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Convergence in discrete-time neural networks with specific performance
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We analyze convergence in discrete-time neural networks with specific performance such as decay rate and
trajectory bounds in terms of componentwise absolaig@onential stability. Simple necessary and sufficient
stability and positive invariance conditions are presented, which allow us to design a convergent network with
prescribed performance. Our approach is based on a decomposition of competitive-cooperative connectivity or
inhibitory-excitatory interaction that abounds in neural networks, without assuming symmetry of the connec-
tion matrices. The key idea is that through the decomposition, we can always relate a competitive-cooperative
network with a cooperative dynamical system. The latter possesses significant order-preserving properties that
are basic to our analysis. The explicit division of connection weights into inhibitory and excitatory types offers
a higher potential for relating formal neural network models to neurophysiology.
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[. INTRODUCTION tion of a neuron is characterized by a sigmoid functipe.,
a continuous, bounded, and nondecreasing functidhe
Neural networks are abstract computational models focompetitive-cooperative connection pattern can thus be rec-
parallel information processing. Such computational capa©gnized by the sign of the weights: Positive weights are due
bilities as association and optimization rely on the converio excitatory synapses, negative weights are due to inhibitory
gent dynamics of neural networks. In most studies, conversynapses, while a zero weight indicates no neuronal connec-
gence in a neural network has been characterized by tHé)ﬂ at all. This observation motivates a decomposition ap-
monotonic decreasing of an energy function on the motion oProach that eventually relates a competitive-cooperative net-
the system, especially in the framework of symmetric conWork with an augmented cooperative system. Such a system
nection weight§1—7]. This approach is physically simple has a significant order-preserving property that may play a
and intuitive, but the performance of a network in the formKkey role in the analysis of the original neural network. It is
of, e.g., the rate of convergence from an initial condition towell known that competitive and cooperative mechanisms
the final state is normally difficult to assess, as energy funcabound in biological networks. The role of these mechanisms
tions are usually in an involved form of the state variables. Inn the emergent collective dynamics in neural networks has
a practical design of a network system, the convergence raf@ised great interese.g.,[11-16). The explicit division of
is a critical performance that should be taken into accountconnection weights into inhibitory and excitatory types of-
Such an issue was addressed8r10] and sufficient results fers a higher potential for relating formal neural network
were obtained on trajectory bound estimates to allow thénodels to neurophysiology.
designer to predict the rate of convergence near the equilibria
of a neural network. These results were derived by choosing Il. THE MODEL AND SPECIEICATION
certain special Lyapunov functions that may be viewed as . . .
generalized energy functions of the concerned networks, but Consider a class of discrete-time neural networks de-
are of a simpler form in the state variables and do not assum@efibed by the coupled nonlinear iterative equation
symmetry of the connection matrices. In this paper, we study
a special type of stability, namely componentwise absolute x(k+1)=TgBx(k)]+c, k=01,..., @
(exponentigl stability of neural networks, which character- i )
izes in a detailed manner the convergent behavior of a neurdifherexe R" is the neural state vectoF,=[T;;] is the syn-
network. We will present two necessary and sufficient stabil&Ptic connection matrix@=diad b, ... ,by] with b;>0 is
ity conditions for a class of discrete-time neural networkshe gain matrix, ands(x)=[s;(x4), ... ,g,n(xn)']T IS a
The results are simple and allow one to design a networkector-valued activation function of sigmoid tyjdee., con-
with a specific decay rate and trajectory bounds. funuous, bounded, and mqnotomc increagifthe last ternt
Our approach exploits the competitive-cooperative orS the constant external input vgctor to th_e netwqus. We
excitatory-inhibitory connectivity structure of a network. By @ssume throughout that the nonlinear functsfr) satisfies
competitive connection we mean the way in which a neu-

ron’s firing inhibits the firing of other neurons. Conversely, 0= Si(ry)—si(rz) <1 @
cooperative connection refers to the way in which a neuron’s r{—ro
firing excites the firing of others. In most cases, the activa-
forry,r,eR", i=1,...n. Itis easy to see that the often
used sigmoid functions such as taqtand 3[|x;+1|—|x;
*Email address: tgchu@mech.pku.edu@nChu —1|] possess such a property.
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Given a constant input vectay the equilibria of system Clearly, CABSy implies positive invarianceof the time-
(1) are determined by dependent set
Xe=Ts(BXe) tcC. Qg (K)={zeR"—é(k)=z=s(k)}

