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Stochastic origins of the long-range correlations of ionic current fluctuations
in membrane channels

Szymon Mercik and Karina Weroh
Institute of Physics, Wroclaw University of Technology, 50-370 Wroclaw, Poland
(Received 6 June 2000; revised manuscript received 15 November 2000; published 25 April 2001

An explicit stochastic representation of a stationary ionic current signal recorded from a single channel of a
biological membrane is presented. In the framework of the proposed approach we show how the dichotomous
time structure of the signal leads to the non-Markovian character of the channel current. The rescaled range
Hurst and detrended fluctuation analyses confirm the theoretical result. To investigate the ionic current fluc-
tuations we introduce the Orey index as a statistical method providing additional information on the properties
of stochastic processes. In order to reveal any differences between the experimental and reconstructed signals,
we apply also the statistical tests to the model-based simulations of the channel action.
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[. INTRODUCTION closed- and open-state distributions, and the autocorrelation
function have been brought to light8] by using procedures

The problem of determination of the ion current nature isbased on the kernel and tail estimators, the bootstrap meth-
of importance for many reasofi$—12] and its solution may 0odology, and the Zipf plots. The results obtained/i8] have
provide a clue to better understanding of the membran@rovided clear evidence for the non-Markovian character of
channel action. However, there are known evident case€ single BK channel kinetics. The present work aims at
where the Markovian nature of the potassium currenfinding the origins of the non-Markovian nature by propos-
through single channel was detecfd®,14), the assumption N9 theoretical reconstruction of the ionic current fluctua-
that the basic kinetics is purely random can be questioneHOnS- _ _ ,
[15,16. The suggestions of the non-Markovian character of The paper is organized as follows. In Sec. Il we introduce

channel currentgl5,16 have led to different ideas of testing ;E.he r:ﬁtmr; c:f qua_?tllefchl—'Zﬂ b%. mctea(r;s .Of Wlh';fn wet c;_on—
the Markov versus non-Markov condition in ion channel re-' ! 1€ stationarity ot Ine investigated signai. the stationar-
cordings[16—19. ity of the signal enables us to propose in Sec. Il a theoretical

) . . reconstruction of the stochastic dichotomous channels action,
In this paper we look for stochastic origins of the non-

. . the signature of which is seen in the bimodal current PDF
Markovian property found17,18 in a data set that was re- g

; (see Fig. 2 It is the consequence of the current distribution
corded from cell-attached patches of adult loc{&thisto- shape that the original experimental sefie=e Fig. 1can be

cerca gregaria extensor tibiae muscle fibefd7,20. The  gpjit into two distinct groups of states: the mode of lower
potassium currentsee Fig. 1 through a high conductance yajyes of the current interpreted as the closed state of a chan-
locust potassium channéle., BK channelwas obtained by npe| and the mode of higher values of the current interpreted
the patch clamp technique with sampling frequerfey  as the open state. The closed- and open-time distributions
=10 kHz and at a voltage of 60 mV. The muscle preparacorresponding to the two channel states with different con-
tion was bathed in 180 mM NaCl, 10 mM KCI,
2 mM CacCl}, 10 mM 442-hydroxyethy}-1-
piperazineethanesulphonic adHHEPES, pH 6.8, and the 1ak
patch pipettes contained 10 mM NaCl, 180 mM KClI, »

16

2 mM CaC}, 10 mM HEPESpH 6.8. The sample presents  ,,
a time series, consisting of 250000 points and covering,
therefore, 25 s of recording. The error of measurements o 1o}
ionic current is equal tAAl=1 pA. The non-Markovian
character of the data has been first suggested by gkilin
et al. [17]. They have used the Smoluchowski-Chapman-
Kolmogorov functional equation as the most basic method of &y
testing Markovianity of finite stochastic chains. The method,
being very clear and convenient to apply to real data, does *
not, however, give information on the detailed characteristics
of the non-Markovian process. The main characteristics of
the ionic current probability density functiofPDF), the
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*Email address: mercik@rainbow.if.pwr.wroc.pl FIG. 1. A part of patch clamp recording of the single BK chan-
TEmail address: karina@rainbow.if.pwr.wroc.pl nel current I(pA) vs time(s), at a pipette potential o 60 mV.
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FIG. 2. The experimental ionic current probability density func-

