
PHYSICAL REVIEW E, VOLUME 63, 056118
Outliers, extreme events, and multiscaling

Victor S. L’vov, Anna Pomyalov, and Itamar Procaccia
Department of Chemical Physics, The Weizmann Institute of Science, Rehovot 76100, Israel

~Received 26 September 2000; published 20 April 2001!

Extreme events have an important role which is sometimes catastrophic in a variety of natural phenomena,
including climate, earthquakes, and turbulence, as well as in manmade environments such as financial markets.
Statistical analysis and predictions in such systems are complicated by the fact that on the one hand extreme
events may appear as ‘‘outliers’’ whose statistical properties do not seem to conform with the bulk of the data,
and on the other hand they dominate the tails of the probability distributions and the scaling of high moments,
leading to ‘‘abnormal’’ or ‘‘multiscaling.’’ We employ a shell model of turbulence to show that it is very
useful to examine in detail the dynamics of onset and demise of extreme events. Doing so may reveal
dynamical scaling properties of the extreme events that are characteristic to them, and not shared by the bulk
of the fluctuations. As the extreme events dominate the tails of the distribution functions, knowledge of their
dynamical scaling properties can be turned into a prediction of the functional form of the tails. We show that
from the analysis of relatively short-time horizons~in which the extreme events appear as outliers! we can
predict the tails of the probability distribution functions, in agreement with data collected in very much longer
time horizons. The conclusion is that events that may appear unpredictable on relatively short time horizons are
actually a consistent part of a multiscaling statistics on longer time horizons.

DOI: 10.1103/PhysRevE.63.056118 PACS number~s!: 02.50.2r
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I. INTRODUCTION

There is an obvious and widespread interest in predic
extreme events in a variety of contexts. Particularly we
known examples are the insurance risks related to la
tropical storms, human and property risks in the context
large earthquakes, financial risks caused by large movem
of the markets, and dangers to passenger planes due t
tremely intermittent turbulent air velocities. Obviously, a
improvement in the predictability of any of these extrem
events is highly desirable for a number of reasons. Acco
ingly, there exists a large body of work focusing on the s
tistics of such events, small, intermediate, and large, with
aim of studying the ensuing probability distribution functio
~PDF!. If one can model properly the PDF, one can, in pr
ciple, predict at least the frequency of extreme events. Y
there is one fundamental question that arises that needs
confronted first: are the extreme events sharing the same
tistical properties as the small and intermediate events, o
they ‘‘outliers?’’ If the latter is true, then no analysis of th
core of the PDF, clever as it may be, could yield a pro
answer to the desire to predict the probability of extre
events.

Indeed, in a number of contexts it had been propo
recently that extreme events are ‘‘outliers’’@1#. For example,
in financial markets the largest draw downs appear to exh
properties that differ from the bulk of the fluctuations@2#. In
general one would refer to ‘‘outliers’’ when the rate of o
currence of small and intermediate events lies on a PDF w
some given properties, while the extreme events appea
exhibit statistical properties that differ from the bulk in
significant way. The aim of this paper is to present a deta
analysis of the fluctuations in a turbulent dynamical syst
that shows that such a point of view can be substantia
Clearly, this type of consideration must be conducted w
great care. The danger is that on small time horizons
1063-651X/2001/63~5!/056118~10!/$20.00 63 0561
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largest events appear so rarely, once or twice, that their
of occurrence is not statistically significant, and no conc
sion about their relation to the statistics of small and int
mediate events is possible. Nevertheless, we offer in
paper a positive outlook. We will show that in the context
the bulk of this paper, which is the analysis of a shell mo
of turbulence, one can analyzewithin the short time horizon
the dynamics of the extreme events. This analysis rev
their special dynamical scaling properties, allowing us
make interesting predictions about the tails of the distrib
tion functions even before the full statistics is availab
These predictions can be checked in our case by conside
much longer time horizons. The conclusion for the extre
events community is that it may very well pay to look ve
carefully at the detailed dynamics of the extreme event
one wants to claim anything about their probability of occu
rence.

