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The transition to phase synchronization in systems consisting of a large niibef coupled nonlinear
oscillators via the route of phase clusterif@hase synchronization among subsets of oscillatsrinvesti-
gated. We elucidate the mechanism for the merger of phase clusters and find an algebraic scaling between the
critical coupling parameter required for phase synchronization Mn@ur result implies that, in realistic
situations, phase clustering may be more prevalent than full phase synchronization.
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Recently, the phenomenon of phase synchronizgfibm  required for a system oN coupled chaotic oscillators to
weakly coupled nonidentical chaotic oscillators has receivegynchronize in phase? The latter question is motivated by the
a great deal of attentidri2—11]. Consider the situation where consideration that phase synchronization of a few coupled
each individual oscillator exhibits a chaotic attractor in theoscillators usually occurs in a weak coupling regime. Our
phase space. Due to the recurrence of chaotic trajectories, tRéincipal results are as followg1) The merger of phase
motion resembles that of a complicated rotation and, as sucklusters is typically preceded by a plus-minus bursting be-
a proper angle of rotation, or phase, can be defiieti?]. havior in the instantameous frequen@ngular velpcity of
When two such chaotic oscillators are coupled, their phase§ach cluster. In particular, at the burst, there is a sudden
denoted byd, (t) and 6,(t), tend to follow each other in the increase of the angular velocity of one cIu;ter, accompanied
sense that the phase difference remains bounded even Wh@ﬁ a sud.den decrease of the angular velocity O.f another clus-
the coupling is weak, in contrast to the uncoupled case wher" leading to a & phase jump in the phase difference be-

the phase difference increases approximately linearly witl%Ween the two clusters. As the coupling parameter is in-

time [3]. The amplitudes of the chaotic rotations, however,creased’ the bursts become rare. The disappearance of bursts

- . . . marks the merger of the two phase clust€$.The scalin
remain uncorrelated despite coherence in their phases. Ch 9 b i 9

otic phase synchronization appears to be a general phenor(r%:f- the critical coupling; with N is algebraic,

enon in systems of coupled nonlinear oscillators, and it has 0 na

been observed in laboratory experimeli8], in biomedical Ke~N%, @

systems[4,8], and in population data in ecolod®]. The

phenomenon is also closely related to phase-locked loop&herea>0 is the scaling exponent. One implication of scal-

that are highly relevant to engineering applicatiphd] and  ing relation(1) is that full phase synchronization of a large

to neurosciencgls. number of oscillators typically requires an enormous amount
Most existing work on phase synchronization focuses ordf coupling. Thus, for example, for a network of coupled

systems consisting of two or a few coupled chaotic oscillaneurons, what can typically be expected is phase clustering

tors. Phase synchronization of a large numbemglobally  instead of a full phase synchronization.

coupled oscillators is studied in R¢R]. More recently, the The phenomenon of phase clustering can be illustrated by

phenomenon of phase clustering has been discovered inusing the system ol locally coupled chaotic Resler[16]

system of a large number of locally coupled phase oscillatorescillators, written in the cylindrical coordinater,@,z),

[7]. In particular, in Ref[7], it is found that phase synchro- as follows: dr;/dt=0.15; sir? &+Ccos@[K(r;1C0OS6 1

nization ofN (N> 2) coupled, nonidentical oscillators is of- +rj_1C0S6_,—2r;cos6)—z], d6 /dt=w;+0.15sing, cosé,

ten preceded by the presencepafrtial phase synchroniza- —sin6[K(rj,cosé ,+r;_;c0s6_,—2r;cosé)—z]/r; and

tion among various subsets of oscillat¢ctustering as the  dz /dt=0.2+z/(r; cosf—10.0), wheré =1, ... N, and the
coupling parameter, sdy, is increased from zero. When the coupling at theith oscillator is modeled by a tertd(x;. ,
mean frequencies of the oscillators are plotted veksua  —2x;+X;_) in the Cartesian coordinate. The $&ter cha-

treelike structure appears in the sense that full phase symtic attractor naturally possesses a well defined rotational
chronization has only one value of the average frequency fostructure[1] and its phase variable i8. The natural fre-

all oscillators, phase clustering corresponds to several valueguency of rotation of each individual oscillator, when un-
and the merger of two values of average frequency marks theoupled, isw;. Figure 1a) shows the average frequencies
disappearance of one phase clu$@r In this Rapid Com- versus the coupling parametgérfor the coupled Rssler sys-
munication, we address the following questiofig:How do  tem with N=15, wherew;’s are chosen randomly from the
phase clusters mergé2) How much coupling, saK?, is  interval: w €[0.9,1.1. We see that, foK=0, there are 15
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FIG. 1. For a system of 15 coupled §&er chaotic oscillators: _ )
(a) the average frequencies vs the coupling parantéteb) linear FIG. 2. For the Kuramoto paradigm E¢) with N=15: (a)
growth of the phase difference between two clusters<fer0.005 average frequencies of the oscillators vs the coupling parantbter,

