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Stochastic origins of the long-range correlations of ionic current fluctuations
in membrane channels

Szymon Mercik* and Karina Weron†
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An explicit stochastic representation of a stationary ionic current signal recorded from a single channel of a
biological membrane is presented. In the framework of the proposed approach we show how the dichotomous
time structure of the signal leads to the non-Markovian character of the channel current. The rescaled range
Hurst and detrended fluctuation analyses confirm the theoretical result. To investigate the ionic current fluc-
tuations we introduce the Orey index as a statistical method providing additional information on the properties
of stochastic processes. In order to reveal any differences between the experimental and reconstructed signals,
we apply also the statistical tests to the model-based simulations of the channel action.
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I. INTRODUCTION

The problem of determination of the ion current nature
of importance for many reasons@1–12# and its solution may
provide a clue to better understanding of the membr
channel action. However, there are known evident ca
where the Markovian nature of the potassium curr
through single channel was detected@13,14#, the assumption
that the basic kinetics is purely random can be questio
@15,16#. The suggestions of the non-Markovian character
channel currents@15,16# have led to different ideas of testin
the Markov versus non-Markov condition in ion channel
cordings@16–19#.

In this paper we look for stochastic origins of the no
Markovian property found@17,18# in a data set that was re
corded from cell-attached patches of adult locust~Schisto-
cerca gregaria! extensor tibiae muscle fibers@17,20#. The
potassium current~see Fig. 1! through a high conductanc
locust potassium channel~i.e., BK channel! was obtained by
the patch clamp technique with sampling frequencyf ex

510 kHz and at a voltage of 60 mV. The muscle prepa
tion was bathed in 180 mM NaCl, 10 mM KC
2 mM CaCl2, 10 mM 4-~2-hydroxyethyl!-1-
piperazineethanesulphonic acid~HEPES!, pH 6.8, and the
patch pipettes contained 10 mM NaCl, 180 mM KC
2 mM CaCl2, 10 mM HEPES,pH 6.8. The sample presen
a time series, consisting of 250 000 points and cover
therefore, 25 s of recording. The error of measurement
ionic current is equal toDI 51 pA. The non-Markovian
character of the data has been first suggested by Fuli´ski
et al. @17#. They have used the Smoluchowski-Chapma
Kolmogorov functional equation as the most basic method
testing Markovianity of finite stochastic chains. The meth
being very clear and convenient to apply to real data, d
not, however, give information on the detailed characteris
of the non-Markovian process. The main characteristics
the ionic current probability density function~PDF!, the
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closed- and open-state distributions, and the autocorrela
function have been brought to light@18# by using procedures
based on the kernel and tail estimators, the bootstrap m
odology, and the Zipf plots. The results obtained in@18# have
provided clear evidence for the non-Markovian character
the single BK channel kinetics. The present work aims
finding the origins of the non-Markovian nature by propo
ing theoretical reconstruction of the ionic current fluctu
tions.

The paper is organized as follows. In Sec. II we introdu
the notion of quantiles@21–23# by means of which we con
firm the stationarity of the investigated signal. The station
ity of the signal enables us to propose in Sec. III a theoret
reconstruction of the stochastic dichotomous channels ac
the signature of which is seen in the bimodal current P
~see Fig. 2!. It is the consequence of the current distributi
shape that the original experimental series~see Fig. 1! can be
split into two distinct groups of states: the mode of low
values of the current interpreted as the closed state of a c
nel and the mode of higher values of the current interpre
as the open state. The closed- and open-time distribut
corresponding to the two channel states with different c

FIG. 1. A part of patch clamp recording of the single BK cha
nel current I~pA! vs time ~s!, at a pipette potential of160 mV.
©2001 The American Physical Society10-1



int

a

-
m
r

ie

th

n
th
io
th
V

-

o
o
f
e

a

ries
te

llel
are
tant
the
llel
e, or
also
eri-

of
s
le

-

d
ws
he
that
nce
ime
. The
e the
DF

n of

c-

s
o
the
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ductances can be obtained if one ‘‘translates’’ the record
a dichotomous 0-1 signal, for details see@17,18#. In the
framework of the proposed stochastic model of channel
tion, the long-range correlations~indicating the non-
Markovianity of the time series examined! appear as a con
sequence of the long-tail properties of the closed-ti
distribution. We check the theoretical result by using diffe
ent statistical methods of analyzing a stationary time ser
the Hurst analysis~in Sec. IV A!, the detrended fluctuation
analysis~in Sec. IV B!, and the Orey index~in Sec. IV C!. In
an attempt to gain insight as to any differences between
experimental and the reconstructed signals, we apply~in Sec.
V! the statistical tests to simulated realizations of the chan
action. This procedure helps us to show how much of
experimental signal properties can be explained by a stat
ary dichotomous stochastic process represented by the
retical reconstruction of the original time series. Section
contains the conclusions.

