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Minimal current phase and universal boundary layers in driven diffusive systems
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We investigate boundary-driven phase transitions in open driven diffusive systems. The generic phase
diagram for systems with short-ranged interactions is governed by a simple extremal principle for the macro-
scopic current, which results from an interplay of density fluctuations with the motion of shocks. In systems
with more than one extremum in the current-density relation, one finds a minimal current phase even though
the boundaries support a higher current. The boundary layers of the critical minimal current and maximal
current phases are argued to be of a universal form. The predictions of the theory are confirmed by Monte
Carlo simulations of the two-parameter family of stochastic particle hopping models of Katz, Lebowitz, and
Spohn and by analytical results for a related cellular automaton with deterministic bulk dynamics. The effect
of disorder in the particle jump rates on the boundary layer profile is also discussed.
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I. INTRODUCTION

Imagine a driven particle system—it may beany system,
such as ribosomes moving along anm-RNA, ions diffusing
in a narrow channel, or even cars proceeding on a l
road—where classical objects move with preference in
direction and which is coupled at its two ends to exter
reservoirs. Such a system with open boundaries where
ticles can enter and leave will maintain a nonequilibriu
steady state that is characterized by some bulk densityr and
the corresponding particle currentj (r). There is no genera
notion such as a Gibbs measure that would, at least in p
ciple, determine the statistical properties of the steady s
and also other more specialized approaches@1,2# to nonequi-
librium behavior cannot predict into which bulk density th
system will settle. However, it is intuitively clear that unlik
in equilibrium systems, here boundaries will play a decis
part in determining the bulk behavior of the system: Sin
the system is open at the boundaries, particles will flow
pass through the system, and finally flow out at the ot
boundary. Therefore, metaphorically speaking, the curr
will carry boundary effects into the bulk.

This consideration raises two distinct questions that
wish to address. The first concerns the bulk dynamics
link boundary properties with bulk properties. In continu
tion of previous work@3,4#, we show in detail how loca
fluctuations and shocks determine an evolving nonstation
density profile and thus eventually lead to the stationary b
density as a function of the given fixed boundary densit
i.e., the phase diagram of the system~Sec. II!. We illustrate
these mechanisms in a specific example, viz., a clas
lattice-gas models introduced some years ago by Katz, L
owitz, and Spohn@5#. Starting from such a mesoscopic view
point, our theoretical approach allows us then to make c
tact with an earlier phenomenological hydrodynam
approach@6,7# ~Sec. III!.
1063-651X/2001/63~5!/056110~12!/$20.00 63 0561
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The second question concerns the properties of the
tionary boundary layer. In Ref.@6#, it was argued, on the
basis of scaling considerations and supporting Monte C
simulations, that the density profile in the maximum curre
phase~where the bulk density becomes independent of
boundary conditions! decays towards its bulk limit as
power law with an exponent of21

2. The universality of this
power law was subsequently confirmed by exact solution
various lattice-gas models@8–12# and a renormalization-
group analysis of the corresponding stochastic field the
@13#. In Sec. IV, we present a refined version of the scal
argument of@6# that allows us to predict also the form of th
prefactor, up to a universal amplitude that is extracted fr
the exact solutions, and verify this prediction by Mon
Carlo simulations, described in Sec. V.

In Sec. VI, we introduce a cellular automaton with dete
ministic next-nearest-neighbor bulk interaction and op
stochastic boundary conditions. We investigate to which
tent the theoretical scenario remains valid for this mod
Section VII is devoted to the effects of quenched partic
wise disorder on the boundary-layer profile, and we conclu
with some final remarks and open questions in Sec. V
Technical details for the derivation of some exact results
presented in the Appendixes.

We remark that one expects the topology of the bound
to play an important role in the study of a specific proble
However, when addressing the first question regarding
bulk mechanisms that carry the information, one may dis
gard this dependence. Since, furthermore~as it turns out!, the
nature of these mechanisms is independent of dimensio
ity, we restrict our discussion to the topologically simple
case of one-dimensional systems where the boundaries
duce to two single points. Natural examples for this setup
many-body systems such as those mentioned above,
where the dynamic degrees of freedom reduce to effectiv
one dimension as, e.g., in traffic flow@14–16#, the kinetics of
©2001 The American Physical Society10-1
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protein synthesis@17,18#, ionic diffusion in zeolites@19#, or
the motion of colloidal particles in narrow channels@20#.

II. STEADY-STATE SELECTION

At first glance, the question of steady-state selection
pears to be ill-posed as undoubtedly the answer to this p
lem depends on the system under investigation. However
the case of vanishing right boundary density (r150), Krug
@6# postulated a rather general maximal-current principle t
asserts that independent of the details of the dynamics,
system tries to maximize its stationary currentj in the sense
that j 5maxrP@0,r2# j (r). Herer2 is the constant density o
the left reservoir from which particles are flowing into th
system.~Without loss of generality, we shall always assum
a bulk current to the right.!

The validity of the maximal-current principle was su
ported using phenomenological stability arguments a
Monte Carlo simulations of a nonequilibrium kinetic Isin
model introduced by Katz, Lebowitz, and Spohn@5#. We
shall refer to this model as the KLS model. This is an exc
sion process in which each lattice site may be occupied b
most one particle. Particles hop randomly~with some bias!
to their nearest-neighbor sites with rates depending on
occupation of the nearest- and next-nearest-neighbor sit
the totally asymmetric case, particles hop only to the ri
with bulk hopping rates

0 1 0 0→0 0 1 0 with rate 11d, ~1!

1 1 0 0→1 0 1 0 with rate 11e, ~2!

0 1 0 1→0 0 1 1 with rate 12e, ~3!

1 1 0 1→1 0 1 1 with rate 12d, ~4!

where ueu,1, udu,1. Here ‘‘1’’ marks the occupation of a
lattice site by a particle. The stationary currentj (r) ~Fig. 1!
can be computed exactly from the stationary measure of
periodic system, which is the equilibrium distribution of th
one-dimensional Ising model~see Appendix A!. For d50,
this computation was first carried out by Brandstetter@21#
~see also@6,22#!.

