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Phase transitions and oscillations in a lattice prey-predator model

Tibor Antal and Michel Droz
Departement de Physique Toweque, Universitede Genge, CH 1211 Gene 4, Switzerland
(Received 29 September 2000; revised manuscript received 8 February 2001; published 20 April 2001

A coarse grained description of a two-dimensional prey-predator system is given in terms of a simple
three-state lattice model containing two control parameters: the spreading rates of prey and predator. The
properties of the model are investigated by dynamical mean-field approximations and extensive numerical
simulations. It is shown that the stationary state phase diagram is divided into two phases: a pure prey phase
and a coexistence phase of prey and predator in which temporal and spatial oscillations can be present. Besides
the usual directed percolationlike transition, the system exhibits an unexpected, different type of transition to
the prey absorbing phase. The passage from the oscillatory domain to the nonoscillatory domain of the
coexistence phase is described as a crossover phenomena, which persists even in the infinite size limit. The
importance of finite size effects are discussed, and scaling relations between different quantities are estab-
lished. Finally, physical arguments, based on the spatial structure of the model, are given to explain the
underlying mechanism leading to local and global oscillations.
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[. INTRODUCTION of the system. Accordingly, a great deal of activity has been
devoted in the last few years to the study of extended prey-

The dynamics of interacting species has attracted a greapredator model§7]. The simplest spatial generalizations are
deal of attention, since the pioneering works of Lotkhand  the so called two patch models, where the species follow the
Volterra[2]. In their independent studies, they showed thatconventional prey-predator rules within each patch, and can
simple prey-predator models may exhibit limit cycles duringmigrate from one patch to the othj&].
which the populations of both species have periodic oscilla- Other works have found that the introduction of stochastic
tions in time. However, this behavior depends strongly ondynamics plays an important roJ8], as well as the use of
the initial state, and is not robust to the addition of morediscrete variables, which prevent the population from be-
general nonlinearities or to the presence of more than twaoming vanishingly small. These ingredients are included in
interacting specieg3]. In many cases the system reaches aso called individual based lattice models, for which each
simple steady state. lattice site can be empty or occupied by di®-14 indi-

A better understanding of the properties of such oscillavidual of a given species or twd 5,16 individuals belong-
tions is clearly desirable, as population cycles are often obing to different species. It was recognized that these models
served in ecological systems, and the underlying causes rgive a better description of the oscillatory behavior than the
main a long-standing open questipfa]. One of the best usual Lotka-VolterrdLV) equations. Indeed, the oscillations
documented examples concerns the Canadian lynx popul@& such finite size lattice models are stable against small per-
tion. This population was monitored for more than 100 yeardurbations of the prey and predator densities, and they do not
(starting in 1820 from different regions of Canada. It was depend on the initial state. It was also foufiidh two-
observed that the population oscillates with a period of apdimensional systemshat the amplitude of the oscillations of
proximately ten years, and that this synchronization was spaglobal quantities decreases with increasing system size,
tially extended over areas of several millions of square kilo-while the oscillations persist on a local level. It was argued
meterd 5]. Several attempts were made to explain these factthat coherent periodic oscillations are absent in large systems
(climatic effects, relations with the food-web, influence of (although, the authors of Rdf10] did not discard this pos-
the solar cyclgwithout success. More recently, Blasietsal.  sibility). In Ref.[15] Lipowski stated that this is only pos-

[4] introduced a deterministic three level vertical food-chainsible in three dimensions. In Rdfl2] Provataet al. empha-
model. The three coupled nonlinear differential equations desized that the frequency of the oscillations are stabilized by
fining the model contain eight free parameters and two unthe lattice structure, and that it depends on the lattice geom-
known nonlinear functions. The authors showed thatdn etry. In some papers, the stationary phase diagram was also
hoc choice of the free parameters and nonlinear functionslerived for a given system sif&0,16, and different phases
explains the experimental data for the Canadian lynx. were observed as functions of the model parameters, such as

In such mean-field type models, it is assumed that the@n empty phase, a pure prey phase, and an oscillatory region
populations evolve homogeneously, which is obviously arof coexisting prey and predator. In R¢1.0], a coexistence
oversimplification. An important question consists of under-region without oscillations and a domain of the control pa-
standing the role played by the local environment on theameter space for which the stationary states depend strongly
dynamics[6]. There are many examples in equilibrium and upon the initial condition, were also found.
nonequilibrium statistical physics showing that, in low However, in all the above works no systematic finite size
enough dimensions, the local aspe(isictuationg play a  studies were performed, allowing one to draw firm conclu-
crucial role and have some dramatic effects on the dynamicsions about the phase diagram of the models as a function of
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their sizes. In particular, the size dependence of the amplirespectively, to a cell which is empty, a cell occupied by
tude of the oscillations, as well as a detailed description oprey, or a cell occupied simultaneously by prey and preda-
the critical behavior near the phase transitions, were not intors. The dynamics of the system is defined as a continuous
vestigated. However, it is knowfil7] that, in ecological time Markov process. The transition rates for sitare (i)
problems, the fact that a system has a finite size is morg_—1 at rateN,(n; 1+ n; 2)/4, (i) 1—2 at raten,(n; »)/4,
relevant than in most of the cases encountered in statisticalyq (i) 2—0 at rate 1,’ where; , denotes the number of
physics, for which one concentrates on the thermodynamigearest neighbor sites ofvhich are in the state-. 4 is the
limit. Another relevant question concerns the generic propgqqrgination number of this two-dimensional square lattice.