Since s(x) is bounded and continuous, it follows immedi- With respect to(w.r.t.) the motion of Eq.(3) for eachk,

ately from Brower's fixed point theorem that there is at least=0. Recall that a subset of the state space is said to be
one solutionx, to the above equation for every constantpositively invariant w.r.t. a dynamical system if the motion
vectorc. Further, ifx, is globally stable, then it is the unique e€manating from the set remains in it. Invariant sets are very
equilibrium to which all other trajectories converge. In this special subsets of the state space since they represent regions
case, the networkl) realizes a one-to-one mapping from the that trap the motion of a dynamical system. For syst@m

input space to the steady-state space, acting as a categdhg notion ofrobust positive invariancef a set is pertinent.
classifier. Also, the global convergence is of applicable sigThat is, the positive invariance of a set is valid w.r.t. the
nificance in neural optimization and control. One purpose ofvhole family of systems described by E@) with f e 7.

this work is to provide a global exponential stability criterion ~ The main purpose of this paper is to establish necessary

for Eq. (1). and sufficient conditions for CABBand CABES of system
To examine the stability of,, let us take the transforma- (3) by using a decomposition approach to be developed in
tion z=x—x, and rewrite Eq(1) as the next section.
zZ(k+1)=Tf[z(k)], (©)) l1l. COMPETITION-COOPERATION DECOMPOSITION

. . AND COMPARISON PRINCIPLE
where f(z) =9[B(z+Xe) | —S(BX.). It is easy to find thaf

belongs to the following sector nonlinear function cla&s We split the connection matriX into two parts:
defined by ToTt_T-

i) f;(0)=0, . . . . _
M H(0) with T;; =maxT;,0} being the excitatory weights ant;
and =ma>{—'Tij,O} the inhibitory weights. Then systef8) can

be rewritten as
fi(rqo)—fi(r
(i) Ossti,izl,...n. zZ(k+1)=(T"=T7)f[z(k)]. (7)
112
We refer to it as a decomposition of competitive-cooperative
connectivity of network(3).

Eq. (3). Now take the symmetric transformatigs= —z. From E
To specify the convergent performance of sys{@n we (7), it follows thaty v ' 4

consider two functionst(k),s(k):[0,+2)—R" with &(k)
>05(k)>0 and y(k+1)=T g[y(k) ]+ T f[z(k)], ®

In the following, we will study the stability of the origin for

limy_..§(k)=0=lim;_..s(k). (4) z(k+1)=T gly(k) ]+ T f[z(k)], 9)

Then the systent3) is said to becomponentwise absolutely where g(u)=— f(—u). Accordingly, we introduce the fol-
stable with respect to/(k) =[ £(k) s (k) T]T (CABSy) if for  lowing augmented system:
every f e F the solution of Eq(3) satisfies

d(k+21)=ITh[d(k)], (10
—&(k)=z(k)=s(k), k=ko=0 (5
where
whenever— &(ko) <z(kgy) <s(kg). Particularly, if . o(k) - alp(K)]
k=0 *a, s(k)=c*p (6) (k)= q(k) |’ [dtk)]= flak)1 ]’
for some scalaroe(0,1) and two constant vectors, Tt T
e R" with @, 3>0, then the system is callemponentwise = T T+

absolutely exponentially stab(€ABES).

These concepts enable us to characterize the convergegbtice I is (elementwisg non-negative. So, syste(@o) it-
dynamics of the network system in a more detailed manneigg(f js cooperative and hence possesses the following impor-
Notice that the above properties are insensitive to the deta”t%mtorder—preserving property
of the neuronal function§.e., valid for the whole clasg). Lemma 1 Let u(k) andv(k) be solutions of Eq(10).

