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Free energies and other thermodynamical quantities are investigated in canonical and grand canonical
ensembles of statistical mechanics involving unstable states which are described by the generalized eigenstates
with complex energy eigenvalues in the conjugate space of Gel'fand triplet. The theory is applied to the
systems containing parabolic potential barrie®B’s. The entropy and energy productions from PPB sys-
tems are studied. An equilibrium for a chemical process described by reac¢tio®B=AC+B is also
discussed.
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[. INTRODUCTION where ®, H, and ®*, respectively, stand for a nuclear
space, Hilbert space and the conjugate spack.dirom this
Many experimental and theoretical investigations showrelation we see that the conjugate spdeé of the Gel'fand
that thermodynamics is a fundamental dynamics for describtriplet contains the original Hilbert spaéé and in general it
ing realistic phenomena governed by temperatures. We alszan include eigenstates with complex energy eigenvalues
know that quantum mechanics is a fundamental one to dehat are not included in the original Hilbert spaée It
scribe microscopic processes. And we believe that statisticalhould also be noticeable that the complex energy eigenval-
mechanics is a theory connecting quantum mechanics toes are represented by pairs of complex conjugates such as
thermodynamics. In statistical mechanics we know that the xib for a,be R, that is, since Hamiltoniand are real on
so-called “principle of equak priori probability” is taken ¢ for any solutionsye ®* satisfying the equation
as the guiding principle in the construction of the theory and
the Boltzmann entropy is the key word connecting the two AHy=(a—ib)y for a,beR,
fundamental dynamics. Rigorously speaking, thermodynam-
ics is applicable only to true equilibriums described by thewe always find solutions having complex conjugate eigen-
maximums of entropies. We, however, know the fact thatvalues such that
thermodynamics is applicable to phenomena which are
slowly varying with time, such as phenomena in chemical F|¢*=(a+ib)¢*.
processes, cosmological processes and so on. This fact indi-
cates that the principle of thermodynamics can also be appliAn explicit example has been presented in a parabolic poten-
cable to those phenomena varying very slowly as comparetial barrier (PPB V(x) = —my?x?/2, where the energy ei-
with time scales needed for making thermal equilibriums lo-genvalues are obtained byi(n+1/2)% v, n being positive
cally. In statistical mechanics states included in the count ofntegers including zer¢2-7]. We can see that there is a
thermodynamical weights are the eigenstates of quantum mgossibility that the imaginary parts of energy eigenvalues
chanics which can have only real energy eigenvalues on Hilcancel each other in many body states consisting of the states
bert spaces. All eigenstates in Hilbert spaces are stable andth complex energy eigenvalues in Gel'fand triplets and
then there is no possibility for introducing the changes withthen the total imaginary part of the many body states can be
respect to time in statistical mechanics based on quantuivery small including exact zero value. Furthermore we can
mechanics on Hilbert spaces. At present, therefore, we hav@xpect stationary states with zero imaginary energy eigenval-
no reliable theory to investigate paths which connect an iniues in more than two-dimensinal space. Such an example has
tial equilibrium to a final equilibrium. Taking account of the been presented in the two-dimensional PPEX,y)
fact that thermodynamics can be applicable to some phenon+ — my?(x?+y?)/2, where the eigenvalues including zero
ena slowly varying with time, it seems to be very interestingenergy eigenvalue are obtained-as(n,—n,)% vy, wheren,
that we examine statistical mechanics on some extendeahdn, are positive integers including zero. From the eigen-
spaces including unstable states. For this purpose we find omallues we see that the stationary states with the zero energy
an interesting possibility of the extension of Hilbert spaces teeigenvalue appear fam,=n, and the states with an equal
the conjugate spaces in Gel'fand tripl¢ld, where complex energy are infinitely degeneraft8]. It has been shown that
energy eigenvalues describing unstable states are involvethe degeneracy plays an interesting role to investigate vortex

A Gel'fand triplet consists of the following triplet: structures that are determined by nodes of wave functions
described in terms of the superposition of the infinitely de-
OdCHCDX, generate statd§]. It is natural that we expect that some kind
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of statistical mechanics will be applicable to the systems inthe evaluation ofW(&) two freedoms that arise from the
volving the states with complex energy eigenvalues in theariety of the combinations for composing the real part of
conjugate spaces of Gel'fand triplets. the total energyfE=3¢; and that for composing the imagi-