II. STATIONARITY OF THE IONIC CURRENT SIGNAL

Stochastic processXt is stationary if for alln-element sets
of moments 0<t1<t2<•••<tn , n51,2,3, . . . , and for all
time shiftsDt>0 then-dimensional distribution of the pro
cess fulfills the following condition:

P~Xt1
.x1 ,Xt2

.x2 , . . . ,Xtn
.xn!

5P~Xt11Dt.x1 ,Xt21Dt.x2 , . . . ,Xtn1Dt.xn!,

i.e., the finite-dimensional distributions are independent
time shifts@24,25#. This mathematical definition is rather to
complicated to be strictly used in testing the stationarity o
given series and therefore we use simpler and more us
tool—quantiles. A quantile of order«P@0,1# is such a value
k«(t) that probability of the recorded signal being less th
k« at the momentt is equal to«,

P$Xt<k«~ t !%5«.

FIG. 2. The experimental ionic current probability density fun
tion.
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The quantiles of different orders calculated along the se
form a family of lines by means of which one can estima
properties of the investigated process@22,23#. For example,
the stationarity property is indicated by quantile lines para
to the time axis. If the lines are parallel to each other but
not parallel to the time axis, the time series has a cons
variance but varies with time mean or, in case when
mean is not well defined, median. If the lines are not para
to each other, the series does not have a constant varianc
in case of infinite variance, a scale parameter. One can
observe different patterns plotted by the quantile lines: p
odicity, pulsations or simply no general rule.

Usually, the quantiles are obtained from a large set
realizations~sample paths! of a particular stochastic proces
@22,23#. In order to obtain the quantile lines from one samp
path only~that is our case! we used the method of ‘‘produc
ing’’ a set of paths by cutting@23# the whole record into
smaller subrecords~here of length 100 ms!. Next, for every
momentt we calculated such a real numberk«(t) that «th
fraction of the subsequences values at the momentt were
smaller thank«(t). The quantile lines for the investigate
ionic current signal are presented in Fig. 3. The figure sho
that, in spite of fluctuations caused by finite lengths of t
investigated samples, the lines are time invariant. Notice
there is no periodic behavior or any trend. As a conseque
of this observation, we may assume that the studied t
series is stationary and has constant mean and variance
existence and finiteness of the second moment, and henc
mean and variance, result from properties of the current P
~see Fig. 2!, for details see@17,18#.

III. DICHOTOMOUS STATIONARY PROCESS WITH
LONG-RANGE CORRELATIONS

The ionic current recording~see Fig. 1! reflects the fact
that the channels are not permanently open for conductio

FIG. 3. The quantile linesk«(t) of the original signal of ionic
current recorded from a single-membrane channel. The quantilek«

are of order from«50.1 to 0.9 step 0.1, counting from bottom t
top of the figure. The fluctuations are caused by finite lengths of
samples. The estimation errors equal 12% for«50.5, 8% for «
50.4 and 0.6, and 5% for others.
0-2
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STOCHASTIC ORIGINS OF THE LONG-RANGE . . . PHYSICAL REVIEW E 63 051910
ions but continously switch between closed and open sta
The changes are of random nature resulting from, e.g., t
mal fluctuations, variations of the voltage difference acr
the cell membrane, or from conformational changes of ch
nel proteins. The current PDF~see Fig. 2! mirrors two
clearly distinct states of the channel: the states of low
high currents corresponding to the closed- and open-cha
states, respectively@17,18,20#.