erti_?rs]; of SufthhqdeIS' is to stud impl dat The first two processes model the spreading of prey and
© goal ot this paper I 10 study a simple prey-preda Orpredators. The two control paramet&rsand\, characterize

model on a two-dimensional lattice, for which some of the . S
. ) a particular prey-predator system. The reason for considering
above questions could be answered. Our model is based o . ; o
he sumn; ;+n; 5, in the first rule is simply that all the

coarse-grained description in the sense that a given cell mod- . -
els a rather large part of a territory, and thus can contaiff€!ghPoring cells of containing some preghences; =1 or
many preys or predators. Moreover, predators cannot live) Will contribute to the prey repopulanon_of céllThe third
without prey in a given cell. Those are the main differenced’’0C€SS represents the local depopulation of a cell due to
between our model and that of Satulovsky and Tdi®®) ove_rly _greedy predat_ors. This can be_ mte_rpreted as the I_ocal
[10]. Nevertheless, it turns out that the stationary state phaggXtinction of a species, or as its migration to neighboring
diagram of the two models are quite different. occupied sites. Spontaneous disappearance of a prey state
Our model is defined in Sec. II. Although governed by (?i: 1—0), or that of the predators alone(: 2—1), is
only two control parameters, this model exhibits a rich phaséorbldden. These assumptions are reasonable because the oc-
diagram. Two different phases are observed: a pure preg:.{rrence of tr_\ese processes is |m_pr0bable. The rate of the
phase(P), and a coexistence phase of prey and predator i ird process is chos_en to be 1, which sets thg tlmg scale. As
which an oscillatory(O) region and a nonoscillatorgNO) & consequence the tintieas well as\, and\,, is a dimen-
region can be distinguished. In some limiting cases th&onless quantity. _
model can be mapped onto a well known nonequilibrium The above dynamlcgl rules are an extensm_n pf the con.tact
model: thecontact proces¢CP) [18]. In Sec. Ill the proper- Process mode[18,20] introduced as a description of epi-
ties of our model are analyzed in dynamical one- and twodemic spreading. The CP model is a two-state model,
point mean-field approximations, and no undamped oscilla=0.1; the states 0 and 1 represent healthy and infected indi-
tory behavior is found. In Sec. IV, extensive Monte CarloViduals, respectively. The CP dynamical rules @®— 1 at
(MC) simulations are performed. It is shown that, as a funcfateA(n; 1)/4, and(ii) 1—0 at rate 1. An epidemic survives
tion of the values of the control parameters, a usual directefP’ N>Agp=1.6488(1)[20], and disappears fok <\gp.
percolation(DP) transition, as well as an unexpected transi- The transition toward this absorbing state is of second order
tion belonging to a different universality class, into a preyand belongs to the DP universality cld20].
absorbing state are present. The system size dependence ofOur model differs from most of the lattice models previ-
the amplitude of the oscillations is studied, and several scalusly investigate§10-13 in the fact that, on each site, each
ing relations between the amplitude of the oscillations andgPecies may be represented by several individuals rather than
the correlation length are obtained. In Sec. V an underlyingust one. Our model, when suppressing the term in the
mechanism responsible for the spatial oscillations is profirst rule, reduces to the ST model, in which the spreading
posed, which leads to a qualitative explanation of the proptate of prey is simply proportional to the number of neigh-
erties of the phase diagram. In particular, we show that th&oring prey sitesn; ;. Nevertheless, the presence of the
spatially extended aspect of the model plays a crucial role iierm in the first rule plays an important role, as we shell see
the presence of oscillations. Finally, conclusions are drawielow. The ST control parameters take the forms(1
in Sec. VI. +NatAp) tandp=c(hp,—\y)/2.
An interesting aspect of our model is its close relation to
the CP model in some limiting cases. In thg— o limit the
Il. MODEL proportion of empty cells is negligible, since the empty cells
Our system models prey and predator living together in &'¢ reoccupieql bY prey instantly after they become empty.
ence the lattice is completely covered by prey, anddhe

two-dimensional territory. This territory is divided into — > sites beh he infected ies in the CP model
square cells, and each of them can contain several prey and sites behave as the Iniected species In the model.

predators. In this coarse-grained description, in which eacﬂ— at_ is, when decreas_m)gb the predator d_e_nS|ty decreases
cell represents a rather large territory, one can assume th§pntinuously and vanishes at the CP critical valf(\,
each cell containing some predator will also contain some- ©)=\gp-

prey. Note that similar assumptions have been used in host- One can think of the.,—co limit in similar terms. In this
parasite model§19]. Here, we consider a three state repre-case, the proportion of prey celler 1) should be negli-
sentation. Each cell of a two-dimensional square lattafe ~ gible due to the high productivity of predators, and the
sizeL X L, with periodic boundary conditionlabeled by the =2 cells should behave as the infected species in the CP
indexi, can be, at time, in one of the three following states: among the empty cells. This is indeed the case,if\¢p,
0;=0, 1, and 2. A cell in a state 0, 1, or 2 correspondsbut when\, becomes smaller thangp, the prey density
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again increases instead of becoming zero, as we shall see 10 . . - . .