The model that we treat in detail in this paper is a s
called ‘‘shell’’ model of turbulence. Shell models of turbu
lence @3–8# are simplified caricatures of the equations
fluid mechanics in wave-vector representation; typically th
exhibit anomalous scaling even though their nonlinear in
actions are local in wave-number space. The wave num
are represented as shells, which are chosen as a geom
progression

kn5k0ln, ~1!

wherel is the ‘‘shell spacing.’’ There areN degrees of free-
dom whereN is the number of shells. The model specifi
the dynamics of the ‘‘velocity’’un which is considered a
complex number,n51, . . . ,N. Their main advantage is tha
they can be studied via fast and accurate numerical sim
tions, in which the values of the scaling exponents can
determined very precisely. We employ our own homema
shell model which had been christened the Sabra model@8#.
©2001 The American Physical Society18-1
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It exhibits similar anomalies of the scaling exponents
those found in the previously popular model by Gledzer@3#
and Yamada and Ohkitani@4# ~the GOY model!, but with
much simpler correlation properties, and much better sca
behavior in the inertial range. The equations of motion
the Sabra model read

dun

dt
5 i ~akn11un12un11* 1bknun11un21* 2ckn21un21un22!

2nkn
2un1 f n , ~2!

where the asterisk stands for complex conjugation,f n is a
forcing term which is restricted to the first shells, andn is the
‘‘viscosity.’’ In this paper we restrict the forcing to the firs
and and second shells only (n51,2). The coefficientsa, b,
andc are chosen such that

a1b1c50. ~3!

This sum rule guarantees the conservation of the ‘‘energ

E5(
n

uunu2, ~4!

in the inviscid~n50! limit.
The main attraction of this model is that it displays mu

tiscaling in the sense that moments of the velocity depend
kn as power laws with nontrivial exponents,

Sp~kn![^uunup&}kn
2zp}l2nzp, ~5!

where the scaling exponentszp exhibit nonlinear dependenc
on p. We expect such scaling laws to appear in the ‘‘inert
range’’ with shell indexn larger than the largest shell inde
that is effected by the forcing, denoted asnL , and smaller
than the shell indices affected by the viscosity, the smal
of which will be denoted asnd . The scaling exponents wer
determined with high numerical accuracy better than 0.02
Ref. @8#.

To introduce the issue behind the title of this paper,
present in Fig. 1 a typical time series foru11. The parameters
of the model are detailed in the figure legend. One can
the typical appearance of rare events with amplitude
exceeds the mean by a factor of 6–8. To pose the questio
its clearest way we display in Fig. 2 a distribution functio
which is the normalized rate of occurrence~i.e., the number
of times! that a given amplitude has been observed in
time window of 107 time steps. This apparent relative fr
quency of events is very similar to findings in real data, s
for example Fig. 1 of Ref.@2#, which deals with draw downs
in the Dow Jones Average. Similarly to the analysis the
we can pass an approximate straight line through the po
representing small and intermediate events. Such an e
nential law would mean that the events ofuu11u2 with ampli-
tudes larger than, say, 4^uu11u2& are clear outliers. Their
probability is so low that they should not have appeared
the short time horizon at all. We could conclude, like in t
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analysis of Ref.@2#, that the extreme events cannot be de
with the same distribution function as the small and interm
diate events.

On the other hand, it is very possible that the low rate
occurrence of the extreme events in Fig. 2 means simply
they are statistically irrelevant and that no conclusion can
drawn. How do we overcome this difficulty? The purpose
this paper is to show that indeed the extreme events m
have dynamical scaling properties that are all their own, a
that they affect crucially the tails of the distributions fun

FIG. 1. Time series for the normalized velocity of the 11th she
Parameters of the numerics:a51, b5c520.5, l52, N528, k0

5
1

64; time correlated random forcing on the first two shells w
characteristic amplitude 0.005 (11 i ). Decorrelation time is chosen
about turnover time of the first shell.

FIG. 2. Apparent probability distribution function for the 11t
shell. Averaging over 107 time steps which is about 250 decorrel
tion times for this shell. The data contain additional, extrem
sparse events of amplitude larger than 7, occurring once each; t
were left out in this plot.
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OUTLIERS, EXTREME EVENTS, AND MULTISCALING PHYSICAL REVIEW E63 056118
tions, making them very broad indeed. The main new po
is that a detailed analysis of the extreme eventsin the short
time horizonsuffices to make lots of predictions about t
tails of the PDF’s, predictions that in our case can be ea
confirmed by considering much longer time horizons.