It is known that states with complex energies have beemary onel’==,y, must be taken into account, wheseand
investigated in terms of the method of complex scalingy,  respectively, denote the real and imaginary parts of the
[9,10] and the analytical continuation of semiclassical solu-complex energy eigenvalue =€, —iy; for theith constitu-
tions[11-13. They have been successfully applied to someent, Provided that there is no correlation between the real
chemical processef9,10] and helium negative ion reso- energy eigenvalues and the imaginary onasis given by
nances[11-13. In these methods the complex scaling of the product of the thermodynamical weight for the real part
solutions of Hilbert spaces and the analytical continuation ofpR¢(E) and that for the imaginary paw'™(I")
semiclassical solutions solved by the WKB approximations
are used. In such cases, however, the states with negative W(E)=WREE)W™T). (2
imaginary energies are chosen, while those with positive
imaginary energies are eliminated. This choice is quite natuThus the entropy in SMGT is represented by the sum of the
ral, because the decay processes that are described by tBeltzmann entropy8*%(E) and the new on&™(I") induced
states with the negative imaginary energies are experimerirom the freedom of the imaginary energy eigenvalues such
tally observed whereas the states with the positive imaginarthat
energies that represent the processes forming resonances
cannot directly be observed in experiments. In the PPB case S(&)=S*9(E)+S™(I), ()
the situation is same, that is, the states with negative imagi-
nary energies represent the resonance decays which are &¥1€re SFYE)=kg INW™HE) and S"™(T")=kg InW'"™(T)..
pressed by well-known Breit-Wigner resonance formulas A" €xplicit example for Eqs(2) and (3) was presented in
whereas those with positive imaginary energies represent tH2ef- [15] by using parabolic potentials. The canonical distri-
resonance formation§For details, see Ref6].) It is, how- ution has also been derived as
ever, noted that both processes, the decay processes and the
formation processes, generally coexist in many body sys-
tems. A similar situation occurs in the two-dimensional PPB,, hare the canonical partition function is given by
that is, the analytical continuation from the solutions of the
two-dimentional harmonic oscillataHO) derives the states
having the energy eigenvalugsi (n,+ny+1)#%y, which do Z=2| > exp(— BRE — g™ py).
not contain any stationary states and represent diverging and m
converging rows._The aboveme'ntlone.d states W't,h the eny, the partition function the twg factors are related to the
ergy eigenvalues+i(n,—ny)7y including the stationary temperatures as
states, which satisfy the different boundary condition from
those taken in the original HO and represent corner flows, BRe=B=(kgT) %, B™=(kgT'™) 1, (5)
cannot be obtained by the analytical continuati(for de-
tails, see Ref[8]) In statistical mechanics the complete whereT is the usual temperature of canonical distributions
knowledge of the states in the physical space are required iind T'™ is newly introduced in SMGT14]. Comparing the
the count of the number of different states describing comtime-dependence of the probability distributions for the
plex systemgthermodynamical weight For the purpose of quantum states on Gel'fand triplets having the total imagi-
the exact evaluation of thermodynamical weight we have tary energyl’, which is given bye 2'"# with that of the
construct statistical mechanics on Gel'fand triplets. canonical distribution, we have derived the relatigH"

In a previous papel4] we have shown the fundamental =2t/ with the common time-scal¢ [14], that is, T'™
spaces to that on the conjugate spaces of Gel'fand triplets ofiat the canonical distribution is meaningful wheh| is
the basis of principle of equal priori probability and de-  small enough to make a thermal equilibrium before the
fundamental difference between statistical mechanics on Hikye see that such situations can happen, thaFiscan be as
bert spacesSMHS) and that on Gel'fand triplet§SSMGT)  small as possible, including exact zero value, because in
appears in the count of the states for the evaluation of theige|'fand triplet formalism[1] all eigenvalues appear in the
modynamical weight, that is, the new freedom arising frorf‘l_pair of complex conjugates such as iy and then the total
the states with imaginary eigenvalues appears in SMGTimaginary partl” can be zero. It is a striking fact that there
while there is no such freedom in SMHS. This fact changegyist stable systems which are composed of unstable states.

