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Minimal current phase and universal boundary layers in driven diffusive systems
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We investigate boundary-driven phase transitions in open driven diffusive systems. The generic phase
diagram for systems with short-ranged interactions is governed by a simple extremal principle for the macro-
scopic current, which results from an interplay of density fluctuations with the motion of shocks. In systems
with more than one extremum in the current-density relation, one finds a minimal current phase even though
the boundaries support a higher current. The boundary layers of the critical minimal current and maximal
current phases are argued to be of a universal form. The predictions of the theory are confirmed by Monte
Carlo simulations of the two-parameter family of stochastic particle hopping models of Katz, Lebowitz, and
Spohn and by analytical results for a related cellular automaton with deterministic bulk dynamics. The effect
of disorder in the particle jump rates on the boundary layer profile is also discussed.
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I. INTRODUCTION The second question concerns the properties of the sta-
tionary boundary layer. In Ref6], it was argued, on the
Imagine a driven particle system—it may bey system, basis of scaling considerations and supporting Monte Carlo
such as ribosomes moving along a¥RNA, ions diffusing  simulations, that the density profile in the maximum current
in a narrow channel, or even cars proceeding on a longhase(where the bulk density becomes independent of the
road—where classical objects move with preference in onéoundary conditions decays towards its bulk limit as a
direction and which is coupled at its two ends to externalpower law with an exponent of 3. The universality of this
reservoirs. Such a system with open boundaries where papower law was subsequently confirmed by exact solutions of
ticles can enter and leave will maintain a nonequilibriumvarious lattice-gas modelg8—12] and a renormalization-
steady state that is characterized by some bulk depsityd  group analysis of the corresponding stochastic field theory
the corresponding particle currej(tp). There is no general [13]. In Sec. IV, we present a refined version of the scaling
notion such as a Gibbs measure that would, at least in prirargument of 6] that allows us to predict also the form of the
ciple, determine the statistical properties of the steady statg@refactor, up to a universal amplitude that is extracted from
and also other more specialized approadiied to nonequi- the exact solutions, and verify this prediction by Monte
librium behavior cannot predict into which bulk density the Carlo simulations, described in Sec. V.
system will settle. However, it is intuitively clear that unlike  In Sec. VI, we introduce a cellular automaton with deter-
in equilibrium systems, here boundaries will play a decisiveministic next-nearest-neighbor bulk interaction and open,
part in determining the bulk behavior of the system: Sincestochastic boundary conditions. We investigate to which ex-
the system is open at the boundaries, particles will flow intent the theoretical scenario remains valid for this model.
pass through the system, and finally flow out at the otheSection VIl is devoted to the effects of quenched particle-
boundary. Therefore, metaphorically speaking, the currenise disorder on the boundary-layer profile, and we conclude
will carry boundary effects into the bulk. with some final remarks and open questions in Sec. VIII.
This consideration raises two distinct questions that weTechnical details for the derivation of some exact results are
wish to address. The first concerns the bulk dynamics thgtresented in the Appendixes.
link boundary properties with bulk properties. In continua- We remark that one expects the topology of the boundary
tion of previous work[3,4], we show in detail how local to play an important role in the study of a specific problem.
fluctuations and shocks determine an evolving nonstationarilowever, when addressing the first question regarding the
density profile and thus eventually lead to the stationary bullbulk mechanisms that carry the information, one may disre-
density as a function of the given fixed boundary densitiesgard this dependence. Since, furtherm@it turns out, the
i.e., the phase diagram of the syst€gec. I). We illustrate  nature of these mechanisms is independent of dimensional-
these mechanisms in a specific example, viz., a class dfy, we restrict our discussion to the topologically simplest
lattice-gas models introduced some years ago by Katz, Lelease of one-dimensional systems where the boundaries re-
owitz, and Spohm5]. Starting from such a mesoscopic view- duce to two single points. Natural examples for this setup are
point, our theoretical approach allows us then to make conmany-body systems such as those mentioned above, viz.,
tact with an earlier phenomenological hydrodynamicwhere the dynamic degrees of freedom reduce to effectively
approacH6,7] (Sec. IlI). one dimension as, e.g., in traffic flqw4—1§, the kinetics of
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FIG. 1. Exact current-density relations of the KLS model plotted
from the formula(A6). () €=0.0, 5=0 (TASEP); (b) €=0.995,
6=0.2, considered belowr) €=0.9, §=0.9. The rates are defined
in Egs.(1)—(4).

protein synthesi$17,1§, ionic diffusion in zeolited19], or
the motion of colloidal particles in narrow channglg9].
Il. STEADY-STATE SELECTION

At first glance, the question of steady-state selection ap
pears to be ill-posed as undoubtedly the answer to this pro

lem depends on the system under investigation. However, fof

the case of vanishing right boundary densipy. €0), Krug

thatj=max,.j0,1i(p). Herep_ is the constant density of
the left reservoir from which particles are flowing into the

system.(Without loss of generality, we shall always assumer

a bulk current to the right.

The validity of the maximal-current principle was sup-
ported using phenomenological stability arguments an
Monte Carlo simulations of a nonequilibrium kinetic Ising
model introduced by Katz, Lebowitz, and SpofB]. We
shall refer to this model as the KLS model. This is an exclu-

sion process in which each lattice site may be occupied by at

most one particle. Particles hop randonflyith some bias

PHYSICAL REVIEW E 63 056110

For sufficiently strong repulsive interactigh—e<1), the
current at half-filling is strongly suppressed, which brings
about a two-maxima structure in the current-density relation.
The limit e=1 leads tqj ,,;,=0. Varying O<e<1 interpolates
between a single maximum of the current and the double-
hump structure. The other paramet&ris responsible for the
particle-hole asymmetryd=0 corresponds to a symmetric
graphj(p)=j(1—p). 6#0 breaks the particle-hole symme-
try in favor of a larger particle curreio>0) or larger va-
cancy curren{6<0). For negativee (attractive interactiopn
the current-density relation always has a single maximum.
The special case=6=0 is an exactly solvable model known
as the totally asymmetric simple exclusion proc@s&SEP
[23-25. For this model, the stationary current as a function
of the particle density is given by(p)=p(1—p). Also the
phase diagram of the open system is known exde#y8,9.

The cases=46 is a simple model for traffic flow, which has
been studied in detail if27].

To study the effect of open boundaries, we imagine the
left boundary of the systertwhere particles are injectgtb
be coupled to a reservoir of constant dengity. At the right
boundary, particles hop into a reservoir of constant density
p. . The rates of particle injection and absorption at the
youndaries are specified below. They are chosen such that
he reservoir densities induce effective boundary densities

function of the boundary densitigs.) and on the shape of
the stationary density profile.

