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Influence of topological constraints on the statics and dynamics of ring polymers
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Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523

~Received 13 July 2000; published 16 April 2001!

We report a computer simulation study of the influence of topological constraints on the statics and dynam-
ics of single ring polymers and ring polymers in the melt. We show that single rings have identical static and
dynamic scaling behavior regardless of the presence of topological constraints. For rings in the melt we find
that the scaling behavior is significantly influenced by the presence of topological constraints.
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I. INTRODUCTION

Recently, there have been several computational stu
exploring the influence of topological constraints on t
structure of ring polymers. It has been found@1–3# that un-
knotted, unconcatenated ring polymers in the melt
smaller than their linear chain counterparts, with obser
radius of gyration scaling exponentn, Rg;Nn, in the range
of n50.4 ton50.42.

This value roughly agrees with scaling arguments@4#
based on a Flory-like approach to topological constraints
more recent study@5# suggests that theobservedexponents
are due to crossover~finite N) effects and that asymptoticall
~in the N→` limit ! rings behave similar to compact lattic
animals with n51/3. Obviously, more work is needed t
elucidate this issue.

In a different study@6# the size of isolated unknotted ring
with no excluded volume was investigated. It was claim
that the scaling exponent shows approach to the s
avoiding random walk~SAW! value, in agreement with an
analytical argument@7# that topological constraints lead t
the same scaling as excluded volume interactions.
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The purpose of this Brief Report is to contrast the infl
ence of topological constraints on the structure and dynam
of isolated ring polymers with that of ring polymers in th
melt. The main result is that, whereas topological inter
tions ~i.e., constraints that prevent different bonds from pa
ing through one another; note that these are separate
excluded volume interactions! have only a mild quantitative
influence on the structure and dynamics of isolated ring po
mers@8#, they profoundly affect those of ring polymers in th
melt.

In our study we use a modified version of the origin
bond fluctuation model@9# proposed by Shaffer@10,11#. In
this model the topological interaction can be turned on a
off by controlling bond crossing. The computational adva
tage of Shaffer’s model is a relatively low crossover cha
length for linear chains,Nc'40, which allows one to simu-
late chains with relatively largeN/Nc .

II. ISOLATED RING POLYMERS

We use two measures of the average size of our r
polymers: the mean-square radius of gyrationRg

2 and the
on

s

TABLE I. Relevant simulation parameters and results for isolated rings: degree of polymerizatiN;
number of polymers in simulation boxnring ; number of independent trajectoriesntraj ; size of simulation box
L; equilibration timeteq; run timet run; mean-square radius of gyrationRg

2 ; mean-square ring diameterRe
2 ;

self-diffusion coefficientD; orientational relaxation timetee. Time is measured in Monte Carlo time step
~MCS!, and distance in units of the lattice constant.

N nring ntraj L teq t run Rg
2 Re

2 D tee

Crossing
10 1 400 40 23104 23104 2.24 7.21 4.631023 1.13102

20 1 200 40 23104 23104 4.86 15.6 2.231023 3.13102

40 1 100 40 83104 83104 10.8 35.0 1.131023 1.63103

100 1 135 50 43105 43105 31.2 101 4.531024 1.03103

300 1 40 60 13106 53106 113 368 1.631024 1.03105

500 1 64 100 43106 23107 204 661 9.131025 3.23105

Noncrossing
10 1 400 40 23104 23104 2.27 7.37 4.131023 72
20 1 200 40 23104 23104 4.96 16.1 2.031023 3.93102

40 1 100 40 83104 83104 11.0 35.7 1.031023 2.03103

100 1 135 50 43105 43105 32.1 104 4.231024 1.43104

300 1 40 60 13106 53106 116 379 1.431024 1.63105

500 1 64 100 43106 23107 210 683 8.431025 4.03105
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mean-square ring diameterRe
2 . Re is the distance betwee

beadn and beadn1N/2 in a ring.
Results and parameters for all simulation runs of sin

rings are given Table I. Fits for crossing and noncross
isolated rings~see Fig. 1! yield scaling relationshipsRg