later. nodes poles
8 |
IIl. MEAN-FIELD ANALYSIS
Although apparently simple, there is no way to solve the 6
model defined above analytically. However, analytical solu- s P

tions can be obtained by making some approximations. The
simplest one is the one-point mean-field approximation, in
which all spatial fluctuations are neglected. Thus the system

is characterized by thédimensionlessdensities of preya, 2t . POdeS
and predatorb, sites, o ° ° @ T
1 1 % 2 4 6 s 10 12
a:Fz (85, 171 85 2), b:FE 8o 20 (1) N
I | h

whose values satisfy thesOb<a<1 conditions by defini- FIG. 1. Mean-field prediction for the boundafglashed ling
tion. In terms of these densities, the mean-field dynamicapetween the preyP) and the coexistence phag@ and NQ. The
equations read dotted lines are the boundaries between the pole and node type of

stationary state regions. The MC results in thee limit are also
depicted for comparisofsee Fig. 3 for detai)s

a
a=)\aa(1—a)—b 2 .
S_AS_
and b*=a Ny (5)
db which describe a coexistence of prey and predatuexist-
gt~ Meb(a=b)—b. @ ence phase

For \p>1 the a and b densities are approximately the
Note that, for thédo=0 (and thus the&=0) initial condition,  same,
the predator and prey densities remain 0.

Equations(2) and (3) clearly differ from the usual LV ( 1 1

ones. The main difference lies in the interaction terms since, 1= +0|—| fori>1
. a b
although a larger prey density increases the predator growth
rate, the rate of predated preys only depends on the predator 1 1 for ho=1
density. This is a simple consequence of the fact that there a°=b°+0O| —|= Ol = a— (6)
Ole col of thy het g Vb

are no pure predator sites without preys in this model. This is
reasonable for a real prey-predator system, as a predator has o i for \o<1
to consume a certain amount of prey in a given time to sur- Np a
vive, independently of the number of preys around it. The \

(1—a) term in the first equation plays the role of a simple ) ,

Verhulst factor, which assures an upper limit for the preyf"mdv as a function af,, they show a mean-field CP behav-
density @<1), and similarly the §—b) term in the second 0T, &S expected from the argument given in Se_c.,!l.
equation does not allow the density of predators to exceed N ,t,he7‘a>1 limit (and fora,>1) the system is "full of
that of the preys. prey,” namely,

The stationary states are obtained by setting the left hand
sides of Eqgs(2) and(3) to zero. Contrary to the simplest LV . 1
equations, qualitatively different stationary states are ob- a _l_)\_a l_)\_b +0 \2)’ @
tained varying the parameters, and \,,, as illustrated in
Fig. 1.

For 0<\,=<1 and\,>0, the stationary state is a pure
prey absorbing state, wheaé=1 andb®=0. ForA,=0 the
stationary state is also a prey stab¥=0; however, the bsz(l—i)(l—i
value ofa® depends upon the initial state. In the rest of the Aa Ap
plane (,,\p), the stationary solutions are

and the predator density reads

1

+0 .
\a

®

As expected, ita.,, dependence agrees with the prediction of
o =D+ V(NG 1)7+ 4NNy the mean-field approximation for the CP model. This ap-
a= 2\, (4) proximation predicts a second order phase transition along
the wholer,=1 line, as in the\,— 1 limit a andb approach
and linearly the values 1 and O, respectively:
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1o M o 1)? 1
a= Aot 1 [(Ap—1)7],
0.8
9
b= N+ + O[(Ay—1)7
—?\a)\a—+1+ [(Ap—1)7]. 0.6
b
The behavior of the densities is rather surprising at the 0.4
Na=0 boundary of the coexistence phase. Ferx}<1 and
for A\p>1, 0.2
S . +0O(\2) (10 : : 0
A P ¥ o 0 02 04 06 08 1

a
while the stationary solutiom® for A,=0 depends on the

initial state. Thus the mean-field approximation predicts a FIG. 2. Pole type approach for the stationary solution in the
discontinuity of the prey density along this boundary. How-Mean-field approximation far,=1 andh,=2, starting the system
ever, the predator denSi®S=as—)\_l is proportional to from different initial conditions. Note that thestb<a<1 condi-
' . b tions are always satisfied.

N4, and thus continuous for,—0.

Important quantities are the fluctuations of prey and
predator densitiemean square deviationswvhich are nor-
malized to become size independent for large systems,

lations are strong along the, axes(i.e., for A;<<1). The
strength of them can be characterized by the ratio of the
imaginary and real parts of the eigenvalues, which have a
X,=L%(p—(p))?), with p=a orb, (11)  singularity in thex,—0 limit. Using Eq.(10), we obtain

=PI\ -0 (14)

where( ) means the time average in the stationary state. For Im(e)
Na.Ap>1 the majority of the sites are in a state 2, with a few Reg€)
holes in it, hence one can suppose that the holes are indepen-

dent. Consequently, the number of the holes follows a Poisfor A,<1 and\,>1. In this limit one can also derive an
son distribution, from which the average hole number equalgxpression for the frequenay of the damped oscillations:
to the mean square deviation. There arfg§1—a) holes

made of sites in the state =0, andL?(1—b) holes made of _ ST _ i 32
sites in the states;=0 or 1; thus o=[Im(e)[=213"y/1 )\b+0()\a ): (19