Using insights gained from the exact solution of the
ASEP[8], it was showr]3,4] how rather general dynamical
properties of driven diffusive systems lead to a phase dia-

égram governed by the extremal principle,

max j(p) for p_>p.
o pelpy .p-1] ®)
7Y min ey for po<p
pelp—.p+]

to their nearest-neighbor sites with rates depending on the ) ) ) )
occupation of the nearest- and next-nearest-neighbor site. [€ microscopic details of the system enter only in so far as
the totally asymmetric case, particles hop only to the righthey determine the functional form of the currgigp) and

with bulk hopping rates

the effective boundary densities (p.), p_(p_) which de-

pend on the actual reservoir densitfes through the details

of the coupling mechanism. The first relation is an extension

of Krug’s current maximization principle and reduces to it

for p,=0. It was first suggested by Janssen and Oerding

[28]. The second relation is somewhat surprising. It states

that the system tends tminimizeits current if the density

gradientp, —p_, set by the boundaries, is positive.

0100-0010 withrate 1+, (1)
11001010 withrate 1+e, 2
010 1-0 011 with rate 1—¢, 3
1101-1011 with rate 1-6, (4)

where |€]<1, |5<1. Here “1” marks the occupation of a
lattice site by a particle. The stationary curr¢tp) (Fig. 1)

A. Phase diagrams

The order parameter that characterizes the selected steady

can be computed exactly from the stationary measure of thstate is the bulk density. The structure of the phase diagram,
periodic system, which is the equilibrium distribution of the which exhibits a variety of first- and second-order nonequi-

one-dimensional Ising moddékee Appendix A For §=0,
this computation was first carried out by Brandsteft]
(see alsd6,22).

librium transitions, is determined by the number of extrema
of the current. For systems with a single maximum in the
current at some densitg*, the phase diagram has three
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] cwremt P Soonsoo] b
z
: phase Z 0= z maximal-
pr|d P =Pmin o P—g ;‘ﬁgrseenh_ FIG. 3. Motion of a shock in an ensemble average of the lattice
{QOTTOTTTOTTTTT 2 p=pi © 1 Pmin gas. To the lef{right) of the domain wall, particles are distributed
p=p4 rmepmm— [ hpmogeneously with_an average dens;ity (py) on _each Iattige
o site. The corresponding stationary curreptsdetermine the drift
. o [ velocity v [Eq. (7)] of the shock.
(ﬁzv:l-sity maximal-current
phase: phase I: p=p; of high density(see Fig. 3 A well-known example for a
P=p- shock is the beginning of a traffic jam on a motorway where
0 oF 05 r 1 incoming cars(almost freely flowing particles in the low-
H . _

density regimghave to slow down very quickly over a short
FIG. 2. Phase diagram of the KLS model with two maxima atdistance and then form part of tiieigh-density congested
p},and a minimum ap,,;,=0.5 in the current density relatid]. region. A_ _rem_arkable featur_e of sgch shocks_ is their long-
Full (bold) lines indicate phase transitions of secdficst) order, ~ time stability, i.e., they remain localized over distances com-
calculated from Eq(5). Circles show the results of Monte Carlo parable to the size of particles. In some sense one may regard

simulations of a system with 150 sitésee below shocks as solitonlike collective excitations of the particle
system 29]. Irrespective of the specific system, mass conser-

phases: a maximal-current phaSen the domainp_>p*, vation yields the shock velocity

p+<p* (bulk densityp=p*), with second-order transitions o

to the low-density p=p_<p*) and the high-density phase _1+7- )

(p=1—p,>p*), respectively. These phases are separated Us pr—p-’

by a first-order transition along the linép_)=j(p.) in the - S

domainp_<p*, p.>p*. where p. are the shock densities afd=j(p.) are the

In a system with two maxima in the current-density rela-corresponding currents to the I¢ft) and to the right+) of
tion, one also finds maximal-current phases and low- andhe shock, respectively.
high-density phases, respectively, separated by first- and A second characteristic velocity describes the motion of a
second-order transition lines. However, the minimizationdensity wave, i.e., a localized perturbation in a stationary
principle for the current brings about a phase of a rathefeégion of background densify (Fig. 4). Such a perturbation
unexpected nature: In the range of boundary densities déPreads out and slowly decays in the course of time, but

fined by keeps a constant center-of-mass veloeity Under mild as-
sumptions on the nature of the steady state, this collective
i) i(p)>i(pmin)y P—<Pmin<pP+ (6)  velocity is given by the derivative
the system organizes itself into a state with bulk density, a .
corresponding to the local minimum of the current even UCZ%J ®)

though both boundary densities support a higher current. We

shall refer to this phase as tihanimal current phaseGen-  of the stationary curren4.

erally, for a system with two maxima of the current, the The velocitieg7) and(8) and the underlying single-shock
phase diagram consists of seven distinct phases, includingicture are sufficient to understand the phase diagram of sys-
two maximal current phases with bulk densities correspondtems with a single maximum in the currdi®]. A change of

ing to the respective maxima of the current and the minimakign in the shock velocity ¢ marks a first-order transition

current phaséFig. 2). between the low- and high-density phases, whereas a change
of sign in the collective velocity . signals a second-order
B. Stability and branching of shocks transition to the maximal-current phase. If the current has a

To understand the origin of the phase diagram, we first
recall that in the absence of detailed balance, stationary be- "
havior cannot be understood in terms of a free energy, but p(z) Nt "
has to be derived from the system dynamics. Following Ko- Ve P
lomeisky et al. [3], there are two basic dynamical phenom- e S e P
ena to consider, namely shocks and the diffusive motion of ;
localized density waves.

A shock in a system of classical flowing particles is a FIG. 4. Diffusive spreading of a density perturbation in the
nonequilibrium domain wall that marks the sudden transitiorsteady state at two timeés>t;. The collective velocity describes
from a stationary region of low density to a stationary regionthe motion of the center of mass of the perturbation.

