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Behavior of integrate-and-fire and Hodgkin-Huxley models with correlated inputs
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We assess, both numerically and theoretically, how positively correlated Poisson inputs affect the output of
the integrate-and-fire and Hodgkin-Huxley models. For the integrate-and-fire model the variability of efferent
spike trains is anincreasingfunction of input correlation, and of the ratio between inhibitory and excitatory
inputs. Interestingly for the Hodgkin-Huxley model the variability of efferent spike trains is adecreasing
function of input correlation, and for fixed input correlation it is almost independent of the ratio between
inhibitory and excitatory inputs. In terms of the signal to noise ratio of efferent spike trains the integrate-and-
fire model works better in an environment of asynchronous inputs, but the Hodgkin-Huxley model has an
advantage for more synchronous~correlated! inputs. In conclusion the integrate-and-fire and Hodgkin-Huxley
models respond to correlated inputs in totally opposite ways.
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I. INTRODUCTION

The two most commonly used single neuron models
theoretical neuroscience are the integrate-and-fire~IF!
model, modeling neurons at an abstract level and
Hodgkin-Huxley ~HH! model describing the biophysica
mechanisms of cells. Recently it is found@1–3# that in cer-
tain parameter regions the coefficient of variation (CV
5standard deviation/mean! of efferent spike trains of the HH
model is almost independent of the ratio between inhibit
and excitatory inputs. In other words, whether inhibitory
puts are blocked or not has no effect on theCV . However
most results up date on the IF and HH models are obta
under the assumption that inputs are independent@1,4#, both
spatially and temporally. This assumption obviously cont
dicts the physiological data which clearly show that nea
neurons usually fire in a correlated way@5,6#, and the ana-
tomical data which reveal that neurons with similar functio
group together and fire together. In fact ‘‘firing togethe
coming together’’ is a basic principle in neuronal develo
ment @7#. Furthermore, data in Ref.@5# indicate that even a
weak correlation within a population of neurons can hav
dramatic impact on the network behavior. The essential
played by the redundancy or correlation in perception
been appreciated early in the literature@8#. Hence it is of
crucial importance to explore the impact of weakly cor
lated inputs on the efferent spike trains of neuronal mod
which certainly sheds new light on the coding problem@9#.

For the IF model the output firing variability is an increa
ing function of input correlation: the larger the input corr
lation is, the larger theCV of efferent spike trains. At the
same time, as reported in many papers, theCV of efferent
spike trains is an increasing function of the ratio betwe
inhibitory and excitatory inputs. It is natural to expect th
the behavior of the highly nonlinear HH model will be som
what different from that of the IF model, which is a ‘‘linear
modelper se. It is, however, surprising to find that the co
relation in input signals has a totallyoppositeeffect on the
1063-651X/2001/63~5!/051902~11!/$20.00 63 0519
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CV of efferent spike trains of the HH model: the correlatio
in inputs reduces rather than increases theCV of efferent
spike trains. Furthermore, with fixed correlation, theCV of
efferent spike trains is almost independent of the ratio
tween inhibitory and excitatory inputs. Hence the IF and H
models operate in two quite different modes: increasing
input correlation will decrease the signal to noise ratio
efferent spike trains in the IF model, whereas for the H
model an enhancement on the signal to noise ratio is
tained. We thus conclude that the IF model works bette
an environment of asynchronous inputs, but the HH mo
has an advantage for more synchronous~correlated! inputs.
All the conclusions for the HH model are then repeated
the FitzHugh-Nagumo~FHN! model.

We then propose a simple approach called response
face to graphically explore the different behavior betwee
two models. The response surface method enables u
grasp the property of a neuron with stochastic inputs.
advocate that the approach could also be applied in exp
ments.