Xa~1—a® and yp,~1-Db° (12 Thus the mean-field approximation predicts two distinct
. . . . phases: the pure prey phase and the coexistence phase. It also
These mean-field predictions are in good agreement with thgjyes some indications of the possible presence of oscilla-
simulations in a regiorithe nonoscillatory partof the coex-  {ions in some parts of the coexistence phase. The boundaries
istence phasesee Fig. 9. of the two phases are described by two linkg=1 and
The stability of the stationary state can be analyzed by __ ¢ Several quantities show a power-law behavior close

linear stability. One has to investigate the e.igenvalu@§, to these boundaries, likeand 1—-a at thex,=1 boundary,

of the Jacobian matrix related to the mean-field equatidns ,nqph andw and the strength of the damped oscillations at

and(3) at the stationary densities the\,=0 boundary. Thus, in the mean-field approximation,
the transitions are of second order, and the predator demsity

Jal  dpa Na(1-2a% -1 seems to be a good candidate for the order parameter. It goes
gb ab|| T\ aa—1  1-aa) (13 to zero at the phase boundariesbas(h,—1)# andb~\?2,
s respectively, with a mean-field exponedit 1.

We also performed a pair approximation, in which the

It turns out that the real parts of the eigenvalues are alnearest neighbor correlations were also considered as param-
ways negative, assuring the stability of the solutions. Thisters. It turns out that the results differ only quantitatively
mean-field approximation does not predict limit cycles,from that of the one-point approximation. Contrary to Ref.

which would correspond to having an eigenvakievith a  [10], our system does not show a limit cycle behavior on the
zero real part. However, in some part of the COGXlStenC%air approximation level either.

phase the imaginary part is nonzero, so the stationary solu-
tion is approached in spiralpoles, instead of straight lines
(nodes (see Figs. 1 and)2as also observed in the ST model
[10]. Note that an unexpected node region appears\for On general grounds, one expects that fluctuations will
>10. One can consider the presence of poles as an indicatigiiay an important role in low dimensions. Our model is sup-
of the appearance of oscillations beyond the mean-field agposed to describe a two-dimensional world and, accordingly,
proximation. Note that, in this pole case, the damped oscilwe have performed extensive Monte Carlo simulations for

IV. MONTE CARLO SIMULATIONS
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systems of sizes XL, L varying between 100 and 1000.

Concerning the boundaries of the system, one may think that
open boundary conditions are the natural choice in view of
biological interpretation. In this case, however, one has to 10 k
introduce new dynamical rules at the boundaries which com-
plicate the model. As it is known from the study of many
problems in statistical mechanics, boundaries have important & 1
effects when they allow for a permanent current to flow e
through the system. We do not want to model such a case p Be.c B
and, accordingly, we think that the periodic boundary condi- 01 ¢ % o= o " E
tions, which we use in the simulations, lead to a correct B B
gualitative behavior. Note that similar boundary conditions ol
have been used in the majority of previous works as well, 0.01 .
which makes the comparison between the results easier. A

Although our model is formulated as a continuous-time
process, an equivalefat least for not very short timgslis- FIG. 3. Stationary state phase diagram as obtained by simula-
crete time formulation is more suitable for numerical simu-tions. The squared() indicate the transition to the prey absorbing
lations. In one elementary time step one lattice site is chosestate(P) for different system sizesL(=100, 200, 500, and 1000
randomly, and its state evolves according to the rules define@nd the arrows point to thegy value. In all figures larger symbols
is Sec. Il using rescaled ratéall less than 1as transition correspond to larger systems. The boundary between the oscillatory
probabilities. One MC step is defined as the time needef® anq the nonoscillatorpNQ) regions of the coexistence phasg is
such that all the sites are, on the average, visited once. In thfi€términed based on Fourier analysis)(and on the crossover in
paper we always use the original time units defined by thea (®). Fclr the DP type transition b.etwe.en P anq Nof the fitted
model, which can be obtained simply by rescaling the timevalues ofAf (Ng) (X) and the approximation described in Sec. V
measured in MC steps. (

solid line) are also depicted.

For sufficiently large system, the stationary state does noﬁ1 . . . .
depend on the initial conditions. Usually we filled up the the nonoscillatory region of the coexistence phase will be
lattice completely with prey as an initial state, and put a fewd€Scribed later. o
predators into it. To obtain the stationary phase diagram ang, In Fig. 3, the bO!J”dary of the prey phase is dlsplaye_d for
the stationary values of the quantities of interest, fromtb0 ifferent system S|zesL(=_ 100, ... .,1000). Appare_nt_ly, in
10° MC steps were performed for systems of linear dize the A ;>\, regime the size dep-endence is negligible, but
—1000 to 200 respectively. relevant forh ;<\, . Npte tha}t this strong size depe_ndgnce

