valudthird row), and the front velocity
(fourth row). (Various lines present the comparison of various control parameters. Didgygmesents the effect d with 0.01 (dash-
dotted ling, 0.1 (broken ling, and 1.0(solid line) with a sensor positioned at the frord 10) orB=0.1 and sensor &= 8 (dotted line.
Diagram(3) shows the effect of the control modlEgs. (373 (solid line), (37b) (broken ling, (37¢) (dash-dotted ling and(37d) (dotted
line), B=1.0]. Diagram(4) shows the effect oB, the notation as irfa)) (dimensionless variables and parameters

from the desired values of the unstable stationary front A(t)=[X(ZF) —Xq5]?+[X(Z5) — X26]?, (370
(whereX should be nil. The difference between the setpoint
and the new front is not noticeable. Placing the sensor some-

what away from the desired front positi¢at z=8 instead of A2 (1) =[X(Z]) —x1s]*+[X(Z5) = x6]%, (370
10) will result in a slower convergence, but the system will
approach the same solution. whereZ} denotes sensors location. Equatiia, where( )

While some of the methods described earlier can control denotes integration over the System, may not be sufficient as
single front in its position, they may not work with a two- or the motion of both fronts will cancel their individual effects.
n-front pattern. Global control was shown already to be Un-Equationi37b)_(37q) require two local sensors in the vicin-
successful for this tagkeq. (22)]. For a two-front pattern we ity of the desired front positiorz ;s,Z,. Equation(37b) is
may opt to choose one of the following forms, a square wavéot continuous in its derivatives and E§7¢) yields a qua-
or a cosine function: dratic response and thus will affect the motion only at large

N . N deviations but will not affect the linear stability analysis.
(@ ¢=[H(z=27)H(Z; —2)—z], This was shown for a single front and can be shown to apply
(36)  for the other control options above as well. The approximate
(b) ¢=—cog2mz/L). analysis can be conducted by reducing the model to describe

. . . the front position. In that case, control schen@sb)—(37d)
As we show this approach will not be able to stabilize theabove should be transformed to

desired pattern, for the reasons described above for a single-

front pattern, but may yield a sufficiently close solutid{t)

should be positive definite and should be sensitive to motions (b) A(t)~|Z,—2Z7|+[Z,-Z3],
of all fronts, e.g.,

A(t):<(X_XS)l//(Z)>, (37‘@ (C) A(t)w(zl_z’{)2+(22_z§)21 (38)

A = [X(ZT) = Xqg| +[X(Z5) = Xad], (37b (d) AX()~(Z,-Z7)*+(Z,-Z3)%
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Similar ¢(z) andA(t) functions will be constructed for other  x, = =1+ (N +ys)/2, A+ye=2(Lxs—L+2Z,)/L,
n-front patterns.

Simulations of the system, subject to space-dependent ac- C.=B(N+Yq9), (40)
tuators[Eq. (37)], starting with small perturbations to two-
and four-front structurepFigs. 4b) and 4c)] show that in- whereyy; is the local value at the front position and the
deed the desired state is unstable but that it can usually beffect of gradients inys on the front velocity are ignored.
achieved with a reasonable accuracy. The choice of the corf-he “frozen” y profile is its steady-state profile, and follow-
trol mode is not important and with increasing gain the re-ing the steady profile it will be divided into three sections:
sponse is faster but the deviation from the desired state &t the outer sectiony. = — yx. while at the inner section

larger. the front slope at its inflection point igx/dZo=A=(1
— y)v2 and consequentlgly,/dzo=— y(1— y)v2.
IV. ACTIVATOR INTERACTION (@ In an uncontrolled system, described iz, /dt
WITH A LOCALIZED INHIBITOR =—c(Z,,y), the stationary frontg¢=0) is unstable since
We consider now the behavior of a two-variable system, JF ac ¢ dys

incorporating a fast activatofx) and a slow nondiffusing +2pae Pt (41)

inhibitor (y) described by Eq(1b). This problem has been

investigated extensively since it describes various physical .
. . , and both terms are positive.

systems as low- an(_:i high-pressure catalytl_c reactisae (b) For a very long system, for which attraction by the

