
PHYSICAL REVIEW E, VOLUME 63, 056115
Distribution of sizes of erased loops of loop-erased random walks in two and three dimensions
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We show that in the loop-erased random-walk problem, the exponent characterizing the probability distri-
bution of areas of erased loops is superuniversal. Ind dimensions, the probability that the erased loop has an
areaA varies asA22 for largeA, independent ofd, for 2<d<4. We estimate the exponents characterizing the
distribution of perimeters and areas of erased loops ind52 and 3 by large-scale Monte Carlo simulations. Our
estimate of the fractal dimensionz in two dimensions is consistent with the known exact value5

4 . In three
dimensions, we getz51.618360.0004. The exponent for the distribution of the durations of avalanches in the
three-dimensional Abelian sandpile model is determined from this by using scaling relations.
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I. INTRODUCTION

The loop-erased random-walk~LERW! problem was first
defined by Lawler@1# as a more tractable variant of the we
known self-avoiding walk problem. The problem turns out
be related to many well-studied problems in statistical ph
ics, but it seems to have attracted less attention than it
serves. The total number of publications dealing with t
problem is a few tens compared to several thousand dea
with self-avoiding walks or random walks. It was shown
Lawler @2# to be equivalent to the special case of the Lapl
ian self-avoiding walk problem defined by Lyklemaet al.
@3#. Majumdar@4# showed that this model is equivalent to th
classical graph-theoretical problem of spanning trees
graphs and theq-state Potts model in the limitq→0. This
equivalence also relates this problem to the Abelian sand
model of self-organized criticality@5#. In fact, as we will
show in this paper, this model provides a numerically e
cient method of determining the only unknown critical exp
nent of the Abelian sandpile model in three dimensions.

This prompted us to undertake the numerical study of
LERW’s in d52 and 3 reported in this paper. We obta
fairly precise estimates of the fractal dimension of LERWs
d52 and 3. We note the interesting consequence of the s
ing theory that the distribution of the area of the erased lo
has the same exponent 2,independent of the dimension d, for
2<d<4. In d53, the numerical value of the fractal dimen
sion of LERW’s enables us to determine the avalanche
ration exponent of the Abelian sandpile model, using
scaling relations and other exactly known exponents of
model @6#.

A good review of earlier results on the LERW proble
can be found in@7#. Lawler showed that the fractal dimen
sion z of LERWs is 2 ford>4 andz<(d12)/3 for d<4
@7#. Recently, it was shown rigorously that in two dime
sions,z is strictly larger than 1@8#. Using the known exac
results about the critical exponents of the Potts model fr
conformal field theory, Majumdar was able to prove exac
that z5 5

4 for the LERW problem ind52 @4#, a result that
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was guessed earlier by Guttmann and Bursill from numer
simulations@9#. A proof of this result without using confor
mal field theory has been given by Kenyon@10#. Using con-
formal invariance, Duplantier has obtained the exact pr
abilities of no intersection ofn LERWs of l steps starting
near each other in two dimensions, and also the wind
angle distribution@11#. The distribution of sizes of the erase
loops was first studied in@12#. Priezzhev has used bounds o
the intersection probability of loop-erased walks with ra
dom walks to show that the upper-critical dimension of t
Bak-Tang-Wiesenfeld~BTW! sandpile model is 4@13#.

The plan of this paper is as follows. The LERW model
defined in Sec. II. In Sec. III, we recall the main points of t
scaling theory of the distribution of erased loops@12#, and
apply it to show that the exponent characterizing the dis
bution of area enclosed by the erased loops is the same
2<d<4. We determine the behavior of the distributio
functions for the perimeter and the area of the loops in
scaling limit, for very small or very large values of the arg
ment of the scaling functions. The simulation technique a
the results obtained are described in Sec. IV. The expon
characterizing the distribution of the durations of avalanc
in the BTW sandpile model ind53 is determined in Sec. V
and some concluding remarks follow in Sec. VI.

