RAPID COMMUNICATIONS

PHYSICAL REVIEW E, VOLUME 63, 05560(R)

Stable localized vortex solitons
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We demonstrate that parametric interaction of a fundamental beam with its second harmonic in bulk media,
in the presence of self-defocusing third-order nonlinearity, gives rise to the first ever examptaapétely
stablelocalized ring-shaped solitons with intrinsic vorticity=1 andn= 2. The stability is demonstrated both
in direct simulations and by computing eigenvalues of the corresponding linearized equations. A potential
application of the(2+1)-dimensional ring solitons in optics is a possibility to design a reconfigurable multi-
channel system guiding signal beams.
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Extended and localized vortices are fundamental strucin photonics is “light guided by light.” In particular, a lot of
tures in nature. Well-known examples are vortices in liquidattention was given to an idea according to which the con-
helium, Abrikosov vortices in superconductdfd, Rossby-  ventional(delocalized optical vortex can be used as a guide
wave vortices in geophysical hydrodynam[§, and vorti-  for a weak signal beanil10]. Unlike this single-channel
ces in Bose-Einstein condensaf@3. Since the pioneering Scheme, the existence of stable vortex rings makes it possible
experimental results reported in Rd#] optical vortices  to design, inside a sample of the same size, an easily change-
have been of great interest too. able multichannelconfiguration.

Besides their importance as fundamental objects, optical Following the derivation procedure of R¢L1], we arrive
vortex solitons may find use in all-optical information pro- at a system of equations for the fundamental- and second-
cessing applications. Conventional vortices require an infiharmonic(FH and SH fields u andw,
nitely extended nonzero backgroufttierefore, we refer to .
them below aslelocalizedvortices, which in practice means iU+ V2u—Bu+urw— (|u|2/4+2|w|2)u=0,
that they can be observed in beams with a large cross-section @
area[5]. A different class of dynamical objects af2+1)- 2iw,+ V2W— aw+ u2/2— (4|w|?+ 2|u|>)w=0,
dimensionalocalizedoptical vortex solitongor rings, as we
call them below, i.e., finite-size self-guided beams with an whereV?=9?/9x?+ 4%/ dy? is the transverse diffraction op-
internal vorticity. Due to the presence of the vorticity, the erator, a=2(A+28), B is a nonlinear shift of the
beam’s cross section has an annular Shape, with a hole iﬂhndamentaLharmonic’s propagation constant, Ant the
side. However, theoreticdb] and experimental7] studies  wave-vector mismatch between harmonics. In this work, we
have shown that, in materials with purely quadratic or SatUConsider the case when thQ(3) non“nearity is self-
rable nonlinearity, ring solitons are strongly unstable againsgefocusing.
azimuthal perturbations. Materials with a mixed nonlinear  Stationary localized solutions with vorticitg“spin” ) n
response may prove to be more productive. It was ar§@ed have the formu= U(r)exping) and w=W(r)exp(and),
that rings are stable against both small perturbations and colgherer and ¢ are the polar coordinates in the transverse

nonlinear response. However, longer simulations demonpcalized solutions of the system

strate that these ring vortices are also subject to a weak in-

stability against azimuthal perturbations in b¢24-1)D- and d2Uu 1duU n2u

(3+1)D geometries[9], which eventually breaks the ring —t= a2 BU+UW-F,U=0,
into a set of zero-spin solitons flying out in tangential direc- dr rar

tions. 2
Thus, there is a challenging question: Cauly stable 5 5 ’

ring solitons exist in models with a realistic nonlinearity? In d_W+ E d_W_ 4n W—aW+ U__ F W=0

this work, we propose a model with a mixgtf) (quadrati¢- dr2 r dr r2 2 v ’

