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Convergence in discrete-time neural networks with specific performance
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We analyze convergence in discrete-time neural networks with specific performance such as decay rate and
trajectory bounds in terms of componentwise absolute~exponential! stability. Simple necessary and sufficient
stability and positive invariance conditions are presented, which allow us to design a convergent network with
prescribed performance. Our approach is based on a decomposition of competitive-cooperative connectivity or
inhibitory-excitatory interaction that abounds in neural networks, without assuming symmetry of the connec-
tion matrices. The key idea is that through the decomposition, we can always relate a competitive-cooperative
network with a cooperative dynamical system. The latter possesses significant order-preserving properties that
are basic to our analysis. The explicit division of connection weights into inhibitory and excitatory types offers
a higher potential for relating formal neural network models to neurophysiology.
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I. INTRODUCTION

Neural networks are abstract computational models
parallel information processing. Such computational ca
bilities as association and optimization rely on the conv
gent dynamics of neural networks. In most studies, conv
gence in a neural network has been characterized by
monotonic decreasing of an energy function on the motion
the system, especially in the framework of symmetric co
nection weights@1–7#. This approach is physically simpl
and intuitive, but the performance of a network in the fo
of, e.g., the rate of convergence from an initial condition
the final state is normally difficult to assess, as energy fu
tions are usually in an involved form of the state variables
a practical design of a network system, the convergence
is a critical performance that should be taken into accou
Such an issue was addressed in@8–10# and sufficient results
were obtained on trajectory bound estimates to allow
designer to predict the rate of convergence near the equil
of a neural network. These results were derived by choos
certain special Lyapunov functions that may be viewed
generalized energy functions of the concerned networks,
are of a simpler form in the state variables and do not ass
symmetry of the connection matrices. In this paper, we st
a special type of stability, namely componentwise abso
~exponential! stability of neural networks, which characte
izes in a detailed manner the convergent behavior of a ne
network. We will present two necessary and sufficient sta
ity conditions for a class of discrete-time neural networ
The results are simple and allow one to design a netw
with a specific decay rate and trajectory bounds.

Our approach exploits the competitive-cooperative
excitatory-inhibitory connectivity structure of a network. B
competitive connection we mean the way in which a n
ron’s firing inhibits the firing of other neurons. Converse
cooperative connection refers to the way in which a neuro
firing excites the firing of others. In most cases, the acti
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tion of a neuron is characterized by a sigmoid function~i.e.,
a continuous, bounded, and nondecreasing function!. The
competitive-cooperative connection pattern can thus be
ognized by the sign of the weights: Positive weights are d
to excitatory synapses, negative weights are due to inhibi
synapses, while a zero weight indicates no neuronal con
tion at all. This observation motivates a decomposition
proach that eventually relates a competitive-cooperative
work with an augmented cooperative system. Such a sys
has a significant order-preserving property that may pla
key role in the analysis of the original neural network. It
well known that competitive and cooperative mechanis
abound in biological networks. The role of these mechanis
in the emergent collective dynamics in neural networks
raised great interest~e.g.,@11–16#!. The explicit division of
connection weights into inhibitory and excitatory types o
fers a higher potential for relating formal neural netwo
models to neurophysiology.

II. THE MODEL AND SPECIFICATION

Consider a class of discrete-time neural networks
scribed by the coupled nonlinear iterative equation

x~k11!5Ts@Bx~k!#1c, k50,1, . . . , ~1!

wherexPRn is the neural state vector,T5@Ti j # is the syn-
aptic connection matrix,B5diag@b1 , . . . ,bn# with bi.0 is
the gain matrix, ands(x)5@s1(x1), . . . ,sn(xn)#T is a
vector-valued activation function of sigmoid type~i.e., con-
tinuous, bounded, and monotonic increasing!. The last termc
is the constant external input vector to the networks. W
assume throughout that the nonlinear functions(x) satisfies

0<
si~r 1!2si~r 2!

r 12r 2
<1 ~2!

for r 1 ,r 2PRn, i 51, . . . ,n. It is easy to see that the ofte
used sigmoid functions such as tanhxi and 1

2 @ uxi11u2uxi
21u# possess such a property.
©2001 The American Physical Society04-1
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Given a constant input vectorc, the equilibria of system
~1! are determined by

xe5Ts~Bxe!1c.

