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Coexistence in a predator-prey system
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We propose a lattice model of two populations, predators and prey. The model is solved via Monte Carlo
simulations. Each species moves randomly on the lattice and can live only a certain time without eating. The
lattice cells are either grass~eaten by prey! or tree~giving cover for prey!. Each animal has a reserve of food
that is increased by eating~prey or grass! and decreased after each Monte Carlo step. To breed, a pair of
animals must be adjacent and have a certain minimum of food supply. The number of offspring produced
depends on the number of available empty sites. We show that such a predator-prey system may finally reach
one of the following three steady states: coexisting, with predators and prey; pure prey; or an empty one, in
which both populations become extinct. We demonstrate that the probability of arriving at one of the above
states depends on the initial densities of the prey and predator populations, the amount of cover, and the way
it is spatially distributed.
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I. INTRODUCTION

The problem of dynamical relations between two,
more, interacting populations already has a long history
started with the classic papers by Volterra@1# and Lotka@2#
describing the fluctuations in the fish catch in the Adriat
For some time, investigation of the predator-prey syste
was the domain of mathematicians and biologists@3#. For an
extensive introduction see, e.g.,@4#. However, recently it at-
tracted the attention of many physicists. First only homo
neous populations~no spatial dependence! were considered
then it was realized that new, interesting cooperative p
nomena could occur in extended systems in which the po
lations live on a lattice.

Generally speaking, there are two goals in studying
dynamics of the predator-prey system. One is the explana
of the possible oscillations in the temporal evolution of t
densities of prey and predators, as well as of the correlat
between them. This is the classic problem in the field. T
papers by Lipowski and Lipowska@5#, Bradshaw and Mose
ley @6#, and Taitelbaumet al. @7# are examples of this ap
proach showing different methods and starting points.
modern attempt to explain the recorded correlations betw
the oscillations of prey and predators has been propose
@8#.

The second problem is the derivation and discussion
the long-time steady states at which a predator-prey sys
finally arrives. Boccaraet al. @9# used a probabilistic cellula
automata method to model a lattice system in which the p
tries to avoid the predator and the predator moves in
direction of the prey. The predator eats the prey with a giv
probability and it may die with a given probability. Bot
species produce just one progeny.

This kind of approach has been continued by Rozen
and Albano@10#, who added the condition that the speci
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are aware of each other within a given neighborhood. T
authors construct a phase diagram showing two phases
sible in their model—coexisting and prey only—which the
call the absorbing one.

Gerami and Ejtehadi@11# studied a predator-prey syste
in which the predators~herbivores! move on a square lattice
and eat out prey~plant!, which grows again after some time
A predator can survive without eating for a certain time a
then breed, giving one offspring. The model is solved,
mean-field approximation~MFA! -type differential equations
and Monte Carlo~MC! simulations, showing oscillations in
the time dependence of the densities of both species
bifurcations in the phase space of the two densities. No
tempt is made to discuss the final steady state.

The problem of the final state has been discussed at le
in the paper by Maynard Smith and Slatkin@12#. They con-
sider a model with breeding seasons separated by a w
season during which the predator must find prey at a cer
minimum rate or starve to death. Young and adult preda
have different hunting possibilities and the prey may fi
cover. The coexistence of prey and predators was possib
the density of predators was well below the carrying capa
of the habitat.

In this paper, we present a lattice model that conta
almost all the features found in the papers cited above, p
some that have not yet been considered but are neverth
important. We use Monte Carlo simulations with sequen
updating.

The predators and prey move on a lattice, and in orde
survive each species must eat and breed. A certain perc
age of lattice sites serves as a cover for prey. Mean-field t
theories model the inhibition of population growth by crow
ing with an ad hoc ‘‘Verhulst factor,’’ but in our model thi
effect emerges naturally~see below! and we do not need to
impose such a term. However, even in the absence of pr
tors, the population of prey stays below the carrying capa
of the system.

We shall be interested mainly in discussing the long-ti
©2001 The American Physical Society09-1



r t

d

n?
il
.?
w
n
e

.
n

he
a
d
a

bit
rr
hic
ts

a

r
ne

o

am

ng
n

,
r

in
a

ur
io

fa

ng
tr
ib
r
bb

of

of

el
ters

le

the
ext

put
ak-
es

two

al,
If

it’s

is
r its
-
is

ore
re-
h-

that
ions

of
in-

ers

n-
ith

ed
ree
ors,

MICHEL DROZ AND ANDRZEJ PȨKALSKI PHYSICAL REVIEW E 63 051909
steady state. In particular, we would like to find an answe
the following questions.