[12] .for a recent reV|e\_)vand n_eural condgctlon. Eront dy- boundaries can be neglected, the front position is described

namics, in systems with a wide separation of time scale

(e<1), can be studied, to a first approximation, by assuming

that the inhibitor position is frozen. This may destabilize the dZ, /dt=—c..= — B[N (Zy) +Y«(Z1)]. (42)

front position as explained below. Much of the analysis con-

ducted above can be applied now for the two-variglg)  Underglobal controlwith infinite gain the system is stable

system. Under global control, however, where the system ig;hen

forced to admit a preset space-averaged value=Xs, a

9z, 9z, ay iZ|,

plethora of patterns may emerfks]; some of these patterns Jc., N dYs B 1l-vy
were observed in catalytic, electrochemical, and gas- -7 =ﬁ(§7 oz ) =Bl v—|=0 (43
discharge systen{42]. The shape of stationary fronts is dif- ! ! Zy V2

ferent from those in single-variable systems, since the inhibi- i o )
tor has ample time to relax and affect the front shape. Th@bVviously global control is efficient only in short systems.
transition from stationary to moving fronts was described in  The effect ofpoint-sensor contrais expressed in Eq23)
several works and may be associated with a hysteresis logyd the front will be stable when

[24]. For e<1, however, the transition is fast and we can _ _

apply the results outlined above. K=»(1=y)v2>0. (44)

For simplicity we assume a lineg(x,y) Thus, a single-front that connects two stable stae, y

SV < %) can be easily stabilized by a single point-sensor control.
9(x.y) >y 39 This result was verified by computing the corresponding ei-

A simple analysis of the homogeneous steady states of Eqgenvalues. More sensors are required when3 and their

(1a) and (1b) with the specified kinetics reveals bistablity Number increases witly; the control design in this case
with two stable solutions whe<2 and a unique unstable "€quires a_formal approach, as we outline in a future _work.
state fory>1; bistability exists also fo<y<1 but their (c) Multifront patternscannot be controlled by a single
stability depends or. Stationary front solutions exists for S€nsor and a single actuator. Asiront pattern can be easily
y<1 but they are unstable fop>s. These fronts separate controlled byn space-dependent actuators, each respond_lng
two stable states whep< 2, and their stabilization is rela- [© @ seénsor located at the front position and affecting its
tively simple, while forZ<y<1 the limiting states may be immediate V|C|n|ty_. Ann-front pattern can be approximately
unstable. We focus our attention, therefore, on the formef:omrOIIGd by a single space-dependent actufes. (36)

case. The latter case will be addressed elsewhere using®d (37] that responds to the sum of the deviation rof
formal control approack25]. sensors; the adequacy of the approximation depends on the

problem and parameters and requires some optimization of
the control gain. One such example is shown in Fig. 5 which
portrays the response to small perturbations in simulations of
For amoving front and for sufficiently short times for the full systen{Eqgs.(1a) and(1b)] subject to control of Egs.
which they =y, profile can be assumed to be frozen at the(3) and (37¢) with i that is either a Heaviside produdEq.
steady-state value, we can apply the analysis conducte@6a, the solid line in the top of Fig. Jbor a modified dis-
above. For the specific model used hareandy have the continuous functior(the broken line in the top figuyethat
same effect on the front position, so that for a front separataffects the front vicinity but its impact away from the front is
ing low (on its lef) and high states, we find diminishing. Figure 5 plots the midpoint activator value

Single-front dynamics
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using approximate expressions for front velocities, in order
\ 1 (a) to study various control modes in such systems. These re-
> -—-—q| =---—-—- I -== sults were corroborated by few numerical experiments.

\ ! The analysis of a single-variable model showed that a
-1 single front or a pattern with fronts is typically unstable,

Z u Z due to the interaction with the walls. Two simple control
modes based on a single sensor and a single spatially homo
(=== == it t—— = geneous actuator were analyzed: Global control may or may
><E o.sl ] not stabilize such front while a point-sensor contmhning

(b) will arrest this front. Both control modes, in fact, respond to
0.6 front position. Neither of these control modes can stabilize
’ an n-front pattern and that task calls for a distributed actua-
0.1 tor. While a multipoint controller that incorporatasensors,
VAVAYAVAVAVAVAVAVAVAVAVA VAV each signaling a controller that affects the vicinity of the
() corresponding front, can stabilize such a pattern, this may be
< 0.05} ] technically too complex. A single space-dependent actuator
________________ that responds to the sum of deviations in the front positions
0 may stabilize a pattern that approximates the desired state.
The deviation between the two may be sufficiently small to
10.5 render the obtained state satisfactory.