Since s(x) is bounded and continuous, it follows immed
ately from Brower’s fixed point theorem that there is at le
one solutionxe to the above equation for every consta
vectorc. Further, ifxe is globally stable, then it is the uniqu
equilibrium to which all other trajectories converge. In th
case, the network~1! realizes a one-to-one mapping from th
input space to the steady-state space, acting as a cate
classifier. Also, the global convergence is of applicable s
nificance in neural optimization and control. One purpose
this work is to provide a global exponential stability criterio
for Eq. ~1!.

To examine the stability ofxe , let us take the transforma
tion z5x2xe and rewrite Eq.~1! as

z~k11!5T f@z~k!#, ~3!

where f (z)5s@B(z1xe)#2s(Bxe). It is easy to find thatf
belongs to the following sector nonlinear function classF
defined by

~ i! f i~0!50,

and

~ ii ! 0<
f i~r 1!2 f i~r 2!

r 12r 2
<bi ,i 51, . . . ,n.

In the following, we will study the stability of the origin fo
Eq. ~3!.

To specify the convergent performance of system~3!, we
consider two functionsj(k),§(k):@0,1`)→Rn with j(k)
.0,§(k).0 and

limk→`j~k!505 limk→`§~k!. ~4!

Then the system~3! is said to becomponentwise absolutel
stable with respect tog(k)5@j(k)T§(k)T#T (CABSg) if for
every f PF the solution of Eq.~3! satisfies

2j~k!<z~k!<§~k!, k>k0>0 ~5!

whenever2j(k0)<z(k0)<§(k0). Particularly, if

j~k!5s2ka, §~k!5s2kb ~6!

for some scalarsP(0,1) and two constant vectorsa,b
PRn with a,b.0, then the system is calledcomponentwise
absolutely exponentially stable~CABES!.

These concepts enable us to characterize the conve
dynamics of the network system in a more detailed man
Notice that the above properties are insensitive to the de
of the neuronal functions~i.e., valid for the whole classF).
This feature of robustness against change in the model
tails is of basic physical significance@1#. We also note that
for linear deterministic systems, the above notions are s
cialized to that concerned in@17,18#.
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Clearly, CABSg implies positive invarianceof the time-
dependent set

Vj,§~k!5$zPRn:2j~k!<z<§~k!%

with respect to~w.r.t.! the motion of Eq.~3! for eachk0
>0. Recall that a subset of the state space is said to
positively invariant w.r.t. a dynamical system if the motio
emanating from the set remains in it. Invariant sets are v
special subsets of the state space since they represent re
that trap the motion of a dynamical system. For system~3!,
the notion ofrobust positive invarianceof a set is pertinent.
That is, the positive invariance of a set is valid w.r.t. t
whole family of systems described by Eq.~3! with f PF.

The main purpose of this paper is to establish neces
and sufficient conditions for CABSg and CABES of system
~3! by using a decomposition approach to be developed
the next section.

III. COMPETITION-COOPERATION DECOMPOSITION
AND COMPARISON PRINCIPLE

We split the connection matrixT into two parts:

T5T12T2

with Ti j
15max$Tij ,0% being the excitatory weights andTi j

2

5max$2Tij ,0% the inhibitory weights. Then system~3! can
be rewritten as

z~k11!5~T12T2! f @z~k!#. ~7!

We refer to it as a decomposition of competitive-cooperat
connectivity of network~3!.

Now take the symmetric transformationy52z. From Eq.
~7!, it follows that

y~k11!5T1g@y~k!#1T2 f @z~k!#, ~8!

z~k11!5T2g@y~k!#1T1 f @z~k!#, ~9!

whereg(u)52 f (2u). Accordingly, we introduce the fol-
lowing augmented system:

d~k11!5Ph@d~k!#, ~10!

where

d~k!5Fp~k!

q~k!
G , h@d~k!#5Fg@p~k!#

f @q~k!#
G ,

P5FT1 T2

T2 T1G .
Notice P is ~elementwise! non-negative. So, system~10! it-
self is cooperative and hence possesses the following im
tant order-preserving property.

Lemma 1. Let u(k) and v(k) be solutions of Eq.~10!.
Then u(k0)<v(k0) implies u(k)<v(k) for k>k0>0.
Moreover, ifw(k) satisfies

w~k11!>Ph@w~k!#, k50,1, . . . ,
4-2
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thenu(k0)<w(k0) implies u(k)<v(k) for k>k0>0.
This property can be easily verified by an induction arg

ment. It indicates that the states of a cooperative system
retain for all time their initial relationship, a partial orderin
induced by the subset of non-negative state vectors of
state space. The result may be viewed as a discrete-
version of Kamke’s comparison theorem for ordinary diffe
ential equations@19#, and is also referred to as a comparis
principle for iterative Eq.~10! @20#.