FIG. 1. Exact current-density relations of the KLS model plott
from the formula~A6!. ~a! e50.0, d50 ~TASEP!; ~b! e50.995,
d50.2, considered below;~c! e50.9, d50.9. The rates are define
in Eqs.~1!–~4!.
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For sufficiently strong repulsive interaction~12e!1!, the
current at half-filling is strongly suppressed, which brin
about a two-maxima structure in the current-density relati
The limit e51 leads toj min50. Varying 0<e<1 interpolates
between a single maximum of the current and the doub
hump structure. The other parameter,d, is responsible for the
particle-hole asymmetry.d50 corresponds to a symmetri
graph j (r)5 j (12r). dÞ0 breaks the particle-hole symme
try in favor of a larger particle current~d.0! or larger va-
cancy current~d,0!. For negativee ~attractive interaction!,
the current-density relation always has a single maximu
The special casee5d50 is an exactly solvable model know
as the totally asymmetric simple exclusion process~TASEP!
@23–25#. For this model, the stationary current as a functi
of the particle density is given byj (r)5r(12r). Also the
phase diagram of the open system is known exactly@26,8,9#.
The casee5d is a simple model for traffic flow, which ha
been studied in detail in@27#.

To study the effect of open boundaries, we imagine
left boundary of the system~where particles are injected! to
be coupled to a reservoir of constant densityr̂2 . At the right
boundary, particles hop into a reservoir of constant den
r̂1 . The rates of particle injection and absorption at t
boundaries are specified below. They are chosen such
the reservoir densities induce effective boundary densi
r6 in the system of the same magnitude. We use this mo
for illustration and numerical and analytical verification
our results on the phase diagram~i.e., the bulk densityr as
function of the boundary densitiesr6! and on the shape o
the stationary density profile.

Using insights gained from the exact solution of t
TASEP@8#, it was shown@3,4# how rather general dynamica
properties of driven diffusive systems lead to a phase d
gram governed by the extremal principle,

j 5H max
rP@r1 ,r2#

j ~r! for r2.r1

min
rP@r2 ,r1#

j ~r! for r2,r1

. ~5!

The microscopic details of the system enter only in so far
they determine the functional form of the currentj (r) and
the effective boundary densitiesr1( r̂1), r2( r̂2) which de-
pend on the actual reservoir densitiesr̂6 through the details
of the coupling mechanism. The first relation is an extens
of Krug’s current maximization principle and reduces to
for r150. It was first suggested by Janssen and Oerd
@28#. The second relation is somewhat surprising. It sta
that the system tends tominimize its current if the density
gradientr12r2 , set by the boundaries, is positive.

A. Phase diagrams

The order parameter that characterizes the selected st
state is the bulk density. The structure of the phase diagr
which exhibits a variety of first- and second-order noneq
librium transitions, is determined by the number of extrem
of the current. For systems with a single maximum in t
current at some densityr* , the phase diagram has thre
0-2
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MINIMAL CURRENT PHASE AND UNIVERSAL . . . PHYSICAL REVIEW E 63 056110
phases: a maximal-current phaseC in the domainr2.r* ,
r1,r* ~bulk densityr5r* !, with second-order transition
to the low-density (r5r2,r* ) and the high-density phas
(r512r1.r* ), respectively. These phases are separa
by a first-order transition along the linej (r2)5 j (r1) in the
domainr2,r* , r1.r* .

In a system with two maxima in the current-density re
tion, one also finds maximal-current phases and low-
high-density phases, respectively, separated by first-
second-order transition lines. However, the minimizat
principle for the current brings about a phase of a rat
unexpected nature: In the range of boundary densities
fined by

j ~r1!, j ~r2!. j ~rmin!, r2,rmin,r1 , ~6!

the system organizes itself into a state with bulk densityrbulk
corresponding to the local minimum of the current ev
though both boundary densities support a higher current.
shall refer to this phase as theminimal current phase. Gen-
erally, for a system with two maxima of the current, t
phase diagram consists of seven distinct phases, inclu
two maximal current phases with bulk densities correspo
ing to the respective maxima of the current and the minim
current phase~Fig. 2!.

B. Stability and branching of shocks

To understand the origin of the phase diagram, we fi
recall that in the absence of detailed balance, stationary
havior cannot be understood in terms of a free energy,
has to be derived from the system dynamics. Following K
lomeisky et al. @3#, there are two basic dynamical phenom
ena to consider, namely shocks and the diffusive motion
localized density waves.

A shock in a system of classical flowing particles is
nonequilibrium domain wall that marks the sudden transit
from a stationary region of low density to a stationary reg

FIG. 2. Phase diagram of the KLS model with two maxima
r1,2* and a minimum atrmin50.5 in the current density relation@4#.
Full ~bold! lines indicate phase transitions of second~first! order,
calculated from Eq.~5!. Circles show the results of Monte Carl
simulations of a system with 150 sites~see below!.
05611
d

-
d

nd

r
e-

e

ng
-
l

t
e-
ut
-

f

n

of high density~see Fig. 3!. A well-known example for a
shock is the beginning of a traffic jam on a motorway whe
incoming cars~almost freely flowing particles in the low
density regime! have to slow down very quickly over a sho
distance and then form part of the~high-density! congested
region. A remarkable feature of such shocks is their lon
time stability, i.e., they remain localized over distances co
parable to the size of particles. In some sense one may re
shocks as solitonlike collective excitations of the partic
system@29#. Irrespective of the specific system, mass cons
vation yields the shock velocity

vs5
j 12 j 2

r12r2
, ~7!

where r6 are the shock densities andj 6[ j (r6) are the
corresponding currents to the left~2! and to the right~1! of
the shock, respectively.