The corresponding phase diagram, obtained for differen?f the boun_dary commde_s with the presence of oscillations.
system sizes, is depicted in Fig. 3. Two different phases are Decreasmg\b at any fixed value oh,, a segond order
present as a function of the two control parametersand phase trans!t|on takes place betweer_1 _the _coeX|stence and the
\y: a pure prey phaséP), a prey and predator coexistence PreY absorl_olng phases along a transnlqn k_rﬁe{)\a). .As for
phase with an oscillatoryO) region and a nonoscillatory the mean-field case, the predator density is considered to be
(NO) region. In the oscillatory region, oscillations with a the order parameter. As,— X} (X,), the order parametds
well defined frequency were observed in the prey and predeand 1—a go to zero as
tor densities(see Fig. 4 A completely empty state would
also be absorbing; however, during the simulations the sys-
tem never reached such a state. A qualitative argument for
this is simply that even one surviving prey can fill up the 0.4
system with prey in the absence of predators. As Fig. 5
shows, the locations of the different regions of the phase
space differ essentially from those obtained for the ST
model. <

The phase boundaries of the prey phésse Fig. 3 were 0.2
obtained in the following way. Simulations were started at
parameter values for which the coexistence is maintained
practically forever(up to the maximal number of MC steps
investigategl and we decreased one of the parameter values
by AN. If the predators were still alive after a given time,
we decreased the parameter further. The extinction of the
predators defined the phase boundary. was chosen to be
in the range 0.005 to 0.04, witht=3x 10" MC steps. The FIG. 4. Typical behavior of the prew, and the predatot (b
result was very similar, wittht=10" and 5 10" MC steps.  <a), densities in the oscillatory region of the stationary statg (
The definition of the boundary between the oscillatory and=0.8, A\,=100, andL =1000).
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FIG. 5. The same as in Fig. 3, but as a function of the variablei FIG. 7. Prey densitp as a function oh, for different values of

. ; ) p=3 (V), 4 (pentagom 4.5 (¢), 5 (O), 10 (A), and
used in the ST model. The triangle represents the available part 0100 d svst 7ds— 200 500. and 1000. The dashed i
the phase space. The location of the oscillai@y and nonoscilla- (), and system sizds= 200, »an - I'he dashed line

tory (NO) regions are quite different from that of the ST model. Is the density given by the CP.

b~1—a~[A,—\F(Ny)]P (16)  Ap. The two exponentsp; and y;, are compatible with
those obtained for DP in 21 dimensiong20]. Thus we
conclude that this absorbing state phase transition belongs to
the DP universality class, as expected on general grounds
{21]. Note that a DP type phase transition in similar lattice

As seen in Fig. 3, the values af; (\,) obtained by fitting
the data with Eq(16) are in very good agreement with the
phase boundary obtained previously for large systems. Fi
ting the data leads t@,~0.58(1) (with satisfactory preci- prey-predator systems was alregdy obser[ﬂsﬁ;jZZ,ZS.
sion for\,>0.3; see Fig. Let us now <_:onS|der the limit —co. In this case, _the

In the same limit the fluctuations of the predator densityPase diagram is rather §|m*ple, as can be seen in Fig. 1. A
also follow a power-law behaviory,~[Xp—\&(Ag)] 7% second order transition ling; (\,) separates the prey ab-

The exponent has been determined to a good precision égrbing phase from the nonoscillatory coexistence phase.

y,~0.35(3) for several values af, between 1 and 50. The | NiS line ends up at a particular poi[‘vta=Q,Ag~_5.0(3)],
same behavior has been obtairedly for A\ ;=1 and 3 for where P, O, and NO domains meet. MC simulations suggest

the prey fluctuationsy,, with the exponenty,;~0.355). that the transition lines between the O and P domains ob-

The critical behavior turns out to be the same when the trang'er‘fa_d for finite size systems collapse to the line=0, Ay,
sition line is crossed while decreasing at fixed values of = Mp N the infinite size limit. This means that for this range
of N\, and for any arbitrarily smalk,, the coexistence of
the species is possible providing that the system is large

1 = T
e enough.
’ o o For Ap,> )\g, when\,—0, the prey densitya goes to a
01k P S ] value smaller than 1 depending ag (see Fig. 7. This dif-
/;"'/% o e 7 fers from the DP transition case, where the prey density con-
- & e e 99939'5 ’ verges to 1. Moreover, according to the results depicted in
§ 001 LN 4 e e e Fig. 8, the predator density approaches zero as a power law,
- ¥ i 7 a~)\§2 with B,~1. Surprisingly, this situation is drastically
57 different from the DP case, and the val@e~1 leads us to
0.001 | 2 1 conjecture that this second transition could be mean-field-
. 2 like. A complete analysis of the critical properties of the
o model near this transition line and the end point€0, A,
0.0001 b= : ' : : =\p) is a difficult task presently under investigation.
0.00 0.01 0.1 1 10 100

. For\p> )\E the fluctuations of the two densitigg and yy,
M - A, behave similarly. For a giveky,, there is a clear crossover at
FIG. 6. Prey(open symbolsand predatoffilled symbol3 den- )\g(}\b) from a mean—ﬂeldl—llke behavior to g regime where
sities close to the second order phase transition line between tHE€ correlations are more important. For> A, (Ap) the be-
prey phase and the nonoscillatory region of the coexistence phasBavior of y, and x, agrees with that predicted by mean-field
Aa=0.5 (), 5 (O), and 100 {0), while the system sizes are theory, reflecting the fact that in this range Yof the domi-
L=200 and 500. The slope of the dashed lines is the DP criticahant behavior comes from the noise. Oscillations were ob-
exponent3~0.583. served in the overall densities in a region corresponding
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between the oscillatory and nonoscillatory regions, as the

