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Outliers, extreme events, and multiscaling
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Extreme events have an important role which is sometimes catastrophic in a variety of natural phenomena,
including climate, earthquakes, and turbulence, as well as in manmade environments such as financial markets.
Statistical analysis and predictions in such systems are complicated by the fact that on the one hand extreme
events may appear as “outliers” whose statistical properties do not seem to conform with the bulk of the data,
and on the other hand they dominate the tails of the probability distributions and the scaling of high moments,
leading to “abnormal” or “multiscaling.” We employ a shell model of turbulence to show that it is very
useful to examine in detail the dynamics of onset and demise of extreme events. Doing so may reveal
dynamical scaling properties of the extreme events that are characteristic to them, and not shared by the bulk
of the fluctuations. As the extreme events dominate the tails of the distribution functions, knowledge of their
dynamical scaling properties can be turned into a prediction of the functional form of the tails. We show that
from the analysis of relatively short-time horizofis which the extreme events appear as outlieve can
predict the tails of the probability distribution functions, in agreement with data collected in very much longer
time horizons. The conclusion is that events that may appear unpredictable on relatively short time horizons are
actually a consistent part of a multiscaling statistics on longer time horizons.
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[. INTRODUCTION largest events appear so rarely, once or twice, that their rate
of occurrence is not statistically significant, and no conclu-
There is an obvious and widespread interest in predictingion about their relation to the statistics of small and inter-
extreme events in a variety of contexts. Particularly well-mediate events is possible. Nevertheless, we offer in this
known examples are the insurance risks related to largBaper a positive outlook. We will show that in the context of
tropical storms, human and property risks in the context ofhe bulk of this paper, which is the analysis of a shell model
large earthquakes, financial risks caused by large movemen@$ turbulence, one can analyréthin the short time horizon
of the markets, and dangers to passenger planes due to dke dynamics of the extreme events. This analysis reveals
tremely intermittent turbulent air velocities. Obviously, any their special dynamical scaling properties, allowing us to
improvement in the pred|ctab|||ty of any of these extrememake interesting predictions about the tails of the distribu-
events is highly desirable for a number of reasons. Accordtion functions even before the full statistics is available.
ingly, there exists a large body of work focusing on the sta-These predictions can be checked in our case by considering
tistics of such events, small, intermediate, and large, with th&uch longer time horizons. The conclusion for the extreme
aim of studying the ensuing probability distribution functions €vents community is that it may very well pay to look very
(PDF) If one can model proper|y the PDF, one can, in prin_Carer”y at the detailed dynamiCS of the extreme events if
ciple, predict at least the frequency of extreme events. Ye®one wants to claim anything about their probability of occur-
there is one fundamental question that arises that needs to H&C€. . o _
confronted first: are the extreme events sharing the same sta- The model that we treat in detail in this paper is a so-
tistical properties as the small and intermediate events, or a@@lled “shell” model of turbulence. Shell models of turbu-
they “outliers?” If the latter is true, then no analysis of the lence[3—8] are simplified caricatures of the equations of
core of the PDF, clever as it may be, could yield a properﬂUid mechanics in wave-vector representation; typically they
answer to the desire to predict the probability of extremeeXhibit anomalous scaling even though their nonlinear inter-
events. actions are local in wave-number space. The wave numbers
Indeed, in a number of contexts it had been proposed'e reprgsented as shells, which are chosen as a geometric
recently that extreme events are “outliergl]. For example, Progression
in financial markets the largest draw downs appear to exhibit
properties that differ from the bulk of the fluctuatiof®. In Kn=ko\", (1)
general one would refer to “outliers” when the rate of oc-
currence of small and intermediate events lies on a PDF witiwhere\ is the “shell spacing.” There arBl degrees of free-
some given properties, while the extreme events appear t@om whereN is the number of shells. The model specifies
exhibit statistical properties that differ from the bulk in a the dynamics of the “velocity”u,, which is considered a
significant way. The aim of this paper is to present a detailedomplex numbem=1, ... N. Their main advantage is that
analysis of the fluctuations in a turbulent dynamical systenthey can be studied via fast and accurate numerical simula-
that shows that such a point of view can be substantiatedions, in which the values of the scaling exponents can be
Clearly, this type of consideration must be conducted withdetermined very precisely. We employ our own homemade
great care. The danger is that on small time horizons thshell model which had been christened the Sabra m@&el
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It exhibits similar anomalies of the scaling exponents to 7.0 T T T T T I T I T
those found in the previously popular model by GledZdr L -
and Yamada and Ohkitaf#] (the GOY model, but with

much simpler correlation properties, and much better scaling
behavior in the inertial range. The equations of motion for