In order to model the stochastic dichotomous action le
define two independent sequences of non-negative~nn!, in-
dependent, identically distributed~iid! random variables: the
sequence$Tc,i% i 50,1,2, . . . , with cumulative distribution func-
tion ~CDF! Fc(t) and mean̂ Tc&, representing periods o
closed states and the sequence$To,i% i 51,2,3, . . . , with CDF
Fo(t) and mean̂To&, representing periods of open states.
it has been already shown@18#, the meanŝTc& and^To& are
finite and take the following values:^Tc&50.8460.01 ms
and^To&50.7960.01 ms. On the basis of the studies of t
empirical CDF it has been concluded by us@18# that both
dwell-time distributions are power tailed~see Fig. 4!. In or-
der to test this result we examine here, using a kernel e
mator @18,21,22#, the PDF’s of the closed-and open-sta
times. The result obtained for the closed-times PDF is p
sented in Fig. 5. For larget it reveals the power-law behavio

f c~ t !5
dFc~ t !

dt
}t2(Dc11), ~3.1!

with Dc51.2460.06, which confirms the previously ob
tained result@18#

P$Tc.t%512Fc~ t !}t2Dc. ~3.2!

The studies performed for the open-times PDF give, ho
ever, the result different from that obtained in@18#. As it is
evident from Fig. 6 the open-times PDF is better fitted by
exponential function

FIG. 4. The tails of the closed-~crosses! and open-time~circles!
distributions in log-log scale with fitted lines~dashed line for the
closed-time distribution tail and dash-dotted line for open-time d
tribution tail! suggesting long-time power behavior.
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f o~ t !5
dFo~ t !

dt
}e2lot, ~3.3!

leading to the exponential tail of the open-times CDF

P$To.t%512Fo~ t !}e2lot, ~3.4!

with lo51.2060.08(1/ms). The expected value of the e
ponentially distributed open time equals 1/lo50.83
60.06 ms and is of order of the mean value^To& obtained
in @18#.

Using the above assumptions, one can construct the
newal sequence

-

FIG. 5. The PDF of the closed times, Eq.~3.1!, plotted in the
log-log scale. The slope of the straight line equals22.2460.06.

FIG. 6. The PDF of the open times, Eq.~3.3!, plotted in the
semilogarithm scale. The slope of the straight line equals21.20
60.08.
0-3
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SZYMON MERCIK AND KARINA WERON PHYSICAL REVIEW E 63 051910
$Tk%k50,1,2, . . .5H t,t1(
i 51

k

~Tc,i1To,i !, k51,2, . . .J
~3.5!

that describes instants of time when the channel opens@see
Fig. 7~a!#. Random variablet denotes a delay time, i.e., a
interval of time between switching on and the onset of ste
measurements. Stabilization of the signal is expressed by
stationarity of the time series. The random delay time can
constructed@26,27# by means of the Bernoulli random var
ableB @24–29# that is the indicator function of an event o
probabilityp. The probabilityp that att50 the channel was
open equals

p5P$B51%5
^To&

^Tc&1^To&
,

while the probability that att50 the channel was closed

P$B50%512p.

The delay period consists of closed- and~or! open-states be
cause the channel always has to be in one of these two st
If so, we need to define independent nn random variab
Tc

(0) and To
(0) ~also independent on$Tc,i% i 50,1,2, . . . ,

$To,i% i 51,2,3, . . . , and B! that represent the closed and op
times during the delay period. The random variables h
distributions defined as

P$Tc
(0),t%5

1

^Tc&
E

0

t

@12Fc~s!#ds,

P$To
(0),t%5

1

^To&
E

0

t

@12Fo~s!#ds.

FIG. 7. A sample realization of the three main steps of rec
structing the current signal:~a! a series$Tn%n51,2,3, . . . ~stars! with
open times$To,i% i 51,2,3, . . . ~ticks! andt ~circle!; ~b! a dichotomous
signalL(t); ~c! a current signalI (t).
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The renewal sequence$Tk%k50,1,2, . . . in Eq. ~3.5! de-
scribes moments when the channel opens and here the d
time t has to finish with a closed state. As a result of th
requirement the delay variablet decomposes into open- an
~or! closed-state periods just like the subsequent interarr
intervals do,

t5~To
(0)1Tc,0!B1Tc

(0)~12B!. ~3.6!

