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Coexistence in a predator-prey system
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We propose a lattice model of two populations, predators and prey. The model is solved via Monte Carlo
simulations. Each species moves randomly on the lattice and can live only a certain time without eating. The
lattice cells are either grageaten by preyor tree(giving cover for prey. Each animal has a reserve of food
that is increased by eatingrey or grassand decreased after each Monte Carlo step. To breed, a pair of
animals must be adjacent and have a certain minimum of food supply. The number of offspring produced
depends on the number of available empty sites. We show that such a predator-prey system may finally reach
one of the following three steady states: coexisting, with predators and prey; pure prey; or an empty one, in
which both populations become extinct. We demonstrate that the probability of arriving at one of the above
states depends on the initial densities of the prey and predator populations, the amount of cover, and the way
it is spatially distributed.
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[. INTRODUCTION are aware of each other within a given neighborhood. The
authors construct a phase diagram showing two phases pos-
The problem of dynamical relations between two, orsible in their model—coexisting and prey only—which they
more, interacting populations already has a long history. Itall the absorbing one.
started with the classic papers by Voltefid and Lotka[2] Gerami and Ejtehadill] studied a predator-prey system
describing the fluctuations in the fish catch in the Adriatic.in which the predatorgherbivore$ move on a square lattice
For some time, investigation of the predator-prey systemand eat out preypland, which grows again after some time.
was the domain of mathematicians and biolodi8s For an A predator can survive without eating for a certain time and
extensive introduction see, e.g4]. However, recently it at-  then breed, giving one offspring. The model is solved, via
tracted the attention of many physicists. First only homogemean-field approximatioMFA) -type differential equations
neous populationéno spatial dependencevere considered, ang Monte CarldMC) simulations, showing oscillations in
then it was realized .that new, mterestlng.cooperauve Pheéme time dependence of the densities of both species and
nomena could occur in extended systems in which the poPUsisrcations in the phase space of the two densities. No at-
lations live on a Iatt_lce. _ . tempt is made to discuss the final steady state.
q Gen_erall¥tﬁpeakglg£ ttlere are ttWO %oals_ Thstudyllng tthe The problem of the final state has been discussed at length
ynamics of the precator-prey system. ne is the explanatiofy 4, paper by Maynard Smith and Slatkit2]. They con-

of the possible oscillations in the temporal evolution of the ider a model with breeding seasons separated by a winter
densities of prey and predators, as well as of the correlation 9 P y

between them. This is the classic problem in the field. The€ason during which the predator must find prey at a certain
papers by Lipowski and Lipowsk#&], Bradshaw and Mose- minimum rate or sta_lrve to dt.aa_t.h.. Young and adult preda_tors
ley [6], and Taitelbaurret al. [7] are examples of this ap- have different h.untlng possibilities and the prey may .fmd.
proach showing different methods and starting points. ACOVer. The coexistence of prey and predators was p035|bl_e if
modern attempt to explain the recorded correlations betwee€ density of predators was well below the carrying capacity
the oscillations of prey and predators has been proposed Rf the habitat.
[8]. In this paper, we present a lattice model that contains
The second problem is the derivation and discussion o@lmost all the features found in the papers cited above, plus
the long-time steady states at which a predator-prey systespme that have not yet been considered but are nevertheless
finally arrives. Boccarat al.[9] used a probabilistic cellular important. We use Monte Carlo simulations with sequential
automata method to model a lattice system in which the preypdating.
tries to avoid the predator and the predator moves in the The predators and prey move on a lattice, and in order to
direction of the prey. The predator eats the prey with a giversurvive each species must eat and breed. A certain percent-
probability and it may die with a given probability. Both age of lattice sites serves as a cover for prey. Mean-field type
species produce just one progeny. theories model the inhibition of population growth by crowd-
This kind of approach has been continued by Rozenfeldng with an ad hoc “Verhulst factor,” but in our model this
and Albano[10], who added the condition that the specieseffect emerges naturallfsee below and we do not need to
impose such a term. However, even in the absence of preda-
tors, the population of prey stays below the carrying capacity
*Email address: Michel.Droz@physics.unige.ch of the system.
"Email address: apekal@ift.uni.wroc.pl We shall be interested mainly in discussing the long-time
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steady state. In particular, we would like to find an answer tanay die there of hunger. Of course, a wolf may also die of
the following questions. hunger on a tree cell.
(1) What is the role of the initial densities of prey and  The parameters of the model are as follows: linear size of
predators on the chance of reaching a coexisting state? the latticel, initial densities of both species: prégabbitg
(2) What is the role of cover and its spatial organization?c,(0) and predato(wolves c,,(0), concentration of trees
(3) How is the fate of the system affected by such detailsc,, maximum period of timéMCS) k an animal may survive
of the model as the habitat size, number of offspring, etc.?without eating, the amount of foo#,,;,, needed to be fit for
The paper is organized as follows: in the next section webreeding, the amount of food;, received at birth, and
present the model, Sec. Ill contains the results of the Montéinally M, the physiological birth rate. To make the model
Carlo simulations, and the conclusions are in the final sectractable, we have decided on fixing most of the parameters
tion. at the following reasonable valuek=6, K,in=2, ky=2,
and M=4. We shall therefore investigate mainly the role
played by three parameterg£+0),c,(0), andc,—on the
type of the steady state reached by the system, although the