x® (cubig nonlinearity which indeed supports stable ring
solitons. We prove the stability of rings rigorously, i.e., by whereF ,=(U%4+2W?) andF,,=(4W?+2U?). We solved
both direct simulationgincluding collisions and the full-  Egs. (2) by means of the relaxation technique, finding do-
scale linear-stability analysis. This yields the first example ofmains of existence of localized solutions for differentypi-
stable vortex rings in optic¢Note that the only other known cal examples of which are shown in Fig. 1. Wh@rs small
species of stable localized vortices occur in hydrodynamicga low-power regimg ring solitons are narrow. The beam’s
and superconductivity, i.e., very far from optics. amplitude at first increases wii and then saturates, while
Besides its fundamental importance, this result may alsthe ring’s width keeps increasing because of the self-
have direct applications. Indeed, the most promising conceptefocusing effect of thg(® term. This is similar to what is
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FIG. 1. Existence regions for different solutions of E¢b. in
the (A,B) plane. Insets show examples osamilocalizedvortex,
supported by a finite background in the second harmmicand FIG. 2. Examples of collisions between unstabilgpe) and
localized rings(b,c,d for 8=0.02 and different values df, with  stable(lower) ring solitons of Eqs(1) at A=0.1. Usually, an un-
thick and thin lines showing the first- and second-harmonic radiaktable ring splits into two zero-spin bright solitons. Rings which
functionsU(r) and W(r), respectively. Delocalized vortices exist survive the collisions are broad enough.
everywhere below curvB. The meaning of linéA is explained in

the text. The existence domain for rings and zero-spin bright soliy,thal perturbations. This conclusion is consistent with re-
tons is diagonally hashed. The domain of existence of semilocalize{:llent results obtained for the cubic-quintic model, where it
vortices, see an example {a), is horizontally hashedNote that  \.1¢ clearly shown that making the ring broader strongly, but
ﬂﬁg’:&:;lzdege"’:gi;‘;nﬂlr?gﬂ'Zgﬁt;’r?srt'?s;;/ ng(i:;n;:;;oot?e localized, o+ completely, suppressed its azimuthal instabil@y. The

' ' stabilization is related to the fact that the broad-ring solutions
are close to modulationallgtable plane waves. However,
this argument only shows a general trend and cannot predict
if azimuthal instabilities are completely eliminated. There-
fore, a more detailed analysis is necessary to search for genu-
ine stable rings in the model.

known for the cubic-quintic model with focusing® and

defocusingy® terms[8,9]. The similarity is not surprising,
as in thecascading limitof largeA the SH component can be
eliminated from Eqgs(2), w~u?/(4A), and the remaining

FH equation reduces to the cubic-quintic model, Our simulations show that relatively narrow unstable
The existenceesults for various types of solitons of Egs. . . . yn )
rings withn=1 break up into two zero-spin filamertsright

(1) are summarized as a diagram in the parametric plangolitons) which is also a generic outcome of the develop-
(4,B), see Fig. 1. A noteworthy feature is coexistence of aIIment of,the azimuthal inst%bilit in the saturable and cubi?:—
the types of solutions, i.e., conventional delocalized vortices, . . yn ; .
semilocalized vorticeflocalized in theu-component and de- Quintic mo_dels[6,9]. In contrast .W'th this, broad rings not
localized in thew componen{12]), and fully localized rings, only remain completely sftable In _the course of very long ]
along with zero-spin bright solitonghe latter were consid- propagatlon, but also survive collisions between themselves;
ered in Ref[13]) Se%iliclagc'tzs.imulations may be sufficient to predict experimen-
Localized rings bifurcate from delocalized vortices along . Y predict exp
the curveBy(A) in (B,A)-parameter space. This curve is theta.ll. observation of stable rings, but the prlncu:_)le issue of sta-
upper boundary of the diagonally hashed region in Fig. 1. Aplhty can only_be resolved by _compre_henswe a_naly5|s of
B>0, semilocalized vortices are a continuation of the rings:smal.I p.er.turt.)atlons around the ring vortices. LRl gnd, we
thesé two types of solutions merge when the background iﬁdd |nf|n!te3|mal complex pertur.batlor&ﬂ,r,.e). to station-
the SH component vanishes. It follows immediately from the®Y solutions of Egs(1) and(2) with the vorticity n,

second equationi2) that this happens ak=—28, on the

— ing
line A in Fig. 1. All the semilocalized vortices with spim u=[U(r)+ey(zr,0)]e",
=1 are known to be unstabld2]. It seems very plausible 3
that they are unstable too for amy>1. Below, we concen-
trate on solutions in the form of localized rings, and their w=[W(r)+ex(z,r,6)]e?"’.