tion FIG. 3. The quantile linek_(t) of the original signal of ionic

current recorded from a single-membrane channel. The quaktiles

. . B . . are of order frome=0.1 to 0.9 step 0.1, counting from bottom to
ductances can be obtained if one “translates” the record intQqp of the figure. The fluctuations are caused by finite lengths of the

a dichotomous 0-1 signal, for details sgE7,18. In the  samples. The estimation errors equal 12% #e¢0.5, 8% for s
framework of the proposed stochastic model of channel ac=q .4 and 0.6, and 5% for others.

tion, the long-range correlationgindicating the non- ) ) ]
Markovianity of the time series examinedppear as a con- 1he quantiles of different orders calculated along the series
sequence of the long-tail properties of the closed-timdorm a _famlly of I|_nes by means of which one can estimate
distribution. We check the theoretical result by using differ-Properties of the investigated procg22,23. For example,

ent statistical methods of analyzing a stationary time seriedn€ stationarity property is indicated by quantile lines parallel
the Hurst analysigin Sec. IV A), the detrended fluctuation to the time axis. If the lines are parallel to each other but are
analysis(in Sec. IV B), and the Orey indefin Sec. IV Q. In not parallel to the time axis, the time series has a constant
an attempt to gain insight as to any differences between th¥ariance but varies with time mean or, in case when the
experimental and the reconstructed signals, we afiplgec. ~Mean is not well defined, median. If the lines are not parallel
V) the statistical tests to simulated realizations of the channdP €ach other, the series does not have a constant variance, or
action. This procedure helps us to show how much of thd" case of infinite variance, a scale parameter. One can also
experimental signal properties can be explained by a statiorRPServe different patterns plotted by the quantile lines: peri-
ary dichotomous stochastic process represented by the the@diCity, pulsations or simply no general rule.

retical reconstruction of the original time series. Section Vi Usually, the quantiles are obtained from a large set of
contains the conclusions. realizations(sample pathsof a particular stochastic process

[22,23. In order to obtain the quantile lines from one sample
path only(that is our casewe used the method of “produc-
ing” a set of paths by cutting23] the whole record into

Stochastic process, is stationary if for alln-element sets  Smaller subrecordéhere of length 100 msNext, for every

II. STATIONARITY OF THE IONIC CURRENT SIGNAL

of moments @st;<t,<---<t,, n=1,2,3..., and for all Momentt we calculated such a real number(t) that ¢th
time shiftsAt=0 the n-dimensional distribution of the pro- fraction of the subsequences values at the moremére
cess fulfills the following condition: smaller thank,(t). The quantile lines for the investigated
ionic current signal are presented in Fig. 3. The figure shows
P(Xe. >X1, X > X, ..o X >X,) that, in spite of fluctuations caused by finite lengths of the
! 2 " investigated samples, the lines are time invariant. Notice that
=P(Xi +at> X0, Xe 4 at™> X2, - - o Xy 46> Xn), there is no periodic behavior or any trend. As a consequence

of this observation, we may assume that the studied time
i.e., the finite-dimensional distributions are independent of€ri€s is stationary and has constant mean and variance. The
time shifts[24,25. This mathematical definition is rather too €Xistence and finiteness of the second moment, and hence the

complicated to be strictly used in testing the stationarity of 4"€an and variance, result from properties of the current PDF
given series and therefore we use simpler and more usef(f€€ Fig. 2 for details se¢17,18.

tool—quantiles. A quantile of ordere[0,1] is such a value
k.(t) that probability of the recorded signal being less than
k. at the moment is equal toe,

Ill. DICHOTOMOUS STATIONARY PROCESS WITH
LONG-RANGE CORRELATIONS

The ionic current recordingsee Fig. 1 reflects the fact
P{Xi=k.(D)}=e. that the channels are not permanently open for conduction of
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FIG. 4. The tails of the closederossepand open-timécircles FIG. 5. The PDF of the closed times, E@.1), plotted in the

distributions in log-log scale with fitted lineglashed line for the |54.10g scale. The slope of the straight line equalg.24+0.06.
closed-time distribution tail and dash-dotted line for open-time dis-

tribution tail) suggesting long-time power behavior.
dFo(t)

