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Distribution of sizes of erased loops of loop-erased random walks in two and three dimensions
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We show that in the loop-erased random-walk problem, the exponent characterizing the probability distri-
bution of areas of erased loops is superuniversatl dfimensions, the probability that the erased loop has an
areaA varies asA~? for largeA, independent ofl, for 2<d=<4. We estimate the exponents characterizing the
distribution of perimeters and areas of erased loogk=i2 and 3 by large-scale Monte Carlo simulations. Our
estimate of the fractal dimensianin two dimensions is consistent with the known exact vajuédn three
dimensions, we get=1.6183+0.0004. The exponent for the distribution of the durations of avalanches in the
three-dimensional Abelian sandpile model is determined from this by using scaling relations.
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[. INTRODUCTION was guessed earlier by Guttmann and Bursill from numerical

The loop-erased random-walkERW) problem was first ~ simulations[9]. A proof of this result without using confor-
defined by Lawlef1] as a more tractable variant of the well- mal field theory has been given by Kenyfd0]. Using con-
known self-avoiding walk problem. The problem turns out toformal invariance, Duplantier has obtained the exact prob-
be related to many well-studied problems in statistical physabilities of no intersection oh LERWSs of /* steps starting
ics, but it seems to have attracted less attention than it derear each other in two dimensions, and also the winding
serves. The total number of publications dealing with thisangle distributiorf11]. The distribution of sizes of the erased
problem is a few tens compared to several thousand dealingops was first studied ifL2]. Priezzhev has used bounds on
with self-avoiding walks or random walks. It was shown by the intersection probability of loop-erased walks with ran-
Lawler[2] to be equivalent to the special case of the Laplac-dom walks to show that the upper-critical dimension of the
ian self-avoiding walk problem defined by Lyklenw al.  Bak-Tang-WiesenfeldBTW) sandpile model is 413].

[3]. Majumdar{4] showed that this model is equivalent to the  The plan of this paper is as follows. The LERW model is
classical graph-theoretical problem of spanning trees ouefined in Sec. Il. In Sec. Ill, we recall the main points of the
graphs and the-state Potts model in the limi—0. This  scaling theory of the distribution of erased lodd%], and
equivalence also relates this problem to the Abelian sandpilepply it to show that the exponent characterizing the distri-
model of self-organized criticality5]. In fact, as we will bution of area enclosed by the erased loops is the same for
show in this paper, this model provides a numerically effi-2<d<4. We determine the behavior of the distribution
cient method of determining the only unknown critical expo-functions for the perimeter and the area of the loops in the
nent of the Abelian sandpile model in three dimensions.  scaling limit, for very small or very large values of the argu-

This prompted us to undertake the numerical study of thenent of the scaling functions. The simulation technique and
LERW’s in d=2 and 3 reported in this paper. We obtain the results obtained are described in Sec. IV. The exponent
fairly precise estimates of the fractal dimension of LERWSs incharacterizing the distribution of the durations of avalanches
d=2 and 3. We note the interesting consequence of the scailk the BTW sandpile model id=3 is determined in Sec. V,
ing theory that the distribution of the area of the erased loopand some concluding remarks follow in Sec. VI.
has the same exponenti@dependent of the dimensionfdr
2_sds4. In d= 3, the numerical value pf the fractal dimen- Il. DEEINITION OF THE MODEL
sion of LERW's enables us to determine the avalanche du-
ration exponent of the Abelian sandpile model, using the Consider a simple random walk ondedimensional lat-
scaling relations and other exactly known exponents of thdice. We start with a particular realizatiofy of the random
model[6]. walk having N steps, W={wgy,wq,W5, ... Wy_1,Wy},

A good review of earlier results on the LERW problem wherew; is the site reached by théh step of the walk. We
can be found if7]. Lawler showed that the fractal dimen- define the LERWL corresponding tdV as the path obtained
sionz of LERWs is 2 ford=4 andz=<(d+2)/3 ford=4  from W by erasing each loop as soon as it is formedMf
[7]. Recently, it was shown rigorously that in two dimen- has no self-intersections, we defide=W. If W has self-
sions,z is strictly larger than 18]. Using the known exact intersections, lef be the earliest step that leads to self-
results about the critical exponents of the Potts model fronintersection inYV, so thatj is the least integer such that
conformal field theory, Majumdar was able to prove exactly=w; for somei<j. Then, we obtain a new walk)’
thatz=5 for the LERW problem ind=2 [4], a result that ={wg,wy, ... W, W1, ... Wyo1,Wy} by deleting all

steps betweenandj, keepingi and deleting. This process,

corresponding to loop erasure of the earliest loop formed, is
*Email address: himanshu@theory.tifr.res.in repeated until loops can no longer be found. The resulting
"Email address: ddhar@theory.tifr.res.in walk L is the required LERW corresponding . This
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/E /Pro/)=1 for d<4. (4)
=0