P(&im)=2""exp(— BRE = B T'm), 4

the entropySwhich is defined by An example for the stable systems was presented in[Ré4f.
in terms of the two-dimensional parabolic potential barriers
S(E)=kgInW(E), (1) (PPB'S. It should also be noted that in the two-dimensional

PPB we can show the existence of stationary states with zero
whereW(¢) is the thermodynamical weight at the total com- imaginary eigenvalue which are understood as stationary
plex energyé=E—iI" andkg is the Boltzmann constant. In flows round the center of the PHB]. By using the station-
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ary states the energy and entropy productions from the PPBhe relations with respect to other quantities derived from
were studied and the entropy transfer fr@f to S*®was  FR®such as the total volum¥, the pressurg and so forth
suggestefl15]. This new idea for statistical mechanics seemsare same as SMHS. At present, however, it is not an easy
to have many interesting applications such as chemical prgsroblem to clarify whether new quantities derived fréit’
cesses, energy production processes without nuclear fusioree physically meaningful or not. The entrop®¥ and S
the birth of the Universe, and so forth. are derived from the free energies as

In a previous papefl4] we presented the fundamental
idea for the extension of SMHS to SMGT and derived the Re R m I im
canonical distribution with the common time scale. The pre- S ﬁ': qT), S"=- aTﬁF (t). (€)
sentation is, however, not enough to understand SMGT well,

for instance, thermodynamical functions except the entropype consistency o8™ given in Eq.(9) with that of Eq.(3)
are not discussed. In this paper we would like to investigategiven in microcanonical ensemblé4] will be studied in a

the new statistical mechanics, i.e., SMGT involving unstabléspg model in Sec. IV. In general the entroB{ and the

states on Gel'fand triplets more precisely. Namely, thermo- — . . .
P P Y y grean valuel' have time dependence, which will also be

investigated in the PPB model. The free energies satisfy the

tentials will be investigated in SMGT in Secs. Il and Ill. :
fusual relation of SMHS such that

Consistency of the theory will be examined in terms o
simple PPB models in Sec. IV. We can expect that the PPB
is a good approximation to potentials standing for repulsive
forces being very weak at the center, as the HO is Welg

K b d mation t tentials standing f ince we do not know what are good observables in unstable
nown to be a good approximation to potentals standing c’rsystems and still have only one example of PPB to adopt

¥MGT [15], we have to examine SMGT more in other real-

transfer fromS'™ to S*° and the energy production are stud- iy examples in order to understand the meanings of SMGT
ied through a decay of a resonance system in the PPB in SeI  details

V. An equilibrium for a simple process described by reac-
tions A+ CB=AC+B will be discussed in this scheme in
Sec. VI. Throughout this paper we deal with the processes in
which the real and the imaginary parts of the total energy of The most prominent aim of SMGT is the introduction of
the system can be independently determined such as the cagie dependence through the decay of the constituents of

FRe=E-TS? Fm=T-T'mg™. (10

IIl. GRAND CANONICAL ENSEMBLE

of parabolic potentials as discussed in Sec. IV. systems. This means that the total number of constituents
composing the systems also varies with time. This situation
Il. FREE ENERGIES IN CANONICAL ENSEMBLE will be well described in grand canonical ensemble. In the

f h ical distributi ¢ h construction of grand canonical ensemble the number of the
Let us start from the canonical distribution of Eq. 4. In the ¢ gtityents should be represented by natural numbers
present case where the real and the imaginary energies of thg— 1 5 ... ). Then we construct the grand partition func-
system can be independently determined, the canonical paky ., 4o

tition function for the system composed Mfconstituents can

be obtained as the product of the partition function for the *
real part and that for the imaginary one such that B= E ePuNz, 11
N=0
ZN(T,H)=ZRA(TZN(1), (6)

whereZ, is the partition function for the total numb#rand
Where given by the producZi°Zy(". In the definition ofZ the usual
factor B is taken so as to coincide with the partition function
Re m - of SMHS when the freedom of the imaginary part disap-
Zy (T)=EI exp(—BE), Z\(1)=2 exp(— "™ ). pears. The chemical potential, of course, differs from that
" of SMHS and generally has the time dependence. The spe-
&ific difference ofE from Z, is seen in the forms of Eq$6)
and (11), that is, the contributions from the real and the
imaginary parts cannot be separatedEinwhereas they are
separated as the productdy . We, therefore, have only one
thermodynamical function in the grand canonical ensemble

FR(T)=—g tInzRe, F™t)=—(8™ tinz". given by
“ JTtp)=—BtnE. (12)

Following the same argument carried out in SMHS, we hav
two (Helmholtz free energies corresponding to the usual
free energy for the real paRR® and that for the imaginary
partF'™ as