6.0 -

the Sabra model read 5.0 n
du, A 40 -
W:|(akn+lun+2u:+l+bknun+lu:—1_Ckn—lun—lun—Z) 3'_ i

— vk2up+ o, 2 30 7
where the asterisk stands for complex conjugatignis a 2.0 -
forcing term which is restricted to the first shells, ani the .
“viscosity.” In this paper we restrict the forcing to the first 10 ]

and and second shells onlp€1,2). The coefficients, b,
andc are chosen such that

0.%

.0 6 6 8 6 7

a+b+c=0. (3) 2.0x10 4.0><:.0 st6.0><10 8.0x10 1.0x10
ime steps

This sum rule guarantees the conservation of the “energy” FIG. 1. Time series for the normalized velocity of the 11th shell.

Parameters of the numerica=1, b=c=—0.5, A\=2, N=28, k,
E:z uy|2 (4) =& timt_a (_:orrelatt_ed random fo_rcing on the first two _sheIIs with
n ’ characteristic amplitude 0.005 {1). Decorrelation time is chosen
about turnover time of the first shell.
in the inviscid(»=0) limit.
The main attraction of this model is that it displays mul- analysis of Ref[2], that the extreme events cannot be dealt
tiscaling in the sense that moments of the velocity depend owith the same distribution function as the small and interme-

k, as power laws with nontrivial exponents, diate events.
On the other hand, it is very possible that the low rate of
sp(kn)z<|un|p>o<k;§po<7\fngp’ (5) ~ occurrence of the extreme events in Fig. 2 means simply that

they are statistically irrelevant and that no conclusion can be
drawn. How do we overcome this difficulty? The purpose of
this paper is to show that indeed the extreme events may
have dynamical scaling properties that are all their own, and
that they affect crucially the tails of the distributions func-

where the scaling exponentg exhibit nonlinear dependence
on p. We expect such scaling laws to appear in the “inertial
range” with shell indexn larger than the largest shell index
that is effected by the forcing, denoted s, and smaller
than the shell indices affected by the viscosity, the smallest

of which will be denoted as,. The scaling exponents were 0_ ot
determined with high numerical accuracy better than 0.02 in
-0.5[ .
Ref.[8]. —
To introduce the issue behind the title of this paper, we N l_° |
present in Figl a typical time series fas,,. The parameters =7 _

of the model are detailed in the figure legend. One can see
the typical appearance of rare events with amplitude that
exceeds the mean by a factor of 6—8. To pose the question in
its clearest way we display in Fig. 2 a distribution function
which is the normalized rate of occurren@e., the number

of timeg that a given amplitude has been observed in the
time window of 10 time steps. This apparent relative fre-
guency of events is very similar to findings in real data, see
for example Fig. 1 of Ref.2], which deals with draw downs

in the Dow Jones Average. Similarly to the analysis there,
we can pass an approximate straight line through the points
representing small and intermediate events. Such an expo- FiG. 2. Apparent probability distribution function for the 11th
nential law would mean that the events|of,|* with ampli-  shell. Averaging over 10time steps which is about 250 decorrela-
tudes larger than, say,(Hu;4?) are clear outliers. Their tion times for this shell. The data contain additional, extremely
probability is so low that they should not have appeared irsparse events of amplitude larger than 7, occurring once each; these
the short time horizon at all. We could conclude, like in thewere left out in this plot.
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tions, making them very broad indeed. The main new point 1
is that a detailed analysis of the extreme evémtthe short
time horizonsuffices to make lots of predictions about the 0.9
tails of the PDF’s, predictions that in our case can be easily I
confirmed by considering much longer time horizons. 0.8
In explaining our ideas we will try to distinguish aspects 5
which are general, and that in our view may have applica- 570.71
tions to other systems with extreme events, and aspects
which are particular to the example of the shell model of 0.6
turbulence. Thus we start in Sec. Il with an analysis of the I
temporal shape of the extreme events. We believe that this 0.5
analysis is very general, leading to an important relation be- -
tween the amplitude of the event and its time s¢tie time 0.4 005 07004 0003 0007 00010 0.007 0002
elapsing from rise up to demisdn Sec. Il we employ the £ U g arb. uniits)

dynamical scaling form of the extreme events to present a

theory of the tails of the distribution functions. We can relate  FIG. 3. Collaps€of positions and amplitudg$or five intensive

the tails of PDF’s belonging to different scales. In Sec. IV peaks belonging to the 20th shell. The valuesigf, for the peaks

we discuss numerical studies of the PDF’s, distinguishing th&@umbered from 1 to 5 are 4.65, 4.77, 6.71, 7.40, and 10.5, respec-

core and the tails. In Sec. V the main numerical findings ardively, in units of the rms velocity in this shell. The narrowest peak

rationalized theoretically on the basis of universal “pulse” is thus the tallest.