For large/, F(/) is expected to vary as a power o6f
say as”~ "1, However, for a finiteN, there is a cutoff size
/*, and loops of size”>/" are very unlikely. The cutoff
value/* varies as a power dfl, say/*~N¢?. This suggests
that F(/,N) satisfies the scaling form

F(/,N)~/"" " (/IN?). (5

The cutoff exponentp can be determined by the follow-
ing simple argumenf12]: The cutoff for the perimeter of
erased loops should also vary @, the average length of
the LERW afterN steps. Since this scales B? [Eq. (1)],
we getop=2z/2.

The exponent is also expressible in terms af For /
</, the total number of loops of size / for a walk of N
steps varies ablF(/), and is much greater than 1. Fgr
>/, we expect a much stronger decay. Fer@<4, we
Seta significant number of large loops, and thus in this case,
we expect that

FIG. 1. An illustrative example of the loop-erasing procedure:
The random walka-b-c-d-e-- - - -p starts ata and ends ap. The
erased loops are shown by thin lines. Note that at the mowhile
the random-walk path intersects itself, the LERW encounters n
intersection, as the loopg-h-i-f has already been erased.

NF(/7*,N)~0O(1). 6
procedure of loop erasure is illustrated in Fig. 1. ( )~0(1) ©

The length ofL is the number of steps if. We will  pytting in the scaling fornt5), this implies that
denote it byn. For a fixedN, n is a random variable. We
define the critical exponemtof the LERW by the relation T=1+2/z. (7)

(n)~N#2 (1) Thus, the scaling form for the distribution of loop perim-
eters is determined in terms of a single exporerand is
for large N, where the angular brackets denote averagingliven by
over all random walks oN steps. As the root-mean-square

end to end distancB is the same as that for random walks, F(/\N)~/"##(/IN?)  for />1. ®
we haveR~NY? and(n)~R?Z Thus,z is the fractal dimen- . . -
sion of the LERW. An interesting quantity is the area enclosed by a loop. In

two dimensions, this is straightforward to determine. In three

dimensions, it may be defined as the minimum number of

IIl. SCALING THEORY FOR THE DISTRIBUTION plaquettes required to form a simply connected surface

OF LOOP SIZES bounded by the loop. In this study, we used an alternate,

Let Prob¢”,N) denote the probability that a loop of pe- computationally simpler, measure of this area. We simply

rimeter/ will be erased at th&lth step of the random walk. Project the loop onto the three coordinate planes, and mea-

Let F(/,N) denote the cumulative probability that a loop of SUre the areas of the projections. If the three areas are

perimeter/ or greaterwill be erased at th&th step of the a1,2a2,2ar}d as, we define the area of the loop to baj(

random walk. We shall study the behavior of this function+a2+a3) " The generalization to higher dimensions is ob-

for large N, and write vious.
Let F(A,N) be the probability that a loop of area greater
Prol( /)= lim Pro(/,N) ) than or equal ta\ is generated at thdth step of the random
N—o walk. A loop of perimeter” has a linear siz&~ /" and an
areaA~R?2. It is then easy to see from E@8) that for
and N,A>1,
F(/)=lim F(/,N). (3) F(A,N)~A"1g(A/N). (9)

N— oo
Here also the scaling functiog(x) goes to a constant for
We adopt the convention that if no loop is formed at ax—0, and decreases rapidly to zero for 1.
step, it will be said to be an erasure of a loop of perimeter 0. Thus we find the rather unexpected result that the distri-
With this convention, we clearly haye(O,N)=1 for all N. bution for the area of the loop is independent even, agind
Ford=4, the mean number of loop length erased per stefmence is the same for all dimensiotiswith 2<d<4. This
tends to 1 for largeN. This implies that argument does not work ith= 1, as there Prob() decreases
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exponentially with /, and the scaling theory assuming *
power-law decays fail§14]. For d=4, the LERW behaves AProb(ON)=— >, AProk/,N)~KN~ 923 ,(d-2-2/z
as a random walk, and for random walks, the area of the loop /=2 . (16)
varies as the perimeter of the loop. Hence we would expect
that the probability that a loop of argais formed varies as This summation over” has an upper cutoff proportional to
A~%¢ for d>4. The probability that a loop of area greater ,/+ |n two dimensions, we get
than or equal taA is formed varies a#&\~ %% for d>4.