. . . fo(t)y= ——xe M, (3.3
ions but continously switch between closed and open states. 0 dt
The changes are of random nature resulting from, e.g., ther-
mal fluctuations, variations of the voltage difference across
the cell membrane, or from conformational changes of chanleading to the exponential tail of the open-times CDF
nel proteins. The current PDFsee Fig. 2 mirrors two
clearly distinct states of the channel: the states of low and
high currents corresponding to the closed- and open-channel P{To>t}=1-Fy(t)xe o, (3.4
states, respectivelyl7,18,20Q.

In order to model the stochastic dichotomous action let us
define two independent sequences of non-negdting in- with \,=1.20+=0.08(1/ms). The expected value of the ex-

dependent, identically distributeild) random variables: the Ponentially distributed open time equals \1#0.83
sequencdTe hi_o12 ., With cumulative distribution func- +0.06 ms and is of order of the mean valile)) obtained

tion (CDF) F.(t) and mean(T,), representing periods of N [18- _

closed states and the sequedd® }i_,5 . with CDF Using the above assumptions, one can construct the re-
Fo(t) and mear{T,), representing periods of open states. As"eWal sequence

it has been already showW8], the meangT.) and(T,) are

finite and take the following valuegT.)=0.84+0.01 ms 106°
and(T,)=0.79+0.01 ms. On the basis of the studies of the
empirical CDF it has been concluded by [Us3] that both
dwell-time distributions are power tailgdee Fig. 4. In or-

der to test this result we examine here, using a kernel esti-
mator [18,21,23, the PDF’'s of the closed-and open-state
times. The result obtained for the closed-times PDF is pre-
sented in Fig. 5. For largeit reveals the power-law behavior w

PD

dF(t
fc(t)z%‘xt*wcﬂ), (3.1

with D.=1.24+0.06, which confirms the previously ob-
tained resul{18]

P{T>t}=1—F(t)=t P, (3.2 : . : - s L
: . . t
The studies performed for the open-times PDF give, how- [ms]
ever, the result different from that obtained[i8]. As it is FIG. 6. The PDF of the open times, E(.3), plotted in the
evident from Fig. 6 the open-times PDF is better fitted by arsemilogarithm scale. The slope of the straight line equals20

exponential function +0.08.
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The renewal sequencTy}x—o1. ... In EQ. (3.5 de-
scribes moments when the channel opens and here the delay
time 7 has to finish with a closed state. As a result of this
requirement the delay variabtedecomposes into open- and
(or) closed-state periods just like the subsequent interarrival

intervals do,

=T+ T, 9)B+TO(1-B). (3.6)

The delay variablé3.6) with distribution (CDF) [27]

3
t [ms]
1 t
T T T T T <tl= —_

20 c) P{T t} <Tc>+<To>J'O{1 [FC*FO](S)}dS;
10F i

where [F.*F,](t) denotes convolution of two functions
% 1 > 3 T s 5 F.(t) and F,(t), ensures that the renewal series

t[ms] {Ttk=01.2, ... constructed in Eq(3.5) is stationary. The sta-

FIG. 7. A sample realization of the three main steps of recon tionary sequence of random variables that describes the ap-
o pie realizall . ' ps of pearance of the closed and open-states allows us to define
structing the current signala) a series{T,}n—123. .. (star$ with

open timeg Ty }i_154 _ (ticks) andr (circle); (b) a dichotomous stochla;\_stlc proceds(t) that switches the channel on and off
signalL(t); (c) a current signal (t). [see Fig. )]

k
{Tk}k=0,l,2,...= 7, T+;L (Tc,i+T0,i)7 k=1121 v

(3.5 where

L(t):Bl[o,TOYO)(t)ﬁLngo Lt 77 (D (B

o,n+1)

that describes instants of time when the channel opses 1 if xe[a,b)
Fig. 7(@]. Random variabler denotes a delay time, i.e., an Lap(X)= .