II. DEFINITION OF THE MODEL

Consider a simple random walk on ad-dimensional lat-
tice. We start with a particular realizationW of the random
walk having N steps, W5$w0 ,w1 ,w2 , . . . ,wN21 ,wN%,
wherewi is the site reached by thei th step of the walk. We
define the LERWL corresponding toW as the path obtained
from W by erasing each loop as soon as it is formed. IfW
has no self-intersections, we defineL5W. If W has self-
intersections, letj be the earliest step that leads to se
intersection inW, so thatj is the least integer such thatwj
5wi for some i , j . Then, we obtain a new walkW8
5$w0 ,w1 , . . . ,wi ,wj 11 , . . . ,wN21 ,wN% by deleting all
steps betweeni and j, keepingi and deletingj. This process,
corresponding to loop erasure of the earliest loop formed
repeated until loops can no longer be found. The result
walk L is the required LERW corresponding toW. This
©2001 The American Physical Society15-1
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HIMANSHU AGRAWAL AND DEEPAK DHAR PHYSICAL REVIEW E 63 056115
procedure of loop erasure is illustrated in Fig. 1.
The length ofL is the number of steps inL. We will

denote it byn. For a fixedN, n is a random variable. We
define the critical exponentz of the LERW by the relation

^n&;Nz/2 ~1!

for large N, where the angular brackets denote averag
over all random walks ofN steps. As the root-mean-squa
end to end distanceR is the same as that for random walk
we haveR;N1/2 and ^n&;Rz. Thus,z is the fractal dimen-
sion of the LERW.

III. SCALING THEORY FOR THE DISTRIBUTION
OF LOOP SIZES

Let Prob(l ,N) denote the probability that a loop of pe
rimeterl will be erased at theNth step of the random walk
Let F(l ,N) denote the cumulative probability that a loop
perimeterl or greaterwill be erased at theNth step of the
random walk. We shall study the behavior of this functi
for largeN, and write

Prob~ l !5 lim
N→`

Prob~ l ,N! ~2!

and

F~ l !5 lim
N→`

F~ l ,N!. ~3!

We adopt the convention that if no loop is formed at
step, it will be said to be an erasure of a loop of perimete
With this convention, we clearly haveF(0,N)51 for all N.

For d<4, the mean number of loop length erased per s
tends to 1 for largeN. This implies that

FIG. 1. An illustrative example of the loop-erasing procedu
The random walka-b-c-d-e-•••-p starts ata and ends atp. The
erased loops are shown by thin lines. Note that at the pointo, while
the random-walk path intersects itself, the LERW encounters
intersection, as the loopf-g-h-i-f has already been erased.
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l Prob~ l !51 for d<4. ~4!

For largel , F(l ) is expected to vary as a power ofl ,
say asl 2t11. However, for a finiteN, there is a cutoff size
l !, and loops of sizel .l ! are very unlikely. The cutoff
valuel ! varies as a power ofN, sayl !;Nf. This suggests
that F(l ,N) satisfies the scaling form

F~ l ,N!;l 2t11f ~ l /Nf!. ~5!

The cutoff exponentf can be determined by the follow
ing simple argument@12#: The cutoff for the perimeter of
erased loops should also vary as^n&, the average length o
the LERW afterN steps. Since this scales asNz/2 @Eq. ~1!#,
we getf5z/2.

The exponentt is also expressible in terms ofz. For l
!l !, the total number of loops of size>l for a walk of N
steps varies asNF(l ), and is much greater than 1. Forl
.l !, we expect a much stronger decay. For 2<d<4, we
get a significant number of large loops, and thus in this ca
we expect that

NF~ l !,N!;O~1!. ~6!

Putting in the scaling form~5!, this implies that

t5112/z. ~7!

Thus, the scaling form for the distribution of loop perim
eters is determined in terms of a single exponentz, and is
given by

F~ l ,N!;l 22/zf ~ l /Nz/2! for l @1. ~8!

An interesting quantity is the area enclosed by a loop.
two dimensions, this is straightforward to determine. In th
dimensions, it may be defined as the minimum number
plaquettes required to form a simply connected surf
bounded by the loop. In this study, we used an altern
computationally simpler, measure of this area. We sim
project the loop onto the three coordinate planes, and m
sure the areas of the projections. If the three areas
a1 , a2, and a3, we define the area of the loop to be (a1

2

1a2
21a3

2)1/2. The generalization to higher dimensions is o
vious.

Let F(A,N) be the probability that a loop of area great
than or equal toA is generated at theNth step of the random
walk. A loop of perimeterl has a linear sizeR;l 1/z and an
area A;R2. It is then easy to see from Eq.~8! that for
N,A@1,

F~A,N!;A21g~A/N!. ~9!

Here also the scaling functiong(x) goes to a constant fo
x→0, and decreases rapidly to zero forx@1.

