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We present high-resolution measurements of the isothermal susceptibility ofidereear the liquid-gas
critical point. PVT measurements were performed in the single-phase region over the reduced temperature
range 310 °<T/T,— 1<1.5X10 1. The crossover behavior of the susceptibility along the critical isochore
was analyzed using a field-theoretical renormalization-group calculation based ¢ thedel. A similar
crossover analysis was performed on previously obtained Xe susceptibility measurements. A comparison of the
rescaled susceptibility fofHe and Xe shows theoretically predictadiversalcrossover behavior.
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It is well known that thermodynamic quantities exhibit ture during aPVT run was~5 uK. The details of the ex-
singularities asymptotically close to the critical point. The perimental setup and the resolution of the sensors are given
power-law behavior of these singularities, characterized byn Ref. [7]. The cell was also equipped with three equally
critical exponents and the concept of universality and scalspaced leveling capacitor sensors. Before performing the
ing, have been successfully described by renormalizationPVT measurements, the cell was leveladsitu by monitor-
group (RG) theory[1]. Earlier experimental studies of criti- ing the average density of the sample in the two-phase region
cal phenomena were mostly dedicated to the questuef ~ at the leveling capacitors. During the experiment the leveling
asymptotic behavior. Recently there has been a renewed iigngle of the cell was maintained to better tha0.03° peak
terest in understanding critical crossover phenomena frortP peak. By placing both the density and pressure sensors at
asymptotic to classical critical behavif]. Away from the  the mid-plane of the leveled cell, the gravity induced, verti-
asymptotic region, thermodynamic quantities of real physicafal density inhomogeneity was only relevant for the density
systems deviate from simple power-law behavior. Howeversensor gap. Our calculation, using the restricted cubic model
RG theory can still provide insight in understanding critical for the equation-of-statg8], predicts a 1% correction in the
crossover behavior as long as the order parameter correlatigtisceptibility due to gravity at=5.5x 10> for the density
length is larger than the characteristic microscopic lengti¢apacitor gap.
scale of a system. In this Rapid Communication, we present The sample density in the cell was lowered by decreasing
measurements of the isothermal susceptibility; the temperature of an situ charcoal adsorption pump. Rela-
=p(dpldP)+, of pure 3He near the liquid-gas critical point. tively slow ramping rates obp/p.~1—2% per hour were
The experimental data are analyzed using the RG-bgéed chosen to minimize the density inhomogeneity in the sample.
model with the minimal-subtraction renormalization schemeFigure 1 shows a typicaP-p curve att=1.31x10 * that
developed by Dohm and co-workef8,4]. We have also covered the reduced density range0.25<Ap=p/p.—1
compared the crossover behavior of the isothermal suscepti<0.25. The solid curve shows the measured presBuas a
bility in *He and Xe[5], and demonstrated universality in function of the reduced densityp. The open circles show
the crossover from the asymptotic to the mean-field regimeghe derived dimensionless susceptibilityy =(Pe/pd)xt

The isothermal susceptibility was obtained from isothermwith an estimated 2% uncertainty, whé?g=114.6 kPa and
PVT measurements that were performed in a copper cellp,=0.0137 mole/cr for He. The present measurements
High purity 3He (<0.2 ppm®*He) was contained in a flat agree to within 594 7] with those of Pittman, Doiron, and
pancake volume with internal dimensions 0.05 cm height andleyer [9]. Although the susceptibility was measured
11 cm diameter. A Straty-Adams type capacitive pressuréhroughout the entire critical region, this paper will only re-
gauge with 0.2 ppm resolution was mounted in the middle ofport on measurements along the critical isochore.
the cell. A capacitor with a 5m gap was also located in The theoretical expressions for the susceptibility in the
the middle of the cell. The density of the sample was deterO(1) universality class in three dimensiof&4] were used
mined with 2 ppm resolution from the measured dielectricto analyze our experimental measurements. These expres-
constant using the Clausius-Mossotti relation. Both a Germasions were derived from the minimal-subtraction renormal-
nium resistance thermometer with resolution of 1.6 ppm andzation scheme within thes* model. A different massive-

a GdC} high-resolution paramagnetic susceptibility ther-renormalization scheme within thg* model, developed by
mometer[6] with resolution of 0.3 ppb measured the cell Bagnuls and Bervillief10], was previously used to analyze
wall temperature. Typical uncertainty in measuring temperaXe data[11]. The difference between the two schemes is
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FIG. 1. A typical PVT run att=1.31x10 3. The solid curve
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shows the measured press@ras a function of the reduced density
Ap of 3He. The susceptibility* , obtained from the slope of the

P-p curve, is shown as open circles with a 2% error bar pear

discussed in detail in Ref3].
The Hamiltonian of thep* model can be written as

1 1
H=Jd3r[§ro¢2+§(v¢)2+uo¢4 ) )

Here ¢ is the order parameteuy is a bare coupling constant,

andr is related to the reduced temperattire(T—T.)/T,
by

r0=a0t, (2)

whereag is a nonuniversal constant. Within this approach,
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high-order Borel resummations at the fixed pdidf For a
system of dimensiord=3 and single component order-
parameten=1, they become

