
RAPID COMMUNICATIONS

PHYSICAL REVIEW E, VOLUME 63, 055201
Phase clustering and transition to phase synchronization in a large number
of coupled nonlinear oscillators
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The transition to phase synchronization in systems consisting of a large number~N! of coupled nonlinear
oscillators via the route of phase clustering~phase synchronization among subsets of oscillators! is investi-
gated. We elucidate the mechanism for the merger of phase clusters and find an algebraic scaling between the
critical coupling parameter required for phase synchronization andN. Our result implies that, in realistic
situations, phase clustering may be more prevalent than full phase synchronization.
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Recently, the phenomenon of phase synchronization@1# in
weakly coupled nonidentical chaotic oscillators has recei
a great deal of attention@2–11#. Consider the situation wher
each individual oscillator exhibits a chaotic attractor in t
phase space. Due to the recurrence of chaotic trajectories
motion resembles that of a complicated rotation and, as s
a proper angle of rotation, or phase, can be defined@1,12#.
When two such chaotic oscillators are coupled, their pha
denoted byu1(t) andu2(t), tend to follow each other in the
sense that the phase difference remains bounded even
the coupling is weak, in contrast to the uncoupled case wh
the phase difference increases approximately linearly w
time @3#. The amplitudes of the chaotic rotations, howev
remain uncorrelated despite coherence in their phases.
otic phase synchronization appears to be a general phen
enon in systems of coupled nonlinear oscillators, and it
been observed in laboratory experiments@13#, in biomedical
systems@4,8#, and in population data in ecology@9#. The
phenomenon is also closely related to phase-locked lo
that are highly relevant to engineering applications@14# and
to neuroscience@15#.

Most existing work on phase synchronization focuses
systems consisting of two or a few coupled chaotic osci
tors. Phase synchronization of a large number ofglobally
coupled oscillators is studied in Ref.@2#. More recently, the
phenomenon of phase clustering has been discovered
system of a large number of locally coupled phase oscilla
@7#. In particular, in Ref.@7#, it is found that phase synchro
nization ofN (N@2) coupled, nonidentical oscillators is o
ten preceded by the presence ofpartial phase synchroniza
tion among various subsets of oscillators~clustering! as the
coupling parameter, sayK, is increased from zero. When th
mean frequencies of the oscillators are plotted versusK, a
treelike structure appears in the sense that full phase
chronization has only one value of the average frequency
all oscillators, phase clustering corresponds to several va
and the merger of two values of average frequency marks
disappearance of one phase cluster@7#. In this Rapid Com-
munication, we address the following questions:~1! How do
phase clusters merge?~2! How much coupling, sayKc

0 , is
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required for a system ofN coupled chaotic oscillators to
synchronize in phase? The latter question is motivated by
consideration that phase synchronization of a few coup
oscillators usually occurs in a weak coupling regime. O
principal results are as follows.~1! The merger of phase
clusters is typically preceded by a plus-minus bursting
havior in the instantaneous frequency~angular velocity! of
each cluster. In particular, at the burst, there is a sud
increase of the angular velocity of one cluster, accompan
by a sudden decrease of the angular velocity of another c
ter, leading to a 2p phase jump in the phase difference b
tween the two clusters. As the coupling parameter is
creased, the bursts become rare. The disappearance of b
marks the merger of the two phase clusters.~2! The scaling
of the critical couplingKc

0 with N is algebraic,

Kc
0;Na, ~1!

wherea.0 is the scaling exponent. One implication of sca
ing relation~1! is that full phase synchronization of a larg
number of oscillators typically requires an enormous amo
of coupling. Thus, for example, for a network of couple
neurons, what can typically be expected is phase cluste
instead of a full phase synchronization.

The phenomenon of phase clustering can be illustrated
using the system ofN locally coupled chaotic Ro¨ssler @16#
oscillators, written in the cylindrical coordinate (r ,u,z),
as follows: dri /dt50.15r i sin2 ui1cosui@K(ri11 cosui11
1ri21 cosui2122ri cosui)2zi#, dui /dt5vi10.15 sinui cosui
2sinui@K(ri11 cosui111ri21 cosui2122ri cosui)2zi#/ri and
dzi /dt50.21zi(r i cosui210.0), wherei 51, . . . ,N, and the
coupling at thei th oscillator is modeled by a termK(xi 11
22xi1xi 21) in the Cartesian coordinate. The Ro¨ssler cha-
otic attractor naturally possesses a well defined rotatio
structure@1# and its phase variable isu. The natural fre-
quency of rotation of each individual oscillator, when u
coupled, isv i . Figure 1~a! shows the average frequencie
versus the coupling parameterK for the coupled Ro¨ssler sys-
tem with N515, wherev i ’s are chosen randomly from th
interval: vP@0.9,1.1#. We see that, forK50, there are 15
©2001 The American Physical Society01-1
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distinct values of the average frequency, indicating a lack
phase coherence among oscillators in the absence of
pling. As K is increased, the number of distinct average f
quencies decreases as subsets of oscillators begin to syn
nize in phase, forming clusters. A treelike structure can
seen from Fig. 1~a!, where a branching point represents
merger of distinct phase clusters. The disappearance of p
clusters can also be understood from the behavior of
Lyapunov exponents that are zero forK50. When there is
no coupling, there areN zero Lyapunov exponents corre
sponding to the eigendirections along the flow in each in
vidual oscillator andN positive Lyapunov exponents. Parti
phase coherence among oscillators is established when
of these exponents become negative or cross zero@1#. Thus,
corresponding to each branching point in Fig. 1~a!, one of
the originally zero exponents becomes negative, as our
merical simulation has confirmed.