solutions of the dynamics of the Sabra model. Section VI

contains the bottom line: we make use of the scaling relato data collapse as shown in Fig. 4, is not a trivial fact that

tions topredictthe tails of PDF’s from data collected within may or may not exist in different cases. But we will show

short time horizons. Direct measurements of these tails givéhat if such a rescaling is found, it can serve as a starting

nonsense unless the time horizons are increased a hundresbint for very useful considerations.

fold. Yet with the help of the theoretical forms we can offer  The third step of the present analysis is a search of mean-

predicted tails that agree very well with the data collectedng to the rescaling factork . We hope thaf, has a simple

with much longer time horizons. relation to the amplitude of the extreme events. To test this

we can plot the individual values df found in Fig. 4 as a

function of the amplitude at the peak. The resulting plot is

shown as Fig. 5. In passing the straight line through the data

points we included the point0,0) in the analysis, as we

In turbulence in general and in our shell model in particu-search for a simple scaling form

lar the energy that is injected by the forcing at the largest X

scales i=1 and 2 is transferred on the average to smaller frocUmax, ©®)

scales. It is advantageous to analyze the extreme events of a

given scalg(or given shelin) and also to follow the cascade yjth x a scaling exponent. We conclude that in this case we

of extreme events from scale to scale. We first consider §aye a satisfactory scaling law wish=1.

given shell. The meaning of this scaling law is quite apparent in the
present case. Looking back at the equation of motion we

Il. DETAILED DYNAMICS AND SCALING
OF THE EXTREME EVENTS

A. Temporal dependence of extreme events of a given scale

1 T T T T T T
shell 20

We focus here on the detailed dynamics of the largest
events of a given scale. We considered, for example, the time
series of the 20th shelih=20) and isolated the five largest
events(in terms of their amplitudeas they occurred in a

time window of 10 time steps. In the first step of analysis 0.3
we normalized these five events by the amplitude at their 5
maximum. Next we plotted these normalized events as a 3 0.7
function of time, subtracting the time at which they have

reached their maximum value. The result of this replotting is 0.6
shown in Fig. 3. Obviously a similar replotting can be done

for any time series, and by itself is contentless. 0.5
The next step of analysis will reveal something interest- -
ing. Building on the normalized events of Fig. 3 we attempt

0 PR RPN R TR T R
'-‘6.02 -0.015 -0.01 -0.005 0 0.005

to rescale the time axis for each event in order to collapse the tt Hf
data together. Of course, each event calls for a different res- T
caling factor, which we denotén frequency unitsas f, . FIG. 4. Full collapsgof the position, amplitude, and widttof

The fact that such rescaling factors exist, and that they leathe same as in Fig. 3 peaks.
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FIG. 5. Width normalization vs amplitude for the five collapsed
peaks of Fig. 4. The ordering of the points is 1 to 5 from left to
right.

FIG. 6. “Evolution” of a peak from the 15th to the 20th shell.
The amplitudes are all in the santarbitrary units. One sees a
progressive shift of the maximum to the right and a decrease in the
amplitude, accompanied by narrowing and splitting. Nevertheless
the form of the central part of the peak remains self-similar as
exempified in Figs. 7 and 8.

realize that from the point of view of power countifigpt to
be confused with actual dynamjc$ can be written as

du where\ is the shell spacing defined by Ed,). The value of
— y is obtained by plottin@,{(n) vs (20-n) where

dt

1+x

@)

u

Oan(N)=IN[K;1(N,20)]/InA=Yy(20—n). 9
h'ghe best fit is obtained witlg=0.24+0.01, see Fig. 9. The
peaks which are now glued at their maxima as shown in Fig.
a still have a very different time width.