B(u)=—u+36u?(1+a,u)/(1+asu), )
£ (u)=12u— 12002+ a,;u3—a,u?, (9)

£ 4(U)=—24u%+azu’, (10)
wherea;=3075, a,=30390, a;=37.5, a,= 14.10, andas
=31.85. The amplitude functiorfs_(u) in Eq. (3) andQ(u)
in Eq. (4) were calculated by Krauset al. [4] using a Borel
resummation technique to give

_ 92_2 _
f+(u)=1—§u (1+b,u), (11

Q(u)=1+bgu?In(cqu), (12)
whereb, =9.68,by=28.2, andco=7.66. The constant non-
universal amplitudeg, in Eq. (3) andtg in Eq. (4) can also

be expressed in terms of two more fundamental parameters,
p anda as

Xo= 1~ 2Z4(u) exiF 4(u)], (13

2

to="—ext{F,(1)]. (14

71 . .
the susceptibility and reduced temperature can be expressétfréx - is a reference length that links the flow parameter

in terms of a RG flow parametéras

Lexd —F 4(u())]

— 3
f.u(h) ¥

X7=xol "

t=t,Q(u(1))I1Yexd —F, (u())]. (4)

The functionsF, (u(l)) andF ,(u(l)) are defined as
— u(l) du’ —
F | = —_— "y — * y 5
(u(l)) fu* B(u,)[ér(u) £r(u)] (5

— wy du’ —
FOSI Pt TR

Here U(I) is the effective coupling parameter of thg
model that satisfies the differential equation

d_— _
Iau(l)=,8(U(l)), (7)

with the initial condition ofu(l=1)=u, whereu is the
renormalized coupling parameter of in Eq. (1).

The RG functiong8(u), ¢,(u), and{,(u) are expanded

[ to the correlation lengtl, | =(u &)1, anda is the renor-
malized temperature coefficient af defined in Eq(2). The
minimal-renormalization factoZ ,, in Eq.(13), is given by

u du’
Z¢(u)1=exp( JO—B(E,)Z¢(U')

The theoretical susceptibilityF (t) contains three non-
universal parameterg,, a, andu. Once they are determined,
we can calculate the correlation length as a function of re-
duced temperature in the crossover regime. Most impor-
tantly, the three parameters explicitly appear onlyand
to. Thus, xF/xo and t/ty are functions of the fluid-
independent flow parametér Sincel can be solved as a
function of t/ty from Eq. (4), x3/xo is a universal scaling
function oft/t,.

The theoretical susceptibilityy (t) was calculated by

evaluating Eqs(3)—(15) numerically and eliminatingin Eq.
(3) using Eq.(4). The complete expression gf (t) can also
be expanded in a series around the fixed poirft,=0)
=u*, to generate the Wegner expansion for the pufe
model[10,17],

. (15

XEO=T5t Y A+TtA+T 122+ .., (16)

to two-loop order with extrapolation to the calculations of with
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Here A=vw, w=dg/du|,+, and v is the critical exponent 10 "T'd'o'b """"""""""
for the correlation length. . . . ) + . *
Among the three nonuniversal parameters, two are inde- 10" 10 10 10* 0
pendent in the renormalization scheme. We chose ta fix t/t
0

=0.999* and letu anda be determined from the fit of the
theoretical susceptibilityy (t) to the experimental data. The FIG. 2. Susceptibilityy* scaled by [Zt~7) vst scaled byt,.
choice of u/u* value comes from the requirement af  The solid curve is calculated from thg* model, Eqs(3)—(15), and

~u* in theT'] calculation using Eq(18). In addition tou the symbols are data points. The dot-dashed line corresponds to a
and a, T, was also adjusted in the fity=1.2396 andA pure power law foryF(t). The error bar represents combined un-
=0.504[13] were used in the calculation. The stated uncer<ertainties from measuregy and t. Arrows indicate wheret
tainty of 2% in the susceptibility measurements leads to & 10 * and 10" would be for *He.

weighting of 1/(0.027) for each data point. No uncertainty o

in temperature was introduced in the fit. The nonlinear leastli€S Of the measurements. The error bars in Fig. 2 represent a

square fit using the Levenberg-Marquardt algorithm yiemeocombined uncertainty in the sca_led suscc_aptibility from the
u=(2.08£0.17)x10°4, a=0.13630.0037, and T, measured/; andt. The error bar size of Xe is comparable to
=3.315534 K-3 wK. All the reported statistical uncer- that of 3He. The horizontal dot-dashed line indicates a pure
tainties in the fitting parameters were from the covarianceédsymptotic power law fox (t). The difference between the
matrix of standard errors in the algorithm. The calculateddest fits and dot-dashed line is due to correction-to-scaling
correlation is 0.99 betweep anda and —0.5 betweenrT,  effects. This universal crossover behavior, implicit in the
and . Onceu, u, anda are known, one can calculatg  original RG theory and predicted by th#' model, has also
=(3.17+0.52)x 107, I‘§=0.1498t 0.0077, and I'; recently been demonstrated by numerical simulations in spin
=1.01+0.08 from Eqs(14), (17), and(18). systemg15]. . .
Gittinger and Cannel[5] measured the susceptibility [N characterizing the crossover regime, the Ginzburg
near the liquid-gas critical point of Xe using a light scatter-Number,G, is often used as an indicator for separating the

ing method. They analyzed their data using Etf) up to ~ 'égion far away from the transition where mean-field theory
38 with y=1.241, A=0.496. They obtained T, is valid and the region close to the transition where fluctua-