In explaining our ideas we will try to distinguish aspec
which are general, and that in our view may have appli
tions to other systems with extreme events, and asp
which are particular to the example of the shell model
turbulence. Thus we start in Sec. II with an analysis of
temporal shape of the extreme events. We believe that
analysis is very general, leading to an important relation
tween the amplitude of the event and its time scale~the time
elapsing from rise up to demise!. In Sec. III we employ the
dynamical scaling form of the extreme events to presen
theory of the tails of the distribution functions. We can rela
the tails of PDF’s belonging to different scales. In Sec.
we discuss numerical studies of the PDF’s, distinguishing
core and the tails. In Sec. V the main numerical findings
rationalized theoretically on the basis of universal ‘‘puls
solutions of the dynamics of the Sabra model. Section
contains the bottom line: we make use of the scaling re
tions topredict the tails of PDF’s from data collected withi
short time horizons. Direct measurements of these tails g
nonsense unless the time horizons are increased a hun
fold. Yet with the help of the theoretical forms we can off
predicted tails that agree very well with the data collec
with much longer time horizons.

II. DETAILED DYNAMICS AND SCALING
OF THE EXTREME EVENTS

In turbulence in general and in our shell model in partic
lar the energy that is injected by the forcing at the larg
scales (n51 and 2! is transferred on the average to smal
scales. It is advantageous to analyze the extreme events
given scale~or given shelln) and also to follow the cascad
of extreme events from scale to scale. We first conside
given shell.

A. Temporal dependence of extreme events of a given scale

We focus here on the detailed dynamics of the larg
events of a given scale. We considered, for example, the
series of the 20th shell (n520) and isolated the five larges
events~in terms of their amplitude! as they occurred in a
time window of 107 time steps. In the first step of analys
we normalized these five events by the amplitude at th
maximum. Next we plotted these normalized events a
function of time, subtracting the time at which they ha
reached their maximum value. The result of this replotting
shown in Fig. 3. Obviously a similar replotting can be do
for any time series, and by itself is contentless.

The next step of analysis will reveal something intere
ing. Building on the normalized events of Fig. 3 we attem
to rescale the time axis for each event in order to collapse
data together. Of course, each event calls for a different
caling factor, which we denote~in frequency units! as f r .
The fact that such rescaling factors exist, and that they l
05611
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to data collapse as shown in Fig. 4, is not a trivial fact th
may or may not exist in different cases. But we will sho
that if such a rescaling is found, it can serve as a star
point for very useful considerations.

The third step of the present analysis is a search of me
ing to the rescaling factorsf r . We hope thatf r has a simple
relation to the amplitude of the extreme events. To test
we can plot the individual values off r found in Fig. 4 as a
function of the amplitude at the peak. The resulting plot
shown as Fig. 5. In passing the straight line through the d
points we included the point~0,0! in the analysis, as we
search for a simple scaling form

f r}umax
x , ~6!

with x a scaling exponent. We conclude that in this case
have a satisfactory scaling law withx51.

The meaning of this scaling law is quite apparent in t
present case. Looking back at the equation of motion

FIG. 3. Collapse~of positions and amplitudes! for five intensive
peaks belonging to the 20th shell. The values ofumax for the peaks
numbered from 1 to 5 are 4.65, 4.77, 6.71, 7.40, and 10.5, res
tively, in units of the rms velocity in this shell. The narrowest pe
is thus the tallest.

FIG. 4. Full collapse~of the position, amplitude, and width! of
the same as in Fig. 3 peaks.
8-3
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realize that from the point of view of power counting~not to
be confused with actual dynamics! it can be written as

du

dt
}u11x ~7!

with x51. It is thus acceptable that a rescaling of 1/t by umax
should collapse all the extreme events as shown above. I
equation of motion were cubic inu we could expectx52,
etc. Obviously, the rescaling analysis in this case revea
the type of dynamics underlying the process. Whether
can be done effectively in other cases where extreme ev
are crucial is an open question for future research.

B. Transfer of extreme events between different scales

To gain further understanding of the extreme events
focus now on the transfer from scale to scale. Consider,
example, a particular large amplitude event in the shen
515, and its future fate as time proceeds. This is shown
Fig. 6. The event reached its highest amplitude at shel
around t52.625. At a slightly later time it appeared as
large event in shell 16, and with a shorter delay at shell
where it started to split into a doublet. At even shorter del
this event emerges as a triplet and a multiplet at shells
19, and 20, respectively.

A very important characteristic of the dynamics of lar
events can be obtained from finding how to relate the ma
mal amplitudes of the first peak in the different shells.
was done above, we first replot all the first peaks as a fu
tion of time minus the timetn of their maximal amplitude
un,max. We then glue all the maxima together by rescali
the peak amplitudes relative to the peak of a chosen s
We denote byKam(n,m) the relative amplitude of the pea
in the nth shell to themth shell. Choosing in our exampl
m520 we then seek a single exponenty such that

Kam~n,20![un,max/u20,max5l (202n)y, ~8!