with x=1. It is thus acceptable that a rescaling dfldy U
should collapse all the extreme events as shown above. If t
equation of motion were cubic in we could expeck=2,
etc. Obviously, the rescaling analysis in this case reveale Next bef it I Il th b
the type of dynamics underlying the process. Whether this ext, as before, we want {o coflapse all these curves by

can be done effectively in other cases where extreme even'@tscﬂzng ;ge Eme t.ax's thaccordllpg tlovt/i;(tn) Zét
are crucial is an open question for future research. “2(20_%()n.’ . ). Expecting he scaling & w(n,20)
=\ it is natural to consider

gw(N=In[K(n,20)]/In A =2z(20—n). (10

B. Transfer of extreme events between different scales
To gain further understanding of the extreme events Werpa exponentz=0.75+0.02 is found by computing “the

focus now on the transfer from scale to scale. Consider, fo . . . :
example, a particular large amplitude event in the shell best" linear fit 0fgu(n) vs (20-n), see Fig. 9. The quality

=15, and its future fate as time proceeds. This is shown in

Fig. 6. The event reached its highest amplitude at shell 15 0‘007_ ' ' ' ' '

aroundt=2.625. At a slightly later time it appeared as a 0.006 i

large event in shell 16, and with a shorter delay at shell 17 .

where it started to split into a doublet. At even shorter delays 0.005 g

this event emerges as a triplet and a multiplet at shells 18, = :

19, and 20, respectively. TE 0004} -
A very important characteristic of the dynamics of large é g

events can be obtained from finding how to relate the maxi- <. 0.003 -

mal amplitudes of the first peak in the different shells. As £ ] e

was done above, we first replot all the first peaks as a func- 0.002 e

tion of time minus the time,, of their maximal amplitude I - ZE:{H%

Unmax- We then glue all the maxima together by rescaling 901

the peak amplitudes relative to the peak of a chosen shell. 0'____r, .

We denote byK,(n,m) the relative amplitude of the peak

-0.03

e I R
-0.02 -0.01

I
0

001

in the nth shell to themth shell. Choosing in our example
m=20 we then seek a single expongrguch that

t-t axn (arb. units)

FIG. 7. Collapse of the peak amplitudes for 15—-20 shells. Initial
peaks are shown in Fig. 6.

®)

Kam(N,20)=Up max/ Uzo ma= N0,
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FIG. 10. Normalized contributions to the structure functions of
ordersp=1,2, . ..,15 for the0th shell from the part of the veloc-

FIG. 8. Full self-similar collapse of the peaks for 15-20 shells. v i
ity realization withv>uv, .

of the resulting data collapse can be seen in Fig. 8. Note that
within the error barg+y=1. This sum rule will be ratio-
nalized theoretically in Sec. V.

The bottom line of this analysis can be summarized in a A. Asymptotic scaling exponents
dynamical scaling form for the extreme events

IIl. IMPLICATIONS FOR THE TAILS
OF THE PROBABILITY DISTRIBUTION FUNCTIONS

Having a scaling form for the large events means a great
deal for the structure functiorss,(k,) [cf. Eq. (5)] for high
Un(t)=v XYM ((t—t,) vkoh2"). (11) values ofp. In fact for high p the structure functions are
dominated by the large events. To demonstrate this we show
) o ) ) ) _in Fig. 10 the relative contribution t8§,(kyg) that arises from
Herev is a character[stlc velocity amplltud_e associated Wlthve|ocity amplitudes that exceed a threshold. In this plot
the cascade of a particular large event which starts at small Sp,0, is the structure function E¢5) where only events with

agd ;?sﬁh\?\?ees\ﬁgstﬁuétl?r:gesggl'ﬂesgﬁs s{;;scggr_'segogn ihioo=v, are considered, where&; ; contains all the data.
univ ' Ing W IV 5bwous|y the highep is, the higher the contribution is of

ggrsrllse gfn: '[t;\r;te Z(\e/geﬁsg] tghtehzhaort ggﬁtgoéléc;l’owﬁ,i;hgi th rge events. For any time window there exists the largest
9 P 9. vent, and when, exceeds its valuéplv* necessarily van-

We will see that these findings suffice to make rather strong
predictions about the expected form of tbenvergedPDF.  'SNes. , _ _
A theoretical understanding of the origin of the scaling form  |f we accept the scaling forrfiL1) we can use it to predict

(11) will be presented in Sec. V. the scaling exponent, for high values ofp. By definitions
; 1(T —{ -n¢,
4o—————7—7— Sp(kn)=TI[nwﬁ _T|un|pdtoc k, *Pocx "0 (12

3.0 For p large enough the structure functions are dominated by

the well separated events. Instead of the integral in the inter-
val [—T,T] we can sum up the inegrals over the separated
peaks. Substituting for each peak the fofii) and noting
that the number of peaks is proportionalfowe can extend
the integration interval t—o,o0] and write