~1! What is the role of the initial densities of prey an
predators on the chance of reaching a coexisting state?

~2! What is the role of cover and its spatial organizatio
~3! How is the fate of the system affected by such deta

of the model as the habitat size, number of offspring, etc
The paper is organized as follows: in the next section

present the model, Sec. III contains the results of the Mo
Carlo simulations, and the conclusions are in the final s
tion.

II. THE MODEL

We consider a square lattice of linear sizeL with periodic
boundary conditions. On a cell there may be a predator~e.g.,
a wolf!, a prey ~e.g., a rabbit!, both of them, or neither
Double occupancy by two animals of the same species is
allowed. Each cell is either covered with grass or a tree
growing on it. Both types of animals move randomly on t
lattice, following the blind ant rule, i.e., a direction for
move is randomly chosen, but if the target cell is alrea
occupied by the same species, the move is not realized
there is no second try during one Monte Carlo step~MCS!.
On a grassy cell, a rabbit eats grass and a wolf eats rab
the two are on the same cell. The configuration of the te
tory, i.e., grass and trees, does not change in time, w
means also that the grass is always available to the rabbi
grass sites.

Each animal has to feed at least once everyk MCSs. This
is realized in our model by attributing to each animal
counter containing justk ‘‘food rations.’’ The counter is in-
creased by 1 after each ‘‘meal’’~eating grass by a rabbit o
eating rabbit by a wolf! and decreased after completing o
MCS. For simplicity, we assume the same value ofk for
predators and prey. An animal that did not eat fork MCSs
dies. Similar, although simpler, ideas of a finite reserve
food characterizing predators has been considered in@11#
and, in some sense, also in@12#.

If an animal has at least one nearest neighbor of the s
species, the pair produces, at most,M offspring. M is the
physiological birth rate. In order to breed, apart from findi
a partner in its neighborhood, the animal must be stro
enough, i.e., it must have at leastkmin food rations. Each
offspring receives at birthkof food rations~which are not
deducted from the parents’ stores!. The offspring are located
using again the blind ant rule, within the Moore neighbo
hood @13#, which in the case of the square lattice conta
eight cells. If the density is high, there is room for only
fraction ofM, hence fewer progeny are born. This proced
takes care of the unrealistic unlimited growth of a populat
found in the classic Lotka-Volterra models~see@4#! and re-
places, in a natural way, the phenomenological Verhulst
tor.

When an animal moves into a cell with a tree, nothi
happens. There is no grass for a rabbit to eat, but a
makes a shelter against a wolf. Breeding is also imposs
on the tree-occupied cell. Hence, such sites make a cove
rabbits, but it is a potentially dangerous one, since the ra
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may die there of hunger. Of course, a wolf may also die
hunger on a tree cell.

The parameters of the model are as follows: linear size
the latticeL, initial densities of both species: prey~rabbits!
cr(0) and predator~wolves! cw(0), concentration of trees
ct , maximum period of time~MCS! k an animal may survive
without eating, the amount of food,kmin , needed to be fit for
breeding, the amount of food,kof , received at birth, and
finally M, the physiological birth rate. To make the mod
tractable, we have decided on fixing most of the parame
at the following reasonable values:k56, kmin52, kof52,
and M54. We shall therefore investigate mainly the ro
played by three parameters—cr(0),cw(0), and ct—on the
type of the steady state reached by the system, although
role of other parameters will be discussed briefly in the n
section. In general, we have usedL550.

The territory~distribution of tree and grass cells! is pre-
pared before starting the simulations. The trees are either
randomly or they are organized into a compact cluster m
ing a forest. In the text below, we will refer to the two cas
as ‘‘trees’’ and ‘‘forest,’’ respectively.