FIG. 5. Width normalization vs amplitude for the five collaps
peaks of Fig. 4. The ordering of the points is 1 to 5 from left
right.
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wherel is the shell spacing defined by Eq.~1!. The value of
y is obtained by plottinggam(n) vs (202n) where

gam~n![ ln@Kam~n,20!#/ ln l5y~202n!. ~9!

The best fit is obtained withy50.2460.01, see Fig. 9. The
peaks which are now glued at their maxima as shown in F
7 still have a very different time width.

Next, as before, we want to collapse all these curves
rescaling the time axis according to (t2tn)→(t
2tn)/Kw(n,20). Expecting the scaling lawKw(n,20)
5lz(202n) it is natural to consider

gw~n![ ln@Kw~n,20!#/ ln l5z~202n!. ~10!

The exponentz50.7560.02 is found by computing ‘‘the
best’’ linear fit of gw(n) vs (202n), see Fig. 9. The quality

FIG. 6. ‘‘Evolution’’ of a peak from the 15th to the 20th shel
The amplitudes are all in the same~arbitrary! units. One sees a
progressive shift of the maximum to the right and a decrease in
amplitude, accompanied by narrowing and splitting. Neverthe
the form of the central part of the peak remains self-similar
exempified in Figs. 7 and 8.

FIG. 7. Collapse of the peak amplitudes for 15–20 shells. Ini
peaks are shown in Fig. 6.
8-4
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of the resulting data collapse can be seen in Fig. 8. Note
within the error barsz1y51. This sum rule will be ratio-
nalized theoretically in Sec. V.

The bottom line of this analysis can be summarized i
dynamical scaling form for the extreme events

un~ t !'vl2ynf „~ t2tn!vk0lzn
…. ~11!

Herev is a characteristic velocity amplitude associated w
the cascade of a particular large event which starts at smn
and reaches eventually large values ofn. As suchv is not
universal. We stress that the scaling form was derived on
basis of a time series in the short time horizon, i.e., the
same one that gave rise to the apparent PDF shown in Fi
We will see that these findings suffice to make rather str
predictions about the expected form of theconvergedPDF.
A theoretical understanding of the origin of the scaling fo
~11! will be presented in Sec. V.

FIG. 8. Full self-similar collapse of the peaks for 15–20 shell

FIG. 9. Fits of the rescaling factorsgw(n) and g am(n) for the
peaks in the shells 15–20 shown in Figs. 6, 7, and 8. Note tha
comparingdifferentshells the rescaling of the frequency increas
when the peak decreases in amplitude. This is opposite to the
caling of peakswithin a given shell.
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III. IMPLICATIONS FOR THE TAILS
OF THE PROBABILITY DISTRIBUTION FUNCTIONS

A. Asymptotic scaling exponents

Having a scaling form for the large events means a gr
deal for the structure functionsSp(kn) @cf. Eq. ~5!# for high
values ofp. In fact for high p the structure functions are
dominated by the large events. To demonstrate this we s
in Fig. 10 the relative contribution toSp(k20) that arises from
velocity amplitudes that exceed a thresholdv* . In this plot
Sp,v

*
is the structure function Eq.~5! where only events with

u20>v* are considered, whereasSp,0 contains all the data
Obviously the higherp is, the higher the contribution is o
large events. For any time window there exists the larg
event, and whenv* exceeds its value,Sp,v

*
necessarily van-

ishes.
If we accept the scaling form~11! we can use it to predic

the scaling exponentzp for high values ofp. By definitions

Sp~kn!5 lim
T→`

1

2TE2T

T

uunupdt}kn
2zp}l2nzn. ~12!

For p large enough the structure functions are dominated
the well separated events. Instead of the integral in the in
val @2T,T# we can sum up the inegrals over the separa
peaks. Substituting for each peak the form~11! and noting
that the number of peaks is proportional toT, we can extend
the integration interval to@2`,`# and write

Sp~kn!}l2ynpE
2`

`

f p~lzntvk0!dt}l2n(yp1z)E
2`

`

f p~t!dt.

~13!