A second characteristic velocity describes the motion o
density wave, i.e., a localized perturbation in a station
region of background densityr ~Fig. 4!. Such a perturbation
spreads out and slowly decays in the course of time,
keeps a constant center-of-mass velocityvc . Under mild as-
sumptions on the nature of the steady state, this collec
velocity is given by the derivative

vc5
]

]r
j ~8!

of the stationary current@24#.
The velocities~7! and~8! and the underlying single-shoc

picture are sufficient to understand the phase diagram of
tems with a single maximum in the current@3#. A change of
sign in the shock velocityvs marks a first-order transition
between the low- and high-density phases, whereas a ch
of sign in the collective velocityvc signals a second-orde
transition to the maximal-current phase. If the current ha

t

FIG. 3. Motion of a shock in an ensemble average of the lat
gas. To the left~right! of the domain wall, particles are distribute
homogeneously with an average densityr2 (r1) on each lattice
site. The corresponding stationary currentsj 6 determine the drift
velocity vs @Eq. ~7!# of the shock.

FIG. 4. Diffusive spreading of a density perturbation in t
steady state at two timest2.t1 . The collective velocity describes
the motion of the center of mass of the perturbation.
0-3
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local minimum, it was argued in a qualitative manner how
single shock may branch into two distinct shocks, mov
away from each other~Fig. 5!, and thus lead to the occur
rence of the minimal-current phase@4#. Here we describe in
detail how the branching mechanism and the resulting st
ture of the shocks follows from the stability criterion,

vc~rD!.vs~rL ,rR!.vc~rR! ~9!

for a single shock, which one obtains by considering the fl
of fluctuations in the neighborhood of the shock@24#.

Consider the time evolution of a judiciously chosen sho
initial state. Because of ergodicity, the steady state does
depend on the initial conditions and a specific choice
volves no loss of generality. It is convenient to consider
initial configuration with a shock with densitiesr2 andr1

on the left and on the right, respectively, which is compos
of many narrow subsequent shocks at various levels of in
mediate densities~Fig. 6!. The left densityr2 is supposed to
be less than the densityrmin where the current has a loca
minimum, whiler1 is taken as larger thanrmin .

From the convexity condition~9!, one reads off which of
these ‘‘minishocks’’ are stable while Eq.~7! yields the re-
spective shock velocity. Consider now the minimal-curre
regime defined by Eq.~6!. We define ass6 the two inflec-
tion points of the current-density relation between the t
maxima of the current. Forr2,s2 andr1.s1 , one finds
the following.

~i! There are densitiesru.rmin andr l,rmin such that the
two sets of minishocks which have~a! r2

(n).ru and ~b!
r1

(k),r l , respectively, are stable.
~ii ! All mini shocks in the set~a! move to the right while

all mini shocks in the set~b! move to the left.
~iii ! The shock velocities in the two sets of stable m

ishocks are such that they all catch up with the respec

FIG. 5. Monte Carlo simulation of the particle density distrib
tion in a lattice gas in the initial state~one shock! and after 300
Monte Carlo sweeps, showing branching into two shocks. 3
histories are averaged over@4#.

FIG. 6. Schematical drawing of small shocks and their velo
ties, leading to branching and coalescence. Each ‘‘minishock’’
left and right boundary densitiesr6

(k) in the intervalr2<r2
(k) and

r1
(n)<r1 , respectively. The boundary densitiesr6 are within the

minimal-current regime~6!.
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slowest one and thus eventually coalesce into two dist
single large shocks with boundary densities (r2 ,r l) ~mov-
ing to the left! and (ru ,r1) ~moving to the right!, respec-
tively.

This leads to the branching of the single~composite!
shock into two distinct, oppositely moving shocks. The v
ues ru,l depend onr6 through the stability criterion~9!.
Notice that the composition into subsequent minishocks
just a tool to visualize the mechanism leading to the bran
ing. One may always set the imagined length of the m
ishocks to zero to obtain the same prediction for the ti
evolution of a single shock. This is confirmed by the sim
lation data shown in Fig. 5. The coalescence of sho
within each branch of the pair of oppositely moving shoc
is analogous to the phenomenon of coalescence, which
been proved rigorously to take place in the TASEP on
hydrodynamic scale@30# ~see below!. Notice that because o
the diffusive fluctuations in the shock position, the shock
time t.0 does not appear in Fig. 5 as a sharp increase of
density.

It remains to discuss the behavior of the unstable sho
We consider the shocks (r2

(n) ,r1
(n)) with r2

(n)>rmin and
r1

(n)<ru . By taking the limit of infinitesimal shock heigh
«5r1

(n)2r2
(n) , one obtains as ‘‘velocity’’ of these infinitesi

mal unstable shocks the collective velocityuc(r2
(n)). Thus

infinitesimal shocks move with the speed of perturbatio
Going to the scaling limitx,t→` ~with u5x/t fixed!, diffu-
sive ~and even superdiffusive! fluctuations are scaled out an
there remains only a large-scale description of the evolv
density profile in terms of pointsu representing the unstabl
minishocks. Hence on this scale a point with densityr moves
with velocity vc(r). This observation leads to a hydrody
namic description of the large-scale dynamics discusse
the following section.

III. HYDRODYNAMIC APPROACH

Because of particle number conservation, the local den
of a driven diffusive system with nearest-neighbor hopp
satisfies a lattice continuity equation of the type

d

dt
rk5 j k212 j k , ~10!

wherej k is the expectation value of the current across a bo
(k,k11). For the KLS model, it is given by

j k5~11d!^0100&1~11e!^1100&

1~12e!^0101&1~12d!^1101& ~11!

evaluated at the four neighboring sites~k21, k, k11, k12!.
The lattice continuity equation does not admit an expli
solution: In order to integrate Eq.~10!, one would have to
write down the equations of motion for the currents~which
involve five-point correlation functions! and would eventu-
ally end up with an infinite hierarchy of coupled equatio
for n-point correlation functions.

On the other hand, according to the previous discuss
one can construct the time evolution of a nonstationary d

0

-
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sity profile on the Euler scalek,t→` with u5k/t fixed.
There are shock discontinuities with a range of stability
fined by Eq.~9!. A shock (r2 ,r1) is stable if the convexity
condition ~9! for the current is met in the full interva
@r2 ,r1#. ~The diffusive nature of the shock position do
not appear on this scale.! Outside the range of stability, th
prescription for the construction of the density profiler
[r(u) yields the implicit relation

u5vc~r!. ~12!