The mean energies are obtained as usual The mean number is obtained by

E=i[,3FRe(T)] F=i[,3"“|:'m('|')]- €S) N= ‘1iln: (13
Ip ' apm Ponn=
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which have the time dependence in general. An example oftherem is a constant with the mass dimension. The eigen-
the time dependence will be seen in a PPB model. values of HO is well known as

Taking into account that the contributions of the real and
imaginary parts are not separablezn the maximum of the
probability in the grand canonical ensemble appears at

1
&n = ny+ =

5 hw (21

J/T:E/T_SRe_l_F/TIm_SIm_ﬁ(aS/(;N), (14) and the eigenvalges (_)f PPB on the Gelfand triplet are
known to be pure imaginary values 57|

where the relationgSR*¥dE=1/T and ¢S™ oI =L/T'™ are

used[14]. Now we can see that the definition of the chemical e =il no+ 1 fiy, 22)
potentialu is given by the relation My yo2
w S wheren, andn, are natural numbens,, n,=0,1,2 ... . It
TN (15 is known that ther of the eigenvalues in PPB, respectively,

stand for the decaying and growing resonance states. In this
where S=SRe+ ™M The Gibbs free energ is given as section we shall deal only with the states having the negative

usual imaginary eigenvalues of PPB, which represent the decays of
resonances for the time scdle 0 [1-7]. Then the energy of
G:Mﬁ- (16) a constituent is written by
Note that the relation between the thermodynamical func- enn =N+ 1 fiw—i| n,+ E hy. (23
tions J=F—G in SMHS should not be adopted. In SMGT <y 2 2

the relation should be read as , i i
(1) Microcanonical ensembld_et us start from microca-

JIT=ERYT+E™TM_G/T. (17 nonical ensemble for the system composetl afidependent
particles being in the above potenti&lx,y). The total com-
In simple cases where all constituents can be treated gsex energy of the systeidiis represented by
independent each other, the canonical partition function is

written by the hy, (24)

1 . 1
Emrayim=| MRe+ SN|io—i MM+ SN
Zy=(Z)", (18
I N _ ~ whereMRe=3 n,; andM'™==L n,;. Hereafter we shall
whereZ,=7Z7°Z" is the partition function for one constitu- ;ge the notation& = (MRe+ N/2)% o for the total real energy

ent. We then obtain andI'=(M'™+N/2)# y for the total imaginary energy. The
thermodynamical weight is evaluated as

E=(1—-efrz)) 1 (19
W, MRe,MIm :WRe MR Wlm Mlm , 25
with the constraint for the chemical potential d ) N (MEHWRC ) @9
where
efrz,<1.
. o (MReEN-—1)!
When the constituents cannot be identified each other such as WREMRe) =——————
free particles, we should have MRI(N—1)!
o (Z)" MM+ N—1)!
B=2 eﬁﬂN—NlI (20 w',g“(Mm‘):—( ) :
N=0 : MM (N—1)!
and then we get The entropy is obtained by
E=eX[ieB“Zl). S(g)ZSRe(E)'FSIm(F),

where the contributions from the real and imaginary parts are
V. SIMPLE EXAMPLES expressed in the same form as

A. HO+PPB case
S =kg[(M"+N)In(M +N)=M'InM =N InN],

We shall here examine SMGT in a simple example that is (26)
represented by one-dimensional harmonic oscill@td) +
one-dimensional parabolic potential barri®PB) where = denotes Re or Im ant¥ ,N>1 are postulated as
usual. The complete symmetry between the contributions of

1 HO and PPB in the entropy originates from the completely

1
— T mem2x2— = ma2y2
Vi) 2mw X 2m7 Y same structure of the total real and imaginary parts of the
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energy. We can introduce two temperatures corresponding to _ ePuz
two constraints for giving the maximum of the entropys N=—— (33
[14] 1-efZ,
1 gSte S ) From this equation the chemical potential is expressed by
TOOE Tmo 7
.. . —n-1 1 —phw 1 Im
The explicit forms are obtained as um=p Eﬁhwﬂn(l—e )+ E'B fy
1 kBI E/N+#Aw/2 1 kg T/N+fyl2 . 1
T %o 'EIN-hol2’ Tm fy TIN-fiy2’ +In(1—e 77" —In I+ s (34)
(28)