The delay variable~3.6! with distribution ~CDF! @27#

P$t,t%5
1

^Tc&1^To&
E

0

t

$12@Fc* Fo#~s!%ds,

where @Fc* Fo#(t) denotes convolution of two function
Fc(t) and Fo(t), ensures that the renewal seri
$Tk%k50,1,2, . . . constructed in Eq.~3.5! is stationary. The sta-
tionary sequence of random variables that describes the
pearance of the closed and open-states allows us to d
stochastic processL(t) that switches the channel on and o
@see Fig. 7~b!#

L~ t !5B1[0,To,0)
~ t !1 (

n50

`

1[Tn ,Tn1To,n11)~ t !, ~3.7!

where

1[a,b)~x!5H 1 if xP@a,b!

0 if xP” @a,b!

is the indicator function. The processL(t) is stationary with
the mean equal to the mean value of the random variablB.
On the basis of the dichotomous processL(t) one can con-
struct further a stochastic model of the ionic current fluctu
tions@see Fig. 7~c!#. Assume that the current is recorded wi
frequencyf ex so that a single record lastsDt51/f ex . Let us
define two independent series$I c,n%n51,2,3, . . . and
$I o,n%n51,2,3, . . . of independent random variables denoti
the current that flows through closed and open channel innth
moment of durationDt. The I c’s have identical distribution
with mean^I c&5m and theI o’s are also identical distributed
with mean^I o&5M . The analysis of the experimental da
shows @18# that m53.260.1 pA and M511.060.1 pA.
The standard deviations of variables from both families
finite and read sc50.8260.05 pA and so52.54
60.08 pA for the closed and open state, respectively. N
that the variances of the estimators used to calculate the s
dard deviations and means are less then the measure
error (DI 51 pA) what reflects the estimators’ consisten
@21,22,28#; if an estimator is consistent then its volatilit
tends to zero as the sample length increases. Moreover
ratios of the standard deviation and the mean value of
ionic current in both states are similar:sc /m50.2660.03
andso /M50.2360.02 that suggests that the higher value
standard deviationso of ionic current in open states is
consequence of the higher current values rather than an
trinsic physical mechanism.

The current recorded innth moment can be defined as

-

0-4
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I ~n!5L~nDt !I o,n1@12L~nDt !#I c,n . ~3.8!

The processI (t) is stationary and fort5nDt→` its auto-
correlation function@27# decays with a power law

k~ t !}
^Tc&

2~M2m!2

~Dc21!~^Tc&1^To&!3
K~ t !t2(Dc21)}t20.2460.06,

~3.9!

determined by the power-tail exponentDc of the closed-time
distribution @see Eq.~3.2!#, that is the consequence of th
fact that

P$Tc.t%@P$To.t%, ~3.10!

i.e., the tail of the open-time distribution is dominated by t
tail of the closed-time one.K(t) in formula ~3.9! denotes a
slowly varying in infinity function, i.e., for everyx.0 it
holdsK(tx)/K(t)→1 whent→`. The autocorrelation func
tion calculated directly from the data using the formula

k~ t !5
^I s•I s1t&2m2

s2
, ~3.11!

where m is the mean value of the sample ands2 is the
sample’s variation, is presented in Fig. 8. In the long-tim
range~for t.40 ms) the autocorrelation function decreas
ask(t)}t20.2860.10. This approach does not recover the thr
regions observed in Fig. 8. The reasons will be discusse
Sec. V.

The above stochastic construction of the channel ac
shows that the long-range autocorrelation~3.9! between
measurements of the ionic current is directly related to
time series’ structure. The long-time non-Markovian pro
erty of the current signal indicated by the autocorrelat

FIG. 8. The autocorrelation function of the experimental curr
signal decreases with three different power laws:t2ak where ak

50.3260.04 for t,1 ms, ak50.1460.02 for 1 ms,t,40 ms,
andak50.2860.10 for t.40 ms.
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exponentak5Dc21 results from the connection betwee
the power-tail exponentDc of the closed-time distribution
and the power exponentak .

IV. STATISTICAL ANALYSIS OF THE EXPERIMENTAL
DATA

In order to test the results obtained above we apply
Hurst, the DFA, and the Orey index methodologies to stu
the experimental data described in Introduction~see Fig. 1!.

Information about the time series structure, correlatio
and its fractal properties is provided by the self-similar
index H @13,30#. Stochastic processX(t) is called self-
similar with indexH if it has the following property:

X~at!5aHX~ t !. ~4.1!