Notice that this is nothing but the scaling solution of t
continuum limit

]

]t
r52

]

]x
j ~13!

of the continuity equation~10!. Here j [ j (r) is the station-
ary current across a bond at densityr, which for the KLS
model is given in Appendix A. Settingu5x/t then yields
Eq. ~12!. On this hydrodynamical scale, the stability criterio
of the shock becomes the definition of a shock discontinu
for the weak solutions of the Cauchy problem defined by
~13!, together with the initial conditionr(x,0)5r0(x) ~see
@33# for a full discussion!.

One may go further and try to adapt this insight to t
derivation of the stationary solution of a finite system w
fixed boundary densitiesr6 . Following Refs.@6,7#, we pos-
tulate a diffusive excess currentj ex52n(]r/]x), which is
to be added to the continuity equation~13!, which then reads

]

]t
r52

]

]x
J ~14!

with J5 j 2nr8. The stationarity condition takes the form

J5const[ j * ~15!

with boundary conditions

r~0!5r2 , r~L !5r1 . ~16!

This may be integrated and one obtains

E
p2

r1 dr

j ~r!2 j *
5

1

n E0

L

dx5L/n. ~17!

In the limit L→`, the left-hand side has to become dive
gent. This condition determines the steady-state currenj *
and one recovers the extremal principle~5!. It is important to
note that the argument is independent of the value ofn and,
indeed, of the precise form ofj ex @6,7#.

The same result could be obtained by takingn→0 and
keeping the system sizeL fixed. In the continuum approach
n plays the role of a viscosity that prevents the occurrenc
instabilities well known, e.g., for the inviscid Burgers equ
tion ] tr52]xr(12r) that one obtains rigorously@31# from
the TASEP in whichj 5r(12r). Adding the viscosity term
n]xr to the Burgers equation@32#, but setting the viscosityn
to zero, yields solutions with stable shocks of width}2n→0.
05611
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It is intriguing that an infinitesimal viscosity term~propor-
tional to the lattice constant! appears when taking the ‘‘na
ive’’ continuum limit k→x5ka, t→t85ta of the lattice
continuity equation~10! for the TASEP and keeping al
terms to first order in the lattice constanta. For the TASEP,
one hasj k5^10&k,k11 . Due to the lack of correlations in th
steady state, one may write in the mean-field approxima
j k5rk(12rk11) and then find from the Taylor expansion

]

]t8
r52

]

]x
r~12r!1

a

2

]2

]x2 r. ~18!

This suggests a shock width for the TASEP of the order
the lattice constanta, in agreement with known rigorous re
sults @34,35#. Our previous discussion of the phase diagra
suggests that such an infinitesimal viscosity term~also
known as diffusive excess current! is a generic feature of the
behavior of driven diffusive systems on the Euler scale.
the macroscopic description, it prevents the occurrence
instabilities~which cannot occur in a driven diffusive syste
on the lattice! and at the same time leads to shocks of z
width ~i.e., proportional to the lattice constant! for systems
with short-range interactions and short-range correlation
the steady state.

IV. UNIVERSAL PROPERTIES OF THE BOUNDARY
LAYER

Our derivation of the asymptotic behavior of the dens
profile in the maximum- and minimum-current phases rel
on a continuum description of density fluctuationsf(x,t)
around a state of uniform mean densityr̄. Expanding the
hydrodynamic equation~13! to second order inf and adding
phenomenological diffusion and noise terms, one arrives
the well-known noisy Burgers-Kardar-Parisi-Zhang~KPZ!
equation@13,22,36–39#,

]f

]t
5n

]2f

]x2 2vc~ r̄ !
]f

]x
2lf

]f

]x
2

]h

]x
. ~19!

Herel5d2 j /dr2( r̄) andh(x,t) is Gaussian white noise in
space and time representing the fast degrees of freedom.
noise strengthD is defined through the covariance

^h~x,t !h~x8,t8!&5Dd~x2x8!d~ t2t8!. ~20!

In the usual application to translationally invariant system
the drift termvc]f/]x is eliminated by going to a comoving
frame.

An important property of the one-dimensional KPZ equ
tion is the invariance of the parametersl and D/n under
renormalization~i.e., a change of measurement scale!. The
invariance ofl is a consequence of the Galilean symmetry
Eq. ~19!, which holds in all dimensions, while the invarianc
of D/n results from a fluctuation-dissipation relation speci
to the one-dimensional case@36#. The existence of these tw
invariants implies that the scaling properties of spatiotem
ral fluctuations can be deduced from dimensional analy
Moreover, forvc50 all correlation functions can be reduce
0-5
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to a universal, system-independent form by an appropr
rescaling, which involves only the invariant quantitiesl and
D/n @40#.

In the following, this type of reasoning will be applied t
the open system. Due to the presence of spatially fi
boundaries, the drift term then cannot be eliminated, and
effects are, as we have seen, highly nontrivial. However
the maximum- and minimum-current phases,vc50. The
only quantities that could enter a possible length scale c
acterizing the boundary layer are thereforel, D/n, and the
relevant boundary density or, more precisely, its deviati
Dr5r62rbulk from the bulk density. As the dimension ofl
contains the dimension of time, it cannot enter a station
quantity, and we are left withD/n andDr. The only combi-
nation with the dimension of length is

l b5~D/n!~Dr!22, ~21!

and we conclude that the density profile must be of the fo
@6# ~we assume the boundary to be located atx50!

^f~x!&5DrF~x/ l b!, ~22!

where the universal scaling functionF satisfiesF~0!51 and
vanishes for large arguments.

Let us now postulate, in addition, that the density pro
becomes independent of the boundary density forx@ l b .
This is plausible because in the maximum- and minimu
current phases, there is no mechanism for propaga
boundary information into the bulk, which can be se
clearly also in the directed polymer formulation of the pro
lem @41#. Then the asymptotic behavior ofF has to be such
as to cancel the factorDr on the right-hand side of Eq.~22!,
and it follows that u^f(x)&u'c* (D/n)1/2x21/2 with some
universal constantc* .