interval of time between switching on and the onset of steady 0 if xé[ab)

measurements. Stabilization of the signal is expressed by the o ) ) ) .
stationarity of the time series. The random delay time can b& the indicator function. The procesgt) is stationary with
constructed26,27] by means of the Bernoulli random vari- the méan equal to the mean value of the random variéble
able B [24—29 that is the indicator function of an event of ON the basis of the dichotomous procégs) one can con-

probability p. The probabilityp that att=0 the channel was struct further a stochastic model of the ionic current fluctua-
open equals tions[see Fig. Tc)]. Assume that the current is recorded with

frequencyf ., so that a single record lastg =1/f,,. Let us
(To) define two ind_ependent series{lcln}nzl_,zvg__. and_
p=P{B=1}= —7—, {lontn=123 ... of independent random variables denoting
(Te) +(To) the current that flows through closed and open channethin
moment of duratiomt. Thel;'s have identical distribution
with mean(l.)=m and thel ,’s are also identical distributed
with mean{l,}=M. The analysis of the experimental data
shows [18] that m=3.2+£0.1 pA and M=11.0+0.1 pA.
The standard deviations of variables from both families are
The delay period consists of closed- &iod) open-states be-  finite and read ¢.=0.82+0.05 pA and o,=2.54
cause the channel always has to be in one of these two statesg pg pA for the closed and open state, respectively. Note,
If so, we need to define independent nn random variablegat the variances of the estimators used to calculate the stan-
T and T (also independent on{T¢}i_01, . dard deviations and means are less then the measurement
{To.iti=123, .., andB) that represent the closed and openerror (Al=1 pA) what reflects the estimators’ consistency
times during the delay period. The random variables hav§21,22 28; if an estimator is consistent then its volatility
distributions defined as tends to zero as the sample length increases. Moreover, the
ratios of the standard deviation and the mean value of the
ionic current in both states are similar,/m=0.26+0.03
ando,/M =0.23*+0.02 that suggests that the higher value of
standard deviatiorr, of ionic current in open states is a
consequence of the higher current values rather than an in-
trinsic physical mechanism.
The current recorded inth moment can be defined as

while the probability that at=0 the channel was closed

P{B=0}=1—p.

P{TO<t}= % f T1-Fy(s)]ds
c/JO

PTO<t}= %f;[l— Fo(s)]ds.
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FIG. 8. The autocorrelation function of the experimental current

signal decreases with three different power laws?~ where «,
=0.32£0.04 fort<l ms, «,=0.14£0.02 for 1 mst<40 ms,
anda,=0.28+0.10 fort>40 ms.

I(N)=L(NAD)I o n+[1—L(NAD) I (3.9

The procesd(t) is stationary and fot=nAt—oo its auto-
correlation functio{27] decays with a power law
(T)*(M—m)?

(D _1)(<T >+<T >)3K(t)ti(Dcil)xt70-24i0_06,

Kk(t)oe
(3.9
determined by the power-tail exponddg of the closed-time

distribution [see EQq.(3.2)], that is the consequence of the
fact that

P{T>t}>P{T,>t}, (3.10

PHYSICAL REVIEW E 63 051910

exponenta,=D.—1 results from the connection between
the power-tail exponenb. of the closed-time distribution
and the power exponent, .

IV. STATISTICAL ANALYSIS OF THE EXPERIMENTAL
DATA

In order to test the results obtained above we apply the
Hurst, the DFA, and the Orey index methodologies to study
the experimental data described in Introductisae Fig. 1

Information about the time series structure, correlations,
and its fractal properties is provided by the self-similarity
index H [13,30. Stochastic procesX(t) is called self-
similar with indexH if it has the following property:

X(at)=a"X(t). 4.1

The equality in Eq.(4.1) means that the finite-dimensional
distributions of the process on the right- and left-hand side of
the equation are the sani24]. For example the Brownian
motion is self-similar withH=1/2 and the Ley flight is
self-similar with the index equal to &/ where a €(0,2).
The self-similarity indexH can be estimated by statistical
methods from realization of a stochastic process.