- -4
5o relative fluctuations of prey and predator densities are pro-
portional only in the oscillatory region.
The simulations showed that, (p=a or b) is size inde-
0.1} E pendent, as expected from its definitidfg. (11]. As a con-
sequence, the deviation from the average density,
o =\/X—p/L [10], is smaller for larger systems and evidently
scales with 1.. Certainly, this deviation increases with the
0.01 | 1 intensity of oscillations. The above finite size behavior is in
agreement with the results of earlier simulations, which
claimed that the oscillations in the global densities disappear
with increasing system sizgl1]. Our simulations predict
0.001 more pronounced oscillations for smalbeg and largemny, .
0.01 0.1 1 10 100 The oscillations also have to show up in the correlation
A, functions
FIG. 8. Predator densitp as a function of\, for different i) — _ _
values of\,=3 (X), 5 (oj;, 10 (1), 20 (0), 50 (V), and Call, =1~ 80,0.0 (1= 8oy 4.0
100 (@), and system sizels=200, 500, 1000, and 2000 only for , (18)
Ap=5. Theh,—0 behavior is close to a power law with an expo- Cp(i,7) :<5aj(t),25zr,-+i(t+r),2>a
nent 1(solid line), while the dashed line is the density given by the
CP. wherej +i labels a lattice site a distance iofattice spacing

from the sitej. C, (p=a or b) depends only onandr due
crudely tox,<A3(\},) (see Fig. 3 Thus the crossover point to the homogeneity of the system in space and time. #or
AJ(\p) is taken as the definition of the border between the=0 the correlation functiorC,(i), obtained numerically,
oscillatory and nonoscillatory regions. could be fitted by an exponenti@l, (i) ~exp(=i/§,). In the
After a proper normalization, the relative fluctuations col- oscillatory region the correlation lengths of preys and preda-
lapse on a single curve far,<\J(\,) (see Fig. 9. Thatis, tors differ only through a\, dependent factor,&,
~Ky(\p)ép, and they turned out to be proportional to the

Xb Xa fluctuations of the prey densit§,~ \2x,. This means that a
E”Kl(hb)(l_a)z' (17) more correlated system displays stronger oscillations. The
reason for this is simply that the dynamics of the different
where the numerical factoK,(\,) depends only or\,. Sites show some synchronization within a correlation length,

However, the precision of the simulation was not goodWhich results in larger oscillationsee Sec. V for more de-
enough to obtain the functional form &f;(\,) [neither of tails). ) o
the forthcoming<;(\,,) fori=2, 3, and 4. Nevertheless, Eq. In order to determine the characteristic frequency,

(17) gives another size independent criterion to distinguist?s(Xa,Ap), and the amplitude,(Aa,\p) (p=a or b), of
the oscillations, we measured the Fourier spectrum of the

- - ; time dependent densities:
=]

10° s T 2
g 1 :
< S,(w)=lim=|>, p(t)expiot)| . (19)
M4 ! T |51
~ 107
)
= The presence of oscillations is reflected as a peak at nonzero
:3' 10% + frequency in the Fourier spectrum. Extracting this peak from

. a background noise enables us to defijeand w, as the
) zeroth and first momenta of this distribution. This analysis
:5 10° clearly shows that the frequency of the oscillations is inde-
pendent of the system sizsee Fig. 10 and is the same for
102 prey and predators. Moreover, for a wide range of the pa-

rameters in the oscillatory phase the frequenays w,
=wyp, is well approximated bw ,/2. This linear behavior
differs from the mean-field prediction.

FIG. 9. Normalized(dimensionless fluctuations of the prey In the oscillatory region the oscillations are present for
(open symbols and predator (filled symbolg densities, arbitrarily large systems; however, their amplitude decreases
Ky(Ay)xa/(1—a)? and y,/b? which collapse in the oscillatory With increasing system size, as.i/ At this point it is im-
region. The parameters arg,=5 (O), 10 (A), 20 (O), portant to emphasize that this fact does not imply that only
50 (V), and 100 [0), and system sizes=200, 500, and 1000. small oscillations are present in large systems. Indeed, for a
The dashed lines correspond to mean-field solutia@s large system the amplitude of the oscillations can be made
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0.6 . - - - - where K3(\p) and K,4(\,) are numerical factors not given
LAl here.
05} 40 Another quantity which characterizes the oscillations is
X o o the time dependent local correlatio@g(7)=C,(i=0,7). A
04 | - . similar investigation was made in R¢1.2] with time depen-
9 ° * 3 dent correlations of the average local densities. In the oscil-
s 03} e e _ latory regionC () displays damped, size independent oscil-
AN lations. More precisely, the time correlations are size
02 | ,,/@ e _ independent for aniz>L (A, ,\p), While for anyL <L the
A/@ ° oo B8 a system evolves toward the prey absorbing state. Clearly, this
o1 | . g g| critical system size is proportional to the correlation length
’ Se . L.~ ¢. The size independence @f(7) is a simple conse-
0 @5@ . . . . . , guence of the fact that areas which are farther thapart
0 02 04 06 08 1 12 are uncorrelated. The investigation of the time dependent
A correlations, however, provides a rather ambiguous way to