Everything can be derived from the entropies, following theFor N>1 the contribution of the last term in the right-hand
argument carried out in SMHS, e.g., side of the above equation vanishes. Then we see the behav-
ior of u for smallt as follows:

hw

1 1 hy
E=N|hot+ —— =
(S}

: F=N(2ﬁ7+m- p~Inyt for t—0. (39
(29

2 Bﬁw_l

_ | _ The divergence at=0 appears so as to cancel the diver-
Since g™=2t/fi, we see the time dependence of the totalgence ofz!™ at t=0, because in the canonical distribution
imaginary energyl’ in the second equation of E{29), (4) the dumping factop—A™ disappears at=0 and then

which will be examined afterwards. Z'lm becomes infinity, of which divergence is easily obtained

(2) Canonical ensembld-ollowing the argument given in 1 . !
Sec. ll, the partition functions for the real and imaginaryas thet”~ type. Note here that the divergences also appear in

parts are obtained as S™ andI" as Int andt ™! types, respectively.
Thus we obtain theé dependence of all thermodynamical
e~ Bh2 \N quantities for the systems involving unstable states for small
Zy= m) ; (30 tvalues.

where Q= w in the real part for-=Re and{Q=1y in the B. d-dimensional free motion+ PPB case

imaginary part forF-{=|m srlmul_d be taken. The derivations of | et ys briefly discuss one more example described by the
the free energieB “andF™ given in Eq.(7) are trivial. Itis  §.dimensional free motion+ PPB, where the equation of
easy to examine that the mean valuegadl” are same as  states with respect to the temperatlirzolumeV, and pres-
those derived in Eq(29) of microcanonical ensemble. The surep are treatable. Here we study the problem in terms of

entropies of Eq(9) are evaluated as T-p distribution of which partition function is defined by
B e _ w

S =Nkg| BHQ————In(ef " ?—1)|. (32 Yzf e PPVZdV, (36)
efh_q 0

We also easily see that they coincide with those given in EQyhere the canonical partion functidmzzﬁez}{,“. The real

(26) of microcanonical ensemble. art ZR€ for the free motions is diven b
(3) Grand canonical ensemblélhe present case is the P N 9 y

independent particle model discussed in the last of the pre-

vious section. Then we can immediately get the partition Re_i N dN/2
function from Eq.(19); N NI —(Zwﬁ)dNV (2rmkgT) (37)
o= ; (32) and the imaginary parZ',Q“ for the one-dimensional PPB is
1-efrz, the same as that of the previous model. After the integration
we have
where the canonical partition functiaty, for a particle is
given by N+l
Y= —(27Tm kBT)dNIZ kB_T Zlm (38)
L g~ Bhol2 e BMhyl2 (27 )dN p N -
P la-epie)\1-e By
From the thermodynamical relatioB=—p8"1InY for N
The mean number is obtained as >1 we obtain
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d+2 md/Zk(Bd+2)/2 dr 1
- N Y ST R S dS™=—-Nkg— for 7<=. 43
G=-Np 5—INT—Inp+in 2 B <3 (43
1 Since the total entropy conserves in the adiabatic process,
— zﬂlmﬁy—M(l—E’Blmﬁ’/)]. (39) thatis, the relation
dS=dS*+dsS™=0 (44)
The equation of states is immediately derived from the rela-

tion V=0G/Jp as usual holds, we have the relation

pV=NKgT. dste=—dsm. (45)

Note here that this equation describes the relation between Note here thatiS* is always positive becaustS™<0 is

andp for the free motions. In order to answer the questionkept. In the system described only by PPB's the temperature
whether physical quantities for the imaginary freedom correT originated from the freedom of real energy eigenvalues is
sponding to the volume and the pressure are meaningful ¢i€ro, i.e.,T=0, since the system has no real energy freedom.
not, we have to study the meanings of continuous imaginaryfhis means that the temperature must be zero=d1, i.e.,
spectra on Gel'fand triplet, which do not represent usualust at the moment when the decay processes are opened. Let
resonances described by the Breit-Wigner resonance formul$ write it as

in cross sections.

