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Stable localized vortex solitons
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We demonstrate that parametric interaction of a fundamental beam with its second harmonic in bulk media,
in the presence of self-defocusing third-order nonlinearity, gives rise to the first ever examples ofcompletely
stablelocalized ring-shaped solitons with intrinsic vorticityn51 andn52. The stability is demonstrated both
in direct simulations and by computing eigenvalues of the corresponding linearized equations. A potential
application of the~211!-dimensional ring solitons in optics is a possibility to design a reconfigurable multi-
channel system guiding signal beams.
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Extended and localized vortices are fundamental str
tures in nature. Well-known examples are vortices in liqu
helium, Abrikosov vortices in superconductors@1#, Rossby-
wave vortices in geophysical hydrodynamics@2#, and vorti-
ces in Bose-Einstein condensates@3#. Since the pioneering
experimental results reported in Ref.@4# optical vortices
have been of great interest too.

Besides their importance as fundamental objects, opt
vortex solitons may find use in all-optical information pr
cessing applications. Conventional vortices require an i
nitely extended nonzero background~therefore, we refer to
them below asdelocalizedvortices!, which in practice means
that they can be observed in beams with a large cross-se
area@5#. A different class of dynamical objects are~211!-
dimensionallocalizedoptical vortex solitons~or rings, as we
call them below!, i.e., finite-size self-guided beams with a
internal vorticity. Due to the presence of the vorticity, t
beam’s cross section has an annular shape, with a hole
side. However, theoretical@6# and experimental@7# studies
have shown that, in materials with purely quadratic or sa
rable nonlinearity, ring solitons are strongly unstable aga
azimuthal perturbations. Materials with a mixed nonline
response may prove to be more productive. It was argued@8#
that rings are stable against both small perturbations and
lisions between them in optical media with a cubic-quin
nonlinear response. However, longer simulations dem
strate that these ring vortices are also subject to a weak
stability against azimuthal perturbations in both~211!D- and
~311!D geometries@9#, which eventually breaks the rin
into a set of zero-spin solitons flying out in tangential dire
tions.

Thus, there is a challenging question: Cantruly stable
ring solitons exist in models with a realistic nonlinearity?
this work, we propose a model with a mixedx (2) ~quadratic!-
x (3) ~cubic! nonlinearity which indeed supports stable rin
solitons. We prove the stability of rings rigorously, i.e., b
both direct simulations~including collisions! and the full-
scale linear-stability analysis. This yields the first example
stable vortex rings in optics.~Note that the only other known
species of stable localized vortices occur in hydrodynam
and superconductivity, i.e., very far from optics.!

Besides its fundamental importance, this result may a
have direct applications. Indeed, the most promising conc
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in photonics is ‘‘light guided by light.’’ In particular, a lot of
attention was given to an idea according to which the c
ventional~delocalized! optical vortex can be used as a guid
for a weak signal beam@10#. Unlike this single-channe
scheme, the existence of stable vortex rings makes it poss
to design, inside a sample of the same size, an easily cha
ablemultichannelconfiguration.

Following the derivation procedure of Ref.@11#, we arrive
at a system of equations for the fundamental- and seco
harmonic~FH and SH! fields u andw,

iuz1¹2u2bu1u* w2~ uuu2/412uwu2!u50,
~1!

2iwz1¹2w2aw1u2/22~4uwu212uuu2!w50,

where¹2[]2/]x21]2/]y2 is the transverse diffraction op
erator, a[2(D12b), b is a nonlinear shift of the
fundamental-harmonic’s propagation constant, andD is the
wave-vector mismatch between harmonics. In this work,
consider the case when thex (3) nonlinearity is self-
defocusing.

Stationary localized solutions with vorticity~‘‘spin’’ ! n
have the formu5U(r )exp(inf) and w5W(r )exp(2inf),
where r and f are the polar coordinates in the transver
plane, and real functionsU(r ) andW(r ) are to be found as
localized solutions of the system

d2U

dr2
1

1

r

dU

dr
2

n2U

r 2
2bU1UW2FuU50,

~2!

d2W

dr2
1

1

r

dW

dr
2

4n2W

r 2
2aW1

U2

2
2FwW50,

whereFu[(U2/412W2) andFw[(4W212U2). We solved
Eqs. ~2! by means of the relaxation technique, finding d
mains of existence of localized solutions for differentn, typi-
cal examples of which are shown in Fig. 1. Whenb is small
~a low-power regime!, ring solitons are narrow. The beam
amplitude at first increases withb and then saturates, whil
the ring’s width keeps increasing because of the s
defocusing effect of thex (3) term. This is similar to what is
©2001 The American Physical Society01-1
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known for the cubic-quintic model with focusingx (3) and
defocusingx (5) terms@8,9#. The similarity is not surprising
as in thecascading limitof largeD the SH component can b
eliminated from Eqs.~2!, w'u2/(4D), and the remaining
FH equation reduces to the cubic-quintic model.