1.0
0 5p<'<n>“7y"pf,wfp<kz“tvko>dt°<k*”(yp“) pr(r)dr.
0.0 ; ; ) ; : 13

FIG. 9. Fits of the rescaling factogy,(n) andgan(n) for the  comparing the exponents bfhere and in the previous equa-
peaks in the shells 15-20 shown in Figs. 6, 7, and 8. Note that iBon we find the scaling exponents

comparingdifferentshells the rescaling of the frequency increases
when the peak decreases in amplitude. This is opposite to the res-
caling of peakswithin a given shell. {p=yptz (14
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Of course this prediction is valid only for high values @f whereV? andUﬁ are defined by Egq$15) and(16). Equation
for which the contributions of the isolated peaks are domni{(20) means that a collapse of the tails of the PDF’s for dif-
nant. ferent shells may be achieved by rescaling theaxis Uﬁ
—V? according to Eq(16) and rescaling of the PDF’sy(
B. Tails of the probability distribution function axis) by \"(@ 72,
We turn now to the prediction of the tails of the PDF’s, Equation(20) for the tail of the PDF's allows one to find

assuming that these tails are dominated by well-separatd® high-order structure functionis/hich are dominated by
peaks with self-similar evolutiori11). We will see below the tails of the PDF’sand their scaling exponents,

[and cf. Eq(19)], that the tails of the predicted PDF are very "

sensitive to theexponentsn Eq. (11), but rather insensitive sp(kn):f uPP,(U2)d Uﬁchvg)\n(ﬁ—z—ym, (22)
to the precise form of the universal functibé(x) in Eq. (13). 0

Assume then for simplicity thaf(x)=1 for |x|<3 and

f(x)=0 for [x|>3. There is the free parameteiin Eq. (11); C = fxvpflw(VZ)VZ 22)
for the chaotic realizations,(t) we consider it as a random P Jo '

parameter. Define then the variatMd according to
Comparing again the exponents »fhere and in Eq(12)

gives the prediction for the high-order scaling exponents

gp:yp+z_ﬁi (23)

Consider nowza rur21 with a total time horizdn= 1/(kovg). _ which coincides with Eq(14) at B=0. One sees that the
Denote adV(V7)dV" the number of peaks measured in this effect of peak splittingwhich was described by the positive
run in which the value ofv* fell in the window [V*,(V"  eynonents) increases the deviation of the scaling exponents

2
+dV9)]. . . ) from its Kolmogorov 1941(K41) value {,= p/3.
Next denote normalized amplitudgthe value of the sig-

nal at timest=t,, in Eq. (11)]

V2=p?/v3, u§=n§_)l (u?). (15

IV. NUMERICAL STUDIES OF THE PDF: CORE AND

TN TAIL

UnE<u2> = o’ a=2y—{,, (16)
n

It is well known that PDF’s in multiscaling systems are
not scale invariant. Nevertheless we need to examine the

whereC is a dimensionless constant. We are interested in thgossibility that the cores of the PDF's can be collapsed using
PDFP,(U2), whereP,(U2)dU? is the probability to sample & rescaling law that is charateristic to them, while the tails
a normalized amplitude in theth shell betweerU2 and ~May be collapsed using another rescaling (aith different

U2-+dU2. By definition, the number of observations of such scaling exponenjs This possibility is related to the fact that
ar%plituges in the time ,hOI’iZO'Iﬁ is dN the structure function§,(k,) have scaling exponents in the
n

vicinity of the K41 valueg { , (p)=p/3] for p small enough

T (say,p=<6). For large value op (say,p>12) thep depen-
dN,= Pn(Uﬁ)dUﬁT—, (17 dence of¢, has a different slope, cf. Eq23). These differ-

0 ences result from the core of PDF’s originating from the bulk
wherer is the length of the sampling intervals. On the otherof the fluctuations while the tail of PDF'’s results from the
hand, since the lifetime of a peak with a given valuevdf  well-separated high amplitude peaks. Accordingly the func-
belonging to thenth shell is 10ky\?", we can also estimate tional form of the core and the tail of the PDF's are different.

the number of observatioréi\,, as This is demonstrated in Fig. 1lupper panel where the
PDF's for the 11th, 15th, and 18th shells are displayed. One