<Km:0.024, anc{c) 2w phase jumps preceding the merger of the 2 phaSe jumps preCEding the merger of the clusterKfei0.52,
clusters fork =0.022. and (c,d) pairing of the bursts in the instantaneous frequencies of

the two clusters preceding their merger.

distinct values of the average frequency, indicating a lack oflslow,, and the phase variables are “fastf1]. Thus, in a

phase coherence among oscillators in the absence of COyfre scale where the phase variable changes appreciably, say
pling. AsK is increased, the number of distinct average fré<om 0 to 277, the amplitude variables can be roughly treated
quencies decreases as subsets of oscillators begin to synchips constantgl8]. Under this approximation, the phase vari-
nize in phase, forming clusters. A treelike structure can bgpies of a system of coupled chaotic oscillators obey a ca-
seen from Fig. (@), where a branching point represents aqnical equation of the following form:dé;/dt~
merger of distinct phase clusters. The disappearance of phag_eGl(gi)jL KG,(6;_1,60;,6;.,), whereG, and Gzlare noﬁ—
clusters can also be understood from the behavior of thg,ear functions, and the dependences on the phase variables
Lyapunov exponents that are zero #r=0. When there i, 5. andG, occur through the sine or cosine functions. A
no coupling, there arél zero Lyapunov exponents COITe- | known form of the canonical equation is the Kuramoto
sponding to the eigendirections along the flow in each 'nd"model[19].

vidual oscillator andN positive Lyapunov exponents. Partial  \y/a are thus motivated to study the following version of
phase coherence among oscillators is established when somg, kramoto model7]:

of these exponents become negative or cross [Adrarhus,

corresponding to each branching point in Figa)l one of

the _origin_aIIy zero exponents becomes negative, as our NUp. = o, + E[Sin( 0is1— 6)+sin(0_,—6)], i=1,...N,
merical simulation has confirmed. 3
It is known that for a system of two coupled chaotic os- 2

cillators, phase synchronization is preceded by the occur-
rence of phase slipgumps in units of 27 [1,5]. Such phase where the coupling is the nearest-neighboring type ayisl
slips also occur preceding the merger of two distinct phasé¢i=1, ... N) are the natural frequencies of the individual
clusters. In particular, leK,, be the value of the coupling oscillators. The Kuramoto mod€19] describes the dynam-
parameter for the merger, lei(t) be the phase difference ics of a population of periodic oscillators globally coupled
between the two clusters. Then fi<<K,,, ¢(t) increases via a mean field and it arises in models in neurosci¢néé
approximately linearly with time, as shown in FighL For  In our numerical experimentsp;’s are chosen randomly
K=K, ¢ tends to remain constant except at the momentfrom a probability distribution(Gaussian or uniforpncen-
when it suddenly jumps by 2, as shown in Fig. (c). AsK  tered atw, with varianceo. Figures 2a) and 2b) show, for
gets closer t&,,, the average time interval between succesN=15, wy=5.0, ando=1.0, the distinct average frequen-
sive phase jumps increases in a wWayl0| that can be de- cies of oscillators versuk and the 27 jumps in the time
scribed as chaotic transients7]. evolution of the phase difference from a pair of clusters
To make a physical analysis of the phenomenon of phasabout to be synchronized, respectively. Physically, a sudden
clustering feasible, we wish to focus on the phase variablexhange of 2r in ¢ means that one cluster of oscillators
While in general, the differential equations for the phase andotates faster, which is accompanied by a simultaneous slow-
amplitude variables are coupled in a nonlinear fashion, théng down in the rotation of the other cluster. As a result, we
time scales of these variables are different. In particular, foexpect the instantaneous frequency of one cluster to increase
a typical chaotic rotation, such as one produced by thesuddenly, and that of the other cluster to decrease suddenly
Rossler chaotic oscillator, the amplitude variables areat the same time, which can also be seen by noting, from Eq.
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(2), that=],6;==" ; w;=const. For the pairing cluster that
experiences a sudden decrease in the instantaneous fre
quency, an increase in the frequency must follow immedi- °
ately so that its constant average frequency can be main- 37
tained. As a result, a pair of bursts is created: at eagh 2
jump, one cluster of oscillators experiences a positive burst
in its instantaneous frequency, accompanied by a simulta-
neous negative burst in that of its pairing cluster, as shown in
Figs. 4c) and Zd). We mention that the behavior of the
bursting pairs preceding phase synchronization has not beer .=
noted previously, and as we will argue later, the behavior can L°
be better understood from a physical picture. From Fg),2 E
we observe a treelike structure similar to that in Fi@)lIn £
what follows we will concentrate on the Kuramoto model
Eq. (2) for the derivation and numerical support of the scal-
ing law Eg. (1). In addition, we will discuss a potential
model that is capable of yielding a physical picture for the
phenomena of phase clustering and synchronization.

Let K? be the critical value of the coupling parameter for
phase synchronization, i.e., fcb(>K8, the average rota-
tional frequencies of all oscillators are the same. Egt

)
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FIG. 3. For the Kuramoto paradigm E¢®): (a) E(K?) vs dw
for N=50, and(b) In E(KS) vs InN, where the individuak; fre-
guencies are chosen randomly from a uniform distribution.