Comparing the exponents ofl here and in the previous equa
tion we find the scaling exponents

zp5yp1z. ~14!

in
s
s-

FIG. 10. Normalized contributions to the structure functions
ordersp51,2, . . . ,15 for the20th shell from the part of the veloc
ity realization withv.v* .
8-5
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Of course this prediction is valid only for high values ofp
for which the contributions of the isolated peaks are dom
nant.

B. Tails of the probability distribution function

We turn now to the prediction of the tails of the PDF’
assuming that these tails are dominated by well-separ
peaks with self-similar evolution~11!. We will see below
@and cf. Eq.~19!#, that the tails of the predicted PDF are ve
sensitive to theexponentsin Eq. ~11!, but rather insensitive
to the precise form of the universal functionf (x) in Eq. ~13!.
Assume then for simplicity thatf (x)51 for uxu< 1

2 and
f (x)50 for uxu. 1

2 . There is the free parameterv in Eq. ~11!;
for the chaotic realizationsun(t) we consider it as a random
parameter. Define then the variableV2 according to

V2[v2/v0
2 , v0

25 (
n51

`

^un
2&. ~15!

Consider now a run with a total time horizonT[1/(k0v0).
Denote asW(V2)dV2 the number of peaks measured in th
run in which the value ofV2 fell in the window @V2,(V2

1dV2)#.
Next denote normalized amplitudes@the value of the sig-

nal at timest5tn in Eq. ~11!#

Un
2[

un
2

^un
2&

5
V2

Clan
, a[2y2z2 , ~16!

whereC is a dimensionless constant. We are interested in
PDFPn(Un

2), wherePn(Un
2)dUn

2 is the probability to sample
a normalized amplitude in thenth shell betweenUn

2 and
Un

21dUn
2 . By definition, the number of observations of su

amplitudes in the time horizonT is dNn

dNn5Pn~Un
2!dUn

2 T

t0
, ~17!

wheret0 is the length of the sampling intervals. On the oth
hand, since the lifetime of a peak with a given value ofV2

belonging to thenth shell is 1/vk0lzn, we can also estimate
the number of observationsdNn as

dNn5
W~V2!

t0vk0lnz
dV2 . ~18!

Equating Eqs.~17! and ~18! and rearranging, one gets

Pn~Un
2!5CW~V2!ln(a2z)/V. ~19!

This relation is obtained under the assumption that the n
ber of peaks is not increasing in the cascade process. In
we saw that the number of the peaks is increasing with
shell numbern, presumably in a scale-invariant manner asl
to some positive exponentb. We can account for this effec
by replacing in Eq.~19! W by lbW. After that

Pn~Un
2!5CW~V2!ln(a1b2z)/V, ~20!
05611
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whereV2 andUn
2 are defined by Eqs.~15! and~16!. Equation

~20! means that a collapse of the tails of the PDF’s for d
ferent shells may be achieved by rescaling thex axis Un

2

→V2 according to Eq.~16! and rescaling of the PDF’s (y
axis! by ln(a1b2z).

Equation~20! for the tail of the PDF’s allows one to find
the high-order structure functions~which are dominated by
the tails of the PDF’s! and their scaling exponentszp

Sp~kn!5E
0

`

un
pPn~Un

2!d Un
25Cp v0

p ln(b2z2yp), ~21!

Cp5E
0

`

Vp21W~V2!V2. ~22!

Comparing again the exponents ofl here and in Eq.~12!
gives the prediction for the high-order scaling exponents

zp5yp1z2b, ~23!

which coincides with Eq.~14! at b50. One sees that the
effect of peak splitting~which was described by the positiv
exponentb! increases the deviation of the scaling expone
from its Kolmogorov 1941~K41! valuezp5p/3.

IV. NUMERICAL STUDIES OF THE PDF: CORE AND
TAIL

It is well known that PDF’s in multiscaling systems a
not scale invariant. Nevertheless we need to examine
possibility that the cores of the PDF’s can be collapsed us
a rescaling law that is charateristic to them, while the ta
may be collapsed using another rescaling law~with different
scaling exponents!. This possibility is related to the fact tha
the structure functionsSp(kn) have scaling exponents in th
vicinity of the K41 values@z

K41
(p)5p/3# for p small enough

~say,p<6). For large value ofp ~say,p.12) thep depen-
dence ofzp has a different slope, cf. Eq.~23!. These differ-
ences result from the core of PDF’s originating from the bu
of the fluctuations while the tail of PDF’s results from th
well-separated high amplitude peaks. Accordingly the fu
tional form of the core and the tail of the PDF’s are differe
This is demonstrated in Fig. 11~upper panel! where the
PDF’s for the 11th, 15th, and 18th shells are displayed. O
sees that the cores~say, Un