A. Hurst analysis

The rescaled range analysis developed by H@st may
be used to study correlations in the time series measured at
different time scales. To perform the Hurst analysis of a
series{X,}r_, one has to divide the series intbnonover-
laping segments of length such thatnd=N. If the time
series{ X} -, was recorded with the frequendy, the win-
dow n corresponds to the time duratigit=n/f.,. In the
next step, for everynth segment of the original record)
=1,2,...d, one should calculate the mean

1 n
Xm=r ,Zl X(m=1)n+

i.e., the tail of the open-time distribution is dominated by the

tail of the closed-time one&K(t) in formula (3.9) denotes a
slowly varying in infinity function, i.e., for everx>0 it
holdsK(tx)/K(t)— 1 whent—o. The autocorrelation func-
tion calculated directly from the data using the formula

<|s'|s+t>_:“2

K(t)= . (3.11)
(o

where u is the mean value of the sample and is the

and the standard deviation

n

! > (X X) )2
mj=l( (mfl)n+j_< >m)

Sm(n)=

and then build the cumulative serig¥; ),

i
Yj,m: kzl (X(mfl)nﬂ - <X>m)

sample’s variation, is presented in Fig. 8. In the long-timeggr which the rangeR,, is defined as
range(for t>40 ms) the autocorrelation function decreases
ask(t)ot~ 0282010 This approach does not recover the three
regions observed in Fig. 8. The reasons will be discussed in
Sec. V. . .

The above stochastic construction of the channel actioff©" the whole time series the mean value of the rescaled

shows that the long-range autocorrelati¢®9 between range equals

Rm(m)=max {Y; n}—min {Y; n}.
j j

measurements of the ionic current is directly related to the d
time series’ structure. The long-time non-Markovian prop- <R/S)(At)E<R(At)>E<R(n)> 1 > Rm(Nn)
erty of the current signal indicated by the autocorrelation S(At) S(n)/  dm=1 Sn(n)

051910-5
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which is very close to the dimensiah=1.27+ 0.05 obtained
in [18].

With the use of the fractal dimension we can find a for-
mula connecting the Hurdtl and autocorrelationy, expo-
nents. If the autocorrelation function decays with a power
law then the fractal dimensiod is related to the power-law
exponenta,. as follows[13]

<R/S>

d=1+ 2% 4.4
—+?. (4.9

It results from Eqs(4.3) and(4.4) that the Hurst exponerd
and the power-law exponeant, fulfil the relation

10 107 10 a,
Alls] H=1- 7
FIG. 9. The rescaled rand&/S) as a function of time-lagt.
The slope of the straight line determines the Hurst exponent in Eq.
(12). B. Detrended fluctuation analysis

An alternative method of testing scaling and correlation
and is proportional tdith power of the duratiolt=n/fe,  properties of a time series is the detrended fluctuation analy-
sis (DFA) [32—-34. The DFA method consists of two steps:
(RIS)(At)ec(AD)",  0<H<L. (4.2 the first step is to divide the entire series of lenijtmto N/I
nonoverlapping fragments dfobservations and determine a

The value of the Hurst exponeht provides information on local trend of the subseries. Next, one has to define the de-
the correlations in the time series measured at different tim&ended process in an every fragment denotey, by) as the
scales. WherH=1/2, the changes in the values of a time difference between the original value of the series and the
series are random and, therefore, uncorrelated with eadbcal trend. The desired statistic is the mean variance of the
other. When 8<H<1/2, increases in the values of a time detrended process3(l), where mean is taken over all the
series are likely to be followed by decreases and, converselytagments of size
decreases are more likely to be followed by increases. Such a
time series is called antipersistent. When <12<1, in- ) B 1 5
creases in the values of a time series are more likely to be Fa(Ay)= N ;1 = yr(n),
followed by increases, and, conversely, decreases are more
likely to be followed by decreases. Such a time series is o )
called persistent and it has a long memory propEtg). WhereAt_=I/fex. S|_m|lar|Iy as in _the case of the Hurst ex-

The Hurst analysis performed for the studied data recordonent discussed in Sec. IV A, if only short-range correla-
is presented in Fig. 9To get reliable value off one should tions(or no ccl)/rzrglatlons at allexist in the studied series then
omit the points obtained fai< 10 because they have too big Fd(At)<(At)™ if there is a long-range power-law correla-
volatility.) The slope of the Zipf log-log plot of the depen- tion thenFq(At)o(At)* with «#0.5. Moreover, if the ex-
dence of the rescaled range mean valRéS) on the dura- ponente is greater than 0.5, the time series is persistent and

N/

tion At, Eq. (4.2), determines the Hurst exponent if @<0.5 then the time series is not persistent. .
The result of the DFA analysis of the ionic current is
H=0.84+0.08. presented in Fig. 10. The slope of the straight line equals
=0.89+0.07.