The equality in Eq.~4.1! means that the finite-dimensiona
distributions of the process on the right- and left-hand side
the equation are the same@24#. For example the Brownian
motion is self-similar withH51/2 and the Le´vy flight is
self-similar with the index equal to 1/a, where aP(0,2).
The self-similarity indexH can be estimated by statistica
methods from realization of a stochastic process.

A. Hurst analysis

The rescaled range analysis developed by Hurst@31# may
be used to study correlations in the time series measure
different time scales. To perform the Hurst analysis of
series$Xk%k51

N one has to divide the series intod nonover-
laping segments of lengthn such thatnd5N. If the time
series$Xk%k51

N was recorded with the frequencyf ex the win-
dow n corresponds to the time durationDt5n/ f ex . In the
next step, for everymth segment of the original record,m
51,2, . . . ,d, one should calculate the mean

^X&m5
1

n (
j 51

n

X(m21)n1 j

and the standard deviation

Sm~n!5A 1

n21 (
j 51

n

~X(m21)n1 j2^X&m!2

and then build the cumulative series$Yj ,m% j 51
n

Yj ,m5 (
k51

j

~X(m21)n1 j2^X&m!

for which the rangeRm is defined as

Rm~n!5max
j

$Yj ,m%2min
j

$Yj ,m%.

For the whole time series the mean value of the resca
range equals

^R/S&~Dt ![ K R~Dt !

S~Dt ! L [ K R~n!

S~n! L 5
1

d (
m51

d
Rm~n!

Sm~n!

t

0-5
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SZYMON MERCIK AND KARINA WERON PHYSICAL REVIEW E 63 051910
and is proportional toHth power of the durationDt5n/ f ex

^R/S&~Dt !}~Dt !H, 0,H,1. ~4.2!

The value of the Hurst exponentH provides information on
the correlations in the time series measured at different t
scales. WhenH51/2, the changes in the values of a tim
series are random and, therefore, uncorrelated with e
other. When 0,H,1/2, increases in the values of a tim
series are likely to be followed by decreases and, convers
decreases are more likely to be followed by increases. Su
time series is called antipersistent. When 1/2,H,1, in-
creases in the values of a time series are more likely to
followed by increases, and, conversely, decreases are m
likely to be followed by decreases. Such a time series
called persistent and it has a long memory property@13#.

The Hurst analysis performed for the studied data rec
is presented in Fig. 9.~To get reliable value ofH one should
omit the points obtained ford,10 because they have too b
volatility.! The slope of the Zipf log-log plot of the depen
dence of the rescaled range mean value^R/S& on the dura-
tion Dt, Eq. ~4.2!, determines the Hurst exponent

H50.8460.08.

The value of the Hurst exponent indicates that the ionic c
rent signal has the long memory property.

The Hurst exponentH can also be used to estimate t
fractal dimensiond of the seriesX(t) taken as a geometrica
object @13# embedded in the space (X(t),t),

d522H. ~4.3!

The fractal dimension of the investigated time series, e
mated from the Hurst exponent, equals

d51.1660.08,

FIG. 9. The rescaled range^R/S& as a function of time-lagDt.
The slope of the straight line determines the Hurst exponent in
~12!.
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which is very close to the dimensiond51.2760.05 obtained
in @18#.

With the use of the fractal dimension we can find a fo
mula connecting the HurstH and autocorrelationak expo-
nents. If the autocorrelation function decays with a pow
law then the fractal dimensiond is related to the power-law
exponentak as follows@13#

d511
ak

2
. ~4.4!

It results from Eqs.~4.3! and~4.4! that the Hurst exponentH
and the power-law exponentak fulfil the relation

H512
ak

2
.

B. Detrended fluctuation analysis

An alternative method of testing scaling and correlati
properties of a time series is the detrended fluctuation an
sis ~DFA! @32–34#. The DFA method consists of two step
the first step is to divide the entire series of lengthN into N/ l
nonoverlapping fragments ofl observations and determine
local trend of the subseries. Next, one has to define the
trended process in an every fragment denoted byyl(n) as the
difference between the original value of the series and
local trend. The desired statistic is the mean variance of
detrended processFd

2( l ), where mean is taken over all th
fragments of sizel

Fd
2~Dt !5

1

N (
l 51

N/ l

(
n51

l

yl
2~n!,

whereDt5 l / f ex . Similarily as in the case of the Hurst ex
ponent discussed in Sec. IV A, if only short-range corre
tions~or no correlations at all! exist in the studied series the
Fd(Dt)}(Dt)1/2; if there is a long-range power-law correla
tion thenFd(Dt)}(Dt)a with aÞ0.5. Moreover, if the ex-
ponenta is greater than 0.5, the time series is persistent
if a,0.5 then the time series is not persistent.