2<20) are practically collapsed
while the tails are widely separated. Needless to say,
collapse is due to our choice of display as a function ofUn

2 :
for K41 PDF’s such a display would result in a comple
collapse, core as well as tail. We stress, though, that if
expanded the scale one could observe that the collapse o
core is not precise: the scaling exponents even forp52 and
p54 are not 2

3 and 4
3, respectively. The anomaly of thes

exponents is, however, sufficiently small to allow an a
proximate collapse of the cores.

Our aim here is to test the predictions regarding the t
of the PDF’s. We note that PDF’s that originate from da
tend to have rather noisy tails. This poses difficulties in
sessing the accuracy of the collapse of the tails. Therefore
opt to first fit the PDF’s with some appropriate function
8-6
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form and then to collapse the fit functions. As a natural
function we choose ln@Pn(Un

2)#5an1bnUn
2cn with three free

parametersan , bn , and cn . The results of our fit showed
that the parameterscn are close to 1/2 for all values ofn
>11. Therefore we fixed the valuecn51/2 and optimized
the values of ofan and bn to get the best fits in the tai
regions. Now the fit formula reads

ln@Pn~Un
2!#5an1bnUn . ~24!

The corresponding fits for the tails of the PDF’s for the 11
15th, and 18th shells are shown in Fig. 11, lower panel. T
fits are excellent forUn

2.20 but not surprisingly they fail for
smaller values ofUn

2 , especially for larger values ofn.
To collapse the tails together we need to choose a re

ence shellnr ; we show the results fornr511. Replotting
ln@Pn(Un

2)#2an1a11 as a function ofbn
2Un /b11

2 one collapses
the tails of all the PDF’s on the tail of PDF fornr511. This
is shown in Fig. 12.

The theoretical predictions@~16! and ~20!# are

an2a115~n211!~a1b2z!ln l, ~25!

FIG. 11. Upper panel: PDF’s of the 11th, 15th, and 18th sh
~averaged over 109 time steps!. Lower panel: Tails of PDF’s~with
the cores left out! fitted by functions of the form ln@Pn(Un

2)#5an

1bnUn ~continuous lines!.
05611
t
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2 ln~bn /b11!5~n211!a ln l.

According to Eqs.~16! and the relationy1z51 one com-
putesa1b2z5223z1b. We plot now the measured~by
the best fits! values of (bn2b11)/ln l vs (n21). Finding
best linear fits to the resulting plots we computea520.25
60.03. Noticing the independently measured values oy
50.2460.01, z250.7260.01 we see that our value ofa is
in excellent agreement with Eq.~16!; the latter predictsa
52y2z2'0.24.

We want next to find the value ofb from the first of Eqs.
~25!. Unfortunately the values ofan are not computable with
the same accuracy as those ofbn . The reason for this is tha
the fit formulas pick up the values of the intercepts of E
~24! with much worse precision than the slopes. According
the plot (an2a11)/ln l vs (n211) is much more scattere
than the corresponding plot for the slopes, and we can o
offer a rough estimate of the expected values ofb,
0.2<b<0.6.

This rough estimate is not satisfactory, and therefore
attempt now to find a sharper result forb using Eq.~23!. In
paper@8# we measured the values ofzp for p51,2,3, . . . ,7.
We recognize that these values ofp are not large enough to
determine the asymptotic slope ofzp . Nevertheless for a
semiquantitative analysis we can use a reasonable fit form
for the zp dependence, for example,

zp5
p

3
2

dp~p23!

11gp
. ~26!

With this we find the ‘‘best’’ values ofd and g that agree
with the measured values ofzp : d'0.092,g'0.725. With
these values Eq.~26! predicts forp→`

zp'0.5610.21p. ~27!

According to the prediction~23! the slope of this dependenc
is y. The value ofy found above from the intershell collaps
of the separated peaks isy50.2460.01, being in agreemen
with the value ofy found from the collapse of PDF tails. Th
valuey50.2460.01 differs a bit from the slope in Eq.~27!.

s

FIG. 12. Full collapse of the PDF tails of the 11th, 15th, a
18th shells. Note that in the core region the data does not colla
8-7
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Nevertheless in light of the inaccuracy of the measured
ueszp for largep ~originating mostly from the finite exten
of the inertial interval!, one cannot trust the last digits in th
numbers of Eq.~27!. We thus consider the agreement b
tween the estimated values ofy more than acceptable.