The value of the Hurst exponent indicates that the ionic cur-

rent signal has the long memory property. C. Orey index
The Hurst exponenH can also be used to estimate the

fractal dimensiord of the seriesX(t) taken as a geometrical

object[13] embedded in the spac&(t),t),

The Orey indexy is a method of the time series data
analysis. It was recently propos¢85] for analysing finan-
cial data sets. The Orey index estimates the self-similarity
index H of stationary Gaussian stochastic processes. It pro-
vides an additional information about properties of a time
series, completing the Hurst and DFA analyses. Namely, the
The fractal dimension of the investigated time series, estiequivalence of the Orey index and the self-similarity inélex

d=2—H. (4.3

mated from the Hurst exponent, equals (obtained by other statistical methodsiggests the Gaussian
nature of the investigated process. The advantage of the Orey
d=1.16+0.08, index is that it is obtained with one compact formula and one
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does not need additional toqléke linear regression and the e

log-log ploY to estimate the self-similarity index of a Gauss-  FIG. 11. The autocorrelation functions of two simulated current
ian process. signals decreaséa) with three different power laws™ “< with «,
The Orey indexy can be estimatef35,36 by means of =0.26£0.07 fort<3 ms, ,=0.17+0.05 for 3 ms<t<40 ms,

an ordinary least squares estimafé?S. For a given time 2nd@,=0.29x0.10 fort>40 ms; (b) with two different power-
y q et 9 laws t % a,=0.38+0.06 fort<8 ms anda,=0.24+0.09 for

series{AX;;i=1,2,...,2" consisting of 2' observations
. . i . t>8 ms.
we have to calculate a cumulative serig§=2{_;AX;;j
=1,2,...,2"t and an incremental variance S .
the self similarity indexH #1/2, we claim that the process
1 2" can be identified with a fractional Brownian moti¢fBm).
uZ(n)=— >, (Xj—X;-1)%, The fBm is the only Gaussian self-similar process with the
2" =1 self-similarity indexH # 1/2 [37,3§.

whereX,=0 andn=1,2, ... m. Then the Orey index esti-
mator is given by V. COMPUTER SIMULATIONS OF THE
RECONSTRUCTED IONIC CURRENT SIGNAL

m
"OLSZZ ,| ; In order to get information on differences between the
Y 2, Yjlogau(j), . . A .
i=1 experimental and reconstructed signals, in this section we
apply the statistical tests to the model-based simulations of

wherey; = (X; —;)/E?‘Zl(xj —x)?2 andx;=log, 1/2=—j for  the channel action. Our aim is to show how much of the
j=1,2,...m. This estimator is strongly consistent with the experimental signal properties can be explained by theoreti-
Orey indexy (for details se¢35]). cal reconstruction of the original ionic current time series.

The calculations of the Orey index were performed withThe most interesting point is to find conditions under which
m=17, using hence the time series of length equal tdhe reconstructed signal autocorrelation function has proper-
131072. Because the total length of the time series was equli¢s similar to those observed in the experimental series. The
to 250000, the calculations were repeated by setting suechnique of limit theorems of probability theory used to
series of constant lengths 131 072 in different starting pointsderive this function restricts the theoretical result to the long-