This feature of robustness against change in the model dgpep u(ko)<v(ko) implies u(k)<uv(k) for k=k,=0.
tails is of basic physical significan¢é]. We also note that Moreover, ifw(k) satisfies

for linear deterministic systems, the above notions are spe-

cialized to that concerned 17,18 w(k+1)=ITh[w(k)], k=0,1,...,
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thenu(kgy) <w(kg) impliesu(k)=<w (k) for k=ky=0. To see the necessity of conditighl), let us suppose that
This property can be easily verified by an induction argu-system(3) is CABSy, but condition(11) is false. Then there

ment. It indicates that the states of a cooperative system wihould exist an indeke {1, ... ,h} and a timek;>0 such

retain for all time their initial relationship, a partial ordering that

induced by the subset of non-negative state vectors of the

state space. The result may be viewed as a discrete-time &i(ky+1)<TB&(ky) + T Bs(ky) (19
version of Kamke’s comparison theorem for ordinary differ- )
ential equation§19], and is also referred to as a comparisonWhen 1=i=n, or
rinciple for iterative Eq(10) [20]. _
prinet q(10) [20] si(Ky+1)<T7Bé(ky)+T; Ba(ky) (16)

It should be noted that for a solutidmp(k) Tq(k)"]" of
system(10), neitherp(k) nor q(k) should satisfy Eq(3)
unless—p(k) =q(k) [in this casez(k)=—p(k)=q(k) is a

solution of systen(3)]. In general, the two systems are re-

lated by the followingtwo-sided comparison principle

Lemma 2 Assume for Eqs(3) and (10) that the initial
condition —p(kg) <z(ky)=<q(ky) holds. Then for evenk
=ky=0,

—p(k)=z(k)=<q(k).

Hence, a solution of Eg10) may provide a two-sided

constraint on that of Eq(3). This enables one to deduce
qualitative properties of Eq3) from an associated coopera-

tive system(10). In the following, we will apply this idea to
study the convergent behavior of systéa.

IV. CRITERIA FOR CABS y AND CABES

We first present a necessary and sufficient condition for

CABSy of Eq. (3).
Theorem 1 System(3) is CABSy if and only if for any
ko=0,

v(k+1)=ITAy(k), k=kg,

whereA=diag b, ... b,,by, ... b,].

Proof. We proceed to show the sufficiency of conditio
(11). It is clear from conditior(ii) of the classF [or, equiva-
lently, the sector conditiori2)] that h[ y(k) <A y(k). By
noticing the non-negativity of the entries of matdX, it
follows thatITh[ y(k) ]<IIA y(k) for k=k,. Hence, if con-
dition (11) holds, then we have

11

Now consider an arbitrarfe 7 and letz(k) be the solution
of the corresponding Eq3) with the initial value satisfying
— &(ko)=<z(ko)=s(ko). Taking p(ko)=£&(ko) and q(ko)
=5(ko), then by condition12) and Lemma 2,

—p(k)=sz(k)=<q(k), k=kg. (13

Meanwhile, let u(ko)=[p(ko) a(ke)"]"= (ko). From
Lemma 1, one gets

u(k)<vy(k), k=kg. (14

This and condition(13) yield
—ék)=sz(k)=s(k), k=Kk,.

So condition(11) is sufficient for systen{3) to be CABSy.

whenn+1<i=<2n. Now, consider for Eq(3) a particular
sigmoid functionf(z) defined by

f(z)=3[|B(z+ 6)|—[B(z— 9]
with 6=¢&(k) +s(ky). Clearly, f(z) e F and
f[—&(k))]=—Bé&(ky), fls(k)]=Bs(ky). (17)

Then, if case (15 holds, consider the vectoz(k;)
€ Q; ((ky) defined by

—¢&j(ky) i
sj(ky) if

From (7), (15), and (17), the ith component ofz(k;+1)
satisfies

a;>0, j#i

zj(ky) = [t j=1,...n.

a;;<0,

Zi(ky+1)= (T =T f[2(ky)]
=T [~ &(k) 1= T; f[s(ky)]
=~ [T Bé&(ky) + T Bs(ky)]
<—=¢&i(ky+1),

nWhere T and T;" are theith row vectors ofT~ and T,

respectively. This implies that systeit8) could not be
CABSy. A similar argument can be applied to cals),
showing the necessity of conditidil). This proves the re-
sult.

Observe that the above discussion does not depend on any
particular asymptotic property of(k) ands(k). Thus, by
taking ¢(k) ands(k) to be two constant vectors, we obtain a
special positively invariant set of syste(3).

Theorem 2 For two constant vectora,8e R" with «
>0,8>0. The setQ, ;={xeR"—a<x=<p} is robustly
positively invariant w.r.t. systen@) if and only if

n=I1A7, (18
where = (a"8NT.

Now, we will give our main result concerning CABES of
Eq. (3). By inserting a particulay(k) specified by Eqs(6)
into condition(11), one immediately obtains the following
necessary and sufficient condition.