Thus we will use the intercept in Eq.~27! to estimateb.
Considering Eq.~23! the free term in Eq.~27! has to bez
2b. With z'0.74 we computeb'0.18 which is at the bor-
derline of the expected region@0.2,0.6# found above from
collapsing the PDF tails. Taking then a value ofb'0.2 al-
lows us to evaluate the number of peaksNn in an n shell
when there wereNn21 peaks in the previous one,

Nn /Nn215lb'1.15 for l52, b50.2. ~28!

The conclusion is that peak splitting leads~for l52 and the
chosen value ofa,b,c) to a 15% increase ofNn from shell to
shell.

A cursory look at Fig. 6 may leave the impression th
this is an underestimate. After all, from one peak in shell
the cascade forms four or five peaks in shell 20. A rate
increase of 15% would result in a factor of 2, not 5. But w
must rememeber that we talk about peaksof a given ampli-
tude, and the peak splitting results in peaks of varying a
plitudes. The counting of peaks of comparable amplitude
more subtle, and the predicted rate of 15% increase sh
be interpreted in the statistical sense, taking many real
tions into account.

V. SELF-SIMILAR SOLUTIONS OF THE SABRA SHELL
MODEL

In this section we rationalize the scale-invariant form~11!
on the basis of the equations of motion of the Sabra mo
~2!. The exponenty and the timestn which appear in Eq.~11!
are chosen according to

y512z, tn2tn215Al2zn, ~29!

with an arbitrary positive parameterA ~note that in@10# there
was a salient choice ofA50). These choices are not specifi
for the Sabra model; in Refs.@9,10# identical choices were
taken the the Obukhov-Novikov~ON! and the Gledzer-
Okhitani-Yamada~GOY! models. The fist relation follows
from simple power counting, since the right-hand side~RHS!
of the equation of motion for thenth shell is proportional to
ln. Indeed, we saw that this scaling relation is in good agr
ment with our numerical observations. The second choic
Eq. ~29! reflects the fact the time delay between the appe
ance of the peaks in consecutiven shells falls off geometri-
cally with n; see Fig. 6 as an example. Nevertheless we w
to show directly that these choices are supported by
equations of motion.

In doing so we follow Ref.@9#. Substituting Eqs.~11! and
~29! in Eq. ~2! we find the equation of motion of the scalin
function f (t) which is valid in the inertial interval,
05611
l-
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5
f

-
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ld

a-

el

-
of
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nt
e

d f~t!

dt
5l3z22f * „lz~t2t0!1t0…f „l

2z~t2t0!1t0…

1cl223zf „l2z~t2t0!1t0…f „l
22z~t2t0!1t0…

2~a1c! f * „l2z~t2t0!1t0…f „l
z~t2t0!1t0….

~30!

To get this equation we changed the time variable fromt to
tn[lnz(t2tn), and used the sametn in all the shells in-
volved in Eq.~2!, and finally denotedtn[t. The character-
istic time t0 is obtained from computing the sum of all tim
increments(m5n

` (tm112tm), and noting that it converges t
t05l2nzt0, where

t05l2nzt0 , t0[A/~lz21!. ~31!

The meaning oft0 is the time needed for a pulse to propaga
from the nth shell all the way to infinitely high shells. Th
characteristic timet0 allows one to convert all the argumen
of the functionsf involved in Eq.~30! to a universal form
@ld(t2t0)1t0#.

It was shown in Ref.@9# that Eq.~30! can be considered
as a nonlinear eigenvalue problem. It has trivial solutio
f (t)50, but it may have nonzero solutions for particul
values ofz and A. For example, the nonzero solutionf (t)
5const requiresz52/3. Nevertheless the constant solutio
fails to fulfill the requirement that limt→6` f (t)50. We ex-
pect that a nontrivial solution that satisfied the boundary c
ditions will force z into the observed value which lies be
tween 2/3 to 1. The actual calculations that demonstrate
are outside the scope of this paper. We just reiterate
numerical finding thatz'0.75 for the particular set of pa
rametersa, b, c, andl that were employed in this study.

VI. PREDICTING TAILS OF PDF’S FROM DATA
MEASURED IN SHORT TIME HORIZONS

In this section we demonstrate that the analysis prese
above can be used to predict the tails of the PDF’s of la
scale phenomena~relatively low values ofn) using only data
measured in the short time horizon. We focus on the exam
shown in Fig. 2, i.e.,n511 with 107 times steps.