Thus we find the rather unexpected result that the dis
bution for the area of the loop is independent even ofz, and
hence is the same for all dimensionsd, with 2<d<4. This
argument does not work ind51, as there Prob(l ) decreases

:

o
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DISTRIBUTION OF SIZES OF ERASED LOOPS OF . . . PHYSICAL REVIEW E 63 056115
exponentially with l , and the scaling theory assumin
power-law decays fails@14#. For d>4, the LERW behaves
as a random walk, and for random walks, the area of the l
varies as the perimeter of the loop. Hence we would exp
that the probability that a loop of areaA is formed varies as
A2d/2 for d.4. The probability that a loop of area great
than or equal toA is formed varies asA2d/211 for d.4.

We now determine the behavior of the scaling functi
f (x) in Eq. ~8! for small and large values of the argumentx.
Clearly, asx tends to zero,f (x) tends to a constant, whic
we choose to be 1, andf (x) tends to zero for largex. We
define

DProb~ l ,N!5Prob~ l ,N!2Prob~ l !. ~10!

If for x near zero, 12 f (x) varies asxa, we see that keeping
l fixed, and in the limit of largeN,

DProb~ l ,N!;2K l N2az/2, ~11!

whereK l is an l -dependent constant, and the exponen
independent ofl . It is easy to calculate Prob(2,N) in arbi-
trary dimensiond. The conditional probability of forming a
loop of perimeter 2 at theNth step is 0 if the random walke
returned to origin at step (N21), and it is 1/(2d) otherwise
~for a d-dimensional hypercubical lattice with coordinatio
number 2d). Thus

Prob~2,N!5
1

2d
~12gN!, ~12!

wheregN is the probability that the random walker returns
origin afterN21 steps. Ind dimensions,gN varies asN2d/2

for largeN. Thus, we see that for largeN, DProb(2,N) var-
ies asN2d/2. Comparing this with Eq.~11!, we geta5d/z,
and

DProb~ l ,N!;2K l N2d/2 for l Þ0. ~13!

Also,

f ~x!.12Kxd/z for x near 0. ~14!

~We shall denote an undetermined constant byK. Its value in
different equations need not be the same.! For other values of
l Þ2, this then implies that

K l .Kl d/z for l @1. ~15!

This may be understood as follows. The main deviation
Prob(l ,N) from its asymptotic value comes from the cas
in which the LERW at stepN21 is of length&l , and the
probability that the walker afterN steps is within a sphere o
radius l 1/z centered at the origin varies asl d/zN2d/2 for l
!N.

We can also determine the leadingN dependence o
Prob(l 50,N). Since for any nonzerol , Prob(l ,N) is less
than its limiting value for largeN, Prob(0,N) must be larger
than Prob(0). In fact,
05611
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l 52

`

DProb~ l ,N!;KN2d/2(
l

l (d222z)/z.

~16!

This summation overl has an upper cutoff proportional t
l !. In two dimensions, we get

DProb~ l 50,N!;K~ logN!/N. ~17!

In three dimensions, the summation diverges as (l !)1/z

;N1/2. Thus, we get

DProb~ l 50,N!;K/N for d53. ~18!

For largex, f (x) is expected to decrease as exp(2Kxb).
The exponentb can be determined as follows. We no
that for any constante!1, the probability that a loop of
perimeter eN is formed at theNth step should vary as
exp$2K(e)N% for fixed e andN tending to infinity@15#. This
implies thatb52/(22z), and hence

f ~x!;exp~2Kx2/(22z)! for large x. ~19!

Similarly, we can determine the behavior of the scali
function g(x) in Eq. ~9!. Using the fact thatA varies asl 2/z

for l &l !, from Eq. ~14! we see that the functiong(x)
determining the finite-N cutoff effects varies as

g~x!.g~0!exp~2Kxd/2! for small x. ~20!

For largex, g(x) should vary as exp(2Kxc), wherec is
some exponent. Lete be a small number!1. Using the fact
that the probability of loops of areaeL2 should decrease only
as exp$2K(e)L% for fixed e in the limit of largeL, we see that
c51, and

g~x!;exp~2Kx! for large x. ~21!

It is interesting to compare this behavior with that off (x) for
large x. These behaviors are consistent only if for a lar
loop of areaA@N, the average perimeter varies as

l ;l !~A/N!12z/2. ~22!