We consider a square lattice of linear sizavith periodic role of other parameters will be discussed briefly in the next
boundary conditions. On a cell there may be a predatay,  Section. In general, we have uskee- 50.
a wolf), a prey(e.g., a rabbjt both of them, or neither. The territory (distribution of tree and grass cells pre-
Double occupancy by two animals of the same Species is n(nared before Starting the simulations. The trees are either pUt
allowed. Each cell is either covered with grass or a tree igandomly or they are organized into a compact cluster mak-
growing on it. Both types of animals move random|y on theing a forest. In the text below, we will refer to the two cases
lattice, following the blind ant rule, i.e., a direction for a @s “trees” and “forest,” respectively.
move is randomly chosen, but if the target cell is already The dynamics of our model can be decomposed into two
occupied by the same species, the move is not realized arihases: diffusior{motion) and reaction(eating and breed-
there is no second try during one Monte Carlo ste)eS).  ing). The two are included in the following algorithrti) A
On a grassy cell, a rabbit eats grass and a wolf eats rabbit §€ll is randomly chosen. If it is occupied by either animal,
the two are on the same cell. The configuration of the territhen (ii) a direction for a move is randomly determined. If
tory, i.e., grass and trees, does not change in time, whicHe chosen cell is empty, the move is realizeid) if there is
means also that the grass is always available to the rabbits @§ass on the chosen cell then the following holds tagif
grass sites. there are two animal&@ wolf and a rabbjt the wolf eats the

Each animal has to feed at least once e\}ek&CSs_ This rabbit and the wolf's counter is increased b)(k]), if there is
is realized in our model by attributing to each animal a@ rabbit but no wolf, the rabbit eats grass and the rabbit’s
counter containing jusk “food rations.” The counter is in- ~ counter is increased by () if there is a wolf and no rabbit,
creased by 1 after each “mealeating grass by a rabbit or Nnothing happens, anld) a check is made if the animal that is
eating rabbit by a wojfand decreased after completing one0n the cell has enough resources to breed, i.e., whether its
MCS. For simplicity, we assume the same valuekdor ~ counter reads at leagt,,. If so, one search is made ran-
predators and prey. An animal that did not eat KoMiCSs domly in the nearest neighborhood for a partner. If it is
dies. Similar, although simpler, ideas of a finite reserve ofound, the pair producel! offspring. For each of them, an
food characterizing predators has been consideredl1h independent search is made for a free cell in the Moore
and, in some sense, also[ib2]. neighborhood. If found, the progeny is put there and it re-

If an animal has at least one nearest neighbor of the sanfivesk food rations. If the cell is already occupied, noth-
species, the pair produces, at mdst,offspring. M is the  ing happens and we search for a place for the next kaby.
physiological birth rate. In order to breed, apart from finding!f there is a tree on the chosen cell, nothing happéws.

a partner in its neighborhood, the animal must be strond\fter completing as many picks as there are animals at that
enough, i.e., it must have at ledst;, food rations. Each time, one MCS has been accomplished and the food rations
offspring receives at birth, food rations(which are not Of all animals are decreased by 1.