We now determine the behavior of the scaling function AProl/=0N)~K(logN)/N. (17
f(x) in Eq. (8) for small and large values of the argument
Clearly, asx tends to zerof(x) tends to a constant, which In three dimensions, the summation diverges a$){”
we choose to be 1, anf{x) tends to zero for large. We ~N*2 Thus, we get

define AProl(/=0N)~K/N for d=3. (18)
AProl(/,N) =Prok{/,N) - Pro{/). (10 For largex, f(x) is expected to decrease as exp(’).
The exponentb can be determined as follows. We note
that for any constant<1, the probability that a loop of
perimeter eN is formed at theNth step should vary as
AProk{/,N)~—K N~222, (11) exp{—K(e)N} for fixed € andN tending to infinity[15]. This
' implies thatb=2/(2—2z), and hence

whereK , is an /-dependent constant, and the exponent is
independent of”. It is easy to calculate Prob(®) in arbi-

trary dimensiond. The conditional probability of forming a Similarly, we can determine the behavior of the scaling
loop of perimeter 2 at thilth step is O if the random walker functiong(x) in Eq. (9). Using the fact thah varies as”2?

returned to origin at stepN—1), and it is 1/(2) otherwise o, /=</*, from Eq. (14) we see that the functiog(x)
(for a d-dimensional hypercubical lattice with coordination determining the finiteN cutoff effects varies as

number 2i). Thus

If for x near zero, + f(x) varies asx?, we see that keeping
/ fixed, and in the limit of largeN,

f(x)~exp —Kx?(2=2)  forlarge x. (19

g(x)=g(0)exp—Kx¥?)  for small x. (20)

1
Pro(2N)=5-(1-gn), (12 For largex, g(x) should vary as exp{Kx°), wherec is
some exponent. Let be a small numbex 1. Using the fact
wheregy, is the probability that the random walker returns to that the probability of loops of ared ? should decrease only
origin afterN—1 steps. Ird dimensionsgy, varies asN~ %2 as exg—K(e)L} for fixed € in the limit of largeL, we see that
for largeN. Thus, we see that for largé, AProb(2N) var- ¢=1, and
ies asN~ 92, Comparing this with Eq(11), we geta=d/z,

and g(x)~exp—Kx) forlarge x. (21
_ , It is interesting to compare this behavior with thatf k) for
/N dr2 /
AProl{/,N) KN for /+0. 13 large x. These behaviors are consistent only if for a large
AlSo loop of areaA>N, the average perimeter varies as
o [~/ (AN 22, (22
f(x)=1—Kx%* for x near O. (149

_ . This behavior should be contrasted with the behavior for
(We shall denote an undetermined ConstanKbyts value in A<N, where the average perimeter Variesﬁg with no
different equations need not be the sarfker other values of  explicit dependence orf*. It is interesting to note that this

/'# 2, this then implies that scaling law for large loops remains valid even outside the
" ) scaling limit for A of orderN® with 1<sa<2. Fora=2, it
K, =K/7%% for />1. (15  gives a perimeter proportional 19, as it should.

This may be understood as follows. The main deviation of
Prob(/,N) from its asymptotic value comes from the cases
in which the LERW at stefN— 1 is of length<//, and the The simplest algorithm to simulate the LERW problem on
probability that the walker afte¥ steps is within a sphere of a computer is to actually generate the trail of a random walk
radius /' centered at the origin varies a&/’N~%2 for / step by step on d-dimensional lattice. At each new step, if
<N. a loop is formed it is erased. This is straightforward to imple-

We can also determine the leadid dependence of ment, but requires a large amount of memory in large dimen-
Prob(“=0,N). Since for any nonzerg’, Prob(¢’,N) isless sionsd, as for simulating a walk oN steps, one needs to
than its limiting value for larg&, Prob(ON) must be larger have a lattice of linear sizdl”2, which means that the re-
than Pro0). In fact, quired memory increases &{N%?).