Finally we employ the IF-FHN model@10# to show that
the differences between the IF model and the HH mo
result from the fact that the former model has a const
decay rate, but the latter has a nonconstant decay rate.
IF-FHN model is obtained by extracting the leakage coe
cient from the FHN model as exactly as possible. The le
age coefficient is a nonlinear function ofv, in contrast to the
constant leakage coefficient in the conventional integra
and-fire model. The nonlinear leakage coefficient, taking
U-shape plotted againstv, reveals interesting properties o
the FHN model. The further the membrane potential is bel
its threshold, the stronger the leakage is and so the easie
model loses any memory of its recent history. Hence it
difficult to depolarize the cell when the membrane poten
is far below the threshold. However when the membra
potential is near the threshold, the leakage gets smaller e
tually becoming negligible; then incoming depolarizing si
nals can more easily induce the neuron to fire. In ot
©2001 The American Physical Society02-1
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words, the neuron maintains its memory of recent activat
in this range of membrane potential.

In conclusion, two most widely used neuron models,
integrate-and-fire and the Hodgkin-Huxley models with c
related inputs are considered. The irregularity of output sp
trains of the integrate-and-fire model is an increasing fu
tion of input correlations, but is a decreasing function for t
Hodgkin-Huxley model. A graphic approach, the respon
surface method, is proposed to intuitively reveal the diff
ences between the ouput activity of two models. Using
IF-FHN model, we theoretically explore the underpinin
mechanisms of the models and conclude that an approp
form of nonlinear decay rate can account for the aforem
tioned differences between the integrate-and-fire and
Hodgkin-Huxley models.

The paper is organized as follows. In Sec. II the integra
and-fire model and the Hodgkin-Huxley model are intr
duced. In Sec. III correlated synaptic inputs are defined. S
tion IV is devoted to numerical results of the integrate-an
fire model, the Hodgkin-Huxley model, and the FitzHug
Nagumo model with correlated inputs. In Sec. V t
response surface approach is introduced and applied to
integrate-and-fire model and the Hodgkin-Huxley model.
nally in Sec. VI, the IF-FHN model is briefly reviewed@10#
and its behavior with correlated inputs is shown. In t
present paper, we exclusively restrict ourselves to the mo
with Poisson, positively correlated inputs and refer the rea
to Ref. @11# for the negatively correlated input case.

II. THE INTEGRATE-AND-FIRE MODEL AND HODGKIN-
HUXLEY MODEL

Suppose that a cell receives excitatory postsynaptic po
tials ~EPSPs! at p synapses and inhibitory postsynaptic p
tentials ~IPSPs! at q inhibitory synapses. The activitie
among excitatory synapses and inhibitory synapses are
related but, for simplicity of notation only, are assumed to
independent between them. When the membrane potentiVt
is between the resting potentialVrest and the thresholdVthre,
it is given by

dVt52
1

g
~Vt2Vrest!dt1d Ī syn~ t !, ~2.1!

where 1/g is the decay rate and synaptic inputs

Ī syn~ t !5a(
i 51

p

Ei~ t !2b(
j 51

q

I j~ t !

with Ei(t),I i(t) as Poisson processes with ratelE and l I ,
respectively,a.0,b.0 being the magnitude of each EPS
and IPSP. OnceVt crossesVthre from below a spike is gen
erated andVt is reset toVrest. This model is termed as the I
model. The interspike interval~ISI! of efferent spikes is

T5 inf$t:Vt>Vthre%

and theCV of interspike intervals~ISIs! is given by

CV5A^T2&2^T&2/^T&.
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For the simplicity of notation we assume that the correlat
coefficient between thei th excitatory ~inhibitory! synapse
and the j th excitatory~inhibitory! synapse isc( i , j )5r(uu i
2 j uu), wherer is a nonincreasing function. A slight mor
general model than the IF model defined above is the
model with reversal potentials defined by

dZt52
Zt2Vrest

g
dt1d Ī syn~Zt ,t !, ~2.2!

where

Ī syn~Zt ,t !5ā~VE2Zt!(
i 51

p

Ei~ t !1b̄~VI2Zt!(
j 51

q

I j~ t !.

VE and VI are the reversal potentialsVI,Vrest,VE , ā(VE

2Vrest),b̄(VI2Vrest) are the magnitude of single EPSP a
IPSP whenZt5Vrest. Zt ~membrane potential! is now a
birth-and-death process with boundariesVE andVI .