W(V?) ) sees that the coresay, Uﬁg 20) are practically collapsed
dNn:—T vk )\nzd : (18)  while the tails are widely separated. Needless to say, the
oo collapse is due to our choice of display as a functiortuﬁf
Equating Eqs(17) and (18) and rearranging, one gets for K41 PDF’s such a disp!ay would result in a complete
collapse, core as well as tail. We stress, though, that if one
P, (U2)=CW(VH)A"(e-2)V, (190  expanded the scale one could observe that the collapse of the

core is not precise: the scaling exponents everpfe2 and
This relation is obtained under the assumption that the nump=4 arenot 2 and %, respectively. The anomaly of these
ber of peaks is not increasing in the cascade process. In fagkponents is, however, sufficiently small to allow an ap-
we saw that the number of the peaks is increasing with th@roximate collapse of the cores.
shell numbem, presumably in a scale-invariant mannemnas Our aim here is to test the predictions regarding the tails
to some positive exponey. We can account for this effect of the PDF's. We note that PDF’s that originate from data

by replacing in Eq(19) W by A\AW. After that tend to have rather noisy tails. This poses difficulties in as-
5 20 n(at f=2) sessing the accuracy of the collapse of the tails. Therefore we
Pn(UR)=CW(VH)N IV, (20 opt to first fit the PDF’'s with some appropriate functional
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FIG. 11. Upper panel: PDF’s of the 11th, 15th, and 18th shell
(averaged over fotime steps Lower panel: Tails of PDF'§with
the cores left oytfitted by functions of the form [n'—’r,(Uﬁ)]zan
+b,U, (continuous lines
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FIG. 12. Full collapse of the PDF tails of the 11th, 15th, and
18th shells. Note that in the core region the data does not collapse.

2In(b,/by)=(n—=1DalnX.

According to Egs(16) and the relatiory+z=1 one com-
putesa+ B—z=2-3z+ B. We plot now the measurethy
the best fity values of b,—byy)/In\ vs (n—1). Finding
best linear fits to the resulting plots we compute —0.25
+0.03. Noticing the independently measured valuesy of
=0.24+0.01, £,=0.72=0.01 we see that our value ofis
in excellent agreement with Eq16); the latter predictsy
=2y—{,~0.24.

We want next to find the value ¢ from the first of Egs.
(25). Unfortunately the values @, are not computable with
the same accuracy as thosebgf. The reason for this is that
the fit formulas pick up the values of the intercepts of Eq.
(24) with much worse precision than the slopes. Accordingly
the plot @,—a;;)/In\ vs (n—11) is much more scattered
than the corresponding plot for the slopes, and we can only

form and then to collapse the fit functions. As a natural fitoffér @ rough estimate of the expected values f@f

function we choose [an(Uﬁ)]zanvanUﬁC” with three free
parameters,, b,, andc,. The results of our fit showed
that the parameters, are close to 1/2 for all values of
=11. Therefore we fixed the valug,=1/2 and optimized
the values of ofa, and b,, to get the best fits in the tail
regions. Now the fit formula reads

IN[P,(U}]=a,+b,U,. (24)

The corresponding fits for the tails of the PDF's for the 11th,

0.2<3<0.6.

This rough estimate is not satisfactory, and therefore we
attempt now to find a sharper result f8rusing Eq.(23). In
paper[8] we measured the values of for p=1,2,3...,7.

We recognize that these valuespére not large enough to
determine the asymptotic slope ¢f. Nevertheless for a
semiquantitative analysis we can use a reasonable fit formula
for the {, dependence, for example,

_P_3p(p—3)

P 3 1+vyp (26)

15th, and 18th shells are shown in Fig. 11, lower panel. The

fits are excellent foUﬁ> 20 but not surprisingly they fail for
smaller values oUﬁ, especially for larger values of.

To collapse the tails together we need to choose a refe

ence shelln, ; we show the results fon,=11. Replotting
In[P,(U2)]—a,+a, as a function ob2U,,/b3, one collapses
the tails of all the PDF’s on the tail of PDF for,=11. This
is shown in Fig. 12.

The theoretical predictiong16) and(20)] are

a,—a;;=(n—=1)(a+B—2)InA, (25

With this we find the “best” values of and y that agree
with the measured values df,: §~0.092, y~0.725. With
these values Eq26) predicts forp—co

{p~=0.56+0.21p. (27
According to the predictiol23) the slope of this dependence
isy. The value ofy found above from the intershell collapse
of the separated peaksys=0.24+0.01, being in agreement
with the value ofy found from the collapse of PDF tails. The
valuey=0.24+0.01 differs a bit from the slope in E7).