To Ty ¥ ve(ty — t1)
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1 slowest one and thus eventually coalesce into two distinct
0.75 single large shocks with boundary densitigs (p;) (mov-
P 0.5 ing to the lef} and (p,,p.) (Moving to the righk, respec-
0.2% ] tively.
0 This leads to the branching of the singleomposite

shock into two distinct, oppositely moving shocks. The val-
FIG. 5. Monte Carlo simulation of the particle density distribu- UES py, depend onp.. through the stability criterior(9).
tion in a lattice gas in the initial stat@ne shock and after 300 ~ Notice that the composition into subsequent minishocks is
Monte Carlo sweeps, showing branching into two shocks. 300qust a tool to visualize the mechanism leading to the branch-
histories are averaged oviet]. ing. One may always set the imagined length of the min-
ishocks to zero to obtain the same prediction for the time
local minimum, it was argued in a qualitative manner how aevolution of a single shock. This is confirmed by the simu-
single shock may branch into two distinct shocks, movinglation data shown in Fig. 5. The coalescence of shocks
away from each othefFig. 5), and thus lead to the occur- within each branch of the pair of oppositely moving shocks
rence of the minimal-current phaf4]. Here we describe in is analogous to the phenomenon of coalescence, which has
detail how the branching mechanism and the resulting strudseen proved rigorously to take place in the TASEP on the

ture of the shocks follows from the stability criterion, hydrodynamic scalE30] (see below Notice that because of
the diffusive fluctuations in the shock position, the shock at
ve(pp)>vs(pL,pr)>ve(pR) (9)  timet>0 does not appear in Fig. 5 as a sharp increase of the
density.

fofrﬂa single ShO,Ck'hWhiCh %T)e ohbtai?s ]Pyhconr?(igaei]mg the flow 1t remains to discuss the behavior of the unstable shocks.
of fluctuations in the neighborhood of the s . We consider the shocksp™ o™ with o™W=p... and
Consider the time evolution of a judiciously chosen shock (W<, By taking the Iir’r)ﬂ% c;f?mzinitesiml; shg(TlT height

initial state. Because of ergodicity, the steady state does nét+ . . o
g y y = p(f)— p" one obtains as “velocity” of these infinitesi-

depend on the initial conditions and a specific choice in*~

volves no loss of generality. It is convenient to consider afn@l unstable shocks the collective velocity(p™). Thus
initial configuration with a shock with densitigs. andp |nf|n|te5|mal shoc_ks move with th_e speed o_f perturbatlons.
on the left and on the right, respectively, which is composed>0ing to the scaling limik,t—c (with u=x/t fixed), diffu-

of many narrow subsequent shocks at various levels of inteSive (and even superdiffusiyéluctuations are scaled out and
mediate densitie€Fig. 6). The left density _ is supposed to there_ remains _only a Iarge—spale descrlptlpn of the evolving
be less than the densipy.,, where the current has a local density profile in terms of points representing the unstable
minimum, whilep, is taken as larger thap, . m_lnlshock§. Hence on thls scale a |_00|nt with dengityioves

From the convexity conditiof), one reads off which of with 'Ve|OCIty'vC.(p). This observation leads _to a .hydrody—_
these “minishocks” are stable while Eq7) yields the re- Nnamic descrlptlon_ of the large-scale dynamics discussed in
spective shock velocity. Consider now the minimal-currentthe following section.
regime defined by Eq6). We define asr.. the two inflec-
tion points of the current-density relation between the two . HYDRODYNAMIC APPROACH
maxima of the current. Fgy_<o_ andp, >0, , one finds
the following.

(i) There are densities,> pmin @andp;< pmin SUCh that the
two sets of minishocks which hav@) p™>p, and (b)
p®<p,, respectively, are stable. d _ ,

(ii) All mini shocks in the seta) move to the right while grPx T I-17 e (10
all mini shocks in the sefb) move to the left.

(i) The shock velocities in the two sets of stable min-wherej, is the expectation value of the current across a bond
ishocks are such that they all catch up with the respectivék,k+ 1). For the KLS model, it is given by

Because of particle number conservation, the local density
of a driven diffusive system with nearest-neighbor hopping
satisfies a lattice continuity equation of the type

j = (1+8)(0100 + (1+ €)(1100
+(1-€)(010D + (1- 5)(110) (12)

evaluated at the four neighboring sitgs-1, k, k+1, k+2).
The lattice continuity equation does not admit an explicit
solution: In order to integrate Eq10), one would have to
write down the equations of motion for the currefighich

FIG. 6. Schematical drawing of small shocks and their veloci-involve five-point correlation functionsand would eventu-
ties, leading to branching and coalescence. Each “minishock” haglly end up with an infinite hierarchy of coupled equations
left and right boundary densitigs!” in the intervalp_<p® and  for n-point correlation functions.
pW<p. , respectively. The boundary densitigs are within the On the other hand, according to the previous discussion,
minimal-current regime6). one can construct the time evolution of a nonstationary den-
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sity profile on the Euler scal&,t—o with u=k/t fixed. It is intriguing that an infinitesimal viscosity terrfpropor-
There are shock discontinuities with a range of stability detional to the lattice constanappears when taking the “na-
fined by Eq.(9). A shock (o_,p) is stable if the convexity ive” continuum limit k—x=ka, t—t'=ta of the lattice
condition (9) for the current is met in the full interval continuity equation(10) for the TASEP and keeping all
[p_,p.]. (The diffusive nature of the shock position doesterms to first order in the lattice constamtFor the TASEP,
not appear on this scajeOutside the range of stability, the one hag,=(10) .. Due to the lack of correlations in the
prescription for the construction of the density profje steady state, one may write in the mean-field approximation

=p(u) yields the implicit relation jk=pr(1=pk:1) and then find from the Taylor expansion
u=vc(p). (12) i 0 1oy 8 92 18
P TPt 5 o ap. (18)

Notice that this is nothing but the scaling solution of the

continuum limit This suggests a shock width for the TASEP of the order of

9 P the lattice constard, in agreement with known rigorous re-
SP= &j (13)  sults[34,35. Our previous discussion of the phase diagram
suggests that such an infinitesimal viscosity tefedso
known as diffusive excess curreig a generic feature of the
behavior of driven diffusive systems on the Euler scale. In
the macroscopic description, it prevents the occurrence of

model is given in Appendix A. Setting=x/t then yields instabilities(which cannot occur in a driven diffusive system
Eqg.(12). On this hydrodynamical scale, the stability criterion on the latticé and at the same time leads to shocks of zero

of the shock becomes the definition of a shock discontinuityWidth (i.e., proportional to the lattice constarfor systems
for the weak solutions of the Cauchy problem defined by Eq; €., Prop y

(13), together with the initial conditiom(x,0)= pg(X) (see with short-range interactions and short-range correlations in
y yWJ)= Po

[33] for a full discussion the steady state.