We consider the classic HH model with correlated inp
given by

CdV52gNam
3h~V2VNa!dt2gkn

4~V2Vk!dt

2gL~V2VL!dt1dIsyn~V,t !, ~2.3!

where I syn(V,t)5 Ī syn(t) or I syn(V,t)5 Ī syn(V,t). Equations
and parameters used in the HH model are as follows~see
Refs.@1,12#!:

dn

dt
5

n`2n

tn
,

dm

dt
5

m`2m

tm
,

dh

dt
5

h`2h

th
,

and

n`5
an

an1bn
, m`5

am

am1bm
, h`5

ah

ah1bh
,

tn5
1

an1bn
, tm5

1

am1bm
, th5

1

ah1bh
,

with

an5
0.01~V155!

expS 2
V155

10 D21

, bn50.125 expS V165

80 D ,

am5
0.1~V140!

expS 2
V140

10 D21

, bm54 expS V165

18 D ,

ah50.07 expS 2
V165

20 D , bh5
1

expS 2
V135

10 D11

.

The parameters used in Eq.~2.3! are C51,gNa5120,gK
536,gL50.3,Vk5277,VNa550, andVL5254.4.
2-2
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III. SYNAPTIC INPUTS

Here we use the usual approximation to approximate
IF models with or without reversal potentials, or more e
actly the synaptic inputs of the models. We do not check
approximation accuracy since it has been done by many
thors @4,13#.

The input now reads

Ei~ t !;lEt1AlEBi
E~ t !

and similarly

I i~ t !;l I t1Al IBi
I~ t !,

where Bi
E(t) and Bi

I(t) are standard Brownian motions
Therefore the IF model without reversal potentials can
approximated by
a
e

de

fo
q

rs
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dv t52
1

g
~v t2Vrest!dt1d ī syn~ t !,

where

ī syn~ t !5a(
i 51

p

lEt2b(
j 51

q

l I t1aAlE(
i 51

p

Bi
E~ t !

2bAl I (
j 51

q

Bj
I~ t !. ~3.1!

Since the summation of Brownian motions is again a Brow
ian motion we can rewrite the equation above as

ī syn~ t !5mt1sB~ t !, ~3.2!

whereB(t) is a standard Brownian motion
H m5aplE2bql I ,

s25a2plE1b2ql I1a2lE(
iÞ j

p

c~ i , j !1b2l I(
iÞ j

q

c~ i , j !.
~3.3!
for
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The input variances2 is an increasing function ofci , j .
Now we turn our attention to the IF model with revers

potentials. Similar to what we have done for the IF mod
without reversal potentials, we can rewrite down the mo
in the following form:

dzt52
1

g
ztdt1d ī syn~zt ,t !, ~3.4!

where

ī syn~zt ,t !5$ap@VE2z~ t !#lE2bq@z~ t !2VI #l I%t

1s~zt!B~ t !

and

s2~zt!5a2~zt2Ve!
2plE1b2~zt2VI !

2ql I

1a2~zt2VE!2lE(
iÞ j

p

c~ i , j !

1b2~zt2VI !
2l I(

iÞ j

q

c~ i , j !. ~3.5!

There are other forms of the diffusion terms in Eq.~3.4! to
approximate the original process@14#. For simplicity of no-
tation we confine ourselves tos2(zt).

For the HH model we have analogous expressions
correlated inputs with or without reversal potentials as in E
~3.2!, i.e., ī syn(t) and Eq.~3.4!, i.e., ī syn(v,t). In the sequel,
we confine ourselves to the case of inputs without reve
l
l
l

r
.

al

potentials. Nevertheless all results are qualitatively true
the models with inputs with reversal potentials~not shown,
see Ref.@2#!.