deducted from the parents’ stoyeEhe offspring are located, ~~ Most of the simulations were performed on lattices of
using again the blind ant rule, within the Moore neighbor-50X50 size, although to estimate the size effects we in-
hood [13], which in the case of the square lattice containscreased it in some cases to 20000 and 25& 256. To find
eight cells. If the density is high, there is room for only athe chances of a population with given initial parameters
fraction of M, hence fewer progeny are born. This procedurg€aching one of the three possible final statemexistence,
takes care of the unrealistic unlimited growth of a populationpure prey, or empy we have averaged over 100 indepen-
found in the classic Lotka-Volterra modelsee[4]) and re- ~ dent runs, choosing a different territory each time, but with
places, in a natural way, the phenomenological Verhulst facthe same amount of trees.

tor.

When an animal moves into a cell with a tree, nothing
happens. There is no grass for a rabbit to eat, but a tree
makes a shelter against a wolf. Breeding is also impossible The main object of our study was the final state attained
on the tree-occupied cell. Hence, such sites make a cover fany a population. As could be expected, we have found three
rabbits, but it is a potentially dangerous one, since the rabbjpossible states: the coexisting one with prey and predators,

Il. THE MODEL

IIl. RESULTS
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FIG. 2. Time dependence of the densities of predatdosted
line) and prey(solid line) when the final state is the coexisting one.
¢(0)=0.1, ¢,(0)=0.1, ¢,=0.2, L=256.
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N exceed that of the rabbits too much. However, if the initial
FIG. 1. An example of the distribution of treéslack squares  engity of the wolves is greater than 0.4, then, as seen in Fig.
and grasgwhite squaresfor ¢;=0.1. 4, the empty state is the most probable one. For a large
enough initial concentration of predators, increasing the ini-

the absorbing one with prey only, and the empty one Wher‘?ial density of the rabbits may result in increasing the prob-

no animal survived. Which one is the fate of a given polou'ability that the system will reach the pure prey state, but not

".”‘“0” depends on the parameters characterizing the pOpwﬂie coexisting one. When increasiog(0) for a fixed ratio
tion and the territory.

: : —— ... ¢/(0)/c,(0)<1, one passes from a coexistence through prey
wted randormly over the latice. One of the possible realizaZl! [0 30 €Mply state. The probabily to reach a given
. . y OV€ g P teady state varies continuously as a functiorc,d0). The
tions is shown in Fig. 1. There are indeed very few and smal}.

tree clusters. In such a territory, the wolves and rabbits haveInal distribution of animals is shown in Fig. 5.
also been put in a random way. After approximately 100
MCSs, the system arrives at a quasisteady state. If it corre-
sponds to a coexisting state, the densities of wolves and The existence of trees is beneficial for the prey since the
rabbits fluctuate around some “average” values, which dopredators cannot eat them there, but for the very same reason
not change in time and which are the same in all coexistin@ tree does nothing for the predators. Moreover, the simula-
states, irrespective of the initial parametésge Fig. 2 If  tions show that in a territory without any trees, the probabil-
that final state is that of prey alone, its density stabilizes,

after extinction of the predators, at a level below the carrying 1.0
capacity of the habitat, which is equal to 1 in our mogsle 0.9
Fig. 3. We have not found periodic oscillations in the time
dependence of the prey density in the absence of predator: ]
Similar kinds of curves have been found by Maynard Smith _ 0.7
and Slatkin[12] in their nonspatial model. The random os-
cillations of the two densities, as shown in Fig. 2, are very 2
weakly intercorrelated. Fourier analysis performed on theg %5

Cover

0.8 _ predator prey

ations

0.6 1

data showed a wide uniform spectrum. © 0.4
% 0.3 -
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The chances of a population, starting with a given initial
density of wolves and rabbits, to arrive at each of the three
possible final states are shown in Fig. 4 for small concentra- 9
tions of trees ¢;=0.2). Since the initial configurations, even
for fixed c;,c, ,c,, parameters, are different, and the evolu-
tion is probabilistic, the system may reach different station- FIG. 3. Time dependence of the densities of predatdested
ary states. It is clear that the prey and predator populationtne) and prey(solid line) when the final state is prey onlg,(0)
can coexist only if the initial density of the wolves does not=0.4, ¢,(0)=0.5, ¢,=0.1, L=50.
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Initial density of prey and the size of the lattice is smallel £100), hence the fluctua-