One may go further and try to adapt this insight to the
derivation of the stationary solution of a finite system with V. UNIVERSAL PROPERTIES OF THE BOUNDARY
fixed boundary densities.. . Following Refs[6,7], we pos- LAYER

tulate a diffusive excess currepl,= — v(dp/9x), which is Our derivation of the asymptotic behavior of the density
to be added to the continuity equatit8), which then reads  ,sfjje in the maximum- and minimum-current phases relies

on a continuum description of density fluctuatios$x,t)

of the continuity equatiori10). Herej=j(p) is the station-
ary current across a bond at densitywhich for the KLS

ip: - iJ (14) around a state of uniform mean densgy Expanding the
ot IxX hydrodynamic equatiofiL3) to second order iR and adding
I , : . » phenomenological diffusion and noise terms, one arrives at

with J=j—wvp’. The stationarity condition takes the form the well-known noisy Burgers-Kardar-Parisi-ZhafigP2)

J=constj* (15) equation[13,22,36—-39

2
with boundary conditions @: ﬂ_ @_ ﬁ_ (9_77
=V axe velP) N o (19
p(0)=p_, p(L)=p,. (16)

_ . . Here\ =d?j/dp?(p) and 5(x,t) is Gaussian white noise in
This may be integrated and one obtains space and time representing the fast degrees of freedom. The
noise strengttD is defined through the covariance

f”L—EJde—L/ 17
o i —i* vle o Y (p(x,t)p(x’",t"))=D&(x—x")8(t—t"). (20)

In the limit L—oe, the left-hand side has to become diver-In the usual application to translationally invariant systems,
gent. This condition determines the steady-state cuffént the drift termuv.d¢/dx is eliminated by going to a comoving
and one recovers the extremal princifg. It is importantto  frame.
note that the argument is independent of the value and, An important property of the one-dimensional KPZ equa-
indeed, of the precise form 9f, [6,7]. tion is the invariance of the parametexsand D/v under
The same result could be obtained by takinmg-0 and  renormalization(i.e., a change of measurement sgalEhe
keeping the system sidefixed. In the continuum approach, invariance of\ is a consequence of the Galilean symmetry of
v plays the role of a viscosity that prevents the occurrence oEq. (19), which holds in all dimensions, while the invariance
instabilities well known, e.g., for the inviscid Burgers equa-of D/v results from a fluctuation-dissipation relation specific
tion d,p=— dyp(1— p) that one obtains rigorous[81] from  to the one-dimensional cagg6]. The existence of these two
the TASEP in which = p(1—p). Adding the viscosity term invariants implies that the scaling properties of spatiotempo-
vdyp to the Burgers equatioi82], but setting the viscosity  ral fluctuations can be deduced from dimensional analysis.
to zero, yields solutions with stable shocks of widtPwr—0. Moreover, forv .= 0 all correlation functions can be reduced
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to a universal, system-independent form by an appropriate 1
rescaling, which involves only the invariant quantitiesind
D/v [4Q].

In the following, this type of reasoning will be applied to 0.1}

the open system. Due to the presence of spatially fixed
boundaries, the drift term then cannot be eliminated, and its
effects are, as we have seen, highly nontrivial. However, ins®  0.01
the maximum- and minimum-current phases,=0. The
only quantities that could enter a possible length scale char
acterizing the boundary layer are therefareD/v, and the 0.001 ¢
relevant boundary density or, more precisely, its deviation,
Ap=p.— ppuk from the bulk density. As the dimension »f

contains the dimension of time, it cannot enter a stationary 0.0001
guantity, and we are left witD/v andAp. The only combi-

nation with the dimension of length is k

> FIG. 7. Deviations for the maximal-current phase. The param-
lpb=(D/v)(Ap)~7, (21) eters are as in Fig. 1, with_=1,0, =0.45. The system has 1000
sites and averaging is done ovex30° Monte Carlo steps. The
and we conclude that the density profile must be of the fornstraight line shows the prediction of the universality hypothesis.
[6] (we assume the boundary to be locatecail)

1 10 100 1000

In particular, for the TASEPx=p(1—p). Using this expres-
(d(x))=A2pF(Xlly), (22 sjon, the value of the universal amplitud& can be read off
from the exact solution of the TASEP density profi&9].
where the universal scaling functich satisfies7(0)=1 and  putting everything together, we arrive at the central conjec-

vanishes for large arguments. _ _ture of this section, which states that for any one-
Let us now postulate, in addition, that the density profilegimensional lattice-gas model in a maximum- or minimum-
becomes independent of the boundary densityX®fl,.  current phase, the deviation of the density profile from the

This is plaUSible becaus'e in the maXimUm- and mlnlmum-bu|k Value5k2|<nk>_pbulk| decays asymptotica”y as
current phases, there is no mechanism for propagating

boundary information into the bulk, which can be seen
clearly also in the directed polymer formulation of the prob-
lem [41]. Then the asymptotic behavior &f has to be such ) ) i
as to cancel the factakp on the right-hand side of Eq22), Numerical results fpr tr_]e density profile created by_the
and it follows that|((x))|~c* (D/v)Y% 2 with some procesg1)—(4), shown in Figs. 7 and 8, are found to confirm
universal constant* . the conjecturg26). It is further verified by the exact solu-
It remains to identify the physical meaningdf» and the ~ tions of the TASEP with parallel updatel0,11 and of
value ofc*. To accomplish the first task, we note that thethe partially asymmetric simple exclusion proc¢sgl. In
stationary height difference correlation function of the one-the latter case, Eq(26) implies, surprisingly, that the

S =Vl k. (26)

dimensional KPZ equation is given 92,40 asymptotic density profile is independent of the asymmetry
([h(x)—h(x")]?)=(D/2v)|x—x|. (23) 1
In the present notation, the heightx) is the spatial integral 0.1 b

of ¢, henceh(x)—h(x") is the fluctuation in the number of
lattice-gas particles betwearandx’. We conclude thaD/v

is proportional tola nonequilibrium analog othe compress- N
ibility «, which characterizes the mean-square deviation of®
the numberN of particles in a sufficiently large volumie 0.001
and is defined through

0.01

0.0001
_(N®)—(N)?
k= lim — I (24
Lo le-05 : '
1 10 100 1000
For the proces$1)—(4), « is readily computed using Eq. k

(A1), and one obtains FIG. 8. Deviation §, for the minimal-current phase, with

1 €=0.96=0 and boundary densitigs. =0.4p, =0.6. The system
_6_1) (25) size and statistics are as in Fig. 7. The straight line shows the
1+e ' prediction of the universality hypothesis.