The dynamics of our model can be decomposed into
phases: diffusion~motion! and reaction~eating and breed-
ing!. The two are included in the following algorithm:~i! A
cell is randomly chosen. If it is occupied by either anim
then ~ii ! a direction for a move is randomly determined.
the chosen cell is empty, the move is realized;~iii ! if there is
grass on the chosen cell then the following holds true:~a! if
there are two animals~a wolf and a rabbit!, the wolf eats the
rabbit and the wolf’s counter is increased by 1,~b! if there is
a rabbit but no wolf, the rabbit eats grass and the rabb
counter is increased by 1,~c! if there is a wolf and no rabbit,
nothing happens, and~d! a check is made if the animal that
on the cell has enough resources to breed, i.e., whethe
counter reads at leastkmin . If so, one search is made ran
domly in the nearest neighborhood for a partner. If it
found, the pair producesM offspring. For each of them, an
independent search is made for a free cell in the Mo
neighborhood. If found, the progeny is put there and it
ceiveskof food rations. If the cell is already occupied, not
ing happens and we search for a place for the next baby.~iv!
If there is a tree on the chosen cell, nothing happens.~v!
After completing as many picks as there are animals at
time, one MCS has been accomplished and the food rat
of all animals are decreased by 1.

Most of the simulations were performed on lattices
50350 size, although to estimate the size effects we
creased it in some cases to 1003100 and 2563256. To find
the chances of a population with given initial paramet
reaching one of the three possible final states~coexistence,
pure prey, or empty!, we have averaged over 100 indepe
dent runs, choosing a different territory each time, but w
the same amount of trees.

III. RESULTS

The main object of our study was the final state attain
by a population. As could be expected, we have found th
possible states: the coexisting one with prey and predat
9-2
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COEXISTENCE IN A PREDATOR-PREY SYSTEM PHYSICAL REVIEW E63 051909
the absorbing one with prey only, and the empty one wh
no animal survived. Which one is the fate of a given pop
lation depends on the parameters characterizing the pop
tion and the territory.

Consider first the ‘‘tree’’ case when the trees are distr
uted randomly over the lattice. One of the possible reali
tions is shown in Fig. 1. There are indeed very few and sm
tree clusters. In such a territory, the wolves and rabbits h
also been put in a random way. After approximately 1
MCSs, the system arrives at a quasisteady state. If it co
sponds to a coexisting state, the densities of wolves
rabbits fluctuate around some ‘‘average’’ values, which
not change in time and which are the same in all coexis
states, irrespective of the initial parameters~see Fig. 2!. If
that final state is that of prey alone, its density stabiliz
after extinction of the predators, at a level below the carry
capacity of the habitat, which is equal to 1 in our model~see
Fig. 3!. We have not found periodic oscillations in the tim
dependence of the prey density in the absence of preda
Similar kinds of curves have been found by Maynard Sm
and Slatkin@12# in their nonspatial model. The random o
cillations of the two densities, as shown in Fig. 2, are ve
weakly intercorrelated. Fourier analysis performed on
data showed a wide uniform spectrum.

Initial densities

The chances of a population, starting with a given init
density of wolves and rabbits, to arrive at each of the th
possible final states are shown in Fig. 4 for small concen
tions of trees (ct50.2). Since the initial configurations, eve
for fixed ct ,cr ,cw parameters, are different, and the evo
tion is probabilistic, the system may reach different statio
ary states. It is clear that the prey and predator populat
can coexist only if the initial density of the wolves does n

FIG. 1. An example of the distribution of trees~black squares!
and grass~white squares! for ct50.1.
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exceed that of the rabbits too much. However, if the init
density of the wolves is greater than 0.4, then, as seen in
4, the empty state is the most probable one. For a la
enough initial concentration of predators, increasing the
tial density of the rabbits may result in increasing the pro
ability that the system will reach the pure prey state, but
the coexisting one. When increasingcr(0) for a fixed ratio
cr(0)/cw(0)<1, one passes from a coexistence through p
only to an empty state. The probability to reach a giv
steady state varies continuously as a function ofcr(0). The
final distribution of animals is shown in Fig. 5.

Cover

The existence of trees is beneficial for the prey since
predators cannot eat them there, but for the very same re
a tree does nothing for the predators. Moreover, the sim
tions show that in a territory without any trees, the probab

FIG. 2. Time dependence of the densities of predators~dotted
line! and prey~solid line! when the final state is the coexisting on
cr(0)50.1, cw(0)50.1, ct50.2, L5256.

FIG. 3. Time dependence of the densities of predators~dotted
line! and prey~solid line! when the final state is prey only.cr(0)
50.4, cw(0)50.5, ct50.1, L550.
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MICHEL DROZ AND ANDRZEJ PȨKALSKI PHYSICAL REVIEW E 63 051909
ity of arriving at the pure prey state never exceeds the pr
abilities of the remaining states. The pure prey state m
become the most probable one, in a rather narrow rang
the parameters, if the concentration of trees isct50.1.