This behavior should be contrasted with the behavior
A!N, where the average perimeter varies asAz/2 with no
explicit dependence onl !. It is interesting to note that this
scaling law for large loops remains valid even outside
scaling limit for A of orderNa with 1<a<2. For a52, it
gives a perimeter proportional toN, as it should.

IV. NUMERICAL SIMULATIONS

The simplest algorithm to simulate the LERW problem
a computer is to actually generate the trail of a random w
step by step on ad-dimensional lattice. At each new step,
a loop is formed it is erased. This is straightforward to imp
ment, but requires a large amount of memory in large dim
sionsd, as for simulating a walk ofN steps, one needs t
have a lattice of linear sizeN1/2, which means that the re
quired memory increases asO(Nd/2).
5-3
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The algorithm that makes the most efficient use
memory would store the walk as a linked list, keeping on
the unerased steps. But there is a memory/CPU tradeoff,
the computation time increases because searching for
intersections is very inefficient in this scheme.

In our simulations, we used a hybrid scheme for stor
the coordinates of the points visited by the walk. We st
the coordinates of the LERW in not one, butM lists, where
M is a large number. There is a unique hashing rule t
assigns a site to one of the lists, so that checking for
intersection has to be done only within one list. To see
point already belongs to the LERW, we have to search o
in the list corresponding to the point in question. The b
choice ofM is O(l !), as then each list hasO(1) entries.
With this, we were able to simulate a two-dimensional wa
of 233 steps in about 3 h and 16 min using;60 Mb of
memory on a 350 MHz Pentium-II machine. In three dime
sions, a walk of 229 steps took about 24 min and;300 Mb
of memory on a similar machine.

Simulations were carried out for a total walk lengthsN of
2r steps, withr 525, . . . ,29 fortwo-dimensional walks and
r 524, . . . ,28 forthree-dimensional walks. To eliminate th
initial transients, we collected the statistics of loops on
after discarding the firstN/2 steps. In addition, an ensemb
average was taken over 103 distinct realizations of random

FIG. 2. Variation ofl 2/zF(l ,N) with l for two-dimensional
LERW. Solid lines represent the best fit of Eq.~23! with parameter
values~including an estimate ofz) given in Table I.
05611
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walks in each case. For the two-dimensional case, we
simulated a small number of walks forr up to 34.

A. Two-dimensional LERW

In Fig. 2, we show the plot for the cumulative distributio
functionF(l ,N) @16#. We plot l 2/zF(l ,N) versusl . There
is a significant deviation from simple power-law behavior f
very smalll and for largel . For l &l !, the data fit well to
the functional form given by Eq.~14!. In the smalll regime,
the leading correction is a correction to scaling. Incorpor
ing this, we fit the data to the form

F0~ l ,N!5
C1

l C2
exp@2C3~ l C2/N!d/2#S 11

C4

l C5
D , ~23!

whereC2 is related to the fractal dimension viaC252/z.
The best-fit values of all the parameters in Eq.~23! are

tabulated in Table I. We note thatC5 is 1 within our error
bars. Furthermore, the exact value ofC2 is also known to be
8
5 . As a result, one more set of values was estimated for
parameters by constrainingC2 and C5 to these values. The
parameter values thus obtained are also tabulated in Tab
The fit is rather good for alll *10. Statistical fluctuations
are large for l *104, as there are not many such loop
generated.

FIG. 3. Variation of AF(A,N) with A for two-dimensional
LERW. Solid lines represent the best fit of Eq.~23! with parameter
values given in Table I.
during

TABLE I. Estimated values of various parameters corresponding to Eq.~23! for the variation of the loop

perimeter and the area for two- and three-dimensional LERWs. The values without error bars are fixed
the estimation of the other parameters.

C1 C2 C3 C4 C5

2D l 0.353360.0004 1.599760.0005 1.160.1 1.5860.03 1.00060.007
l 0.3538560.00025 8

5 1.160.1 1.5660.03 1
A 0.12731660.000015 1 9.860.7 0.49460.003 1

3D l 0.152760.0003 1.235960.0003 2.860.3 1.6960.02 0.8660.05
A 0.131260.0002 1 3567 0.14260.005 0.39460.015
5-4
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In Fig. 3, we have plotted theAF(A,N) versusA for
different values ofN, and also shown the best fit using th
fitting form Eq.~23! with l substituted byA. While estimat-
ing the parameters, we constrainedC2 andC5 to 1. This is
because the exact value ofC2 is known to be 1 and the
unconstrained value ofC5 turns out to be 1 within error bars
This allows a better estimate of the remaining paramet
The estimated best-fit values of parameters for this data
are tabulated in Table I. It is clearly seen from Fig. 3 that
scaling form fits the data very well in nearly the entire ran