It remains to identify the physical meaning ofD/n and the
value of c* . To accomplish the first task, we note that t
stationary height difference correlation function of the on
dimensional KPZ equation is given by@22,40#

^@h~x!2h~x8!#2&5~D/2n!ux2x8u. ~23!

In the present notation, the heighth(x) is the spatial integra
of f, henceh(x)2h(x8) is the fluctuation in the number o
lattice-gas particles betweenx andx8. We conclude thatD/n
is proportional to~a nonequilibrium analog of! the compress-
ibility k, which characterizes the mean-square deviation
the numberN of particles in a sufficiently large volumeL
and is defined through

k5 lim
L→`

^N2&2^N&2

L
. ~24!

For the process~1!–~4!, k is readily computed using Eq
~A1!, and one obtains

k5r~12r!A114r~12r!S 12e

11e
21D . ~25!
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In particular, for the TASEP,k5r~12r!. Using this expres-
sion, the value of the universal amplitudec* can be read off
from the exact solution of the TASEP density profile@8,9#.
Putting everything together, we arrive at the central conj
ture of this section, which states that for any on
dimensional lattice-gas model in a maximum- or minimu
current phase, the deviation of the density profile from
bulk valuedk5u^nk&2rbulku decays asymptotically as

dk5Ak/pk. ~26!

Numerical results for the density profile created by t
process~1!–~4!, shown in Figs. 7 and 8, are found to confir
the conjecture~26!. It is further verified by the exact solu
tions of the TASEP with parallel update@10,11# and of
the partially asymmetric simple exclusion process@12#. In
the latter case, Eq.~26! implies, surprisingly, that the
asymptotic density profile is independent of the asymme

FIG. 7. Deviationdk for the maximal-current phase. The param
eters are as in Fig. 1, withr251,r150.45. The system has 100
sites and averaging is done over 33106 Monte Carlo steps. The
straight line shows the prediction of the universality hypothesis

FIG. 8. Deviation dk for the minimal-current phase, with
e50.96,d50 and boundary densitiesr250.4,r150.6. The system
size and statistics are as in Fig. 7. The straight line shows
prediction of the universality hypothesis.
0-6
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~provided it is nonzero!, since the bias does not affect th
compressibility.

It does, however, affect the length scale beyond which
asymptotic behavior sets in. For small bias, one expects
intermediate range where the density profile follows thex
decay predicted by mean-field theory@6#. More precisely,
from the mean-field stationarity condition~15!, one obtains
the decay lawur2rbulku'n/lx, which sets in beyond the
mean-field boundary scalel b

MF5n/(lDr). The mean-field
profile matches the asymptotic behavior~26! at the length
scale l KPZ5n3/(Dl2), which quite generally describes th
crossover from diffusive to KPZ scaling behavior@40#. Since
for the partially asymmetric exclusion processl is propor-
tional to the asymmetry, we see that 1! l b

MF! l KPZ for van-
ishing bias. It would be interesting to extract this scali
scenario from the exact solution of the partially asymme
model @12,42#.

In fact, the validity of our conjecture may extend beyo
the class of driven diffusive systems with open boundar
The exact form~26! of the density profile has been foun
also in the related problem of an asymmetric exclusion p
cess with a moving impurity, in the phase where the impu
moves at the same speed as the density fluctuations~corre-
sponding to the conditionvc50! @43,44#. It is therefore con-
ceivable that Eq.~26! applies generally in situations where
fluctuating noisy Burgers field is perturbed locally in such
way that the disturbance is stationary in the frame of
density fluctuations.

V. SIMULATION OF THE KLS MODEL

To check the theoretical predictions, we have simula
the two-parameter KLS model for a generic valued50.2,e
50.995 of the coupling constants, chosen such that one
two maxima and one minimum in the current-density re
tion. As we are studying the open system, the injecti
extraction mechanism at the boundaries has to be spec
It is a subtle point deserving special attention. It is t
boundary that induces the phase transitions in driven
tems. So the latter are extremely ‘‘boundary-dependen
Because of the particle interaction, coupling of a sem
infinite system to a reservoir will generically lead to som
discontinuous behavior of the stationary distribution close
the boundary. This is completely independent of any inter
tion with the bulk dynamics. The boundary represents
inhomogeneity of the system since the interaction of the p
ticles with the fixed boundary leads to different correlatio
from those that result from the interaction of particles amo
themselves. The result are effective boundary densitiesr6 ,
which in general may differ from the reservoir densitiesr̂6

and which are not controlled by the interaction with the bu
This is a nonuniversal phenomenon that depends on the
cise nature of the coupling mechanism and on the natur
the particle interaction.

Given two reservoir densities, there is no general rec
for how to eliminate the nonuniversal boundary effects t
result in the effective boundary densitiesr2 ,r1 that enter
the theoretical description of the previous sections. He
these quantities are not easy to control. Ideally, for the p
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pose of theoretical investigation, one would like to constr
an injection and absorption mechanism that leads to a c
stant density profile for a semi-infinite system so that
effective boundary densities are identical to the real bou
ary densitiesr̂6 , which determine the injection/absorptio
rates and hence are the actual control parameters of
model. For the KLS model, we choose an injection mec
nism where the particles on the lattice interact with the r
ervoir particles in the same way as among each other. Su
mechanism can be constructed following Ref.@27#. This
choice of boundary conditions has a nice property: Ifr2

5r1 , the exact stationary measure can be found. It is
Ising measure~A1! for a nonperiodic system with boundar
fields, see Appendix B.