The existenceresults for various types of solitons of Eq
~1! are summarized as a diagram in the parametric pl
(D,b), see Fig. 1. A noteworthy feature is coexistence of
the types of solutions, i.e., conventional delocalized vortic
semilocalized vortices~localized in theu-component and de
localized in thew component@12#!, and fully localized rings,
along with zero-spin bright solitons~the latter were consid
ered in Ref.@13#.!

Localized rings bifurcate from delocalized vortices alo
the curvebcr(D) in (b,D)-parameter space. This curve is th
upper boundary of the diagonally hashed region in Fig. 1.
b.0, semilocalized vortices are a continuation of the rin
these two types of solutions merge when the backgroun
the SH component vanishes. It follows immediately from t
second equation~2! that this happens atD522b, on the
line A in Fig. 1. All the semilocalized vortices with spinn
51 are known to be unstable@12#. It seems very plausible
that they are unstable too for anyn.1. Below, we concen-
trate on solutions in the form of localized rings, and th
stability. In fact, the stability of multidimensional solitons
a very complex issue. We address it first by simulating
propagation of azimuthally perturbed ring solitons and th
collisions. A conclusion strongly suggested by the simu
tions is that the rings which are close enough to the up
boundary of their existence domain~i.e., broad flat-top rings!
are stable, whereas narrower ones are unstable agains

FIG. 1. Existence regions for different solutions of Eqs.~1! in
the (D,b) plane. Insets show examples of asemilocalizedvortex,
supported by a finite background in the second harmonic~a!, and
localized rings~b,c,d! for b50.02 and different values ofD, with
thick and thin lines showing the first- and second-harmonic ra
functionsU(r ) and W(r ), respectively. Delocalized vortices exi
everywhere below curveB. The meaning of lineA is explained in
the text. The existence domain for rings and zero-spin bright s
tons is diagonally hashed. The domain of existence of semilocal
vortices, see an example in~a!, is horizontally hashed.~Note that
delocalized and semilocalized vortices, in contrast to the locali
rings and zero-spin bright solitons, may exist also atb,0.!
05560
e
ll
s,

t
:
in
e

r

e
ir
-
er

azi-

muthal perturbations. This conclusion is consistent with
cent results obtained for the cubic-quintic model, where
was clearly shown that making the ring broader strongly,
not completely, suppressed its azimuthal instability@9#. The
stabilization is related to the fact that the broad-ring solutio
are close to modulationallystable plane waves. However
this argument only shows a general trend and cannot pre
if azimuthal instabilities are completely eliminated. Ther
fore, a more detailed analysis is necessary to search for g
ine stable rings in the model.

Our simulations show that relatively narrow unstab
rings withn51 break up into two zero-spin filaments~bright
solitons!, which is also a generic outcome of the develo
ment of the azimuthal instability in the saturable and cub
quintic models@6,9#. In contrast with this, broad rings no
only remain completely stable in the course of very lo
propagation, but also survive collisions between themselv
see Fig. 2.

Direct simulations may be sufficient to predict experime
tal observation of stable rings, but the principle issue of s
bility can only be resolved by comprehensive analysis
small perturbations around the ring vortices. To this end,
add infinitesimal complex perturbationse(z,r ,u) to station-
ary solutions of Eqs.~1! and ~2! with the vorticity n,

u5@U~r !1e1~z,r ,u!#einu,

~3!

w5@W~r !1e2~z,r ,u!#e2inu.

A general perturbationem(z,r ,u) may always be expande
into a series, each term of which has its own vorticityJ,

em5(
J

@jJm
1 ~r !ei (lz1Ju)1jJm

2 ~r !e2 i (l* z1Ju)#, ~4!

l

i-
d

d

FIG. 2. Examples of collisions between unstable~upper! and
stable~lower! ring solitons of Eqs.~1! at D50.1. Usually, an un-
stable ring splits into two zero-spin bright solitons. Rings whi
survive the collisions are broad enough.
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wherel is a stability eigenvalue,l* being its complex con-
jugate. Substituting this into Eqs.~1! and linearizing, we ar-
rive at a non-self-adjoint eigenvalue problem,

ljW J5F A1 B C D

2B 2A2 2D 2C

C/2 D/2 E1/2 F/2

2D/2 2C/2 2F/2 2E2/2

G jW J , ~5!

where ĵJ[(jJ 1
1 ,jJ 1

2 ,jJ 2
1 ,jJ 2

2 ), A65L̂J 1
6 2(U2/212W2),

B5W2U2/4, C5U22UW, D522UW, E65L̂J 2
6

22(4W21U2), F524W2, and

L̂J 1
6 [

]2

]r 2
1

1

r

]

]r
2

1

r 2
~n6J!22b,

~6!

L̂J 2
6 [

]2

]r 2
1

1

r

]

]r
2

1

r 2
~2n6J!22~4b12D!.

Instability is accounted for by eigenvalues with ImlÞ0
~the present system being Hamiltonian, eigenvalues ap
in complex conjugate pairs or quadruplets!. The problem’s
continuous spectrum consists of real intervalsG<l,` and
2`,l<2G, with G[min(b,4b12D).