It has been found that the Orey index equals time range only. The reason follows from the fact that limit
theorems work perfectly on large time scales or large number
v=0.84+0.04 of random variables only. It is hence clear that we are not

able to obtain theoretically the three time-regidhgy. 8) of
and does not depend on shifts in time, which also confirmshe experimental series autocorrelation function. They are
the stationarity of the investigated signake Sec. )l The  seen, however, in some cases of the simulated sigyes
agreement of the Orey index with the self-similarity indéx  Fig. 11).
indicates that the transport of ions through a single- To perform simulations of the reconstructed ionic current
membrane channel is Gaussian, i.e., the ionic current presignal (3.8) we need to know the current distributions in the
cess’ finite-dimensional distributions are Gaussian. Becausgosed- and open-states and the corresponding dwell-time
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distributions. Following the results of the first part of Sec.closing times, and also than the longest open time durgation
[ll, we may assume the following. The third region of the autocorrelation scaling shows the

(A) The current values are distributed according to thefastest correlation falloff related to many interstate transi-
Gauss laws with means and standard deviationsions. The simulations show the conditions under which the
m=3.2 pA and ¢.=0.82 pA for the closed states and two or three different power-law regions may be observed in
M=11 pA ando,=2.54 pA for the open states, respec- the reconstructed signal autocorrelation function.

tively. Applying the statistical testgresented in Sec. IMo the
(B) The open times are distributed according to the exposimulated signal, we have obtained the following values of
nential law the Hurst exponent, the DFA exponentr, and the Orey
Fo(t)=1—e Mo, index y:
with mean valugT,)=1/\,, wherex,=1.2(1/ms). He(0.66,0.92, (H)=0.84+0.07,

(C) The closed times are distributed according to the

power-tailed Pareto law @c(0.69,0.9), (a)=0.86-0.05,
Fuh)=1-|a+ - 7e(0.70,0.89, (7)=0.82+0.07,
g

where (-) denotes the average value of the corresponding
whereD.=1.24. For simplicity we tak@a=1. The distribu- exponent. The above results show the agreement of the main
tion fulfills the condition (3.2. The scale parametes  statistical characteristics of both, experimental and recon-
=0.201 ms is determined by the mean value of closed timestructed signals. In our investigations of the reconstructed
(Tey=0l/(D.—1). signal properties we applied different variances of the current
Taking into account the above assumptions, we generatdd closed and open states. We have found that the conver-
500 samples of length 250 000 and calculated the autocorrgience is better if the variances are smaller. If the variances
lation function for each realization of the signal. Two char-are very largg'some times larger than the difference of the
acteristic examples are presented in Fig. 11. It is seen thahean values of current in both states~o,>M —m) then
both autocorrelation functions decrease for largeith the  the power-law autocorrelation function tail vanished. This is

theoretically derived power-la\B.9) obvious if one realizes that in the case of two states that are
B not distinguishable, the process became similar to the white
K(t)oct™x, noise without any memory. The simulations of different se-

o ries lengths show that the increase of the generated sample
wherea, = 0.29+0.10 for the curve indicated by crosses andjength did not changed significantly the estimated param-
a,=0.24+0.09 for the curve indicated by circles. All of the eters. Also, we did not observe in our studies any significant
observed values of, belonged to the interval (0.22,0.31). influence of different current and closed-time distributions,

The wide range of observed values @f's (and other Pa-  satisfying the conditions taken into account(i) and (C),
rameters presented belpare caused by highly fluctuating respectively.

values of generated periods of closed tirfieste, the power- |t s still open question as to what is the role of statistical
tailed Pareto distribution witlD.=1.24 has no finite vari- gependence between closed and open times or the current
ance[21]). values. It is well known that the times should be independent

We have found that the autocorrelation function was very 14 39|, but on the other hand there are some evidences that
sensitive for durations of closed times present in the genelihe independence may be disturbj@®,41]. Above studies
ated sample. If there was at least one closed state with a longhow that the observed long-time correlation, and even the
duration(i.e., over 1/100 of the whole sample durafidhe  shape of the reconstructed signal autocorrelation function are
autocorrelation functiofisee curvea) in Fig. 11] “braked similar to that observed in the case of experimental data. The

the same way as it was observed for the experimental bidresylt has been obtained without introducing any dependence
logical data in Fig. 8. If the longest closed state was ovelhetween the random variables.