The continuous-time dynamics of the process are mode
by a random sequential update where first a site numberx in
the interval@1,L# is chosen at random. If it contains a pa
ticle, the hopping is attempted with the rates~1!–~4! (1<x
<L22) or Eqs.~B3!–~B5! ~if x5L or x5L21!. If site 1 is
chosen and empty, injection of a particle is attempted w
rates~B1! and~B2!. The rates are normalized with respect
the largest one, in our case 11e. This procedure, repeatedL
times, constitutes one Monte Carlo step. We perform
Monte Carlo simulations for systems of sizesL from 100 to
1000. Densities and currents were averaged over at leastL
rounds, and averaged over seven different histories. The
cation of the first-~second-! order transition was determine
by the appearance of a peak~jump! in the first derivatives of
the bulk densityrbulk(r

1,r2) with respect tor1 andr2. As
an initial state, we chose either the empty or the comple
filled lattice, whichever gave the faster convergence. Des
finite-size effects, the precise analysis of which requires f
ther investigations, the overall agreement of the simula
phase diagram with the predicted one is very good alre
for L5150 ~Fig. 2!.

VI. CELLULAR AUTOMATA WITH DETERMINISTIC
BULK DYNAMICS

The KLS model and indeed most lattice-gas models st
ied in the literature~see@23,24,45,46,31# for an overview!
have stochastic bulk dynamics. On the other hand, the th
retical arguments discussed above do not really make us
the random nature of the dynamical rules. The shock velo
~7! and the collective velocity~8!, which determine the phas
diagram of open systems, are defined also for determin
cellular automata. They depend on the dynamical rules o
through the precise functional form of the currentj (r).

Therefore, it is not surprising that the phase diagram
lattice-gas models with deterministic bulk update and
single maximum in the current-density relation~but random
injection at the boundaries to mimic the coupling to boun
ary reservoirs with variable densities! @47,48,10,11# is found
to be correctly predicted by the extremal principle~5!. In
these models, there is no maximal-current phase@7#, or,
more precisely, the maximal-current phase reduces t
single point corresponding to the specific value of the bou
ary densities at which the current has its maximum. In@47#,
0-7



in
.e
al
th

he
ti

re

w

u
ity
n
pu
,

or

fo
e
e
ea
ca

er

i-

ost
he

th
ves

t

ce
ulk
ts
al

ha-

the
o-

ties
e
ft
ve-
g
ties
le.

ive
mal

nt

cs
rise

-

ere

me

n-

e
nt-

lo-
s

rity
, in

u

J. S. HAGER, J. KRUG, V. POPKOV, AND G. M. SCHU¨ TZ PHYSICAL REVIEW E 63 056110
we argued heuristically that this results from an overfeed
effect that cannot occur for deterministic bulk dynamics, i
the effective boundary densities cannot exceed the v
where the collective velocity changes its sign and hence
maximal-current phase sets in.

This notion is in agreement with the prediction~26! for
the amplitude of the hypothetical density profile in t
maximal-current phase. In the models with determinis
bulk dynamics studied so far, the states with extremal cur
are characterized by a flat density profile and a fixed~i.e.,
nonfluctuating! number of particles. For such a state, ho
ever, Eq.~24! yields an amplitudek50, in agreement with
the exact results.

In order to investigate the validity of the theoretical arg
ments in a setting with two maxima in the current-dens
relation, we consider the following cellular automato
which has next-nearest-neighbor interactions as in the re
sive KLS model withe50, but is defined by a deterministic
discrete-time update. Particles are driven to the right acc
ing to the rules

1100→1010 with probability 1, ~27!

1101→1011 with probability 1, ~28!

0100→0010 with probability 1, ~29!

0101→0011 with probability 0, ~30!

We use a parallel update in which first one determines
each particle whether it is allowed to move. Then all allow
moves are performed. It is straightforward to see by insp
tion of the periodic system that this gives a piecewise lin
current density relation with two maxima and also one lo
minimum. One has a maximal currentj 5 1

3 for the densities
r51

3 andr52
3. The nearest-neighbor repulsion leads to a z

current state~ . . . 010101 . . . ! at densityr51
2 ~Fig. 9!.

The creation rates$a% at the left boundary and the ann
hilation rates$b% at the right boundary are chosen as

1u00→1u10 with rate a, ~31!

1u01→1u11 with rate a, ~32!

11u0→10u0 with rate b, ~33!

01u0→00u0 with rate b. ~34!

FIG. 9. Current-density relation of the deterministic cellular a
tomaton~27!–~30!.
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The hopping rates of the leftmost and the next to rightm
site are governed by the bulk rules in conjunction with t
constant dummy boundary sites added in Eqs.~31!–~34!.

For a5b51 and an empty initial state, the system wi
L53K sites settles into a simple stationary state that gi
weight 1

3 to the three configurations 101001001 . . .001,
110010010 . . .010, and 010100100 . . .100, respectively.
This state has maximal currentj 5 1

3 and an essentially fla
density profile with local densitiesr~1!5r~2!52

3, r5r(x)
5 1

3 for 2,x<L. By particle-vacancy symmetry and spa
reflection, one obtains a similar stationary state with b
density r52

3. Numerical simulations and analytical resul
described elsewhere@49# show that there are no extrem
current phases in any extended interval ofa and b. The
minimal current state is unstable for the boundary mec
nisms~31!–~34! for any value of the ratesa, b. It could be
stabilized by a mechanism that for some value of
injection/absorption probabilities would leave the zer
current states 01010101 . . . 01 or101010 . . . 10invariant.

The relationship between the effective boundary densi
and the ratesa,b is surprisingly transparent. By changing th
injection ratea of the model, one covers those effective le
boundary densities that correspond to positive collective
locity @49#. Also in this model there is no overfeedin
mechanism that would make effective left boundary densi
corresponding to negative collective velocity accessib
Similarly, right boundary densities corresponding to posit
collective velocities are inaccessible. The states of extre
current~r50, 1

3,
1
2,

2
3, and 1! have no finite fluctuations in the

number of particles. The flat profile of the maximal curre
phases is consistent with the expression~24! for the ampli-
tude of the density profile.