stability. In fact, the stability of multidimensional solitons is

a very complex issue. We address it first by simulating theA general perturbatior,.(z.r,6) may always be expanded
propagation of azimuthally perturbed ring solitons and theirinto a series. each terrrr1n of’ V\’/hiCh has its own vorticity
collisions. A conclusion strongly suggested by the simula- '
tions is that the rings which are close enough to the upper

boundary of their existence domdire., broad flat-top rings €n= 2 [gjm(r)ei(XHM)jL gjm(r)e*‘(” z23071 (4)
are stable, whereas narrower ones are unstable against azi- J
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where\ is a stability eigenvaluey* being its complex con- 0.01%
jugate. Substituting this into Eqél) and linearizing, we ar-

rive at a non-self-adjoint eigenvalue problem, i ]
r J = 2 1
A, B C D 0.010 -

_ | -B -A. -D -c |. 2 | N
)= & 6 A -
C/2 D/2 E,/I2 F/2 |
-DI2 —Cl2 —Fl2 —E_I2 0-00% ]
where £,=(é51,€51,632,:£52), At:r—Jtl_(UZ/ZJFZVYz)’
B=wW-U%4, C=U-2UW, D=-2UW, E.=LJ, 5.000- ‘ L -
—2(4W?+U?), F=—4W?, and 0.030 0.035 0.040 0.045 0.050
p
.. # 19 1 )
Ly =—+-——-=(nxJ)"—-4, FIG. 3. Unstable eigenvalues fdr=0, corresponding td=
élrz r or r2

+2 andJ= =3 (only Im \ is showr). J=*2 generate the stron-
(6) gest instability, which is, however, no longer present @t

=0.0475, while the rings exist up #®~0.0518; thus, the rings are
~ ? 19 1 2 completely stabl®etween these two values of the propagation con-
L= P + T r—2(2ntJ) —(4B+24). stant. Within the numerical accuracy, In=0 for J=(*1,%4,
+5), therefore these eigenvalues are not shown.

Instability is accounted for by eigenvalues with A 0 ) ) ) )
(the present system being Hamiltonian, eigenvalues appegpcord with results of direct simulations presented above.

in complex conjugate pairs or quadrupletShe problem’s The existence of the window is clearly illustrated by Fig. 3.
continuous spectrum consists of real intervaks A < and For the fundamental rings, the stability window occupies up
—o<A<-T, with T=min(8,48+2A). to ~8% of the existence domair0,8,(A)]. In the direct

To analyze eigenvalue proble(B), we replaced the dif- simulations_, the_ _ring solitong belonging_ t_o th_e Win_d_ow
ferential operators by their fifth-order finite-difference ap-Proragate indefinitely long without any visible instability,
proximations and solved the resulting algebraic eigenvalu§Urviving various perturbations and collisions with other
problem numerically. We mostly used grids with 400 to gogSelitons. _ ,
points, but up to 1200 points were used in regions where a In_addmon to the fundamental rings, we h_ave also studied
change of the stability occurs. To verify the precision of thetn® linear spectrum of higher-order rings with-2 and 3.
numerical code, we also used another technique, based dif'€ fings withn=3 were found to demonstrate some per-
the relaxation method for solving two-point boundary-valueSiStent weak instability associated wilk= =1 perturbation,
problems. Although limited to finding real eigenvalues, thePut the rings withn=2 have their own stability window,
latter method admits a high degree of precision control with-2€CUpying up to~5% of the existence domain. We stress
out much of the computational overhead of other methoddhat, even fon=2, the width of the window exceeds a pos-
For instance, it has been recently used to a great effect igible numerical error by two orders of magnitude. It is nec-
finding a small stability window for higher-order solitons in €Ssary to point out that, while stable localized vortices with
a third-harmonic-generation model, which would have other-
wise been overlookefl4]. A comparison between the spec- ~ 0-10[—
tral and relaxation methods has shown that the former has i B\
good precision for the number of grid points we were using: g.0g M
a numerical error in calculating the stability-boundary values C
of B is estimated to b&By(A)~ 10 ° for 1200 grid points. -