define the boundary of the oscillatory region. Indeed, one can
FIG. 10. Dimensionless frequency of the oscillations as a funcobserve local oscillations everywhere in the coexistence
tion of A, and for\,=4 (pentagol, 5 (O), 10 (A), 20 (O), phase simply because, due to the cyclic dominance nature of
and 100 () and for system sizek=200, 500, and 1000. For a the model, each site has to evolve in a loep<0—1—2
wide range of the parameters the data are closk,f@ (dashed —0O...).Thus, according to the value of the damping fac-
line). tor, it is somehow arbitrary to decide whether a state is os-
cillatory or not.
larger by decreasiny, . On the other hand, when increasing It is worth noting that, at some particular values Xof
\, the amplitude goes to zero as a power law, which makegx,=10 or 20 and for small\, values {,<0.2 or 0.4,
it difficult to define a phase boundary for the oscillations inrespectively, where the correlation length is comparable to
this way. However, there is a simple scaling relation betweeithe system sizel(~500), the system can evolve to a stripe-
the amplitude and the correlation length for the prey in thelike state. In this state three stripes of sizemade of preda-
oscillatory region, tor, prey, and empty cells, drift through the system. How-
5 5 ever, for given\, and \,, values, this behavior disappears
§a~2xa~LA,, (200 when increasing the size of the system. The comparison of
. . .the MC results with the mean-field prediction shows that the
as can be observed in Fig. 11. The analogous expression ffilyyer gives a qualitatively correct description of the phase
the predators is slightly more complicated, diagram(see Fig. 1, as well as of the discontinuity in the

b \2 prey densitya, along thex,=0 boundary.
fdm Ks(Ap)~xp~ K4(7\a)|—2Aba (21
V. DISCUSSION
10° - -
. o A qualitative understanding of the phase diagram is pos-
10* F DDA A & ] sible. If the birth rates are much larger than the death rate
° 08 o . § (A z>1 and\,>1), the system is full of prey and predators
< 103 | a é A ] (a=~b=~1), while for small valugs Ok}, the system evide_ntly
o Dﬂﬂ@i Q’g reaches the pure prey absorbing state. As already discussed
v 102 R égv 1 in Sec. Il, in thex;—o the system is full of preyg—1),
({f Q@% and the predators behave like the infected species in the CP
2 1 gs v model. It means that they could survive only fiog>\gp,
oy 100 ng ° where a DP like second order transition occurs. This is in
0 °osgn.3 Sogg agreement with the mean-field results and with the simula-
107 ¢ 8 1 tion for A,= 100 (see Fig. 6.
° One can also derive an approximate formula for the posi-
10! ' ' tion of the phase boundary between the nonoscillatory phase
0.1 1 and the prey phase} (\,). For\,>1, the system is almost
A, full of prey (a~1) and, in some sense, the dynamics of the

FIG. 11. Test of the relation between sevefdimensionless predators is close to that of the CP model. The pre_dators die
characteristics of the prey populatifsee Eq.(20)], namely, the atrate 1 and spread at ratg, but they cannot enter into the
correlation lengthé, (A,V), the fluctuations of the prey density, €Mpty sites. One can introduce an effectiyeand describe
Xa (0, ©), and the amplitude of the oscillations, (O, pentagon ~ the process as a CP model, namely, the predators can enter
for A\,=5 and 100, respectively. The sizes of the systemlare any neighboring site at this rate. As the number of empty
=200, 500, and 1000. sites is proportional to leading order to\}/, the effective

056119-8



PHASE TRANSITIONS AND OSCILLATIONS IN A ... PHYSICAL REVIEW E63 056119

FIG. 12. Typical stationary state configuration of prigyey) FIG. 13. The same as Fig. 12, but #o5=0.2 and\,,=5. Note
and predatorgblack on a 200<200 lattice atA,=0.9 and\, that the predators invade only the fully dense prey areas in both
=100. The white parts represent the empty sites. The picture showgures.
the beginning of the invasion of the pure prey territory by predators,

which were screened by empty sites before. dense areas. If two fronts of predators meet they usually stop