It should be noted that for a solution@p(k)Tq(k)T#T of
system~10!, neither p(k) nor q(k) should satisfy Eq.~3!
unless2p(k)5q(k) @in this casez(k)52p(k)5q(k) is a
solution of system~3!#. In general, the two systems are r
lated by the followingtwo-sided comparison principle.

Lemma 2. Assume for Eqs.~3! and ~10! that the initial
condition 2p(k0)<z(k0)<q(k0) holds. Then for everyk
>k0>0,

2p~k!<z~k!<q~k!.

Hence, a solution of Eq.~10! may provide a two-sided
constraint on that of Eq.~3!. This enables one to deduc
qualitative properties of Eq.~3! from an associated coopera
tive system~10!. In the following, we will apply this idea to
study the convergent behavior of system~3!.

IV. CRITERIA FOR CABS g AND CABES

We first present a necessary and sufficient condition
CABSg of Eq. ~3!.

Theorem 1. System~3! is CABSg if and only if for any
k0>0,

g~k11!>PDg~k!, k>k0 , ~11!

whereD5diag@b1 , . . . ,bn ,b1 , . . . ,bn#.
Proof. We proceed to show the sufficiency of conditio

~11!. It is clear from condition~ii ! of the classF @or, equiva-
lently, the sector condition~2!# that h@g(k)#<Dg(k). By
noticing the non-negativity of the entries of matrixP, it
follows thatPh@g(k)#<PDg(k) for k>k0. Hence, if con-
dition ~11! holds, then we have

g~k11!>Ph@g~k!#, k>k0 . ~12!

Now consider an arbitraryf PF and letz(k) be the solution
of the corresponding Eq.~3! with the initial value satisfying
2j(k0)<z(k0)<§(k0). Taking p(k0)5j(k0) and q(k0)
5§(k0), then by condition~12! and Lemma 2,

2p~k!<z~k!<q~k!, k>k0 . ~13!

Meanwhile, let u(k0)5@p(k0)Tq(k0)T#T5g(k0). From
Lemma 1, one gets

u~k!<g~k!, k>k0 . ~14!

This and condition~13! yield

2j~k!<z~k!<§~k!, k>k0 .

So condition~11! is sufficient for system~3! to be CABSg.
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To see the necessity of condition~11!, let us suppose tha
system~3! is CABSg, but condition~11! is false. Then there
should exist an indexi P$1, . . . ,2n% and a timek1.0 such
that

j i~k111!,Ti
1Bj~k1!1Ti

2B§~k1! ~15!

when 1< i<n, or

§ i~k111!,Ti
2Bj~k1!1Ti

1B§~k1! ~16!

when n11< i<2n. Now, consider for Eq.~3! a particular
sigmoid functionf (z) defined by

f ~z!5 1
2 @ uB~z1d!u2uB~z2d!u#

with d5j(k1)1§(k1). Clearly, f (z)PF and

f @2j~k1!#52Bj~k1!, f @§~k1!#5B§~k1!. ~17!

Then, if case ~15! holds, consider the vectorz(k1)
PVj,§(k1) defined by

zj~k1!5H 2j j~k1! if ai j .0, j Þ i

§ j~k1! if ai j <0, j Þ i
, j 51, . . . ,n.

From ~7!, ~15!, and ~17!, the i th component ofz(k111)
satisfies

zi~k111!5~Ti
12Ti

2! f @z~k1!#

5Ti
1 f @2j~k1!#2Ti

2 f @§~k1!#

52@Ti
1Bj~k1!1Ti

2B§~k1!#

,2j i~k111!,

where Ti
2 and Ti

1 are thei th row vectors ofT2 and T1,
respectively. This implies that system~3! could not be
CABSg. A similar argument can be applied to case~16!,
showing the necessity of condition~11!. This proves the re-
sult.

Observe that the above discussion does not depend on
particular asymptotic property ofj(k) and §(k). Thus, by
takingj(k) and§(k) to be two constant vectors, we obtain
special positively invariant set of system~3!.

Theorem 2. For two constant vectorsa,bPRn with a
.0,b.0. The setVa,b5$xPRn:2a<x<b% is robustly
positively invariant w.r.t. system~3! if and only if

h>PDh, ~18!

whereh5(aTbT)T.
Now, we will give our main result concerning CABES o

Eq. ~3!. By inserting a particularg(k) specified by Eqs.~6!
into condition ~11!, one immediately obtains the following
necessary and sufficient condition.