It is known that for a system of two coupled chaotic o
cillators, phase synchronization is preceded by the oc
rence of phase slips~jumps! in units of 2p @1,5#. Such phase
slips also occur preceding the merger of two distinct ph
clusters. In particular, letKm be the value of the coupling
parameter for the merger, letf(t) be the phase differenc
between the two clusters. Then forK,Km , f(t) increases
approximately linearly with time, as shown in Fig. 1~b!. For
K&Km , f tends to remain constant except at the mome
when it suddenly jumps by 2p, as shown in Fig. 1~c!. As K
gets closer toKm , the average time interval between succ
sive phase jumps increases in a way@5,10# that can be de-
scribed as chaotic transients@17#.

To make a physical analysis of the phenomenon of ph
clustering feasible, we wish to focus on the phase variab
While in general, the differential equations for the phase a
amplitude variables are coupled in a nonlinear fashion,
time scales of these variables are different. In particular,
a typical chaotic rotation, such as one produced by
Rössler chaotic oscillator, the amplitude variables a

FIG. 1. For a system of 15 coupled Ro¨ssler chaotic oscillators
~a! the average frequencies vs the coupling parameterK, ~b! linear
growth of the phase difference between two clusters forK50.005
,Km50.024, and~c! 2p phase jumps preceding the merger of t
clusters forK50.022.
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‘‘slow’’ and the phase variables are ‘‘fast’’@1#. Thus, in a
time scale where the phase variable changes appreciably
from 0 to 2p, the amplitude variables can be roughly treat
as constants@18#. Under this approximation, the phase va
ables of a system of coupled chaotic oscillators obey a
nonical equation of the following form:du i /dt'v i
1G1(u i)1KG2(u i 21 ,u i ,u i 11), whereG1 andG2 are non-
linear functions, and the dependences on the phase varia
in G1 andG2 occur through the sine or cosine functions.
well known form of the canonical equation is the Kuramo
model @19#.

We are thus motivated to study the following version
the Kuramoto model@7#:

u̇ i5v i1
K

3
@sin~u i 112u i !1sin~u i 212u i !#, i 51, . . . ,N,

~2!

where the coupling is the nearest-neighboring type andv i ’s
( i 51, . . . ,N) are the natural frequencies of the individu
oscillators. The Kuramoto model@19# describes the dynam
ics of a population of periodic oscillators globally couple
via a mean field and it arises in models in neuroscience@15#.
In our numerical experiments,v i ’s are chosen randomly
from a probability distribution~Gaussian or uniform! cen-
tered atv0 with variances. Figures 2~a! and 2~b! show, for
N515, v055.0, ands51.0, the distinct average frequen
cies of oscillators versusK and the 2p jumps in the time
evolution of the phase difference from a pair of cluste
about to be synchronized, respectively. Physically, a sud
change of 2p in f means that one cluster of oscillato
rotates faster, which is accompanied by a simultaneous s
ing down in the rotation of the other cluster. As a result,
expect the instantaneous frequency of one cluster to incr
suddenly, and that of the other cluster to decrease sudd
at the same time, which can also be seen by noting, from

FIG. 2. For the Kuramoto paradigm Eq.~2! with N515: ~a!
average frequencies of the oscillators vs the coupling paramete~b!
2p phase jumps preceding the merger of the clusters forK50.52,
and ~c,d! pairing of the bursts in the instantaneous frequencies
the two clusters preceding their merger.
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~2!, that( i 51
N u̇ i5( i 51

N v i5const. For the pairing cluster tha
experiences a sudden decrease in the instantaneous
quency, an increase in the frequency must follow imme
ately so that its constant average frequency can be m
tained. As a result, a pair of bursts is created: at eachp
jump, one cluster of oscillators experiences a positive b
in its instantaneous frequency, accompanied by a simu
neous negative burst in that of its pairing cluster, as show
Figs. 2~c! and 2~d!. We mention that the behavior of th
bursting pairs preceding phase synchronization has not b
noted previously, and as we will argue later, the behavior
be better understood from a physical picture. From Fig. 2~a!,
we observe a treelike structure similar to that in Fig. 1~a!. In
what follows we will concentrate on the Kuramoto mod
Eq. ~2! for the derivation and numerical support of the sc
ing law Eq. ~1!. In addition, we will discuss a potentia
model that is capable of yielding a physical picture for t
phenomena of phase clustering and synchronization.