k=p(1—p) \/1+4p(1—p)
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(provided it is nonzerp since the bias does not affect the pose of theoretical investigation, one would like to construct
compressibility. an injection and absorption mechanism that leads to a con-
It does, however, affect the length scale beyond which thgtant density profile for a semi-infinite system so that the
asymptotic behavior sets in. For small bias, one expects agffective boundary densities are identical to the real bound-
intermediate range where the density profile follows the 1/ ary densitiesp.. , which determine the injection/absorption
decay predicted by mean-field theof§]. More precisely, rates and hence are the actual control parameters of the
from the mean-field stationarity conditidd5), one obtains  mgdel. For the KLS model, we choose an injection mecha-
the decay lawp— ppuil~ vINX, which sets in beyond the pism where the particles on the lattice interact with the res-
mean-field boundary scale)’ =v/(\Ap). The mean-field  gpyoir particles in the same way as among each other. Such a
profile matches the asymptotic behavi@6) at the length 1 ,achanism can be constructed following REZ7]. This
scalelpz=»*/(DA?), which quite generally describes the choice of boundary conditions has a nice propertyp If
crossover fr_om diffusive to_ KPZ sca_ling behav[gm]. Since —p, , the exact stationary measure can be found. It is the
for the partially asymmetric exclusion processs propor-  |ging measuréAl) for a nonperiodic system with boundary
tional to the asymmetry, we see thatly <lyp; for van-  fields. see Appendix B.
ishing bias. It would be interesting to extract this scaling The continuous-time dynamics of the process are modeled
scenario from the exact solution of the partially asymmetricby a random sequential update where first a site numlrer
model[12,42. the interval[1,L] is chosen at random. If it contains a par-
In fact, the validity of our conjecture may extend beyondyijcle, the hopping is attempted with the ratds—(4) (1<x
the class of driven diffusive systems with open boundariessL_z) or Eqs.(B3)—(B5) (if x=L orx=L—1). If site 1 is
The exact form(26) of the density profile has been found chosen and empty, injection of a particle is attempted with
also in the related problem of an asymmetric exclusion Prorates(B1) and(B2). The rates are normalized with respect to
cess with a moving impurity, in the phase where the impurityipe largest one, in our caserk. This procedure, repeatéd
moves at the same speed as the density fluctuatomse-  times, constitutes one Monte Carlo step. We performed
sponding to the condition=0) [43,44. It is therefore con-  ponte Carlo simulations for systems of sizegrom 100 to
ceivable that Eq(26) applies generally in situations where a 1000, Densities and currents were averaged over at least 50
fluctuating noisy Burgers field is perturbed locally in such argnds, and averaged over seven different histories. The lo-
way that the disturbance is stationary in the frame of theaiion of the firstisecondy order transition was determined

density fluctuations. by the appearance of a peGmp) in the first derivatives of
the bulk densityp,(p,p ) with respect tgp* andp . As
V. SIMULATION OF THE KLS MODEL an initial state, we chose either the empty or the completely

) o . filled lattice, whichever gave the faster convergence. Despite
To check the theoretical predictions, we have simulatedjnjte-size effects, the precise analysis of which requires fur-
the two-parameter KLS model for a generic valée0.2e  ther investigations, the overall agreement of the simulated

=0.995 of the coupling constants, chosen such that one hghase diagram with the predicted one is very good already
two maxima and one minimum in the current-density rela-for | = 150 (Fig. 2).

tion. As we are studying the open system, the injection/
extraction mechanism at the boundaries has to be specified.
It is a subtle point deserving special attention. It is the
boundary that induces the phase transitions in driven sys-
tems. So the latter are extremely “boundary-dependent.”
Because of the particle interaction, coupling of a semi- The KLS model and indeed most lattice-gas models stud-
infinite system to a reservoir will generically lead to someied in the literature(see[23,24,45,46,3]Lfor an overview
discontinuous behavior of the stationary distribution close tchave stochastic bulk dynamics. On the other hand, the theo-
the boundary. This is completely independent of any interacretical arguments discussed above do not really make use of
tion with the bulk dynamics. The boundary represents arnhe random nature of the dynamical rules. The shock velocity
inhomogeneity of the system since the interaction of the par¢7) and the collective velocit{8), which determine the phase
ticles with the fixed boundary leads to different correlationsdiagram of open systems, are defined also for deterministic
from those that result from the interaction of particles amongcellular automata. They depend on the dynamical rules only
themselves. The result are effective boundary densities  through the precise functional form of the currg(p).
which in general may differ from the reservoir densitfes Therefore, it is not surprising that the phase diagram of
and which are not controlled by the interaction with the bulk.lattice-gas models with deterministic bulk update and a
This is a nonuniversal phenomenon that depends on the preingle maximum in the current-density relatifut random
cise nature of the coupling mechanism and on the nature ahjection at the boundaries to mimic the coupling to bound-
the particle interaction. ary reservoirs with variable densitigg!7,48,10,1]is found
Given two reservoir densities, there is no general recipeo be correctly predicted by the extremal princig. In
for how to eliminate the nonuniversal boundary effects thathese models, there is no maximal-current phgsg or,
result in the effective boundary densitips ,p. that enter more precisely, the maximal-current phase reduces to a
the theoretical description of the previous sections. Hencsingle point corresponding to the specific value of the bound-
these quantities are not easy to control. Ideally, for the purary densities at which the current has its maximum[.4m),

VI. CELLULAR AUTOMATA WITH DETERMINISTIC
BULK DYNAMICS
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The hopping rates of the leftmost and the next to rightmost
1/3] site are governed by the bulk rules in conjunction with the
constant dummy boundary sites added in £E§%)—(34).
) For a=B=1 and an empty initial state, the system with
3(p) L=3K sites settles into a simple stationary state that gives
weight % to the three configurations 10100100. .001,
. . 11001000 ...010, and 0101001D...100, respectively.
0 1/31/22/3 1 P This state has maximal currept=3 and an essentially flat
density profile with local densitiep(1)=p(2)=%, p=p(x)
FIG. 9. Current-density relation of the deterministic cellular au- =3 for 2<x<L. By particle-vacancy symmetry and space
tomaton(27)—(30). reflection, one obtains a similar stationary state with bulk
density p=2. Numerical simulations and analytical results
we argued heuristically that this results from an overfeedinglescribed elsewherg49] show that there are no extremal
effect that cannot occur for deterministic bulk dynamics, i.e..current phases in any extended interval fand 8. The
the effective boundary densities cannot exceed the valuminimal current state is unstable for the boundary mecha-
where the collective velocity changes its sign and hence thaisms(31)—(34) for any value of the rates, 8. It could be
maximal-current phase sets in. stabilized by a mechanism that for some value of the
This notion is in agreement with the predictio®6) for  injection/absorption probabilities would leave the zero-
the amplitude of the hypothetical density profile in thecurrent states 0101010..01 or1010D. .. 10invariant.
maximal-current phase. In the models with deterministic The relationship between the effective boundary densities
bulk dynamics studied so far, the states with extremal currerdind the rates,3 is surprisingly transparent. By changing the
are characterized by a flat density profile and a fixeel, injection ratea of the model, one covers those effective left
nonfluctuating number of particles. For such a state, how-boundary densities that correspond to positive collective ve-
ever, Eq.(24) yields an amplitudec=0, in agreement with locity [49]. Also in this model there is no overfeeding
the exact results. mechanism that would make effective left boundary densities
In order to investigate the validity of the theoretical argu-corresponding to negative collective velocity accessible.
ments in a setting with two maxima in the current-densitySimilarly, right boundary densities corresponding to positive
relation, we consider the following cellular automaton, collective velocities are inaccessible. The states of extremal
which has next-nearest-neighbor interactions as in the reputurrent(p=0, 3, 3, 5, and 2 have no finite fluctuations in the
sive KLS model withe=0, but is defined by a deterministic, number of particles. The flat profile of the maximal current
discrete-time update. Particles are driven to the right accordshases is consistent with the expressi@ad) for the ampli-