We obtained more accurate estimates of Prob(l ,N) for
l <100 by taking an ensemble average over 109 different
realizations of the random walk. In Fig. 4, we have plott
the variation ofNDProb(l ,N) versus log(N) in two dimen-
sions for l 50, 2, 4, and 6. We see clearly that whi
NDProb(0,N) has a linear variation with log(N), for other
values of l this tends to a limiting constant value forl
@1. This is in full agreement with the predictions of th
scaling theory Eqs.~13! and ~17!.

B. Three-dimensional LERW

The distribution of loop sizes for the three-dimension
walks by the perimeter is shown in Fig. 5. The format
presentation is exactly the same as in the preceding sub
tion. We fit the data to the form given by Eq.~23!. From the
figure, it is seen that this scaling form fits all of the data ve
well for l *10. The best-fit values of parameters in th
equation are tabulated in Table I. We find that in this case
best-fit value of the correction to the scaling exponentC5
turns out to be 0.86, clearly different from 1.

Our estimate of the best-fit value of the fractal dimens
z gives

z51.618360.0004, d53. ~24!

This value is not very sensitive to the choice of parame
C1 , C3 , C4, andC5. The error bar onz gives our subjec-
tive estimate of the errors of extrapolation. This should

FIG. 4. Variation ofNDProb(l ,N) with N for l 50, 2, 4, and
6 in two dimensions. For better visibility, the data points forl

52, 4, and 6 have been displaced vertically by 0.69, 0.59,
0.57, respectively.
05611
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compared with the valuez51.62360.011 obtained by Gutt-
mann and Bursill@9#. Because of the larger fractal dimensio
of walks, for the same value ofN, there are significantly
more longer loops generated ind53 than in d52. As a
result, we see power-law scaling over roughly five deca
of l in Fig. 5 compared to that of about four decades ofl in
Fig. 2.

In Fig. 6, we show the plot forF(A,N), the cumulative
distribution function for the loop area. We have plotte
AF(A,N) versusA for different values ofN. An unbiased
estimate ofC2 from the best fit gives a value 1.000 0
60.000 05. Thus, we setC2 to be exactly 1 and estimate
the remaining parameters by fitting the scaling form given
Eq. ~23! with l substituted byA. From the figure, it is
clearly seen that this form approximates all of the data v
well for A*10. The estimated values of the parameters
tabulated in Table I. Here also, the exponent in the correc
to the scaling term turns out to be different from 1.

In Fig. 7, we have replotted the data of Fig. 6 wi
AF(A,N) plotted against (A/N)3/2. We see that the curve

d

FIG. 5. Variation ofl 2/zF(l ,N) with l for three-dimensional
LERW. Solid lines represent the best fit of Eq.~23! with parameter
values given in Table I.

FIG. 6. Variation of AF(A,N) with A for three-dimensional
LERW. Solid lines represent the best fit of Eq.~23! with parameter
values given in Table I.
5-5
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are approximately linear for smallA/N, verifying the theo-
retical prediction of Eq.~20!. For larger values ofA/N, the
slope decreases as expected from Eq.~21!.

In Fig. 8, we have plotted the variation ofDProb(l ,N)
versusN for l 50, 2, and 4. The data were obtained
averaging over 109 different realizations of 100-steppe
walks. For Prob(l ), we used the values from theN5228

simulation. We see good agreement with the predictedN
variation for l 50 and 1/N3/2 variation for l 52 and 4.

V. RELATION TO EXPONENTS OF
THE SANDPILE MODEL

The sandpile model of Bak-Tang-Wiesenfeld is defined
follows @17#: We consider a hypercubical lattice of line
sizeL in d dimensions. At each site is a non-negative inte
that gives the ‘‘height’’ of the pile at that point. The syste
is driven by adding a grain of sand at a randomly chosen s
thereby increasing the height of the pile at that site by 1

FIG. 7. Variation of AF(A,N) with 100(A/N)3/2 for three-
dimensional LERW showing the behavior of the exponential c
rection term. The thick straight line represents the best fit of
~23! with parameter values given in Table I.