Results of the linear stability analysis for thendamental L
rings (n=1) are summarized in Figs. 3 and 4. We consid- B
ered the perturbations with=0, ...,=5, and have found 0.04 —

that instability may be generated y=*+2 and =3. The
strongest instability corresponds de= =2, eventually lead-
ing to breakup of the ring into two zero-spin solitons. In all
the cases considered, we have found that there is a stability \ ]
change valugy;, at which the largest instability eigenvalue 00L— —_— 1

Im\ vanishes, and remains, along with all the other ones, 0.2 0.0 A 0.2 0.4

exactly (up to the numerical accuracgqual to zero in the

stability window By<B< B [recall B.(A) is the upper FIG. 4. Areas of existence and stability for fundamental (
existence boundary of the ring-soliton fanjilyin other  =1) rings in Egs.(1). Regions of stable and unstable rings are

words, thin rings are unstable and broad ones are stable, lashed diagonally and horizontally, respectively.
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n=1 were earlier known in superconductivity and hydrody- nonlinearity. We checked the former possibility by numeri-

namics(but not in opticg, no exampleof stablen=2 vortex  cal simulations and have found it to work wétletails will

ring has been known befof&,2]. Thus, our model provides be presented elsewhgreThus, media that may support

for the first example of a stable double-charge localized vorstable vortex rings are within the reach of the modern-day

tex. experiment. Last, ring solitons studied in this work may also
Note that second-ordefdouble-humpeH solitons have pe expected in interacting molecular and atomic Bose-

been found to be stable in sevetat1)D models[15], and  Ejnstein condensates, which are described by a model similar
such solitons were observed in recent experimgtis Due (g gyrs[18].

to the shape of their cross sectid@;+1)D rings and zero- In conclusion, we have analyzed the existence and stabil-
spin single-humped solitons are analogous, respectively, t of (2+1)-dimensional ring solitons with intrinsic vorticity
the double-humped and fundamental solitons(1r-1)D. in optical media with competing quadratic and self-

Thus, the coexistence of the stable solitons with zero andefocusing cubic nonlinearities. Sufficiently broad ring soli-
nonzero spins resembles the coexistence between stalls,s with the spim=1 and 2 have been shown to be stable
single- and double-humped.+1)D solitons. However, a po in direct dynamical simulations and analyzing eigenval-
principal difference is that the stab{@+1)D solitons with 65 of the linearized equations. Further stable topological
zero an'd nonzero spins coexist while belonging to differentyjitons have been shown to coexist with zero-spin bright
topo_loglcal classes . . _solitons in the competing nonlinearities model. A potential
_ Finally, we address a possibility of experimental realiza-,sjication of the(2+1)D ring solitons is a possibility to
tion of optical media necessary for observation of stableyesign a reconfigurable multichannel system guiding signal
rings. Although no conventional nonlinear material With yoo s The results obtained in this work may be readily

strong x(*) nonlinearity directly satisfies our requirement to applied to models of different physical content, including
have a negativey® coefficient for both the FH and SH pBgse-Einstein condensate applications.

frequencies, there are two possibilities to achieve this pur-

pose:(i) by creating a layered medium in which some layers I.T., A.V.B., and R.A.S. acknowledge support from the
provide for the y(®) nonlinearity, and others for the self- Australian Research Council. B.A.M. appreciates Grant No.
defocusing Kerr nonlinearity, an@) by engineering special 1999459 from the BinationalU.S.-Israel Science Founda-
x?) QPM gratings[17]. In the latter case, induced cubic tion. The authors appreciate discussions with P. Di Trapani,
nonlinearity may be equal in strength to the intringi® D. Mihalache, D.V. Skryabin, and F. Wise.
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