To analyze eigenvalue problem~5!, we replaced the dif-
ferential operators by their fifth-order finite-difference a
proximations and solved the resulting algebraic eigenva
problem numerically. We mostly used grids with 400 to 8
points, but up to 1200 points were used in regions wher
change of the stability occurs. To verify the precision of t
numerical code, we also used another technique, base
the relaxation method for solving two-point boundary-val
problems. Although limited to finding real eigenvalues, t
latter method admits a high degree of precision control w
out much of the computational overhead of other metho
For instance, it has been recently used to a great effec
finding a small stability window for higher-order solitons
a third-harmonic-generation model, which would have oth
wise been overlooked@14#. A comparison between the spe
tral and relaxation methods has shown that the former h
good precision for the number of grid points we were usi
a numerical error in calculating the stability-boundary valu
of b is estimated to bedbst(D);1025 for 1200 grid points.

Results of the linear stability analysis for thefundamental
rings (n51) are summarized in Figs. 3 and 4. We cons
ered the perturbations withJ50, . . . ,65, and have found
that instability may be generated byJ562 and 63. The
strongest instability corresponds toJ562, eventually lead-
ing to breakup of the ring into two zero-spin solitons. In
the cases considered, we have found that there is a stab
change valuebst, at which the largest instability eigenvalu
Im l vanishes, and remains, along with all the other on
exactly ~up to the numerical accuracy! equal to zero in the
stability window, bst,b, bcr @recall bcr(D) is the upper
existence boundary of the ring-soliton family#; in other
words, thin rings are unstable and broad ones are stabl
05560
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accord with results of direct simulations presented abo
The existence of the window is clearly illustrated by Fig.
For the fundamental rings, the stability window occupies
to '8% of the existence domain@0,bcr(D)#. In the direct
simulations, the ring solitons belonging to the windo
propagate indefinitely long without any visible instabilit
surviving various perturbations and collisions with oth
solitons.

In addition to the fundamental rings, we have also stud
the linear spectrum of higher-order rings withn52 and 3.
The rings withn53 were found to demonstrate some pe
sistent weak instability associated withJ561 perturbation,
but the rings withn52 have their own stability window,
occupying up to'5% of the existence domain. We stre
that, even forn52, the width of the window exceeds a po
sible numerical error by two orders of magnitude. It is ne
essary to point out that, while stable localized vortices w

FIG. 3. Unstable eigenvalues forD50, corresponding toJ5
62 andJ563 ~only Im l is shown!. J562 generate the stron
gest instability, which is, however, no longer present atb
>0.0475, while the rings exist up tob'0.0518; thus, the rings are
completely stablebetween these two values of the propagation c
stant. Within the numerical accuracy, Iml50 for J5(61,64,
65), therefore these eigenvalues are not shown.

FIG. 4. Areas of existence and stability for fundamentaln
51) rings in Eqs.~1!. Regions of stable and unstable rings a
hashed diagonally and horizontally, respectively.
1-3
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n51 were earlier known in superconductivity and hydrod
namics~but not in optics!, no exampleof stablen52 vortex
ring has been known before@1,2#. Thus, our model provides
for the first example of a stable double-charge localized v
tex.

Note that second-order~double-humped! solitons have
been found to be stable in several~111!D models@15#, and
such solitons were observed in recent experiments@16#. Due
to the shape of their cross section,~211!D rings and zero-
spin single-humped solitons are analogous, respectively
the double-humped and fundamental solitons in~111!D.
Thus, the coexistence of the stable solitons with zero
nonzero spins resembles the coexistence between s
single- and double-humped~111!D solitons. However, a
principal difference is that the stable~211!D solitons with
zero and nonzero spins coexist while belonging to differe
topological classes.

Finally, we address a possibility of experimental realiz
tion of optical media necessary for observation of sta
rings. Although no conventional nonlinear material wi
strongx (2) nonlinearity directly satisfies our requirement
have a negativex (3) coefficient for both the FH and SH
frequencies, there are two possibilities to achieve this p
pose:~i! by creating a layered medium in which some laye
provide for thex (2) nonlinearity, and others for the sel
defocusing Kerr nonlinearity, and~ii ! by engineering specia
x (2) QPM gratings@17#. In the latter case, induced cub
nonlinearity may be equal in strength to the intrinsicx (2)
n.
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nonlinearity. We checked the former possibility by nume
cal simulations and have found it to work well~details will
be presented elsewhere!. Thus, media that may suppo
stable vortex rings are within the reach of the modern-d
experiment. Last, ring solitons studied in this work may a
be expected in interacting molecular and atomic Bo
Einstein condensates, which are described by a model sim
to ours@18#.

In conclusion, we have analyzed the existence and sta
ity of ~211!-dimensional ring solitons with intrinsic vorticity
in optical media with competing quadratic and se
defocusing cubic nonlinearities. Sufficiently broad ring so
tons with the spinn51 and 2 have been shown to be stab
both in direct dynamical simulations and analyzing eigenv
ues of the linearized equations. Further stable topolog
solitons have been shown to coexist with zero-spin bri
solitons in the competing nonlinearities model. A potent
application of the~211!D ring solitons is a possibility to
design a reconfigurable multichannel system guiding sig
beams. The results obtained in this work may be read
applied to models of different physical content, includin
Bose-Einstein condensate applications.
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