IV. NUMERICAL SIMULATIONS
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FIG. 2. Variation of/2#F(/,N) with / for two-dimensional FIG. 3. Variation of AF(A,N) with A for two-dimensional
LERW. Solid lines represent the best fit of E§3) with parameter LERW. Solid lines represent the best fit of E§3) with parameter
values(including an estimate af) given in Table I. values given in Table I.

walks in each case. For the two-dimensional case, we also

The algorithm that makes the most efficient use Ofsimulated a small number of walks forup to 34,

memory would store the walk as a linked list, keeping only
the unerased steps. But there is a memory/CPU tradeoff, and
the computation time increases because searching for self-
intersections is very inefficient in this scheme. In Fig. 2, we show the plot for the cumulative distribution
In our simulations, we used a hybrid scheme for storingfunctionF(/,N) [16]. We plot/??F(/,N) versus/. There
the coordinates of the points visited by the walk. We stords a significant deviation from simple power-law behavior for
the coordinates of the LERW in not one, bdtlists, where  very small~” and for large”. For/</"*, the data fit well to
M is a large number. There is a unique hashing rule thathe functional form given by Eq14). In the small”” regime,
assigns a site to one of the lists, so that checking for athe leading correction is a correction to scaling. Incorporat-
intersection has to be done only within one list. To see if ang this, we fit the data to the form
point already belongs to the LERW, we have to search only
in the list corresponding to the point in question. The best
choice ofM is O(/™), as then each list ha®(1) entries.
With this, we were able to simulate a two-dimensional walk
of 2% steps in abou3 h and 16 min using~60 Mb of  whereC, is related to the fractal dimension v&,=2/z.
memory on a 350 MHz Pentium-Il machine. In three dimen- The best-fit values of all the parameters in E2Q) are
sions, a walk of 2° steps took about 24 min and300 Mb  tabulated in Table I. We note thél; is 1 within our error
of memory on a similar machine. bars. Furthermore, the exact value®f is also known to be
Simulations were carried out for a total walk lengtt®f 8. As a result, one more set of values was estimated for the
2" steps, withr =25, . . . ,29 fortwo-dimensional walks and parameters by constraining, and Cs to these values. The
r=24,...,28 forthree-dimensional walks. To eliminate the parameter values thus obtained are also tabulated in Table I.
initial transients, we collected the statistics of loops onlyThe fit is rather good for all’=10. Statistical fluctuations
after discarding the firdil/2 steps. In addition, an ensemble are large for/=10% as there are not many such loops
average was taken over 3l@istinct realizations of random generated.

A. Two-dimensional LERW

. (23

Ci Corn A2 Ca
FO(/,N):/—CZexp[—C3(/ 2/N)“] 1+/’_Cs

TABLE I. Estimated values of various parameters corresponding t@¢Z3yfor the variation of the loop
perimeter and the area for two- and three-dimensional LERWSs. The values without error bars are fixed during
the estimation of the other parameters.

Cy C, Cs C, Cs
2D / 0.3533+0.0004 1.599#0.0005 1.}+0.1  1.58-0.03  1.000:0.007
/ 0.35385-0.00025 g 1.1+0.1  1.56-0.03 1
A 0.127316:0.000015 1 9.80.7  0.494-0.003 1
3D v 0.1527-0.0003 1.23520.0003 2.80.3  1.69-0.02 0.86-0.05
A 0.1312+0.0002 1 3%7  0.142:0.005 0.3940.015
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FIG. 4. Variation ofNAProb(”,N) with N for /=0, 2, 4, and FIG. 5. Variation of/??F(/,N) with / for three-dimensional

6 in two dimensions. For better visibility, the data points for ~LERW. Solid lines represent the best fit of £83) with parameter
=2, 4, and 6 have been displaced vertically by 0.69, 0.59, andalues given in Table I.
0.57, respectively.

compared with the value=1.623+0.011 obtained by Gutt-

In Fig. 3, we have plotted thé&F(A,N) versusA for  mann and Bursil[9]. Because of the larger fractal dimension
different values ofN, and also shown the best fit using the of walks, for the same value dfl, there are significantly
fitting form Eq.(23) with / substituted byA. While estimat- more longer loops generated @=3 than ind=2. As a
ing the parameters, we constrain€gd andCs to 1. This is  result, we see power-law scaling over roughly five decades
because the exact value @f, is known to be 1 and the of / in Fig. 5 compared to that of about four decadeg’ah
unconstrained value &g turns out to be 1 within error bars. Fig. 2.