2

;N1.16 and Re
2;N1.17, respectively. Off-lattice simulation

by Baumga¨rtner @12# of a single unknotted ring polymer fin
the scalingN1.18 for both Re

2 andRg
2 , whereas an on-lattice

study @13# finds Re
2;N1.18 andRg

2;N1.19.
Recent simulations by Deutsch@6# of rings with no ex-

cluded volume find a scaling relationship for larger rings

FIG. 2. Center-of-mass self-diffusion coefficient times degree
polymerizationDN versus degree of polymerizationN for single
rings. Open circles: crossing rings; filled circles: noncrossing rin
DN is independent ofN indicating the Rouse-like scalingD
;N21.

FIG. 1. Mean-square radius of gyrationRg
2 and mean-square

diameter vectorRe
2 versus degree of polymerizationN for single

rings. Open circles: crossing rings; filled circles: noncrossing rin
For the crossing rings the upper solid line shows the fitRg,e

2

;N1.16. For the noncrossing rings the lower solid line is a fit sho
ing the scaling lawRg,e

2 ;N1.17.
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Rg
2;N1.17. It is argued that the topological interaction alon

is sufficient to produce SAW scaling for large rings. We s
no significant difference in the scaling exponents for o
single rings in either the crossing or noncrossing syste
however, noncrossing rings are systematically larger: to
logical interactions produce an increase of the excluded
ume as argued in Ref.@7#.

Dynamics is monitored through the center-of-mass me
square displacement^„Rc.m.(t)2Rc.m.(0)…2&, and the diam-
eter vector autocorrelation functionCee5^Re(t)•Re(0)&.
From the mean-square displacement we obtain a cente
mass self-diffusion coefficientD, and from the decay of the
diameter vector autocorrelation function we obtain an ori
tational relaxation timetee.

In Fig. 2 we show self-diffusion data for single rings.DN
is roughly independent ofN for both crossing and noncross
ing simulations, indicating the Rouse-like scalingD;N21.
Furthermore, we find that both the crossing and noncross
cases exhibit an identical scaling oftee;N2.1, see Fig. 3.
This is consistent with the previous simulations of isolat
rings on the lattice by Skolnick and Kolinski@14# in which
they reporttee;N2.1. We find then that the dynamics o
isolated rings occurs on similar time scales regardless of
presence of topological constraints in the system.

III. RINGS IN THE MELT

Results and parameters for the melt simulation runs
shown in Table II. For rings in the melt we find that b
removing the constraint of nonconcatenation we reco
Gaussian statistics. For crossing rings in the melt the rad
of gyration scales asRg

2;N ~shown in Fig. 4!, whereas for
noncrossing rings we findRg

2;N0.83. Thus the topological
interactions have quite a significant effect on the average
of rings in the melt.

Shown in Fig. 5 is the center-of-mass pair-correlati
function for crossing and noncrossing 100mer rings in

f

s.

FIG. 3. Orientational relaxation timetee versus degree of poly-
merizationN for single rings. Open circles: crossing rings; fille
circles: noncrossing rings. The solid line indicates the fittee

;N2.1.
s.
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TABLE II. Relevant simulation parameters and results for rings in the melt (f50.5): degree of poly-
merizationN; number of polymers in simulation boxnring ; number of independent trajectoriesntraj ; size of
simulation boxL; equilibration timeteq; run timet run; mean-square radius of gyrationRg

2 ; mean-square ring
diameterRe

2 ; self-diffusion coefficientD; orientational relaxation timetee.