FIG. 8. Variation ofDProb(l ,N) with N for l 50, 2, and 4 in
three dimensions. Straight lines show the fits using slopes21 for
l 50 and2

3
2 for l 52 and 4.
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the height at any site exceeds (2d21), it topples, and its
height decreases by 2d, and one grain is transferred to eac
of its neighbors. If this makes some other sites unstable, t
are toppled in turn, until all sites are stable, and then a n
grain of sand is added.

Bak et al. observed that in the steady state of such a p
adding a grain gives rise to a sequence of topplings, and
size of such avalanches is a random variable with a pow
law tail. Determining the exact values of the exponents ch
acterizing these tails has been the main theoretical prob
in the area of self-organized criticality.

The model ind51 is rather trivial, and does not show
simple power-law tails of avalanche sizes, as most a
lanches are large@18#. In d52, unlike in d51, most ava-
lanches are finite, but they involve multiple topplings
sites. A theoretical understanding of this case remains
complete@19#. For d>4, a mean-field description of ava
lanche propagation is adequate, and the corresponding e
nents are the same as those of the sizes of clusters in cr
percolation theory@13#.

The BTW model ford53 does not suffer from the prob
lems caused by multiple topplings. It is thus the simpl
undirected model for studying self-organized criticality wi
nontrivial ~non-mean-field! critical behavior. In this case
multiple topplings at a site occur with very low probability
and the avalanche clusters are found to be compact,
fractal dimension 3. Then, simple scaling arguments@20,6#
show that if the probability that there are exactlys topplings
in an avalanche in a system of linear sizeL is Prob(suL),
which satisfies the simple finite-size scaling form

Prob~suL !;s2ah~s/Lb!, ~25!

then we must havea5 4
3 andb53.

The theoretical assumptions that go into the scaling ar
ment have been checked extensively in simulations, bu
rigorous theoretical proof is not yet available. Since the nu
ber of distinct toppled sites is assumed to be proportiona
the number of topplings, we see that the probability that
avalanche hassd distinct toppled sites also varies assd

24/3.
As a check on the scaling theory, note that the probabi

that an avalanche reaches a distanceR scales as the probabil
ity that the number of topplings is greater thanR3, hence as
1/R, which also agrees with the known result about the
pected number of topplings at a distanceR.

The only exponent that this simple argument does
give is the exponent for the duration of avalanches. But
propagation of avalanches occurs along a spanning tree p
by the equivalence between the sandpile model and the s
ning trees@5#. Hence, the durationT of an avalanche mus
vary with its linear extent asT;Rz. And thez is for span-
ning trees, which is the same as thez we used for LERWs.
The knowledge ofz thus allows us to estimate the expone
for the duration of the avalanches: the probability that
duration of avalanche is greater thanT varies asT2y, where

y51/z50.617 9560.000 15. ~26!

-
.
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VI. CONCLUDING REMARKS

We have already noted that the LERW problem is ve
suited to numerical studies. In the two-dimensional case,
have collected data for over 103 realizations of walks withN
up to 229. Thus the numerically determined loop-size dist
bution is an average over more than 831010 loops ~only
about 31.25% of the steps taken form nontrivial loops o
square lattice!. For the three-dimensional case, the cor
sponding number is 2.831010 loops ~only about 21.17%
steps form nontrivial loops on a cubic lattice!. The quantity
that corresponds closest to loop erasures is avalanches i
sandpile model ~more correctly, subavalanches! @21#.
Clearly, simulation of the Abelian sandpile model with a
equal number of avalanches is not possible with availa
computing machines.

Second, our simulations are done on an effectively infin
lattice, and there are no complex boundary effects to co
plicate the analysis of the data. Corrections due to the fi
size of the system show up only in the finiteness of the nu
z-

05611
y
e

a
-

the

le

e
-

te
-

ber of stepsN of the random walk. This seems to be we
described by simple finite-size-scaling theory. If we want
to determine the exponentz using the sandpile model, or th
spanning trees, the largest system sizes accessible wou
much smaller.

The dimension independence of the exponent characte
ing the distribution of areas of erased loops for 2<d<4 is
rather unexpected. The exponent depends on the dimen
for d.4. This conclusion is a direct consequence of t
scaling theory. We have been unable to find a more trans
ent proof of this result. We note that for theq50 state Potts
model, some other exponents, e.g., the anomalous dimen
h ~the spin-spin correlation function at the critical point va
ies as 1/r d221h), show dimension independence. It is know
that h50 in all dimensions@22#.
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