This allows a better estimate of the remaining parameters. In Fig. 6, we show the plot foF (A,N), the cumulative
The estimated best-fit values of parameters for this data selistribution function for the loop area. We have plotted
are tabulated in Table I. It is clearly seen from Fig. 3 that theAF(A,N) versusA for different values ofN. An unbiased
scaling form fits the data very well in nearly the entire range.estimate ofC, from the best fit gives a value 1.000 00

We obtained more accurate estimates of Probl) for +0.00005. Thus, we sef, to be exactly 1 and estimated
/<100 by taking an ensemble average ove? tififerent the remaining parameters by fitting the scaling form given by
realizations of the random walk. In Fig. 4, we have plottedEq. (23) with /* substituted byA. From the figure, it is
the variation ofNAProb(”,N) versus log) in two dimen-  clearly seen that this form approximates all of the data very
sions for /=0, 2, 4, and 6. We see clearly that while well for A=10. The estimated values of the parameters are
NAProb(ON) has a linear variation with lody), for other tabulated in Table I. Here also, the exponent in the correction
values of/ this tends to a limiting constant value fef  to the scaling term turns out to be different from 1.
>1. This is in full agreement with the predictions of the In Fig. 7, we have replotted the data of Fig. 6 with
scaling theory Eqs(13) and (17). AF(A,N) plotted against A/N)%2. We see that the curves

B. Three-dimensional LERW

o

The distribution of loop sizes for the three-dimensional -1}
walks by the perimeter is shown in Fig. 5. The format of
presentation is exactly the same as in the preceding subse:
tion. We fit the data to the form given by E@®3). From the

figure, it is seen that this scaling form fits all of the data veryg
well for /=10. The best-fit values of parameters in this &
equation are tabulated in Table I. We find that in this case the 9y
: ) . 107°F

best-fit value of the correction to the scaling expon€gt N
turns out to be 0.86, clearly different from 1. . B

Our estimate of the best-fit value of the fractal dimension ; %ﬁﬁ
z gives . 8

7=1.6183-0.0004, d=3. (24) 1”100 10* 10° 124 10°

This value is not very sensitive to the choice of parameters FIG. 6. Variation of AF(A,N) with A for three-dimensional
C;, C3, C4 andCs. The error bar orz gives our subjec- LERW. Solid lines represent the best fit of E§3) with parameter
tive estimate of the errors of extrapolation. This should bevalues given in Table I.
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the height at any site exceedsd21), it topples, and its
height decreases byd2 and one grain is transferred to each
o of its neighbors. If this makes some other sites unstable, they
are toppled in turn, until all sites are stable, and then a new
grain of sand is added.

Bak et al. observed that in the steady state of such a pile,
adding a grain gives rise to a sequence of topplings, and the
size of such avalanches is a random variable with a power-
law tail. Determining the exact values of the exponents char-
acterizing these tails has been the main theoretical problem
in the area of self-organized criticality.

The model ind=1 is rather trivial, and does not show
. . . . . . . . . simple power-law tails of avalanche sizes, as most ava-
0 1 2 3 4 5 6 71 8 9 10 lanches are larggl8]. In d=2, unlike ind=1, most ava-

100 (/N> lanches are finite, but they involve multiple topplings of
sites. A theoretical understanding of this case remains in-
complete[19]. For d=4, a mean-field description of ava-
lanche propagation is adequate, and the corresponding expo-
hents are the same as those of the sizes of clusters in critical
percolation theory13].

The BTW model ford=3 does not suffer from the prob-
lems caused by multiple topplings. It is thus the simplest
undirected model for studying self-organized criticality with
nontrivial (non-mean-field critical behavior. In this case,
multiple topplings at a site occur with very low probability,
and the avalanche clusters are found to be compact, with
fractal dimension 3. Then, simple scaling argumd2, 6]

FIG. 7. Variation of AF(A,N) with 100(A/N)%? for three-
dimensional LERW showing the behavior of the exponential cor-
rection term. The thick straight line represents the best fit of Eq
(23) with parameter values given in Table I.

are approximately linear for sma#l/N, verifying the theo-
retical prediction of Eq(20). For larger values oA/N, the
slope decreases as expected from @4).