1/10 of the sample duration the autocorrelation funcfeee
curve(b) in Fig. 11] looked different. The maximal value of
the closed-time duration in the investigated experimental re-
cording equals 300.8ms and it is about 1/83 of the whole The main objective of the paper was to get information on
series duration. It was suggested by[a8] that the three the stochastic origins of the non-Markovian natLi&,1§ of
different power-law intervals, observed in the experimentalpotassium current through a locust potassium channel
signal, are connected with the time structure of the investi{17,20. The detailed knowledge about the channel action
gated time series. The first scaling region of the autocorrelatcontinously switching between closed and open stasesf

tion function, which is of the same order of magnitude as theémportance for identification of physical phenomena respon-
average opening and closing times, describes the autocorrsible for the observed ionic current propertiésn influence
lation falloff while the system stays in one state: open orof internal adsorptiof42], “a crowding” of ions inside nar-
closed. The second scaling region describes the autocorrelesw pores[43,44], and of conformational changes of poly-
tion between subsequent, different states of chaftheltime  mer chaing45] has already been pointed gpuTaking into
range is here larger than the sum of the average opening amacount the fact that the recorded current represents a re-

VI. CONCLUSIONS
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sponse of the whole system, consisting of ions and the chan- a,=2(1—a)=0.22+0.14,
nel, the non-Markovian character of the ionic current can be
considered as a result of interactions between channel struc- a,=2(1—y)=0.32+0.08.

ture and ions inside the channel. The complex state of the

whole system, resulting from random interaction of its ele- e would like to stress the role of the Orey ind@6,36
ments, is clearly reflected in the statistical properties of thentroduced by us to the analysis of physical signals. The
current signal. _ ~ Orey index is a statistical tool identifying the features of
~ In contrast to pap€18], where we have given “prescrip- stochastic processes directly from their realizatidhe.,
tions” for deriving the statistical characteristics of the eX- from the time serigs It carries not only the information
perimental data, in present paper we have proposed a theghout the self-similarity properties of the process but also
retical construction of a dichotomous stationary stochastigpout its Gaussian nature.

process with long-range correlations representing the chan- Applying the statistical tests to the model-based simula-

nels action. The applied procedure, based on information ohions of the channel action, we have shown the following.
tained in[18], can be summarized in few steps.

(i) Investigation of the stationarity of the ionic current (i) The agreement of the main statistical characteristics of
record; here we have used the quantile lines as an easy, prdbe reconstructed signal with the corresponding statistical
tical method of determining the independence of statisticatharacteristics of the experimental one.
properties of a times series on shifts in tif&ec. I). (i) The influence of time durations obtained in explicit

(i) “Translation” of the original times series record into realizations of the random closed-time on the autocorrelation
a dichotomous 0-1 signal and determination from it the tailfunction properties. Note, that those random variables are
properties of the empirical dwell-time distributions. To distributed according to a long-tailed distribution.
check the results obtained ja8] for the cumulative distri-
bution functions, her¢Sec. Il)) we have analyzed the prop-  The results in our paper show how much of the experi-
erties of the corresponding probability density functions. ~mental signal can be explained by a stationary dichotomous

(i) Construction of a stationary process modeling thestochastic process as represented by the proposed theoretical
channel action with an explicit formula of its autocorrelation reconstruction of the channel action. Unfortunately, the re-
function, valid in the |0ng-time rang@ec_ |||) sults do not indicate the phySical mechanisms that mlght be

The theoretically derived autocorrelation function, Eq.responsible for the particular dwell-time distributions yield-
(3.9), decreases with a power-law(t)=t~%. The power ing the observed properties of the experimental signal. For
exponenta,=D.—1, where D.=1.24+0.06 denotes the the difference in initial values of both autocorrelation func-
power-tail exponent of the closed-time distribution, is deter-tions[see Fig. 8 and curv) in Fig. 11], as well as in their
mined by statistical properties of the channel states wittPOwWer exponents for short times might be responsible the
lower values of the ionic current interpreted as the closedtatistical dependence between the closed and open times
states. The valuer,=0.24+0.06¢ (0,1) indicates the long @already observed in real daftd0,41].
memory property of the complex ions channel system and
has been confirmed by the results obtained in different sta- ACKNOWLEDGMENTS
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