VII. EXCLUSION WITH PARTICLEWISE DISORDER

A distinguishing feature of the deterministic dynami
discussed in the preceding section is that it tends to give
to singularities~slope discontinuities! in the current-density
relation j (r). A similar effect can be achieved by introduc
ing quenched disorder into the system@50#. Specifically, let
us consider a totally asymmetric exclusion process wh
each particlei is supplied with its own intrinsic jump rate
pi , which is a quenched random variable drawn from so
distribution f (p). If pi>c.0 for all i and the distribution
behaves as

f ~p!;~p2c!m ~35!

for p→c, then form.0 the system undergoes a phase tra
sition to a spatially inhomogeneousplatoon phasebelow a
critical densityr* @51,52#. Here a platoon refers to a queu
of particles trailing an exceptionally slow one. The curre
density relation is linear forr,r* and singular atr5r* . For
m<1, it can be shown that the critical density is always
cated below the densityrmax at which the current attains it
maximum, whereas form.1, r* and rmax can be made to
coincide.

The question then arises to what extent such a singula
at rmax affects the phase diagram of the open system, and

-

0-8
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particular, the density profile in the maximum-current pha
In a recent numerical study of the open TASEP with partic
wise disorder, the usual 1/Ax decay of the density profile wa
found @53#. This is surprising from the point of view o
mean-field theory, which predicts a direct relation betwe
the asymptotic density decay and the order of the maxim
of the current functionj (r) @6#. In view of the considerations
of Sec. IV, however, we see that the relevant feature is
the behavior ofj (r), but rather the compressibilityk. As we
show in the following,k remains finite at the platoon phas
transition whenm.1, and therefore a conventional 1/Ax de-
cay of the density profile should indeed be expected.

The steady state of the TASEP with particlewise disor
and periodic boundary conditions consists of a product m
sure for the particle headwaysui5xi 112xi21, which count
the number of vacant sites in front of particlei ~xi denotes
the position of particlei!. The distribution ofui is geometric,
with a parameter depending on the particle jump ratepi and
the overall densityr @51,52#. The compressibility is related
to the variance of the headways through the relation

k5r3~^ui
2&2^ui&

2!, ~36!

where angular brackets refer to an average over the stoc
tic dynamics and the overbar denotes the average with
spect to the disorder in the jump rates. Equation~36! can be
derived from a simple central limit argument. At the plato
phase transition, the disorder-averaged headway distribu
decays as a power law, asu2(m12) @51#, and therefore the
right-hand side of Eq.~36! remains finite whenm.1.

Explicit formulas fork can be obtained using the resu
of Refs.@51,52# for the disorder distribution,

f ~p!5
m11

~12c!m11 ~p2c!m, c<p<1. ~37!

For random sequential dynamics, one finds

k~r* !5
m3~m11!c~12c!2

~m1c!3 S 1

m
1

c

~m21!~12c! D ,

~38!

while for parallel update

k~r* !5
m2~m11!c

~m1c1mc!3 S 12
c~m22!

m21 D . ~39!

For the case considered in@53# ~parallel update withm52
and c50.4!, Eqs. ~26! and ~39! yield a prefactor for the
density profile that is about 40% larger than the numer
estimate. It seems worthwhile to carry out more prec
simulations to determine whether this discrepancy implie
breakdown of universality due to the quenched disorder.

VIII. CONCLUSIONS

The interplay of density fluctuations and shock diffusio
and coalescence and branching, respectively, as desc
above represents the basic mechanisms that determin
steady-state selection of driven diffusive systems with t
05611
.
-

n
m

ot

r
a-

as-
e-

on

l
e
a

,
ed
the
o

maxima in the current-density relation. The phase diagr
for systems with short-ranged interactions is generic. He
knowledge of the macroscopic current-density relationj (r)
of a given physical system is sufficient to calculate the ex
nonequilibrium phase transition lines in terms of effecti
boundary densitiesr6 . The effective left boundary densit
depends in a nonuniversal manner only on the left bound
coupling mechanism, while the effective right boundary de
sity depends only on the right boundary coupling mec
nism. A surprising phenomenon is the occurrence of the s
organized minimal-current phase.

In all extremal current phases, the amplitude of the d
sity profile is determined by the nonequilibrium analogk of
the compressibility. For lattice-gas models without partic
number fluctuations, this implies a flat density profile. This
consistent with older exact results on deterministic syste
with a single maximum in the current-density relation a
the numerical study of the cellular automaton with tw
maxima of the current that we have considered here. It
pears that the absence of an extremal current phase, a
profile in the points of extremal current, and the absence
particle number fluctuations are a characteristic property
models with deterministic bulk dynamics, but stochastic
jection and absorption at the boundaries.

The investigation of the motion of perturbations and
the stability and motion of shocks in the framework of t
stochastic lattice-gas description also yields a ‘‘mesoscop
derivation of the large-scale hydrodynamic description of
lattice-gas dynamics in the scaling regimeu5x/t. This
rather general conclusion is supported by rigorous pro
of the validity of the hydrodynamic description for specifi
models @45,31#. In the case of multicomponent system
the situation is much more complicated even in one
mension. There is no unique way of ‘‘regularizing’’ the co
tinuum version of the lattice continuity equation by a diff
sive current as in Eq.~14!. The investigation of multicompo-
nent lattice-gas models could provide a clue as to wh
kind of mechanism is responsible for boundary-driven ph
transitions.
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APPENDIX A: STEADY-STATE PROPERTIES
OF THE KLS MODEL

The model investigated here is a special case in the c
of driven diffusive systems investigated in Ref.@5#. On a
ring with L sites with periodic boundary conditions, the st
tionary distribution turns out to be given by the equilibriu
distribution of the one-dimensional Ising model. Let us d
note a configuration of the system by the sequence of oc
pation numbers$ni% i 51

L , whereni51 if there is a particle at
0-9



y

t

-

ve

-

io
-

e
it

um
na
it

,

of

th
of a
on

tions
to

rst

ite
the

sites
x-
f an

er-
re

bulk

-

on

alo-
ken

ice
it

and
e,
e

J. S. HAGER, J. KRUG, V. POPKOV, AND G. M. SCHU¨ TZ PHYSICAL REVIEW E 63 056110
site i; otherwise,ni50. Then, the unnormalized probabilit
of a steady-state configuration$ni% i 51

L is given by the Ising
distribution

P$ni %
5e2b(n51

L
~122ni !~122ni 11!2h( i 51

L
~122ni !/Z ~A1!

with the partition function

Z5 (
all nj

P$nj %
~A2!

and exp(4b)5(11e)/(12e). The field strengthh acts as a
chemical potential, fixing the bulk densityr.