The result of the DFA analysis of the ionic current
presented in Fig. 10. The slope of the straight line equala
50.8960.07.

C. Orey index

The Orey indexg is a method of the time series da
analysis. It was recently proposed@35# for analysing finan-
cial data sets. The Orey index estimates the self-simila
index H of stationary Gaussian stochastic processes. It p
vides an additional information about properties of a tim
series, completing the Hurst and DFA analyses. Namely,
equivalence of the Orey index and the self-similarity indexH
~obtained by other statistical methods! suggests the Gaussia
nature of the investigated process. The advantage of the O
index is that it is obtained with one compact formula and o

q.
0-6
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does not need additional tools~like linear regression and th
log-log plot! to estimate the self-similarity index of a Gaus
ian process.

The Orey indexg can be estimated@35,36# by means of
an ordinary least squares estimatorĝOLS. For a given time
series$DXi ; i 51,2, . . . ,2m% consisting of 2m observations
we have to calculate a cumulative series$Xj5( i 51

j DXi ; j
51,2, . . . ,2m% and an incremental variance

u2~n!5
1

2n (
j 51

2n

~Xj2Xj 21!2,

whereX050 andn51,2, . . . ,m. Then the Orey index esti
mator is given by

ĝOLS5(
j 51

m

yj log 2u~ j !,

whereyj5(xj2 x̄)/( j 51
m (xj2 x̄)2 andxj5 log2 1/2j52 j for

j 51,2, . . . ,m. This estimator is strongly consistent with th
Orey indexg ~for details see@35#!.

The calculations of the Orey index were performed w
m517, using hence the time series of length equal
131 072. Because the total length of the time series was e
to 250 000, the calculations were repeated by setting s
series of constant lengths 131 072 in different starting poi
It has been found that the Orey index equals

g50.8460.04

and does not depend on shifts in time, which also confir
the stationarity of the investigated signal~see Sec. II!. The
agreement of the Orey index with the self-similarity indexH
indicates that the transport of ions through a sing
membrane channel is Gaussian, i.e., the ionic current
cess’ finite-dimensional distributions are Gaussian. Beca

FIG. 10. The dependence ofFd on the time-lagDt in the de-
trended fluctuation analysis. Plot in log-log scale determines
power exponenta.
05191
o
al

b-
s.

s

-
o-
se

the self similarity indexHÞ1/2, we claim that the proces
can be identified with a fractional Brownian motion~fBm!.
The fBm is the only Gaussian self-similar process with t
self-similarity indexHÞ1/2 @37,38#.

V. COMPUTER SIMULATIONS OF THE
RECONSTRUCTED IONIC CURRENT SIGNAL

In order to get information on differences between t
experimental and reconstructed signals, in this section
apply the statistical tests to the model-based simulation
the channel action. Our aim is to show how much of t
experimental signal properties can be explained by theo
cal reconstruction of the original ionic current time serie
The most interesting point is to find conditions under whi
the reconstructed signal autocorrelation function has pro
ties similar to those observed in the experimental series.
technique of limit theorems of probability theory used
derive this function restricts the theoretical result to the lon
time range only. The reason follows from the fact that lim
theorems work perfectly on large time scales or large num
of random variables only. It is hence clear that we are
able to obtain theoretically the three time-regions~Fig. 8! of
the experimental series autocorrelation function. They
seen, however, in some cases of the simulated signal~see
Fig. 11!.

To perform simulations of the reconstructed ionic curre
signal~3.8! we need to know the current distributions in th
closed- and open-states and the corresponding dwell-

e

FIG. 11. The autocorrelation functions of two simulated curre
signals decrease:~a! with three different power lawst2ak with ak

50.2660.07 for t,3 ms, ak50.1760.05 for 3 ms,t,40 ms,
and ak50.2960.10 for t.40 ms; ~b! with two different power-
laws t2ak: ak50.3860.06 for t,8 ms andak50.2460.09 for
t.8 ms.
0-7
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distributions. Following the results of the first part of Se
III, we may assume the following.