Theorem 3System(3) is CABES if and only if there are
two constant vectora, 8 € R" with «>0,8>0, and a scalar
o e(0,1) such that

(ol =11A) =0, (19
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wheren=(a"B") T andl is an identity matrix with appropri- last condition(24) only indicates exponential convergence in
ate dimensions. It is easily verifiable that this condition cana network, without saying anything about decay rate and
be rewritten as trajectory bounds.
In general, from an asymmetric exponential constrégnt
peo(PTHIAT ) <0 <1, (200 one can get a symmetric one in the following way. Rewrite

dition (19
where " =diad ay . ... By, ... B,] and u.() is the Conanon(toas

infinity matrix measure defined by..(M)=max<;<{m; ca—(T"Ba+T BB)=0,
+2]‘¢i|mij|} for a matrixM :[mij] E
This result relates the specific exponential decay rate and oB— (T Ba+T*'BB)=0.

trajectory bound to system parameters and thereby provides

a way to design a network with desired performance. TheAdding them gives

parameters that should be taken into account only involve the

connection weights and the neuron gains, regardless of the (o1 =|T[B)p=0, (25)

exact features of the neurons. This merit facilitates applica- _ _ P
tion of the criterion in a broad range. where p=a+£>0 and ITI=0ITyl1=T +T. From the
above, this corresponds to a symmetric constraint on the

state of Eq(3). Therefore, the existence of aalimensional
V. DISCUSSION AND EXAMPLE positive vectory satisfying condition(19) is equivalent to

Observe that conditiofiL9) remains valid withka,<g in  that of ann-dimensional positive vectgs satisfying condi-
place of @, for any constant>0. Meanwhile, given an tion (25). Ewdently, an asymm_etrlc constraint may give
arbitrary initial statez(0) of system(3), one can always pick MOre accurate trajectory behavior than does a symmetric

a k>0 such thaka<z(0)< k3. Therefore, by Theorem 3, ©One. . _ .
Now, we give an example to illustrate the main result of

ko *a<z(k)<ko %B, k=0. (21)  the paper. Consider a two-neuron netwai® with the
weight matrix
This shows that conditiofil9) actually gives a global expo-

nential convergence criterion for systei3), and (21) pro- a b
vides a trajectory estimate. T= c dl’ a,b>0; ¢,d<0,
In the symmetrical case= 3, condition(19) is reduced
to and the gain matribB=diad 1.5,1.3. The performance of
the corresponding syste(8) is specified by(5) and(6) with
(a1 =[T|B)a=0, (220 5=05a=(4,3)",8=(5,4)". By criterion (11), with now

A=diad 1.5,1.3,1.5,1.Band
where|T|=[|T;;|]=T"+T". It is equivalent to the matrix d P

| —|T|B being anM matrix [21], i.e., there exists a constant a b 0 0
vectora>0 such that
I 0 0O -c¢c —-d
(1-[T[B)a>0. (23 1o o a b}l
By the properties of th& matrix, this is also equivalent to —¢ -d 0 0
hy --- hy the weights should satisfy a set of linear inequalities:
I
>0, i=1,...n, (29 6a+3.D=<2, 7.58+5.20<2.5;
hip - hy 6c+3.9d=-2, 7.%+5.2d=-1.5.
where Finally, we find that any weight matriX such that
1-bi|Tl, i=] 7.5+5.20=<25, a>0, b>0;
T by Tyl i 7.5c+5.24=—15, c<0, d<O0.

Notice that, although19), (22), (23), and (24) are all  will guarantee the network to be exponentially convergent
necessary and sufficient CABES conditions, the trajectorywith the prescribed performance.
performance that a netwoi(8) can achieve with them may In summary, we have introduced concepts of CABSd
be quite different. The first two can guarantee a network taCABES to characterize convergence in discrete-time neural
be convergent with a prescribed exponential decay rate angetworks with such specific performance as decay rate and
trajectory bounds, described, respectively, dyand «,8.  trajectory bounds. Simple necessary and sufficient stability
Condition(23) ensures an exponential convergence in a neteonditions have been obtained, which relate the system pa-
work along with providing an estimate of the trajectory rameters to the desired convergent performance, and are
bound, but the decay rate is not specified explicitly, while thetherefore of practical significance in applications. We have
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also presented a necessary and sufficient criterion for posi- ACKNOWLEDGMENTS
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