The interaction of an activator with a nondiffusing and
slow inhibitor, in a two-variable model, leads to a destabiliz-
ing effect and poses an even larger challenge for stabilizing
stationary patterns. Such interaction may lead to bistability
or oscillations in a lumped system. For conditions that in-
duce a stable moving front in an uncontrolled systarhich
correspond to bistability in a lumped systena global-
control approach is effective for arresting a single front only
in short systems, while in long ones a pulse motion will
emerge. Point-sensor control is effective for this task for any

. . . . size of the system. Both approaches fail to stabilize an

0 20 40 60 80 100 n-front pattern, but the distributed actuators described above
1 may be effective in this case.

o _ ) The methodologies developed here can be extended to

FIG. 5. Stabilizing a pulse patterrL ¢40) in a two-variable  gther models that incorporate patterns. In a future application
model using a single space-dependent actUatppresented ifa),  \ye will consider the control of moving fronts; these are of
is a Heaviside product function as in E(B6a, solid line, or a i 5614ance in several physiological systems, most notably in
modified function, broken link simulation results show the state at cardiac systemée.g.,[26]). Stationary fronts may appear in
midpoint (b), the control valugc), the left-front position(d), and catalytic fixed bed réactors which are described by reaction-
the front velocity(e) following a perturbation to the initial steady diffusion-convection Syster,n\512] Convection affects the
state.[B=10 andy=0.3 (dash-dotted lineand 0.6(broken ling front velocit it v hes” th. front d t |
with ¢ as a Heaviside function, ang=0.6 with modifiedy (solid ront velocity as It -pushes e tront downstream. In a
line); dimensionless variables and parameiers. recent vyork[l_l] we studied the stabilization of a stationary

pattern in a simple homogeneous model of a tubular catalytic
reactor with generic first-order exothermic reaction and real-
istic Pe valueqthe ratio of convection to diffusion terms
and subject to realistic boundary conditions. To admit homo-
X . . e . geneous solutions we considered in that work a reactor
Ime)...WhlIe all CO”‘FO' modes induce small oscnlatl.o.ns ' model that admits local bistability due to the interaction of
position and small time-averaged valuesiofthe modified ,hjinear kineticgdue to exothermic and activated reacion
function yields more accurate results as evident from thgyi heat loss due to cooling, and with a mass generation
midpoint value. source, either by the preceding reaction or by mass supply
through the membrane walsee[16] for a detailed descrip-
V. CONCLUDING REMARKS tion). Linear stability analysis combined with the Qalgrkin
method was used for state feedback control of the distributed

We have analyzed the stability of one-dimensional patparameter system. The capabilities of the global control and
terns in reaction-diffusion systems by analyzing the interacpoint-sensor control to stabilize the front solution were stud-
tion between adjacent fronts and between fronts and thid by the manipulation of various reactor parameters includ-
boundaries in bounded systems. We have used model reduieg fluid flow and feed conditions. Point-sensor control of
tion to a presentation that follows the front positions, whilethe coolant flow(heat-loss coefficientor coolant tempera-

x(0), thecontrol effect, the left-front position, and its veloc-
ity for y=0.3 and 0.6(Heaviside control, dash-dotted and
broken lineg and y=0.6 with the modified functior{solid
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ture are the most effective when the temperature sensor fsinction and constant parameters. To apply these results to
located close to the front position. Global control and otherEq. (45) we need to correct the front velocity for the convec-
strategies failed. A qualitative analysis was suggested for theéve (or rather advectiveflow and for the finite-size and the
selection of proper control of front stabilization and it fol- boundary conditions. The edge effects on the front velocity
lows the principles presented here, as we discuss below. decay exponentially with the front distance from the edges
The full model studied by Panfilov and Sheintddi]is  [Eq. (10)], and for the sake of simplicity we assume that the
too complex for a detailed analysis. The qualitative analysiseparation is sufficiently large to ignore it. Under these con-
presented there is based on the reduction of the original PD#itions we focus on the effect of the paramatam the front
model to a simple ODE that describes the front positionyelocity, which can be shown to be described by
using an approximate expression for the front velocity. Thus,
the enthalpy and mass balances were argued to be linearly dz/dt=—-c=—c(Pe=0)+Pe. (46)
related and qualitatively described by an equation of the fol-

lowing form: Thus, the front velocity is affected by any parameter that

affects the velocity in the absence of convection and by the
(45) convection velocity. These effects can be analyzed using the
2=0, x,=Pex: z=L, x,=0 tools developed above.

Xt+ PeXZ_XZZ: f(X,yrp*)"'fp(p_ p*)’

wherex (the temperatupeis the activator and the inhibitor
(y) is qualitatively described by Edqlb); they have singled-
out the effect of a parametép) to be used for control pur- This work was supported by the Israel Science Founda-
poses. As we reviewed here, certain analytical results exigton and the U.S.—Israel Binational Science Foundation.
for the front velocity in the unbounded diffusion-reaction M.S. is a member of the Minerva Center for Physics of Com-
system of the fornmx,—x,,= f(x), with an S-shaped source plex Systems.
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