moving, and the local population of predators starts to
parameter should b")ébz)\b—c/)\a, wherec is a fitting pa-  shrink. The oscillations are maintained in a somewhat similar
way than for then,>1 case: these predators can only sur-
vive if the prey become dense around them. This is more
probable for larger values of,, and it is also clear that the
predators have a better chance to survive in larger systems.
According to the above statements, the key point in the
: . . underlying mechanism of oscillations is the existence of
_ForA,>1, new prey sites are usually immediately oCCU-pncyeq predator islands which are located and trapped in
pied by predators. However, with a small but finite probabll-S arse prey areas. Indeed, blocked predators in sparse prey
ity, a predator site can disappear before the predators spreafl,, result in growing prey populations; however, the result-
to the newborn prey site, and in this way, a prey site can bg, qense prey population allows predators to move and pre-
left alone to grow(_s,|_mllarly to the Eden moddj24]}. T_h's date again. This mechanism drives back the system to the
rare event is negligible when the predator density is larg eginning of the loop. Clearly, predators can only be trapped
enough and a prey island cannot grow for long periods of, gharse prey areas i, is smaller than or of the order of
time. Practically this is the case for,>\gp. In this case, ha geath rate, 1. This explains the location of the oscillatory
the number of prey sites is negligibly small, and the predatogegion. Note that the above argument is based on the spatial
sﬁes_beh_ave as infected species in the CP mong: One caRture of the system, suggesting that a spatially extended
see, in Figs. 7 and 8, that far,= 100 the two densitiesa(  character is fundamental for the existence of such prey-
%b) are equal to that Of the CP model){%> )\EP How- predator type Of Osci”ationS.
ever, in the vicinity of\¢p the densities are low, which ~ This mechanism also provides a qualitative understanding
allows an isolated prey island to grow for a long time. If of the key properties of the system. The trapped predators
Na<M\¢&p the predator islands are shrinking, and\ifandL ~ can invade the prey area only when the prey are dense
are not too small, they can survive until a growing preyenough again, which takes a time proportional t9,1/and
island reaches one of them. At this moment, the predatorieads tow~\,. According to simulations the correlation
invade very quickly the prey territory and increase theirlength ¢ increases with decreasing,. Indeed, as\, de-
population size(see Fig. 12 These new predator sites start creases, the trapped predators have to wait longer to escape;
to die out, leaving a few prey sites alone, and the wholehence fewer groups of predators survive. This increases the
procedure starts again. This mechanism insures the survivdistance between the groups, resulting in larger prey islands,
of the predators much below the CP critical density, andvhose average size is proportional&g.
results in oscillations in the population sizes. When the correlation length is of the order of the system
For \p>\, but not too large, the qualitative picture is size, there are islands of prey of typical slzeextruding the
slightly different. As one can observe in Fig. 13, groups ofpredators out of the system. Hence the conditigr L char-
predators are wandering through the system toward preyacterizes the phase boundary between the oscillatory and

rameter. As this CP model displays a phase transiticfrbat
=\¢&p, in terms of the original parameter the transition oc-
curs at\y (N) =Ngp+c/\,. This conjecture is in excellent
agreement with the simulation data far,>0.5 with ¢
=1.28(3) (see Figs. 1 and)3
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prey phases. On the other hand, a correlation length of ordgram. Particular attention has been paid to the study of finite
1 (¢,~1), means that the noise dominates the system. Thusize effects, and we were able to draw clear cut conclusions
£.~1 characterizes the boundary between the oscillatorgoncerning the behavior of the model both for firlitas well

and nonoscillatory regions of the coexistence phase. as for the limitL — oo,

As shown by the study of the time dependent correlations, Three kinds of stationary states can be reached according
domains separated by a distance larger tifanoscillate  to the values of the control parameters: a pure prey state, and
asynchronously around a constant value with the same frdwo coexisting prey-predator ones, with and without oscilla-
qguency,w(\4,\p). According to this picture, one can derive tions. Two different kinds of second order transitions were
a more quantitative description for the oscillatory region. Letfound. Besides the usual DP transition we found a surpris-
us assume that, for<t&,<L, the global densities of each ingly different type of transition to the prey absorbing phase.
species can be written as the sum of local coarse-grainetihe study of the global density fluctuations allowed us to
densities at a typical length scafg. Moreover, we assume characterize the crossover between the oscillatory and
that all these local densities oscillate with the same frenonoscillatory domains of the coexistence phase. The dis-
quency but a different phasg . In general, the amplitude of tinction between these two domains remains valid in the in-
the local oscillations should depend on the parametgrs finite size limit. In the oscillatory regime, scaling relations
and\,,. However, as one can observe in Figs. 12 and 13, thwere established between several physical quantities.
predators can only enter an almost fully dense prey area, and A qualitative explanation for the existence of such an os-
the predator fronts leave an almost empty field behind thentillatory regime is given, pointing out the crucial role of the
Hence, as suggested by the numerical simulations, evergpatial extension of the system. Indeed, the frequency of the
where in the oscillatory region, the local amplitude for theoscillations is determined locally due to the dynamics related
prey density can be considered as a constarithus to blocked predator islands in sparse prey areas. Regions of
linear size¢, oscillate with the same frequency but with
different phases. This explains the decreasing amplitude of
oscillations with increasing system size. On the other hand,
slowly changing phases result in periodic oscillations of the
Supposing that the, values change much more slowly than ovgrall prey_density for long periods of time. Moreover, for
w, a(t) shows a simple sine behavior for long periods ofsu'tab.Ie ChO'C‘?S O.f the c'ontr.ol' parameters one can ha\(e syn-
time (see Fig. 4 Thus, fora(t), one can derive the value of chronized oscillations with fmlte amplltud_e across arbitrary
the density fluctuationg,, and the amplitude of these oscil- large syster_ns._Thus we th_mk that our simple m(_)del could
lations, A,, using Egs.(11) and(19), and take the average offer a qualltatl_ve explanation to the lynx population prob-
over all the possibley, configuration taken from a flat dis- lem described in Sec. 1.
tribution. This procedure reproduces the result of 26) up
to a multiplicative factor in front of the correlation length.

2 (LI&)?
a(t)y=as+d E) > sin(wt+a)). (22)

=1
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