=6,,,—6,, and we havc{'gi>=0 for KBKE, where( ) de- apparently valid for the system of coupled SRter oscilla-

notes the time average. We thus obtain the following uppe

jors, as shown in Fig. 4 for EIN<600, wheredw=0.01.

bound fork? from Eq. (2): We observe thaE(KS) indeed scales witN algebraically,
¢ but the scaling exponertabout 0.4 apparently depends on

o —3 max dw;)

the details of the system.
3) We now offer a physical explanation for the phenomenon

¢ min(sing 1 —2sing+sing 1)’ of phase clustering. Intuitively, when the intrinsic frequen-
cies of two oscillators are close, it is easier for them to be
In the regime of phase synchronization, a strong coherencgynchronized in phase under coupling. In contrast, if the dif-
among the phase variables exists and it is reasonable to derence in the frequencies is large, a stronger coupling is
sume thaté;,&,, . .. ,&y are identically distributed random required for phase synchronization. Thus, in a given range of
variables. Assuming that for largl, they are distributed the coupling parameter, the oscillators with close frequencies
uniformly in [a,b] (e.g., [0,27]), we obtain, for N are synchronized in phase, forming a cluster. The average
large, the following: sig,;—2sin&+sing_;=—2[(a frequency of the cluster, however, changes slowly as the
—b)/NPsing, which vyields: K9=[3N?max(dw;)]/[2(a coupling is increased'. Synchron'izatiCmerge) among clus—.
—b)2min(sing)]. If N is fixed, we haveK2~ Sw. That is,  tersoccurs when their frequencies get close. These consider-

the critical coupling required for phase synchronization is
proportional to the width of the probability distribution from
which the intrinsic frequencies of the oscillators are drawn.

If, on the other handdw is fixed, we obtain the algebraic
scaling law(1) with exponenta=2. We note that the qua-
dratic scaling law is specific for the Kuramoto model Ez).

In general, the scaling exponeatwill be different from 2. —

We have performed a series of systematic numerical ex-°

-0.6f

periments to verify scaling relatiofl) and that betweeKS EJ__"O'Q'

and dw. In particular, we choose;’s (i=1, ... N) from a £

uniform distribution of meatw,=5.0 and standard deviation -1.2r

dw, and compute the expected vaIE@KS] of the critical

coupling parameter from 20 realizations of the set of intrinsic -1.5}

frequencies. Figure(8) shows, for fixedN =50, E[KS] ver-

sus dw, wWhich is apparently linear. Figure(l shows, for -1.8 s s s s : ‘

fixed dw=1.0, E[KS] versusN for 30<N<600 on a loga- 2 25 3 35 1n(N4).5 5 55 6 65
rithmic scale. The slope of the fitted line és=1.8+0.2 for

N=100, suggesting the validity of scaling relati for the FIG. 4. For the system of coupled &aer oscillatorsE(K?) vs

Kuramoto model. Similar results are obtained when the disn on a logarithmic scale for 8N<600 (over one order of mag-
tribution of the intrinsic frequencies is Gaussian. A remark-nitude in N). We see that the algebraic scaling relation between
able feature of the algebraic scaling relatidn is that it is  E(K?) andN persists.
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minima (wells). A number of particles trapped in one of the

local wells corresponds to a phase cluster. Increasing th

£

coupling parameter is equivalent to lowering the height o
the potential hill between two neighboring wells. A merger

of two phase clusters corresponds to the merger of two po-

tential wells. Complete phase synchronization corresponds

the collective motion of particles in a single dominant poten-

tial well.

0]
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ations can also be seen from a mechanical picture implied biems of a large number of coupled oscillators. In particular,

the general canonical equation, which can be writtenéas:
=F(¢_1,¢,&.1), whereF is the force acting on aover-
dampedparticle[5]. The corresponding potential function is:
V(§)=—[Fd¢& (for the Kuramoto model, the potential
function can be obtained explicitlyThe dynamics of the set
of coupled oscillators can thus be regarded as the motion
a set of equal number of mechanical particles in the potenti

thetendencyfor an array of nonlinear oscillators to synchro-

nize in phase in domains or clusters is not well understood.
Our paper makes a contribution to this understanding by pre-
senting a clear dynamical picture for the formation and para-
metric evolution of phase clusters. In addition, we work out

an explicit scaling relation between the amount of coupling
rlequired for the synchronization and the number of oscilla-

field V(&). The potential function possesses a series of Iocr;cl}lOrS coupled. An implication of the scaling analysis is that

enormous coupling is typically required for complete phase
seynchronization and, hence, we expect phase clustering to be
ommon in networks of coupled oscillators. Our argument
justifying the utilization of the Kuramoto model as an analy-
sis paradigm to understand coupled chaotic oscillators sug-
ests that the results of this paper are relevant to more real-
IStic physical systems.
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