056118-7



VICTOR S. L'VOV, ANNA POMYALQV, AND ITAMAR PROCACCIA PHYSICAL REVIEW E 63 056118

Nevertheless in light of the inaccuracy of the measured val- df( r)
ues{, for large p (originating mostly from the finite extent
of the inertial interval, one cannot trust the last digits in the

=N 20X (\¥(7— 7o) + To) F (NP (7— 7o) + T0)

numbers of Eq(27). We thus consider the agreement be- + N2 (N Y (7= 7o) + o) T (N T2 (7— 1) + 7o)
tween the estimated values ypimore than acceptable. B

Thus we will use the intercept in E(R7) to estimateg. —(atco)f* (N (7= 7o) + ) f (N (7= 7o) + 7p).
Considering Eq(23) the free term in Eq(27) has to bez (30)

— B. With z=0.74 we computg8~0.18 which is at the bor-

derline of the expected regidi©.2,0.q9 found above from To get this equation we changed the time variable ficim

collapsing the PDF tails. Taking then a value®£0.2 al- 7,=\"%(t—t,), and used the same, in all the shells in-

lows us to evaluate the number of pedks in ann shell  volved in Eq.(2), and finally denoted,= 7. The character-

when there weré\,_; peaks in the previous one, istic time 7, is obtained from computing the sum of all time

incrementsS ;. _(tmr1—tm), and noting that it converges to

to=N\""%ry, Where

N,/N, ;=\f~1.15 for \=2, B=0.2. (28) ° 70
tO:)\inzTo, 'TOEA/()\Z_ l) (31)

The conclusion is that peak splitting leadsr A=2 and the
chosen value of,b,c) to a 15% increase dfl,, from shell to
shell.

A cursory look at Fig. 6 may leave the impression that
this is an underestimate. After all, from one peak in shell 1
the cascade forms four or five peaks in shell 20. A rate o
increase of 15% would result in a factor of 2, not 5. But we
must rememeber that we talk about peaksa given ampli-
tude and the peak splitting results in peaks of varying am alues ofz and A. For example, the nonzero solutidr)

plitudes. The counting of peaks of comparable amplitudes is_ const requirez=2/3. Nevertheless the constant solution

) o =
more subtle, and the predicted rate of 15% increase Shou'%ils to fulfill the requirement that fim. .. f(7)=0. We ex-

pe mtgrpreted in the statistical sense, taking many reallzap')ect that a nontrivial solution that satisfied the boundary con-
tions into account.

ditions will force z into the observed value which lies be-
tween 2/3 to 1. The actual calculations that demonstrate this
V. SELE-SIMILAR SOLUTIONS OF THE SABRA SHELL are outside the scope of this paper. We just reiterate our
MODEL numerical finding thaz~0.75 for the particular set of pa-
rametersa, b, ¢, andA that were employed in this study.

The meaning ofj, is the time needed for a pulse to propagate
from the nth shell all the way to infinitely high shells. The
characteristic time-, allows one to convert all the arguments
of the functionsf involved in Eq.(30) to a universal form
No(7— 7o) + 7).

It was shown in Ref[9] that Eq.(30) can be considered
as a nonlinear eigenvalue problem. It has trivial solutions
f(7)=0, but it may have nonzero solutions for particular

In this section we rationalize the scale-invariant fqrit)
on the basis of the equations of motion of the Sabra model  \, pREDICTING TAILS OF PDE'S FROM DATA
(2). The exponeny and the times,, which appear in EC{ll) MEASURED IN SHORT TIME HORIZONS

are chosen according to
In this section we demonstrate that the analysis presented

above can be used to predict the tails of the PDF’s of large
y=1-z, th—th_;=AN", (29 scale phenomenelatively low values of) using only data
measured in the short time horizon. We focus on the example
shown in Fig. 2, i.e.n=11 with 10 times steps.
We first fit the PDF shown in Fig. 2, using a fit formula
which is inspired by Eq(24),

with an arbitrary positive parametér(note that in10] there
was a salient choice &=0). These choices are not specific
for the Sabra model; in Ref$9,10] identical choices were
taken the the Obukhov-NovikovON) and the Gledzer- oo o~ = T
Okhitani-Yamada(GOY) models. The fist relation follows InN[Pn(up)]=an+byu", (32
from simple power counting, since the right-hand SigélS) 5 5 B
of the equation of motion for theth shell is proportional to and founda;;~1.34, b;;~—4.64, ¢,,~0.28. The data and
\". Indeed, we saw that this scaling relation is in good agreethe best fit are shown in Fig. 1.
ment with our numerical observations. The second choice of Next we want to continue the PDF of=11 into event
Eq. (29 reflects the fact the time delay between the appearvalues that are too rare in the short time horizon. To this aim
ance of the peaks in consecutimeshells falls off geometri- we measured, in the same time window of titne steps, the
cally with n; see Fig. 6 as an example. Nevertheless we wartiail of the PDF of the 18th shell. In doing so we use the fact
to show directly that these choices are supported by th#hat the small scale events have a much shorter turn over
equations of motion. time, and the “short” time horizon is sufficiently long to