N nring ntraj L teq t run Rg
2 Re

2 D tee

Crossing
10 400 6 20 2.53104 2.53104 2.13 6.74 1.431023 1.83102

20 200 6 20 2.53104 2.53104 4.37 13.6 6.831024 7.53102

40 100 6 20 53104 13105 8.88 27.9 3.331024 2.93103

100 135 6 30 13106 13106 22.5 70.3 1.331024 1.93104

300 45 3 30 53106 13107 68.8 212 4.131025 1.83105

500 64 2 40 63106 2.53107 114 350 2.431025 5.03105

Noncrossing
10 400 6 20 2.53104 2.53104 2.1 6.6 1.131023 2.23102

20 200 6 20 53104 53104 4.1 12.8 5.131024 1.03103

40 100 6 20 53104 13105 8.1 24.5 2.231024 4.03103

100 135 6 30 13106 13106 18.7 55.3 7.031025 3.03104

150 90 6 30 2.53106 2.53106 26.8 78.3 3.831025 7.23104

200 160 3 30 53106 53106 34.4 100 2.631025 1.53105

300 45 6 30 13107 13107 48.4 140 1.331025 4.23105

500 64 3 40 1.83107 13108 73.8 210 6.031026 1.53106

800 40 4 40 1.93107 23108 105 297 2.731026 4.93106
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melt. The absence of the topological constraints frees
crossing rings to explore more extended conformations.
average result is a more open ring structure which allo
ring centers of mass to approach closer to one another, a
be seen in Fig. 5.

For self-diffusion of rings in the melt~Fig. 6! we also find
quite different behavior between crossing and noncross

FIG. 4. Mean-square radius of gyrationRg
2 and mean-square

diameter vectorRe
2 versus degree of polymerizationN for rings in

the melt. Open circles: crossing rings; filled circles: noncross
rings. For the crossing rings the~upper! solid line shows the idea
~Gaussian! scaling fit Rg,e

2 ;N1.0. For the noncrossing rings th
~lower! solid line is a fit showing the collapsed scalingRg,e

2

;N0.83.
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rings. Noncrossing rings in the melt exhibit an approach t
scaling for the self-diffusion coefficient ofD;N21.59. For
crossing rings we observe a Rouse-like scaling of the s
diffusion coefficientD;N21 for all ring sizes simulated.
Furthermore, we find that relaxation occurs on different tim
scales~Fig. 7!. The crossing rings follow a scaling oftee
;N2.0, and the noncrossing rings scale with a strongerN
dependencetee;N2.5.

It is clear that the constraint of nonconcatenation has
nificant consequences for dense many-chain systems of
polymers. This is in contrast to the single-chain system

g

FIG. 5. Center-of-mass pair-correlation functiongc.m.(r ) versus
distancer for 100mer rings in the melt. Dashed line: crossin
100mer rings; solid line: noncrossing 100mer rings.
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where the constraint of unknottedness was seen to have
effect.

IV. CONCLUSION

In conclusion, we find that for isolated ring polymers t
presence or absence of the topological interactions does
seem to affect,qualitatively, either static or dynamic proper
ties: scaling exponents do not change. In contrast, topol
cal interactions do matter in the melt state. The absenc
topological constraints leads to Gaussian scaling of the
polymer size with the degree of polymerizationRg

2;N,

FIG. 6. Center-of-mass self-diffusion coefficient times degree
polymerizationDN versus degree of polymerizationN for rings in
the melt. Open circles: crossing rings; filled circles: noncross
rings. For the crossing ringsDN is independent ofN; whereas the
noncrossing rings undergo a transition to a scalingDN;N20.59.
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whereas their presence results in much more compact
formations in the melt withRg

2;N0.83 scaling.
As with linear polymers in this model@10#, topological

interactions influence the melt dynamics more than the s
ics: crossing rings obey Rouse-like scaling of the se
diffusion coefficientD;N21, whereas for the noncrossin
rings we get approximatelyD;N21.59. The relaxation times
for the crossing and noncrossing rings scale astee;N2.0 and
tee;N2.5, respectively.
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FIG. 7. Orientational relaxation timetee versus degree of poly-
merizationN for rings in the melt. Open circles: crossing ring
filled circles: noncrossing rings. The upper solid line indicates
noncrossing fittee;N2.5, and the lower solid line indicates th
crossing fittee;N2.0.
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