In Fig. 8, we have plotted the variation afProb(/,N)
versusN for /=0, 2, and 4. The data were obtained by
averaging over 19 different realizations of 100-stepped

028
walks. For Prob(), we used the values from thé=2 show that if the probability that there are exaciliopplings
simulation. W(i see goodsggregm_ent W'th,_the predictédl 1/ an avalanche in a system of linear sizés Prob§|L),
variation for/=0 and 1N""variation for/=2 and 4. yhjch satisfies the simple finite-size scaling form

V. RELATION TO EXPONENTS OF

—_—c— b
THE SANDPILE MODEL Prol(s|L)~s"*h(s/L"), (25)

The sandpile model of Bak-Tang-Wiesenfeld is defined as 4
follows [17]: We consider a hypercubical lattice of linear then we must hava=3 andb=3. , ,
sizeL in d dimensions. At each site is a non-negative integer 1€ theoretical assumptions that go into the scaling argu-
that gives the “height” of the pile at that point. The system Ment have been checked extensively in simulations, but a
is driven by adding a grain of sand at a randomly chosen sitd!90r0UsS theoretical proof is not yet available. Since the num-

thereby increasing the height of the pile at that site by 1. ifoer of distinct toppled sites is assumed to be proportional to
the number of topplings, we see that the probability that an

avalanche hasy distinct toppled sites also varies 85;4’3.

As a check on the scaling theory, note that the probability
that an avalanche reaches a distaReeales as the probabil-
ity that the number of topplings is greater thaf, hence as
1/R, which also agrees with the known result about the ex-
pected number of topplings at a distariRe

The only exponent that this simple argument does not
give is the exponent for the duration of avalanches. But the
propagation of avalanches occurs along a spanning tree paths
by the equivalence between the sandpile model and the span-
ning trees[5]. Hence, the duratioff of an avalanche must

[ AProb(,,¥) |

107 ) E vary with its linear extent a3 ~R?. And thez is for span-
T, ning trees, which is the same as theve used for LERWS.

10t 10> The knowledge of thus allows us to estimate the exponent

N for the duration of the avalanches: the probability that the

duration of avalanche is greater th@rvaries asT ¥, where
FIG. 8. Variation ofAProb(”,N) with N for /=0, 2, and 4 in

three dimensions. Straight lines show the fits using slopésfor
/=0 and— 3 for /=2 and 4. y=1/z=0.617 95-0.000 15. (26)
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VI. CONCLUDING REMARKS ber of stepsN of the random walk. This seems to be well

. described by simple finite-size-scaling theory. If we wanted
.We have alrt_aady notgd that the LERW prqblem IS V€15 determine the exponentusing the sandpile model, or the
suited to numerical studies. In the two-dimensional case, w

have collected data for over 3@ealizations of walks withN panning trees, the largest system sizes accessible would be

. . . ... much smaller.
up _to 22.9' Thus the numerically determlnedoloop-S|ze distri- The dimension independence of the exponent characteriz-
bution is an average over more tharx 80'° loops (only

. ing the distribution of areas of erased loops fer@<4 is
about 31'25% of the steps ta"?” forf” hontrivial loops on aragt]her unexpected. The exponent dependg on the dimension
square lattice For the threeo—dlmensmnal case, the COMe~5r d>4. This conclusion is a direct consequence of the

; . o .
sponding numbe.r. is 2:810°° loops (only about 21'17./0 scaling theory. We have been unable to find a more transpar-
steps form nontrivial loops on a cubic lattjc&he quantity

that corr nds cl ttol rasures is avalanches in t nt proof of this result. We note that for the=0 state Potts
at corresponds closest to 1oop €rasures Is avajanches odel, some other exponents, e.g., the anomalous dimension
sandpile model (more correctly, subavalanched21].

. . . . : 7 (the spin-spin correlation function at the critical point var-
Clearly, simulation of the Abe_llan sandp|l_e moc_zlel Wlth_ ani o as 1/9-2+7) | show dimension independence. It is known
equal number of avalanches is not possible with availabl

computing machines. fhat 7=0 in all dimensiong22].

_Second, our simulations are done on an effectively infinite ACKNOWLEDGMENT
lattice, and there are no complex boundary effects to com-
plicate the analysis of the data. Corrections due to the finite We would like to thank S. N. Majumdar for his critical
size of the system show up only in the finiteness of the numreading of an earlier version of this paper.
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