FIG. 4. Phase diagram showing probability of reaching one
the final states starting from a given initial density of predators
prey. Size of the white area corresponds to the probability of
final state with no animals, light gray to the state with prey on
and the dark gray area to the coexisting one~prey and predators!.
ct50.2. The probabilities vary continuously between sho
squares.

FIG. 5. Typical spatial arrangement of predators and prey in
coexisting state. On white squares there are no animals, on
gray ones there are prey only, on the dark gray ones there
predators, and on the black squares there are predators and
cw(0)50.1, cr(0)50.1, ct50.1.
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Let us consider now the case of trees growing on nei
boring cells and forming a cluster~the ‘‘forest’’ case!. For a
given concentration of trees, this kind of configuration favo
the predators, leaving more open space for hunting and
cover for the prey. In the case of equal, and rather lar
initial densities of prey and predators,cr(0)5cw(0)50.3
and ct50.2 the chances a population has of ending up
either empty, coexisting, or pure prey states are 0.01, 0
and 0.97, respectively, in the case of dispersed trees,
0.07, 0.81, and 0.12 in the forest. A predator population
a good chance~over 20%! of survival, and hence of realizing
the coexisting state, even for very high initial densities
predators and prey@like cw(0)50.5 andcr(0)50.6# if the
evolution takes place in the forest. In contrast, the preda
population becomes extinct in the ‘‘tree’’ case ifcw(0)
.0.3. For compact clusters of trees~or no trees at all!, we
have found correlations between the time dependence
the two densities, predators~wolves! and prey~rabbits! ~see
Fig. 6!. The role of the concentration of the trees and the w
they are arranged are shown in Fig. 7. Here again, the s
larity between the situation of no cover and trees group
in a compact cluster is clearly seen. The forest, after ini
penetration of the animals, remains empty, as shown
Fig. 8.

Finite size effects

From a biological point of view, the most interesting ca
is that of populations living in a small habitat. It is we
known @14,15# that populations of small size are very vu
nerable and may become extinct because of stochastic
tuations. This is exactly what we have found in our mod
Populations of prey and predators with the initial densities
cr(0)50.1, cw(0)50.2, and the concentration of fore
ct(0)50.1 were quite stable on a 50350 lattice, having an
83% chance of coexistence and a 17% chance of becomi
pure prey state. The same system on a smaller, 20320, lat-
tice showed quite different behavior: 30% of coexisti
states, 14% of the prey only, and 56% of an empty o

f
d
e
,

e
ht
re

rey.

FIG. 6. As in Fig. 2, except that the trees form a compact clus
and the size of the lattice is smaller (L5100), hence the fluctua
tions are larger.
9-4



iv

n
of
-

ar

u
a

a-

e
to
o
nd

va
e

si-
a
m

le

in-
.

he
ds

an
ease
ler
ate

low-

c-

Ss
stic
the

tors
or

prey,
but
ast
a
ves.
nts,

iti

d
ce

COEXISTENCE IN A PREDATOR-PREY SYSTEM PHYSICAL REVIEW E63 051909
Increasing the number of predators, the probability of arr
ing at an empty state grows dramatically, and atcw(0)
50.5 it is above 90% for all initial densities of the prey, o
the 20320 lattice. The important factor is the number
individuals ~size of the population! rather than the concen
tration. Consider two populations with an equal initial num
ber of prey and predators—one on a small and one on a l
lattice. The population living on a larger~e.g., 50350! lattice
reached higher densities fairly soon and the stochastic fl
tuations left no marked effect, while the one living on
small lattice had no chance for growing~there is not much
room for growth! and was easily affected by such fluctu
tions.

Taking lattices bigger than 50350 does not change th
general trends, although when the initial density of preda
is high and that of prey is low, coexistence becomes m
likely as the lattice grows. Analyzing the fluctuations arou
average densities for different lattice sizes, fromL520 to
L5256, convinced us that they decrease approximately
1/L.