FIG. 4. Phase diagram showing probability of reaching one oftlons are larger.

the final states starting from a given initial density of predators and | et ys consider now the case of trees growing on neigh-
prey. Size of the white area corresponds to the probability of theboring cells and forming a clustéthe “forest” case. For a
final state with no animals, light gray to the state with prey only, 4iyen concentration of trees, this kind of configuration favors
and the dark gray area to the coexisting ¢peey and predato)s  he hredators, leaving more open space for hunting and less
c,=0.2. The probabilites vary continuously between Showncover for the prey. In the case of equal, and rather large,
squares. initial densities of prey and predators,(0)=c,,(0)=0.3

and ¢;,=0.2 the chances a population has of ending up as
ity of arriving at the pure prey state never exceeds the probeither empty, coexisting, or pure prey states are 0.01, 0.02,
abilities of the remaining states. The pure prey state mawynd 0.97, respectively, in the case of dispersed trees, and
become the most probable one, in a rather narrow range @07, 0.81, and 0.12 in the forest. A predator population has
the parameters, if the concentration of trees;is 0.1. a good chancéover 20% of survival, and hence of realizing
the coexisting state, even for very high initial densities of
predators and prejlike c,(0)=0.5 andc,(0)=0.6] if the
evolution takes place in the forest. In contrast, the predator
\ population becomes extinct in the “tree” case df,(0)
>0.3. For compact clusters of treés no trees at al] we
have found correlations between the time dependence of
30} the two densities, predato(@olves and prey(rabbity (see
Fig. 6). The role of the concentration of the trees and the way
they are arranged are shown in Fig. 7. Here again, the simi-
larity between the situation of no cover and trees grouped

40

[T

[

] in a compact cluster is clearly seen. The forest, after initial
2 penetration of the animals, remains empty, as shown in
] Fig. 8.

Finite size effects

10} From a biological point of view, the most interesting case
- is that of populations living in a small habitat. It is well
known [14,15 that populations of small size are very vul-
nerable and may become extinct because of stochastic fluc-
tuations. This is exactly what we have found in our model.
O3 , , , ; Populations of prey and predators with the initial densities of
0 o 20 30 40 ¢, (0)=0.1, ¢,(0)=0.2, and the concentration of forest
FIG. 5. Typical spatial arrangement of predators and prey in th€:(0)=0.1 were quite stable on a 5&0 lattice, having an
coexisting state. On white squares there are no animals, on ligft3% chance of coexistence and a 17% chance of becoming a
gray ones there are prey only, on the dark gray ones there afeure prey state. The same system on a smallex220 lat-
predators, and on the black squares there are predators and préice showed quite different behavior: 30% of coexisting
cw(0)=0.1, ¢,(0)=0.1, ¢,=0.1. states, 14% of the prey only, and 56% of an empty one.
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ological birth rate, i.e., the maximum number of offspring a
o oz | o2 os pair may have, is an important parameter. Lowering it from
(b) Initial density of predators M =4, taken in the simulations, tM =3 resulted in the
almost total elimination of the predators; the only available
Yinal states were prey or empty. Increasidgto 5 did not

o; N tors, although this is clearly not very realistic. The physi-
0‘5 ' 0‘6

FIG. 7. Chances of reaching the coexisting state versus initi

density of predator&) and of prey(b), for different concentrations - L " .
and arrangement of trees. If the trees are randomly locatedand change anything at lower initial densities, but greatly in

=0.3, the chances of reaching the coexisting state do not exceéaegsedby a factor 9f 4 at leasthe chances fqr coexistence.
5%. O (case of no treds X (c;=0.1), + (c;=0.2), and (forest A higher reprpductlon.rat(_a for both popu!anons favors the
andc;=0.2). Lines are guides to the eye only. preda_tors', while lowering it below a certain threshold leads