~A! The current values are distributed according to
Gauss laws with means and standard deviati
m53.2 pA and sc50.82 pA for the closed states an
M511 pA andso52.54 pA for the open states, respe
tively.

~B! The open times are distributed according to the ex
nential law

Fo~ t !512e2lot,

with mean valuê To&51/lo , wherelo51.2(1/ms).
~C! The closed times are distributed according to

power-tailed Pareto law

Fc~ t !512S a1
t

s D 2Dc

,

whereDc51.24. For simplicity we takea51. The distribu-
tion fulfills the condition ~3.2!. The scale parameters
50.201 ms is determined by the mean value of closed tim
^Tc&5s/(Dc21).

Taking into account the above assumptions, we gener
500 samples of length 250 000 and calculated the autoco
lation function for each realization of the signal. Two cha
acteristic examples are presented in Fig. 11. It is seen
both autocorrelation functions decrease for larget with the
theoretically derived power-law~3.9!

k~ t !}t2ak,

whereak50.2960.10 for the curve indicated by crosses a
ak50.2460.09 for the curve indicated by circles. All of th
observed values ofak belonged to the interval (0.22,0.31
The wide range of observed values ofak’s ~and other pa-
rameters presented below! are caused by highly fluctuatin
values of generated periods of closed times~note, the power-
tailed Pareto distribution withDc51.24 has no finite vari-
ance@21#!.

We have found that the autocorrelation function was v
sensitive for durations of closed times present in the ge
ated sample. If there was at least one closed state with a
duration~i.e., over 1/100 of the whole sample duration! the
autocorrelation function@see curve~a! in Fig. 11# ‘‘braked’’
the same way as it was observed for the experimental
logical data in Fig. 8. If the longest closed state was o
1/10 of the sample duration the autocorrelation function@see
curve~b! in Fig. 11# looked different. The maximal value o
the closed-time duration in the investigated experimental
cording equals 300.8ms and it is about 1/83 of the wh
series duration. It was suggested by us@18# that the three
different power-law intervals, observed in the experimen
signal, are connected with the time structure of the inve
gated time series. The first scaling region of the autocorr
tion function, which is of the same order of magnitude as
average opening and closing times, describes the autoc
lation falloff while the system stays in one state: open
closed. The second scaling region describes the autocor
tion between subsequent, different states of channel~the time
range is here larger than the sum of the average opening
05191
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closing times, and also than the longest open time durati!.
The third region of the autocorrelation scaling shows
fastest correlation falloff related to many interstate tran
tions. The simulations show the conditions under which
two or three different power-law regions may be observed
the reconstructed signal autocorrelation function.

Applying the statistical tests~presented in Sec. IV! to the
simulated signal, we have obtained the following values
the Hurst exponentH, the DFA exponenta, and the Orey
index g:

HP~0.66,0.92!, ^H&50.8460.07,

aP~0.69,0.91!, ^a&50.8660.05,

gP~0.70,0.89!, ^g&50.8260.07,

where ^•& denotes the average value of the correspond
exponent. The above results show the agreement of the m
statistical characteristics of both, experimental and rec
structed signals. In our investigations of the reconstruc
signal properties we applied different variances of the curr
in closed and open states. We have found that the con
gence is better if the variances are smaller. If the varian
are very large~some times larger than the difference of t
mean values of current in both statessc'so.M2m) then
the power-law autocorrelation function tail vanished. This
obvious if one realizes that in the case of two states that
not distinguishable, the process became similar to the w
noise without any memory. The simulations of different s
ries lengths show that the increase of the generated sa
length did not changed significantly the estimated para
eters. Also, we did not observe in our studies any signific
influence of different current and closed-time distribution
satisfying the conditions taken into account in~A! and ~C!,
respectively.

It is still open question as to what is the role of statistic
dependence between closed and open times or the cu
values. It is well known that the times should be independ
@14,39#, but on the other hand there are some evidences
the independence may be disturbed@40,41#. Above studies
show that the observed long-time correlation, and even
shape of the reconstructed signal autocorrelation function
similar to that observed in the case of experimental data.
result has been obtained without introducing any depende
between the random variables.