Other parameters

For simplicity, we have assumed the same numerical
ues for the parameters characterizing the prey and the pr

FIG. 7. Chances of reaching the coexisting state versus in
density of predators~a! and of prey~b!, for different concentrations
and arrangement of trees. If the trees are randomly located anct

>0.3, the chances of reaching the coexisting state do not ex
5%. L ~case of no trees!, 3 (cf50.1), 1 (cf50.2), andh ~forest
andcf50.2). Lines are guides to the eye only.
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tors, although this is clearly not very realistic. The phy
ological birth rate, i.e., the maximum number of offspring
pair may have, is an important parameter. Lowering it fro
M54, taken in the simulations, toM53 resulted in the
almost total elimination of the predators; the only availab
final states were prey or empty. IncreasingM to 5 did not
change anything at lower initial densities, but greatly
creased~by a factor of 4 at least! the chances for coexistence
A higher reproduction rate for both populations favors t
predators, while lowering it below a certain threshold lea
to extinction of the predators or of both species.

The same effect of elimination of the predators has
increase of the food reserves needed to breed. A decr
from k56 to k55 favored the prey and resulted in a smal
probability for an empty state and a larger one for a st
with prey only.

Since the food rations are decreased after each MCS,
ering the amount of food received at birth fromkof52 to
kof51 kills most of the progeny and it results in the extin
tion of both populations. Raisingkof to a higher value per-
mits the newborn to survive without eating for several MC
and produces offspring. This may lead to quite an unreali
situation when the predators are still alive after eating out
prey.

IV. CONCLUSIONS

We have presented a lattice model of prey and preda
that move randomly on a territory containing either grass
tree. On a grass cell, prey eat grass and predators eat
while on a tree cell, the prey is safe from the predator
finds no food. To survive, each animal has to eat at le
once everyk MCS. An animal may breed, provided it finds
partner in the neighborhood and it has enough food reser
The offspring are located in the neighborhood of the pare

al

ed

FIG. 8. As in Fig. 5 but for the ‘‘forest’’ case.
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MICHEL DROZ AND ANDRZEJ PȨKALSKI PHYSICAL REVIEW E 63 051909
which do not die after giving birth, hence we have a syst
with overlapping generations.

A real ecological system is of course very complex a
contains many important factors, out of which the pres
model considers only a few, namely spatial inhomogene
of the habitat, limited ability of the animals to survive with
out eating, and their mobility. The inhomogeneity is realiz
here by dividing the territory into two, nonoverlapping, r
gions, one providing food and a mating ground for prey a
predators, and the second providing cover for prey. As in
real world, here also reproduction and finding food are
lated. In order to mate, an animal must have energy resou
above a certain level. To maintain this state, it has to ga
food and avoid~especially predators! ‘‘cover’’ cells. By im-
posing a limited time of survival without eating, we force th
animals to move, otherwise an animal will die and libera
the cell on which another animal may move. In our model,
in nature, animal mobility is necessary for catching food a
mating. The age of the animals is not considered here exp
itly, but denying the reproduction power to newborns has
impact on the dynamics, as with the different hunting sk
in the model of Maynard Smith and Slatkin@12#.

The MC simulations show that there are three poss
final states into which the dynamics will lead the popu
tions: coexistence of prey~with density about 0.50! and
predator~with density about 0.32!, prey only ~with concen-
tration about 0.90!, and an empty state in which both pop
lations are extinct. The coexisting state is realized only if
parameters characterizing the populations are within a
tain, rather restricted, range. A population may die out if
birth rate is too low, getting food requires a very long tim
or there are too many enemies. The size of the predato
prey population may fall below a safe number. This is t
situation found in nature@12,16#.
e
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The initial density of predators cannot be too large,
though for smaller densities it may be greater than the d
sity of the prey. However, the knowledge of the initial de
sities is not enough to define completely the initial sta
Indeed, different initial states characterized by the same
ues of cr(0) and cw(0) can correspond to quite differen
microscopic configurations. Two such configurations c
evolve in very different ways and approach different statio
ary states. Accordingly, the stationary phase diagram
quires a probabilistic character, giving the probabilities
reaching a particular type of stationary states, starting fr
an initial state defined in terms ofcr(0) andcw(0).

As Maynard Smith and Slatkin@12# found in their own
model, the existence of cover may lead to extinction of
predators, but it does not increase the chance of coexiste
The way in which the cover~here trees! is organized also
plays a role. If the trees are scattered around all the territ
thus offering many shelters for the prey, the predators h
fewer chances than when all~or most! of the trees are
grouped in a compact cluster~a forest!. When the initial
density of predators exceeds 0.4, the prevailing final sta
are either prey only or empty state.
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