) - ~ to extinction of the predators or of both species.
Increasing the number of predators, the probability of arriv-  The same effect of elimination of the predators has an
ing at an empty state grows dramatically, andcg(0) increase of the food reserves needed to breed. A decrease
=0.5 it is above 90% for all initial densities of the prey, on from k=6 tok=>5 favored the prey and resulted in a smaller
the 20<20 lattice. The important factor is the number of 5 5papility for an empty state and a larger one for a state
individuals (size of the populationrather than the concen- i prey only.

tration. Consider two populations with an equal initial num- Since the food rations are decreased after each MCS, low-

ber of prey and predators—one on a small and one on a large.. . . _
lattice. The population living on a largée.g., 50<50) lattice gee”Egltzﬁlsaﬁggtngﬁfhgoogo rzt;,]e|v:nd d ?tt rglsrﬂ}tgrﬁfr; 2e>t<€c)inc-
reached higher densities fairly soon and the stochastic fluc!(fof_ f both lati P Rg' Y hiah |

tuations left no marked effect, while the one living on g ton of both populations. als_mlgof to a higher value per-
small lattice had no chance for growirthere is not much mits the newborn to survive without eating for several MCSs

room for growth and was easily affected by such fluctua- a_nd p.roduces offspring. This may I_ead.to quite an _unrealistic

tions. situation when the predators are still alive after eating out the
Taking lattices bigger than 5060 does not change the Prey.

general trends, although when the initial density of predators

is high and that of prey is low, coexistence becomes more IV. CONCLUSIONS

likely as the lattice grows. Analyzing the fluctuations around We h ted a latti del of d dat
average densities for different lattice sizes, fram 20 to tri \f‘vf %esri? € na ?rlr(i:te rmo itoini%rey i%? rprre aorrs
L =256, convinced us that they decrease approximately at@a ove randomly on a territory containing either grass o

ree. On a grass cell, prey eat grass and predators eat prey,
1L. - .

while on a tree cell, the prey is safe from the predator but
finds no food. To survive, each animal has to eat at least
once evernk MCS. An animal may breed, provided it finds a

For simplicity, we have assumed the same numerical valpartner in the neighborhood and it has enough food reserves.

ues for the parameters characterizing the prey and the pred&he offspring are located in the neighborhood of the parents,

Other parameters
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which do not die after giving birth, hence we have a system The initial density of predators cannot be too large, al-
with overlapping generations. though for smaller densities it may be greater than the den-

A real ecological system is of course very complex andsity of the prey. However, the knowledge of the initial den-
contains many important factors, out of which the presensities is not enough to define completely the initial state.
model considers only a few, namely spatial inhomogeneityndeed, different initial states characterized by the same val-
of the habitat, limited ability of the animals to survive with- ues ofc,(0) andc,(0) can correspond to quite different
out eating, and their mobility. The inhomogeneity is realizedmicroscopic configurations. Two such configurations can
here by dividing the territory into two, nonoverlapping, re- evolve in very different ways and approach different station-
gions, one providing food and a mating ground for prey andary states. Accordingly, the stationary phase diagram ac-
predators, and the second providing cover for prey. As in theuires a probabilistic character, giving the probabilities of
real world, here also reproduction and finding food are rereaching a particular type of stationary states, starting from
lated. In order to mate, an animal must have energy resources initial state defined in terms ef(0) andc,(0).
above a certain level. To maintain this state, it has to gather As Maynard Smith and Slatkifil2] found in their own
food and avoidespecially predatoys‘cover” cells. By im- model, the existence of cover may lead to extinction of the
posing a limited time of survival without eating, we force the predators, but it does not increase the chance of coexistence.
animals to move, otherwise an animal will die and liberateThe way in which the covethere treesis organized also
the cell on which another animal may move. In our model, agplays a role. If the trees are scattered around all the territory,
in nature, animal mobility is necessary for catching food andhus offering many shelters for the prey, the predators have
mating. The age of the animals is not considered here explidewer chances than when albr mos} of the trees are
itly, but denying the reproduction power to newborns has amgrouped in a compact clustéa foresj. When the initial
impact on the dynamics, as with the different hunting skillsdensity of predators exceeds 0.4, the prevailing final states
in the model of Maynard Smith and SlatKit2]. are either prey only or empty state.

The MC simulations show that there are three possible
f!nal states.into which the d.ynamics. will lead the popula- ACKNOWLEDGMENTS
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