Therefore, all the averages can be computed using
standard transfer-matrix technique~see, e.g.,@54#!. One in-
troduces a 232 transfer matrix

V5S e2b2h eb

eb e2b1hD ~A3!

such that Tr(VL)5Z. Then, the probability of finding a par
ticle at a given site is given byr5^1&5Tr(AVL21)/Z with

A5S 0 0

0 1DV. ~A4!

Analogously, for the hole one calculates^0&
5Tr(BVL21)/Z, where B5V2A, ensuring ^0&1^1&51.
Correlation functions are calculated by the trace o
products of the matrices A,B,V, e.g., ^1100&
5Tr(AABBVL24)/Z, and so on. DiagonalizingV, and tak-
ing the thermodynamic limitL→`, one obtains for the av
erage density of particles

r5
1

2 S 11
e22b sinh~h!

A11e24b sinh2~h!
D ~A5!

in terms of the chemical potential.
We stress that the existence of an equilibrium distribut

as a stationary measure doesnot mean that the particle hop
ping model approaches thermal equilibrium~in the physical
meaning of the notion! at long times. The reason is that th
stationary distribution does not satisfy detailed balance w
respect to the dynamics of the model. The nonequilibri
nature of the steady state results in a nonvanishing statio
particle current~11!. One obtains in the thermodynamic lim

j 5
l@11d~122r!#2eA4r~12r!

l3 ~A6!

with the largest eigenvaluel of the transfer matrixV,

l5
1

A4r~12r!
1S 1

4r~12r!
211

12e

11e D 1/2

. ~A7!

For the simple exclusion processe5d50, we recover
the usual formulaj 5r(12r). In another limiting case
e51, d50, the current is j 5x(12x)/(11x), and x
05611
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5A124r(12r). The current-density relation~A6! is plot-
ted in Fig. 1 for several values ofe andd.

APPENDIX B: COUPLING TO BOUNDARY RESERVOIRS

Technically, it is easiest to think about two reservoirs
particles with the densitiesr2 and r1 , coupled to the left
i 51 and the righti 5L end of the system, respectively. Bo
reservoirs are kept at the stationary state. The injection
particle at site 1 is possible if site 1 is empty, but depends
the occupation of site 2, because the next-nearest interac
are present. It may be helpful to imagine the reservoir
include a site 0 of the chain. The injection rate into the fi
site is defined by the~stationary! average occupationr2 of
the imaginary site 0, but with the condition that the first s
is empty and the second site is occupied. Considering
zeroth, the first, and the second site as three neighboring
of an infinite chain, this conditional probability can be e
pressed readily as correlations in the stationary state o
infinite chain.

Applying a similar reasoning to the right boundary res
voir, one obtains the following scenario. If sites 1 and 2 a
both empty, a particle from the left reservoirr2 hops onto
site 1 with the rate, averaged between the corresponding
rates~1!–~4!:

~11d!^0100&r2
1~11e!^1100&r2

^00&r2

5P, u00→
P

u10,

~B1!

where, e.g.,̂ 100&r is a stationary-state probability of a con
figuration 100 in an infinite system with average densityr.
Similarly, if site 1 is empty and site 2 occupied, the injecti
rate is

~12d!^1101&r2
1~12e!^0101&r2

^01&r2

5Q, u01→
Q

u11.

~B2!

The extraction rates at the right end are determined an
gously, with a difference being that averages are now ta
at a densityr1 :

~11d!^0100&r1
1~12e!^0101&r1

^01&r1

5R, 01u→
R

00u,

~B3!

~12d!^1101&r1
1~11e!^1100&r1

^11&r1

5S, 11u→
S

10u.

~B4!

We shall see below that the seemingly complicated cho
of the rates is fully justified by the remarkable property
possesses. But first notice that Eqs.~B1!–~B4! do not specify
the rates completely, because the particle at the sites 1
L21 will still feel the presence of the reservoir. Therefor
in addition to Eq.~B1!, we should specify the rate of th
processes
0-10
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u100→u010, u101→u011, 110u→101u, 010u→001u.

This is done in a similar way, e.g., the first process has
rate

~11e!^1100&r2
1~11d!^0100&r2

^100&r1

5P1 , u100→
P1

u010

~B5!

and the three remaining rates are written analogously. N
that for the simple exclusion modele5d50, the correlations
are absent,̂10&5^1&^0&5r~12r!, and the above rates simpl
reduce to the usual onesu0→u1 with rater2 and 1u→0u with
rate 12r1 .

The above choice of the injection/extraction rates E
~B1!–~B5! possesses a nice property. Namely, whenr2

5r15r, the stationary-state probability can be found e
actly: it is the Ising distribution Eq.~A1! of an open chain
with bulk and boundary fields:

P$ni %
5e2bH Ising

open
2h( i 51

L
~122ni !1g~n11nL21!/Z, ~B6!
e,

.

re

ys

el-

e

rs

.
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where

H Ising
open5 (

i 51

L21

~122ni !~122ni 11! ~B7!

and the strength of the boundary fieldg is given by

eh2e2h5e2b~eg1h2e2g2h!. ~B8!

This statement is verified directly, substituting the rates E
~B1!–~B4! in the stationarity condition; see, e.g.,@27#.

We note that expectation values for the distribution~B6!
are calculated with the same transfer matrix as in the perio
case. However, instead of taking a trace, one calculate
scalar product with suitably chosen vectors, which are de
mined by the boundary fields. Taking any finite lattice of si
L>3, and computing the average occupation numbers^ni&,
using the stationary-state probabilities~B6!, one gets the
constant densitŷn1&5^n2&5¯5^nN&, providedEq. ~B8!
is satisfied. Thus, applying the injection/extraction rates E
~B1!–~B4! guarantees inducing effective boundary densit
r2 ,r1 on the left and on the right boundary, respectively
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