ing to the rules tude of the density profile.
11001010 with probability 1, @7 VII. EXCLUSION WITH PARTICLEWISE DISORDER
1101-1011 with probability 1, (28) A distinguishing feature of the deterministic dynamics
discussed in the preceding section is that it tends to give rise
0100—-0010 with probability 1, (290  to singularities(slope discontinuitigsin the current-density
relationj(p). A similar effect can be achieved by introduc-
0101—0011 with probability O, (300  ing quenched disorder into the syst¢&®]. Specifically, let

us consider a totally asymmetric exclusion process where
We use a parallel update in which first one determines foeach particlel is supplied with its own intrinsic jump rate
each particle whether it is allowed to move. Then all allowedp; , which is a quenched random variable drawn from some
moves are performed. It is straightforward to see by inspecdistribution f(p). If p;=c>0 for all i and the distribution
tion of the periodic system that this gives a piecewise lineabehaves as
current density relation with two maxima and also one local

minimum. One has a maximal curreint 5 for the densities f(p)~(p—c)* (35
p=3 andp=3. The nearest-neighbor repulsion leads to a zero
current state . .. 01010 . . .) at densityp=75 (Fig. 9). for p—c, then foru>0 the system undergoes a phase tran-
The creation ratega} at the left boundary and the anni- sition to a spatially inhomogeneoysatoon phasebelow a
hilation rates{g} at the right boundary are chosen as critical densityp* [51,57. Here a platoon refers to a queue
) of particles trailing an exceptionally slow one. The current-
1/00—1/10 with rate a, (3D density relation is linear fop<p* and singular ap=p*. For
u<1, it can be shown that the critical density is always lo-
1/01-1|11  with rate a, (32 cated below the density,. at which the current attains its
maximum, whereas fop>1, p* and p,,.x can be made to
110—100 with rate g, (33 coincide.
The question then arises to what extent such a singularity
01/0—000 with rate g. (34 at pax affects the phase diagram of the open system, and, in
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particular, the density profile in the maximum-current phasemaxima in the current-density relation. The phase diagram
In a recent numerical study of the open TASEP with particle-for systems with short-ranged interactions is generic. Hence
wise disorder, the usual{x decay of the density profile was knowledge of the macroscopic current-density relafitm)
found [53]. This is surprising from the point of view of of a given physical system is sufficient to calculate the exact
mean-field theory, which predicts a direct relation betweermonequilibrium phase transition lines in terms of effective
the asymptotic density decay and the order of the maximunboundary densitiep. . The effective left boundary density
of the current function(p) [6]. In view of the considerations depends in a nonuniversal manner only on the left boundary
of Sec. IV, however, we see that the relevant feature is notoupling mechanism, while the effective right boundary den-
the behavior of (p), but rather the compressibility. As we  sity depends only on the right boundary coupling mecha-
show in the following,x remains finite at the platoon phase nism. A surprising phenomenon is the occurrence of the self-
transition whenu>1, and therefore a conventionak/ de-  organized minimal-current phase.
cay of the density profile should indeed be expected. In all extremal current phases, the amplitude of the den-
The steady state of the TASEP with particlewise disordesity profile is determined by the nonequilibrium analogf
and periodic boundary conditions consists of a product megthe compressibility. For lattice-gas models without particle
sure for the particle headways=x;_;— x;— 1, which count number fluctuations, this implies a flat density profile. This is
the number of vacant sites in front of partidléx; denotes consistent with older exact results on deterministic systems
the position of particlé). The distribution ofu; is geometric, ~With a single maximum in the current-density relation and
with a parameter depending on the particle jump mtand ~ the numerical study of the cellular automaton with two
the overall density [51,52. The compressibility is related Maxima of the current that we have considered here. It ap-

to the variance of the headways through the relation pears that the absence of an extremal current phase, a flat
profile in the points of extremal current, and the absence of
k= p3((ud)—(u;)?), (36)  particle number fluctuations are a characteristic property of

models with deterministic bulk dynamics, but stochastic in-
where angular brackets refer to an average over the stochggction and absorption at the boundaries.
tic dynamics and the overbar denotes the average with re- The investigation of the motion of perturbations and of
spect to the disorder in the jump rates. Equati®® can be the stability and motion of shocks in the framework of the
derived from a simple central limit argument. At the platoonstochastic lattice-gas description also yields a “mesoscopic”
phase transition, the disorder-averaged headway distributiogierivation of the large-scale hydrodynamic description of the
decays as a power law, as (**2) [51], and therefore the lattice-gas dynamics in the scaling reginue=x/t. This

right-hand side of Eq(36) remains finite whemu>1. rather general conclusion is supported by rigorous proofs
Explicit formulas for« can be obtained using the results of the validity of the hydrodynamic description for specific
of Refs.[51,52 for the disorder distribution, models [45,3]. In the case of multicomponent systems,
1 the situation is much more complicated even in one di-
f(p)= (15(:)#*1 (p—c)¥, c=p=L. 37) mension. There is no unique way of “regularizing” the con

tinuum version of the lattice continuity equation by a diffu-
sive current as in Eq14). The investigation of multicompo-

For random sequential dynamics, one finds nent lattice-gas models could provide a clue as to which
3 2 kind of mechanism is responsible for boundary-driven phase
p(pted-c)7f1 ¢ transitions
k(p*)= R S , -
(ut+c) © (p=1)(1-c)
(38
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density profile that is about 40% larger than the numerical

estimate. It seems worthwhile to carry out more precise APPENDIX A: STEADY-STATE PROPERTIES
simulations to determine whether this discrepancy implies a OF THE KLS MODEL

breakdown of universality due to the quenched disorder.