—289.65 K,I'; =0.0577-0.0001, and”; = 1.29+0.03 us- tions renormalize the critical behavior of the system. In Ref.
ing five adjustable parameters. We refit their data with Eqst 16} the Ginzburg number is linked to the first Wegner cor-
(3—(15) assuming a 2% uncertainty in the experimentalrecuon amplitude in the case of infinite cut-off wave number
data. Withu/u* =0.999 fixed, the fitting parameters were &5

w=(2.97+0.33)x10 4, a=0.3330.012, and T, 1

=289.65002 K27 u K. The rms difference between the Fl*=§G*A. (19
data and fit is 0.14%. These parameters ledge (2.65

+0.59)x10 ’ F§:0.058?_F0.0040,+and“1*=1.11?:0.13. The comparison of Eq(19) to Eq. (18) leads to a linear
This 'y value compares well wit"} =1.08 obtained by rejation betweenG and t, and yields G(*He)=0.012
Anisimov et al. [14]. o _ +0.001 andG(Xe)=0.010+0.002. Even though, is a

To demonstrate universality in crossover behavior, theynction ofu, fitting 3He and Xe susceptibility data to ti
susceptibility and reduced temperature were scaled by thej,odel shows that the ratio @f(Xe)/to(*He) remains con-
corresponding fluid-dependent parameteyg,andty. The  giant  for any given &u<u*. This implies that
susceptibilityxT/xo was further scaled by the leading singu- G(Xe)/G(3He)=ty(Xe)/to(3He)=0.84+0.23.
larity (t/to) ~” to provide a more sensitive representation of The RG-based crossover model with a minimal set of
crossover behavior. Based on H47), xo/t,” is propor-  three adjustable parameters provides an excellent fit to the
tional toT'y , thereforexs/(I'qt~?) is a universal function  3He and Xe susceptibility data over more than three decades
of t/to. Figure 2 shows the experimental data for bdthe  in reduced temperature outside the asymptotic regime. The
and Xe and the weighted, three parameter, least-squares fépplicable range of the RG-based crossover model was dis-
ted theoretical curve from thé* analysis. The experimental cussed by Bagnuls and Bervilligt0]. They defined a pre-
data collapse by scaling the reduced temperaturetyifihe  asymptotic temperature region in which tl model is
universalg® theoretical solid curve agrees very well with the strictly valid. The upper bound of this region is defined by
experimental data for botAHe and Xe within the uncertain- the validity of the Wegner expansion up to the first
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correction-to-scaling ternt®. Beyond this range other cor- Monte Carlo calculationl8] suggests that quantum effects
rections neglected in theé* model could influence theoreti- may play an important role in understanding crossover be-
cal predictions. Using the values &f andT'; calculated havior of *He.

from Egs.(17) and(18), we obtain Wegner-expansion curves It should be noted that the RG-based expressions in the
for 3He and Xe that agree within 0.6% with the fufi* minimal-subtraction and massive-renormalization schemes
model calculation out td=10"2. Deviations between this were derived using an infinite cut-off wave number. The
Wegner expansion and thﬁ‘ model calculation increase for limitation of an infinite cut-off wave number has been dis-
temperature$>10"2. Based on the arguments by Bagnulscussed in Refs[3,10]. In more general complex fluid sys-
and Bervillier given above, the preasymptotic regimes fortems, crossover models that include a finite cut-off wave
3He and Xe are identified to lie< 10" 2, even though a good Nnumber, in addition to the Ginzburg number, are necessary to
fit based on RG model is obtained outtte 101, as seen in  describe crossover behavipt4,19,2Q. We have also ap-
Fig. 2. In the case ofHe, additional corrections neglected in Plied the ¢* model to analyze other experimental measure-
the ¢* model could include quantum effects, which are notments, such as the specific heat at constant volitand
taken into account in the Hamiltonian, Ed). Quantum ef- ~ correlation length.

fects are expected to become important when the correlation

length is comparable to, or smaller than the de Broglie wave- The authors have benefited from stimulating discussions
length 1. In the case ofHe, our calculation of the corre- with Professor M. A. Anisimov. We are also indebted to Dr.
lation length yieldst,=2.75 A, which is consistent with the M. Weilert and Dr. H. Cho for experimental support. The
published value of 2.57 A17]. The calculated is equal to  research described in this paper was carried out at the Jet
Nt neart~0.9, thus, quantum effects are not expected taPropulsion Laboratory, California Institute of Technology,
significantly affect the present measurements. In contrast, ander contract with the National Aeronautics and Space Ad-
recent comparison of earliefHe compressibility data to ministration.
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