Theorem 3. System~3! is CABES if and only if there are
two constant vectorsa,bPRn with a.0,b.0, and a scalar
sP(0,1) such that

~sI 2PD!h>0, ~19!
4-3
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whereh5(aTbT)T andI is an identity matrix with appropri-
ate dimensions. It is easily verifiable that this condition c
be rewritten as

m`~G21PDG!<s,1, ~20!

where G5diag@a1 , . . . ,an ,b1 , . . . ,bn# and m`( ) is the
infinity matrix measure defined bym`(M )5max1<i< l$mii
1( j Þ i umi j u% for a matrixM5@mi j # l3 l .

This result relates the specific exponential decay rate
trajectory bound to system parameters and thereby prov
a way to design a network with desired performance. T
parameters that should be taken into account only involve
connection weights and the neuron gains, regardless of
exact features of the neurons. This merit facilitates appl
tion of the criterion in a broad range.

V. DISCUSSION AND EXAMPLE

Observe that condition~19! remains valid withka,kb in
place ofa,b for any constantk.0. Meanwhile, given an
arbitrary initial statez(0) of system~3!, one can always pick
a k.0 such thatka<z(0)<kb. Therefore, by Theorem 3

ks2ka<z~k!<ks2kb, k>0. ~21!

This shows that condition~19! actually gives a global expo
nential convergence criterion for system~3!, and ~21! pro-
vides a trajectory estimate.

In the symmetrical casea5b, condition ~19! is reduced
to

~sI 2uTuB!a>0, ~22!

where uTu5@ uTi j u#5T11T2. It is equivalent to the matrix
I 2uTuB being anM matrix @21#, i.e., there exists a constan
vectora.0 such that

~ I 2uTuB!a.0. ~23!

By the properties of theM matrix, this is also equivalent to

Uh11 ••• h1i

A ••• A

hi1 ••• hii

U.0, i 51, . . . ,n, ~24!

where

hi j 5H 12bi uTii u, i 5 j

2bj uTi j u, iÞ j .

Notice that, although~19!, ~22!, ~23!, and ~24! are all
necessary and sufficient CABES conditions, the traject
performance that a network~3! can achieve with them ma
be quite different. The first two can guarantee a network
be convergent with a prescribed exponential decay rate
trajectory bounds, described, respectively, bys and a,b.
Condition~23! ensures an exponential convergence in a n
work along with providing an estimate of the trajecto
bound, but the decay rate is not specified explicitly, while
05190
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last condition~24! only indicates exponential convergence
a network, without saying anything about decay rate a
trajectory bounds.

In general, from an asymmetric exponential constraint~6!,
one can get a symmetric one in the following way. Rewr
condition ~19! as

sa2~T1Ba1T2Bb!>0,

sb2~T2Ba1T1Bb!>0.

Adding them gives

~sI 2uTuB!r>0, ~25!

where r5a1b.0 and uTu5@ uTi j u#5T11T2. From the
above, this corresponds to a symmetric constraint on
state of Eq.~3!. Therefore, the existence of a 2n-dimensional
positive vectorh satisfying condition~19! is equivalent to
that of ann-dimensional positive vectorr satisfying condi-
tion ~25!. Evidently, an asymmetric constraint may giv
more accurate trajectory behavior than does a symme
one.

Now, we give an example to illustrate the main result
the paper. Consider a two-neuron network~1! with the
weight matrix

T5Fa b

c dG , a,b.0; c,d,0,

and the gain matrixB5diag@1.5,1.3#. The performance of
the corresponding system~3! is specified by~5! and~6! with
s50.5,a5(4,3)T,b5(5,4)T. By criterion ~11!, with now
D5diag@1.5,1.3,1.5,1.3# and

P5F a b 0 0

0 0 2c 2d

0 0 a b

2c 2d 0 0

G ,

the weights should satisfy a set of linear inequalities:

6a13.9b<2, 7.5a15.2b<2.5;

6c13.9d>22, 7.5c15.2d>21.5.

Finally, we find that any weight matrixT such that

7.5a15.2b<2.5, a.0, b.0;

7.5c15.2d>21.5, c,0, d,0.

will guarantee the network to be exponentially converg
with the prescribed performance.

In summary, we have introduced concepts of CABSg and
CABES to characterize convergence in discrete-time ne
networks with such specific performance as decay rate
trajectory bounds. Simple necessary and sufficient stab
conditions have been obtained, which relate the system
rameters to the desired convergent performance, and
therefore of practical significance in applications. We ha
4-4
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also presented a necessary and sufficient criterion for p
tive invariance of a hyperrectangular set w.r.t. the netwo
The results shows the efficiency of the proposed decomp
tion method.
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