The model investigated here is a special case in the class
of driven diffusive systems investigated in R¢B]. On a
ring with L sites with periodic boundary conditions, the sta-
The interplay of density fluctuations and shock diffusion, tionary distribution turns out to be given by the equilibrium
and coalescence and branching, respectively, as describdibtribution of the one-dimensional Ising model. Let us de-
above represents the basic mechanisms that determine thete a configuration of the system by the sequence of occu-
steady-state selection of driven diffusive systems with twopation numbergn;}-_,, wheren;=1 if there is a particle at

VIIl. CONCLUSIONS
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site i; otherwise,n;=0. Then, the unnormalized probability =+1—4p(1—p). The current-density relatio(A6) is plot-
of a steady-state configurati({ni}:‘:1 is given by the Ising ted in Fig. 1 for several values efand 6.
distribution

L L APPENDIX B: COUPLING TO BOUNDARY RESERVOIRS
P{nv}:ef,BEH:l(lf2ni)(172ni+1)7h2i:1(172ni)/z (A1) . o _ . .
: Technically, it is easiest to think about two reservoirs of

with the partition function particles with the densities_ andp ., coupled to the left
i=1 and the right =L end of the system, respectively. Both
reservoirs are kept at the stationary state. The injection of a
Z= ”E P{nj} (A2) particle at site 1 is possible if site 1 is empty, but depends on
A, the occupation of site 2, because the next-nearest interactions
and exp(#®)=(1+e)/(1—e). The field strengtth acts as a &€ present. It may be he_lpful to imagine the_reservoir_ to
chemical potential, fixing the bulk densigy |r?clulde a §|te 0 of the ch.aln. The injection rate mto the first
Therefore, all the averages can be computed using thilt€ iS defined by théstationary average occupation_ of
standard transfer-matrix techniqésee, e.g.[54]). One in- the imaginary site 0, but with the condition that the first site

troduces a X 2 transfer matrix is empty and the second site is occupied. Considering the
zeroth, the first, and the second site as three neighboring sites
e Bh B of an infinite chain, this conditional probability can be ex-
Vz( 5 i +h) (A3) pressed readily as correlations in the stationary state of an
€ € infinite chain.

Applying a similar reasoning to the right boundary reser-
voir, one obtains the following scenario. If sites 1 and 2 are
both empty, a particle from the left reservgir hops onto

(0 0) site 1 with the rate, averaged between the corresponding bulk
A= V.

such that Tr¢t)=Z. Then, the probability of finding a par-
ticle at a given site is given by=(1)=Tr(AV-~1)/Z with

0 1 (A4) rates(1)—(4):

(1+6)(0100, +(1+€)(1100, P
Analogously, for the hole one calculates(0) - —=p, |00-|10,
=Tr(BV-~1)/Z, where B=V—A, ensuring(0)+(1)=1. (00),
Correlation functions are calculated by the trace over (B1)

products of the matrices A,B,V, e.g., (1100 . . .
—Tr(AABBV-~%)/Z, and so on. Diagonaliziny, and tak- where, e.9.{100) , is a stationary-state probability of a con-

ing the thermodynamic limi. —, one obtains for the av- “9“(?“?” flOO in an infinite s(;j/stgmzwith a\(er(jag(ka] dengity
erage density of particles Similarly, if site 1 is empty and site 2 occupied, the injection

rate is
_2B -
pe o[ g4 &SN (A5) (1-8)(1101), +(1-€)(010), S
2 J1+e *Bsint?(h) oD =Q, |01-]11.
p_
in terms of the chemical potential. (B2

We stress that the existence of an equilibrium distributio
as a stationary measure daest mean that the particle hop-
ping model approaches thermal equilibrigm the physical
meaning of the notignat long times. The reason is that the
stationary distribution does not satisfy detailed balance with (1+6)(0100, +(1—€)(0103),

+ +

"I'he extraction rates at the right end are determined analo-
gously, with a difference being that averages are now taken
at a densityp , :

respect to the dynamics of the model. The nonequilibrium =R Oﬂ_R,Oq
nature of the steady state results in a nonvanishing stationary (01),, ' ’
particle currenf11). One obtains in the thermodynamic limit (B3)
o N1+68(1—-2p)]—€eV4p(l-p) (1-6)(110, +(1+€)(1100, s
j= N (A6) = =5, 11—10.
(11,
(B4)

with the largest eigenvalug of the transfer matriy/,
We shall see below that the seemingly complicated choice

1/2
N 1 n 1 1+ 1-e (A7) of the rates is fully justified by the remarkable property it
/4p(1_ 0) 4p(1—p) 1+€/ possesses. But first notice that E(&1)—(B4) do not specify

the rates completely, because the particle at the sites 1 and
For the simple exclusion procese=6=0, we recover L—1 will still feel the presence of the reservoir. Therefore,
the usual formulaj=p(1—p). In another limiting case, in addition to Eq.(B1), we should specify the rate of the
e=1, 6=0, the current isj=x(1-x)/(1+x), and x processes
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|100-|010, |101—|011, 110—101, 010—001. where
L. . _— . L-1
This is done in a similar way, e.g., the first process has the
rate Hifhg= 2, (1=2n)(1-2n;.y) (B7)

(1+€)(1100, +(1+5)(0100, Py

09 —p,, |100-|010 and the strength of the boundary fiadds given by
P+

eh—e N=e?B(edth—g 97N) (B8)

(B5)
tThis statement is verified directly, substituting the rates Egs.
(EBl)—(B4) in the stationarity condition; see, e.§27].

We note that expectation values for the distributi&®)

e calculated with the same transfer matrix as in the periodic
case. However, instead of taking a trace, one calculates a
scalar product with suitably chosen vectors, which are deter-
mined by the boundary fields. Taking any finite lattice of size
L=3, and computing the average occupation numbess

using the stationary-state probabiliti€B6), one gets the
constant densityn;)=(n,)=---=(ny), providedEq. (B8)

is satisfied. Thus, applying the injection/extraction rates Egs.
(B1)—(B4) guarantees inducing effective boundary densities
p_,p+ on the left and on the right boundary, respectively.

and the three remaining rates are written analogously. No
that for the simple exclusion modet §=0, the correlations
are absent10)=(1)(0)=p(1—p), and the above rates simply ar
reduce to the usual oné@—|1 with ratep_ and 1—0| with
rate 1-p. .