We first fit the PDF shown in Fig. 2, using a fit formu
which is inspired by Eq.~24!,

ln@Pn~un
2!#5ãn1b̃nun

c̃n , ~32!

and foundã11'1.34, b̃11'24.64, c̃11'0.28. The data and
the best fit are shown in Fig. 13~a!.

Next we want to continue the PDF ofn511 into event
values that are too rare in the short time horizon. To this a
we measured, in the same time window of 107 time steps, the
tail of the PDF of the 18th shell. In doing so we use the fa
that the small scale events have a much shorter turn o
time, and the ‘‘short’’ time horizon is sufficiently long to
provide a good estimate of the tail. We fitted the tail with E
~24! and founda18'25.3, b18'20.94. From this value and
@Eq. ~25!# we can predictb11. We employ the valuea'0.24
8-8
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which is taken from Eq.~16! with the known value ofy
~from the intershell collapse! and ofz2. The resulting predic-
tion is b11'21.72.

Rather than attempting to also predicta11 in Eq. ~24!
~knowing the inaccuracies of intercepts! we connected the
tail with the predicted value ofb11 to the core PDF function
~32! by finding the unique point of continuity with the sam
first derivative. The way that the predicted tail is related
the PDF is shown in Fig. 13~b!.

To test the quality of the prediction we ran now the sim
lation for a time horizon that is a hundred times longer~i.e.,
109 time steps!. Such a run can resolve the events that belo
to the tail, and indeed the comparison is surprisingly good
seen in Fig. 14.

VII. SUMMARY

The main aims of this paper are twofold: on the one ha
we aimed at understanding the detailed dynamical sca
properties of the largest events in our system. On the o
hand we wanted to employ these properties topredict the
probability of these events even in situations in which th
are very rare.

FIG. 13. ~a! Data and analytic fit for the PDF of the 11th shell
a short time horizon of 107 time steps. Note that here we present
all the events, including four isolated events that give rise to
upswingings strings of data points with amplitudes larger than 7.~b!
Same as in~a! together with the tail~dashed line! predicted from the
tail of the 18th shell in the same short time horizon.
05611
-

g
s

d
g
er

y

The first aim was achieved by focusing on the larg
events, following their cascade down the the scales~or up the
shells!, and learning how to collapse them on each other
rescaling their amplitudes and their time arguments. This
ercise culminated in Eq.~11! which represents the larges
eventsun(t) in terms of a ‘‘universal’’ functionf (t) where
t is a properly rescaled time difference from the peak time
the event. This dynamical scaling form is characterized
two exponents, a ‘‘static’’ one denotedy and a ‘‘dynamic’’
one denotedz. We argued theoretically for a scaling relatio
z1y51, and determined the values of these exponents
the basis of the analysis of isolated events inshort time ho-
rizons.

The second aim was accomplished by developing a s
ing theory for the tails of the PDF’s in different shells. W
have learned how to translate information from the tail o
PDF in a high shell to the tail of a PDF of a low shell. I
doing so we made use of the fact that the high shells~small
length scales! have much shorter characteristic times scal
Thus even short time horizons are sufficient to accumu
reliable statistics on the tails of the PDF’s of high shell
Having a theory to translate the information to low shells
which the tails are extremely sparse~or even totally absent!,
we could overcome the meager statistics. We could pre
predicted tails that were populated only in time horizons t
were a hundredfold longer than those in which the analy
was performed.

We demonstrated the existence of scaling properties
the extreme events that are in distinction from the bulk of
fluctuations that make the core of the PDF. In this sense
extreme events are outliers. We cannot, on the basis of
present work, claim that this approach has a general app
bility to a large class of physical systems in which extrem
events are important. We certainly made a crucial and
plicit use of the scale invariance of the underlying equat
of motion. This scale invariance translates here to an i
mate connection between extreme events appearing on
length scale at one time to extreme events appearing
smaller length scales at later~and predictable! times~cf. Fig.
6!. We are pretty confident that similar ideas can~and
should! be implemented to fluid turbulence; whether or n
such techniques will be applicable to broader issues like g

e

FIG. 14. Test of the predicted PDF for the 11th shell using d
from a hundredfold longer time horizon of 109 time steps.
8-9
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physical phenomena or financial markets is a question
we pose to the community at large.
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