The chemical potential is gotten from the relati@ T()=Kr® for r< E (46)
=uN as
p [2mwh?\92 | _gimy whereK, and§ should be positive constants. Since the direct
u=kgT InkB_T mkaT +5B hytin(l-e ). observable in this process is the real endEff§released into

the ordinary potentials by the decay of resonances, we
(40) should evaluate the real energy produced in this process. For

o the smallt we have
It has thet dependence of the tntype at smallt, which is

same as the previous case given by B4). The same result Re . s1 1
for u can be obtained in grand canonical ensemble, where dER=T(1)dS**=NkgKo7* *d7 for T<§- (47)

the numberN should be replaced by the mean number _ _
From the above examples we see that SMGT is applicable tbhen we can estimate the real energy produced in the process

realistic processes. during the short period from 0 tb(<1/2y) as
V. ENTROPY TRANSFER FROM S'™ TO SRe ndE"® Ko
- ERe=f g dm=Nkg— (). (48)
0

Let us consider the entropy transfer fr@Hf' to S*¢in an

adiabatic process described by a decay of a system that &ince 5>0, this process produces a real positive energy.
composed oN resonances in a one-dimensional PRBmMe  gyen if M diverges at=0, we obtain a finite energy pro-
ordinary potentials, where the ordinary potentials mean pogyction. The unknown constarks, and 8 will depend on the
tentials which are described by Hilbert spaces and the SY$sroperty of the system where the produced energy is ab-
tems described the potentials can have thermal equilibriumsy ped. We see that the system in PPB’s can be the source of
of SMHS. We can, therefore, consider t&f and S, re-  he energy production. It, of course, does not mean the break
spectively, stand for the entropy of the PPB system and thajown of the energy conservation law. In the process where
of the ordinary system. Here we study the process where thge system is composed in the PPB the real energy produced
decays of the resonance system are absorbed into the systginine decay process is stored 8€' in the system. This
described by the ordinary potentials. After the decay promeans that the total produced energy which is evaluated by
cesses are openedtat0, the entropy of the system being in the integration front=0 to e must coincide with the energy
the PPB is obtained from E¢31) as consumed in the process for making the initial system. This

29t integration will derive a relation betwedfy,, and 8.
S™=Nkg| 2t — —In(e*"'-1)|. (41)
e—1 VI. EQUILIBRIUM OF A PROCESS DESCRIBED

BY REACTIONS A+CB=AC+B

For smallt such thatyt<1/2 the entropy behaves ) ) . .
As discussed by Child, the chemical reactiérn-CB

SM=—NkgIn 7 (42) —AC+B is well described by the potential having two
bumps[16,17. Connor studied the reaction by representing
where 7= yt. As already noted, it diverges at=0. This the potential in terms of PPB’EL8]. They investigated the
relation gives us reaction cross sections of the processes in the WKB method
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and showed that the cross sections were given by the Breitnust be satisfied, since thedependence of the canonical
Wigner resonance formula. The Breit-Wigner formulas ofensemble for the reactioh+CB— AC+ B, which is given
the cross-sections for PPB scatterings have already been ofy ="', -1 and that forAC+B—A+CB given by
tained in our scheme based on the Gel'fand triptdt Here ~B™ITT3) must vanish in the equilibrium. Now we have
we shall study chemical equilibriums of the systems containih th d ical weiaht q :

ing two reactionsA+CB—AC+B and AC+B—A+CB € thermodynamical weight as

(A+CB=AC+B) simultaneously. We study the case W=W,W,, (52)
where the potentials for the exchanged parti€les de-

scribed by two one-dimensional PPB’s having the centers athere

the positions of A and B which are spatially separated P B . (53
enough to treat them as two independent systems. The PPB (M +Ny =1 (My +N—N; —1)!
constants of the systerdsandB are denoted by, and y,, PUOMIIINT =) MU(IN=Ny = 1)1

respectively. The total systems are described by an ensemble - . 4
composed of N number of independent reactiona W :(MZ +Ny D! (Mp #N—Ny —1)!
+CB=AC+B. In the present discussion we postulate that 27 M, I(NT—1)1 MJI(N=N; —1)!

the systemg\ andB are heavy enough to neglect their move-

ments in the interactions witB. Note here that the reaction The maximum of the entropy is realized at the point, where
A+CB—AC+B describing the process that the partite the relation
is approaching t&\ is understood as the growing resonance " n _ n 2
state for the system, but the same process is, on the other ian:In (M1 +Np)(Mz +N)(N—Ny) _
hand, understood as the decaying resonance state for the sysdN; (M] +N=N7)(M; +N=N7)(N])Z2
tem B because the particlg is leaving fromB. The reaction (54)
AC+B— A+ CB describing the process th@tis approach-
ing to B is understood vice versa. From this consideration o
the growing and decaying resonance states, we see that th