The above choice of the injection/extraction rates Eqs
(B1)—(B5) possesses a nice property. Namely, when
=p,=p, the stationary-state probability can be found ex-
actly: it is the Ising distribution Eq(Al) of an open chain
with bulk and boundary fields:

Pny= e BHEng NEi_y(1-2n) +g(ny+n ~1)) 7. (B6)
I

[1] Nonequilibrium Statistical Mechanics in One Dimensiea- [20] Q. H. Wei, C. Bechinger, and P. Leiderer, Scie®8Y, 625

ited by V. Privman(Cambridge University Press, Cambridge, (2000.
1997. [21] H. Brandstetter, Diploma thesis, University of Munich, 1991
[2] B. C. Eu,Nonequilibrium Statistical Mechani¢&luwer, Dor- (unpublisheg
drecht, 1998 [22] J. Krug and H. Spohn, i8olids Far From Equilibriumedited
[3] A. B. Kolomeisky, G. M. Schtz, E. B. Kolomeisky, and J. P. by C. Godrehe (Cambridge University Press, Cambridge, En-
Straley, J. Phys. 81, 6911(1998. gland, 1991
[4] V. Popkov and G. M. Schm, Europhys. Lett48, 257 (1999. [23] T. M. Liggett, Stochastic Interacting SystertSpringer, Ber-
[5] S. Katz, J. L. Lebowitz, and H. Spohn, J. Stat. PI84.497 lin, 1999.
(1984). [24] G. M. Schiuiz, Exactly Solvable Models for Many-body Sys-
[6] J. Krug, Phys. Rev. Let67, 1882(199J. tems far from Equilibriumin Phase Transitions and Critical
[7] J. Krug, in Spontaneous Formation of Space-Time Structures Phenomenaedited by C. Domb and J. LebowitAcademic,
and Criticality, edited by T. Riste and D. Sherringtokluwer London, 2000, Vol. 19.
Academic, Dordrecht, 1991p. 37. [25] B. Derrida, Phys. ReB01, 65 (1998.
[8] G. Schiiz and E. Domany, J. Stat. Phy&2, 277 (1993. [26] T. M. Liggett, Trans. Am. Math. Socdl79, 433(1975.
[9] B. Derrida, M. R. Evans, V. Hakim, and V. Pasquier, J. Phys.[27] T. Antal and G. M. Schiz, Phys. Rev. 62, 83 (2000.
A 26, 1493(1993. [28] K. Oerding and H. K. Janssen, Phys. ReVo& 1446(1998.
[10] M. R. Evans, N. Rajewski, and E. R. Speer, J. Stat. PBys. [29] H. Fogedby, Phys. Rev. Let80, 1126(1998.
45 (1999. [30] P. A. Ferrari, L. R. G. Fontes, and M. E. Vares, Ann. Inst.
[11] J. de Gier and B. Nienhuis, Phys. Rev5E 4899(1999. Henri PoincarePhys. Theor36, 109 (2000.
[12] T. Sasamoto, J. Phys. Soc. JB8, 1055(2000. [31] C. Kipnis and C. LandimScaling Limits of Interacting Par-
[13] H. K. Janssen and K. Oerding, Phys. Re\6bE 4544(1996. ticle SystemgSpringer, Berlin, 1999
[14] D. Helbing, Verkehrsdynamik: Neue Physikalische Model-[32] M. Plischke, Z. Raz, and D. Liu, Phys. Rev. B5, 3485
lierungskonzeptéSpringer, Berlin, 199y (1987).
[15] D. Chowdhury, L. Santen, and A. Schadschneider, Phys. Red33] D. P. Ballou, Trans. Am. Math. Sod52 441 (1970.
329 199 (2000. [34] B. Derrida, J. L. Lebowitz, and E. R. Speer, J. Stat. PBgs.
[16] V. Popkov, L. Santen, A. Schadschneider, and G. M."&ghu 135(1997.
Phys. A34, L45 (2001)). [35] V. Belitsky and G. M. Schiz (unpublishegl
[17] J. T. MacDonald, J. H. Gibbs, and A. C. Pipkin, Biopolymers [36] D. Forster, D. R. Nelson, and M. J. Stephen, Phys. Ret6A
6, 1 (1968. 732(1977.
[18] J. T. MacDonald and J. H. Gibbs, Biopolyméts707 (1969. [37] H. van Beijeren, R. Kutner, and H. Spohn, Phys. Rev. L5=it.
[19] V. Kukla, J. Kornatowski, D. Demuth, I. Girnus, H. Pfeifer, L. 2026(1985.
Rees, S. Schunk, K. Unger, and J.rer, Science272, 702 [38] H. K. Janssen and B. Schmittmann, Z. Phys. B: Condens. Mat-
(1996. ter 63, 517(1986.

056110-11



J. S. HAGER, J. KRUG, V. POPKOV, AND G. M. SCHIZ PHYSICAL REVIEW E 63 056110

[39] M. Kardar, G. Parisi, and Y. C. Zhang, Phys. Rev. L&, Phenomenaedited by C. Domb and J. LebowitAcademic,
889 (1986. London, 1995, Vol. 17.

[40] J. Krug, Adv. Phys46, 139 (1997). [47] G. Schiiz, Phys. Rev. E7, 4265(1993.

[41] J. Krug and L. H. Tang, Phys. Rev.3, 104 (1994). [48] L. G. Tilstra and M. H. Ernst, J. Phys. &1, 5033(1998.

[42] R. A. Blythe, M. R. Evans, F. Colaiori, and F. H. L. Essler, J. [49] J. S. Hagefunpublishedg
Phys. A33, 2313(2000. [50] J. Krug, Braz. J. Phys30, 97 (2000.

[43] K. Mallick, J. Phys. A29, 5375(1996. [51] J. Krug and P. A. Ferrari, J. Phys. 29, L465 (1996.

[44] T. Sasamoto, Phys. Rev. @, 4980(2000. [52] M. R. Evans, J. Phys. 80, 5669(1997.

[45] H. Spohn, Large Scale Dynamics of Interacting Particles [53] M. Bengrine, A. Benyoussef, H. Ez-Zahraouy, J. Krug, M.
(Springer, Berlin, 19911 Loulidi, and F. Mhirech, J. Phys. 82, 2527(1999.

[46] B. Schmittmann and R. K. P. Zi&tatistical Mechanics of [54] R. J. Baxter,Exactly Solved Models in Statistical Mechanics
Driven Diffusive Systemsn Phase Transitions and Critical (Academic, New York, 1982

056110-12