VI. CONCLUSIONS

The main objective of the paper was to get information
the stochastic origins of the non-Markovian nature@17,18# of
potassium current through a locust potassium chan
@17,20#. The detailed knowledge about the channel act
~continously switching between closed and open states! is of
importance for identification of physical phenomena resp
sible for the observed ionic current properties.~An influence
of internal adsorption@42#, ‘‘a crowding’’ of ions inside nar-
row pores@43,44#, and of conformational changes of poly
mer chains@45# has already been pointed out!. Taking into
account the fact that the recorded current represents a
0-8
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sponse of the whole system, consisting of ions and the ch
nel, the non-Markovian character of the ionic current can
considered as a result of interactions between channel s
ture and ions inside the channel. The complex state of
whole system, resulting from random interaction of its e
ments, is clearly reflected in the statistical properties of
current signal.

In contrast to paper@18#, where we have given ‘‘prescrip
tions’’ for deriving the statistical characteristics of the e
perimental data, in present paper we have proposed a t
retical construction of a dichotomous stationary stocha
process with long-range correlations representing the ch
nels action. The applied procedure, based on information
tained in@18#, can be summarized in few steps.

~i! Investigation of the stationarity of the ionic curre
record; here we have used the quantile lines as an easy,
tical method of determining the independence of statist
properties of a times series on shifts in time~Sec. II!.

~ii ! ‘‘Translation’’ of the original times series record int
a dichotomous 0-1 signal and determination from it the
properties of the empirical dwell-time distributions. T
check the results obtained in@18# for the cumulative distri-
bution functions, here~Sec. III! we have analyzed the prop
erties of the corresponding probability density functions.

~iii ! Construction of a stationary process modeling
channel action with an explicit formula of its autocorrelati
function, valid in the long-time range~Sec. III!.

The theoretically derived autocorrelation function, E
~3.9!, decreases with a power-law:k(t)}t2ak. The power
exponentak5Dc21, where Dc51.2460.06 denotes the
power-tail exponent of the closed-time distribution, is det
mined by statistical properties of the channel states w
lower values of the ionic current interpreted as the clo
states. The valueak50.2460.06P(0,1) indicates the long
memory property of the complex ions channel system
has been confirmed by the results obtained in different
tistical studies of the original ionic current record. The v
ues of the autocorrelation exponentak obtained from the
definition @Eq. ~3.11!# of k(t), from the Hurst analysis, the
DFA analysis, and the Orey index are equal, respectivel

ak50.2860.10,

ak52~12H !50.3260.16,
J
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ak52~12a!50.2260.14,

ak52~12g!50.3260.08.

We would like to stress the role of the Orey index@35,36#
introduced by us to the analysis of physical signals. T
Orey index is a statistical tool identifying the features
stochastic processes directly from their realizations~i.e.,
from the time series!. It carries not only the information
about the self-similarity properties of the process but a
about its Gaussian nature.

Applying the statistical tests to the model-based simu
tions of the channel action, we have shown the following

~i! The agreement of the main statistical characteristics
the reconstructed signal with the corresponding statist
characteristics of the experimental one.

~ii ! The influence of time durations obtained in explic
realizations of the random closed-time on the autocorrela
function properties. Note, that those random variables
distributed according to a long-tailed distribution.

The results in our paper show how much of the expe
mental signal can be explained by a stationary dichotom
stochastic process as represented by the proposed theor
reconstruction of the channel action. Unfortunately, the
sults do not indicate the physical mechanisms that migh
responsible for the particular dwell-time distributions yiel
ing the observed properties of the experimental signal.
the difference in initial values of both autocorrelation fun
tions @see Fig. 8 and curve~a! in Fig. 11#, as well as in their
power exponents for short times might be responsible
statistical dependence between the closed and open t
already observed in real data@40,41#.
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ton, 1987!.

@22# A. Janicki and A. Weron,Simulation and Chaotic Behavior o
a-Stable Stochastic Processes~Dekker, New York, 1994!.

@23# A. Janicki and A. Weron, Stat. Sci.9, 109 ~1994!.
@24# W. Feller, An Introduction to Probability Theory and its Ap

plications, 2nd ed.~Wiley, New York, 1971!.
@25# P. Billingsley,Probability and Measure, 2nd ed.~Wiley, New

York, 1986!.
@26# S. Resnick,Adventures in Stochastic Processes~Birkhäuser,
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