Let Kc
0 be the critical value of the coupling parameter f

phase synchronization, i.e., forK.Kc
0 , the average rota

tional frequencies of all oscillators are the same. Letj i

[u i 112u i , and we havê j̇ i&50 for K>Kc
0 , where^ & de-

notes the time average. We thus obtain the following up
bound forKc

0 from Eq. ~2!:

Kc
05

23 max~dv i !

min~sinj i 1122 sinj i1sinj i 21!
. ~3!

In the regime of phase synchronization, a strong cohere
among the phase variables exists and it is reasonable to
sume thatj1 ,j2 , . . . ,jN are identically distributed random
variables. Assuming that for largeN, they are distributed
uniformly in @a,b# ~e.g., @0,2p#), we obtain, for N
large, the following: sinji1122 sinji1sinji21522@(a
2b)/ N#2 sinji , which yields: Kc

05@3N2 max(dv i)#/@2(a
2b)2 min(sinji)#. If N is fixed, we have:Kc

0;dv. That is,
the critical coupling required for phase synchronization
proportional to the width of the probability distribution from
which the intrinsic frequencies of the oscillators are draw
If, on the other hand,dv is fixed, we obtain the algebrai
scaling law~1! with exponenta52. We note that the qua
dratic scaling law is specific for the Kuramoto model Eq.~2!.
In general, the scaling exponenta will be different from 2.

We have performed a series of systematic numerical
periments to verify scaling relation~1! and that betweenKc

0

anddv. In particular, we choosev i ’s ( i 51, . . . ,N) from a
uniform distribution of meanv055.0 and standard deviatio
dv, and compute the expected valueE@Kc

0# of the critical
coupling parameter from 20 realizations of the set of intrin
frequencies. Figure 3~a! shows, for fixedN550, E@Kc

0# ver-
susdv, which is apparently linear. Figure 3~b! shows, for
fixed dv51.0, E@Kc

0# versusN for 30,N,600 on a loga-
rithmic scale. The slope of the fitted line isa51.860.2 for
N*100, suggesting the validity of scaling relation~1! for the
Kuramoto model. Similar results are obtained when the d
tribution of the intrinsic frequencies is Gaussian. A rema
able feature of the algebraic scaling relation~1! is that it is
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apparently valid for the system of coupled Ro¨ssler oscilla-
tors, as shown in Fig. 4 for 10<N<600, wheredv50.01.
We observe thatE(Kc

0) indeed scales withN algebraically,
but the scaling exponent~about 0.4! apparently depends o
the details of the system.

We now offer a physical explanation for the phenomen
of phase clustering. Intuitively, when the intrinsic freque
cies of two oscillators are close, it is easier for them to
synchronized in phase under coupling. In contrast, if the
ference in the frequencies is large, a stronger coupling
required for phase synchronization. Thus, in a given rang
the coupling parameter, the oscillators with close frequenc
are synchronized in phase, forming a cluster. The aver
frequency of the cluster, however, changes slowly as
coupling is increased. Synchronization~merger! among clus-
ters occurs when their frequencies get close. These cons

FIG. 3. For the Kuramoto paradigm Eq.~2!: ~a! E(Kc
0) vs dv

for N550, and~b! ln E(Kc
0) vs lnN, where the individualv i fre-

quencies are chosen randomly from a uniform distribution.

FIG. 4. For the system of coupled Ro¨ssler oscillators:E(Kc
0) vs

N on a logarithmic scale for 10<N<600 ~over one order of mag-
nitude in N). We see that the algebraic scaling relation betwe
E(Kc

0) andN persists.
1-3
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ations can also be seen from a mechanical picture implied
the general canonical equation, which can be written aj̇
5F(j i 21 ,j i ,j i 11), whereF is the force acting on anover-
dampedparticle@5#. The corresponding potential function i
V(j i)52*Fdj i ~for the Kuramoto model, the potentia
function can be obtained explicitly!. The dynamics of the se
of coupled oscillators can thus be regarded as the motio
a set of equal number of mechanical particles in the poten
field V(j). The potential function possesses a series of lo
minima ~wells!. A number of particles trapped in one of th
local wells corresponds to a phase cluster. Increasing
coupling parameter is equivalent to lowering the height
the potential hill between two neighboring wells. A merg
of two phase clusters corresponds to the merger of two
tential wells. Complete phase synchronization correspond
the collective motion of particles in a single dominant pote
tial well.

We summarize by stressing that, while phase synchr
zation in systems of two~or a few! coupled chaotic oscilla-
tors is well understood, far less has been achieved for
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tems of a large number of coupled oscillators. In particu
the tendencyfor an array of nonlinear oscillators to synchr
nize in phase in domains or clusters is not well understo
Our paper makes a contribution to this understanding by p
senting a clear dynamical picture for the formation and pa
metric evolution of phase clusters. In addition, we work o
an explicit scaling relation between the amount of coupl
required for the synchronization and the number of osci
tors coupled. An implication of the scaling analysis is th
enormous coupling is typically required for complete pha
synchronization and, hence, we expect phase clustering t
common in networks of coupled oscillators. Our argume
justifying the utilization of the Kuramoto model as an ana
sis paradigm to understand coupled chaotic oscillators s
gests that the results of this paper are relevant to more r
istic physical systems.
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