(s fulfilled, whereM,N>1 are used. We have the equation
Stisfied in the equilibrium

are the followingi relations between the number of the grow- (M7 +N7)(M +N7)(NT)?2
ing resonancebl; for the systemAC and that of the decay-
ing resonancesl, for the systenBC and also between the =(M;+N) (M5 +N7)(Np)?, (55
number of the decaying ond$; for AC and that of the B L ) )
growing onesN; for BC: whereN; =N—Nj is put. By using the relations of Egs.
(50) and(51) we obtain the equation
N;=N3;, N;j=N;. (49 Fl_+1h )FIJrlh )
Thus the total numbeN is expressed by the sul=N; Ny 2 7 Ny 2 72
+N; provided that we pay attention to the systehe, r+ 1 r-
whereas it is written down by the sul-= N2++ N, from the - N_l++ Shy N_l++ 57| (56)
side of the systenBC. In microcanonical ensemble the 1 1

imaginary parts of the energies of the growing and decayin

; N I\ Nt
states for the reactiona+ CB=AC+B are, respectively, Faking account of the constrainis; /N; >0 and I'; /N;

given by >0, we get the solution
1 1 r; ry
F‘=(M‘+—N‘)ﬁ : F+=(M++—N‘)ﬁ : —=— (57)
1 1o N YL 2 2T 5N [vY2 N; NI

for A+CB—AC+B, This result shows that the mean grow width for a growing

resonancd’; /N; , is equal to the mean decay width for a

decaying resonancE; /N; for the systemAC. From the

relations of Eqs(49) and(51) we can, of course, derive the

relation", /N, =T'5 /N3 for the systemBC. Generally the
(50 relations

~ o1 1
r, =(M2 +§N;>ﬁy2, rf=(M;+§Nf)ﬁy1,

for AC+B—A+CB

where the imaginary parts are defineddjy=*iT;" (suffix r, r;y r, I,

i=1,2), M{7=0,1,2 ..., and therelations of Eq.(49) are F: F:F: NT (58)
used. Note that the total imaginary energiesA@ andBC ! o2 T

are written by, =—i(I'y —I';) and&=—i(I'; —T,),re-  are obtained. These relations indicate that a kind of balance

spectively. In the equilibrium the relations such as a detailed balance is held between the grow pro-
. R cesses and the decay ones in the reaietCB=AC+B.
Fy=r;, TI'j=I, (51)  Though this model is too much simple to describe realistic
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chemical processes, we can at least say that this scheme Here we shall comment on a general formula for the equa-

(SMGT) is consistent with our primitive understandings.  tion of motion for the mean values in canonical ensembles.
Provided that the real and imaginary parts are separable as

VII. DISCUSSION the canonical distribution given by E@), the mean value of
o ) ] the quantityA(T") is obtained by
We have proposed a statistical mechanics which can con-

tains unstable states on Gel'fand tripld®MGT) and ap-

plied it to a few simple processes. The validity of this theo- A= f A(r)e—ﬁ'mfwlm(p)dp/ f e_BlmFWIm(F)dF.

retical scheme will be examined by applying it to many

realistic processes and by comparing with experiments. We (59)

should, however, remember that SMGT is applicable to the ] .

processes where the change of systems with respect to timi@ general we should consider that the average with respect

are so slow that the systems can be dealt with as being in @ the real energy part has already been taken a#\(bi).

thermal equilibrium at any moment. The derivative ofA with respect ta is evaluated as

— - f TA(T)e A""W™(T)dT f A(T)e A" TWm(T)dr f re #"TWm(T)dr

da_2 n , = (~TA+TA).
a4 f e A"TWIM(T)dT f e—ﬁ'mfw'm(r)dr} "
(60
|
For A=T" we have the equation Throughout this paper we have discussed the cases

where the total real and imaginary pars and I' are
independently determined. Gelfand triplets, however, con-
tain many other solutions such that the real and imaginary
eigenvaluese and y have some correlations. In such pro-
where (AF)ZZFZ_(F)Z_ This equation means that be-  cesses the thermodynamical weight cannot be obtained by
comes small in the time evolution in all processes. Considthe simple product ofv® andW'™ as given in Eq(2) [14].
ering the fact that states with large imaginary eigenvalueStudy of such processes is still an open question in the

ar 2
gr= 7 (AD)?<0, (61)

decay rapidly, we can comply with this result. present SMGT.
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