In doing so we follow Ref[9]. Substituting Eqs(11) and  provide a good estimate of the tail. We fitted the tail with Eq.
(29 in Eq. (2) we find the equation of motion of the scaling (24) and founda,g~ —5.3, b;g~ —0.94. From this value and
function f(7) which is valid in the inertial interval, [Eg. (25)] we can predicb,;. We employ the value~0.24
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T b FIG. 14. Test of the predicted PDF for the 11th shell using data
) from a hundredfold longer time horizon of 4€@me steps.
The first aim was achieved by focusing on the largest
=5 . events, following their cascade down the the scédesip the
= shellg, and learning how to collapse them on each other by
= . . . . . .
Y rescaling their amplitudes and their time arguments. This ex-
= ercise culminated in Eq11) which represents the largest
=10 . eventsu,(t) in terms of a “universal” functionf(7) where
= 7 is a properly rescaled time difference from the peak time of
the event. This dynamical scaling form is characterized by
two exponents, a “static” one denotgdand a “dynamic”
-135 o] one denoted. We argued theoretically for a scaling relation
1 L 1 ) 1 L 1 L 1 L 1 L 1 Pl .
0 10 20 30 40 50 60 70 z+y=1, and determined the values of these exponents on
tu, Fr<u, *> the basis of the analysis of isolated eventstiorttime ho-
rizons.

FIG. 13.(a) Data and analytic fit for the PDF of the 11th shellin  The second aim was accomplished by developing a scal-
a short time horizon of 10time steps. Note that here we presenteding theory for the tails of the PDF’s in different shells. We
all the events, including four isolated events that give rise to theygye |earned how to translate information from the tail of a
upswingings strings of data points with amplitudes larger thah)7. ppEg in a high shell to the tail of a PDF of a low shell. In
Same as infa) together with the tai{dashed lingpredicted from the doing so we made use of the fact that the high sHshsall
tail of the 18th shell in the same short time horizon. length scaleshave much shorter characteristic times scales.
which is taken from Eq(16) with the known value ofy ~ Thus even short time horizons are sufficient to accumulate

(from the intershell collapgeand of,. The resulting predic- relia_ble statistics on the tails of_the PDF’s of high shells_.
tion is by~ —1.72. Having a theory to translate the information to low shells in

Rather than attempting to also predit, in Eq. (24) which the tails are extremely sparémle\{en totally absepnt
(knowing the inaccuracies of interceptse connected the W€ could overcome the meager statistics. We could present
tail with the predicted value df,; to the core PDF function predicted tails that were populated only in time horizons that

(32) by finding the unique point of continuity with the same Were a hundredfold longer than those in which the analysis
was performed.

first derivative. The way that the predicted tail is related to . . .
the PDF is shown in Fig. 1B). We demonstrated the existence of scaling properties of
To test the quality of the prediction we ran now the simu-the extreme events that are in distinction from the bulk of the
fluctuations that make the core of the PDF. In this sense the

lation for a time horizon that is a hundred times longes., i W he basis of th
10° time steps Such a run can resolve the events that belongXIféme events are outliers. We cannot, on the basis of the
resent work, claim that this approach has a general applica-

to the tail, and indeed the comparison is surprisingly good, a5s. i _ .
ility to a large class of physical systems in which extreme

seen in Fig. 14. X : ,
events are important. We certainly made a crucial and ex-

plicit use of the scale invariance of the underlying equation
of motion. This scale invariance translates here to an inti-

The main aims of this paper are twofold: on the one handnate connection between extreme events appearing on one
we aimed at understanding the detailed dynamical scalintength scale at one time to extreme events appearing on
properties of the largest events in our system. On the othesmaller length scales at lateand predictabletimes(cf. Fig.
hand we wanted to employ these propertieptedictthe  6). We are pretty confident that similar ideas céand
probability of these events even in situations in which theyshould be implemented to fluid turbulence; whether or not
are very rare. such techniques will be applicable to broader issues like geo-

VIl. SUMMARY
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