IV. NUMERICAL RESULTS

From the results above we conclude that correlated inp
increase the variance of inputs and thus we expect an
crease ofCV of efferent interspike intervals for the IF mode
@3,15#. For the HH model an analytical treatment is difficu
and we have to resort to numerical simulations. Here o
results of the case thatc( i , j )5c for iÞ j , for the models
without reversal potentials are presented. It has been repo
in the literature that the correlation coefficient between ce
is around 0.1 in V5 of a rhesus monkeysin vivo @5#, and
around 0.2 in human motor units of a variety of musc
@16#.

Figure 1 shows numerical results of the IF model and H
model with c between 0 and 0.1, andq50,10,•••,100. We
first look at the results for the IF model@Fig. 1~a!#. When
c50, inputs without correlation, there are many numeri
and theoretical investigations~see, for example, Refs
@1–3,10,11,17#!. In line with the theoretical results above
the larger the input correlation is, the larger the outputCV .
In particular we note that whenc.0.08 we haveCV.0.5 for
any value ofq. In conclusion, with a fixedp, CV is an in-
creasing function of the correlation and the number of inhi
tory inputs. However for the HH model the situation is t
tally different @Fig. 1~b!#: for fixed correlation coefficients
CV is almost a constant, independent of the number of
hibitory inputs; for fixed number of inhibitory inputsCV is a
decreasingfunction of the input correlation. In other words
2-3
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JIANFENG FENG AND PING ZHANG PHYSICAL REVIEW E63 051902
for HH model the stronger the input correlation is~equiva-
lent to a stronger input noise!, the more regular the output.

In recent years there has been much research dev
to the problem that how to generate efferent spikes wit
CV between 0.5 and 1 ~see, for example, Refs
@1–3,10,11,15,17,18#!. In particular it is pointed out in Ref
@17#, where only independent inputsc50 are considered
that it is impossible for the IF model and some biophysi
models to generate spikes with aCV between 0.5 and 1 if the
inputs are exclusively excitatory. This phenomenon is
ferred to as ‘‘central limit effect’’ and widely cited in the
literature ~see, for example, Ref.@19#!. Many different ap-
proaches have been proposed to get around this problem
the present paper we clearly demonstrate that even with
clusively excitatory inputs the IF model is capable of em
ting spike trains with aCV greater than 0.5. Under the con
dition that c.0.08 @Fig. 1~a!#, no matter what the ratio

FIG. 1. CV vs correlation andq. Data are obtained by simulatin

the IF model~a! and the HH model~b! with synaptic inputī (t).
a5b50.5 mV, l I5lE5100 Hz, Vrest50 mV, Vthre520 mV, g
520.2 msec,p5100, q50,10, . . . ,100. For the reason of th
choice of these parameters we refer the reader to Ref.@1#.
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between the excitatory and inhibitory synapses is, theCV of
efferent spike trains is always greater than 0.5. For the
model when the input correlation is low, independent of t
inhibitory inputs, the outputCV is always greater than 0.5.

There is increasing evidence to support the assump
that the brain might use different coding strategies wh
dealing with tasks of different complexity. When a slow r
action is required, the brain might use rate coding to proc
information. When a fast reaction is needed the brain o
has enough time to take into account the first spike of ac
synapses and so temporal coding seems more plausible.
assumption naturally require that neurons operate in diffe
modes. Here we provide such an example of different ope
tion modes, provided that both the IF and the HH mec
nisms are employed by cells in the brain. The IF mode
sensitive to its input correlation and so it would work in a
environment of less correlated or asynchronous inputs.
HH model is more reliable when correlated or synchroniz
inputs are presented. Figure 2~see Fig. 4! shows a case o
signal to noise ratio of efferent spike trains, i.e., mea
standard deviation or 1/CV . When input correlation is smal
theSNR of the IF model is greater than that of the HH mod
but when it is larger, theSNR of the IF model is less than tha
of the HH model.

Note that the above properties ofSNR are true for all
parameter regions we considered~see next section!: no mat-
ter if its CV is greater than 0.5 or not. Hence when we rest
ourselves to the parameter regions of irregular firing: for
HH model with a fixed number of inhibitory inputs, theSNR
is an increasingfunction of the input correlation; for the IF
model with a fixed number of inhibitory inputs, theSNR is a
decreasingfunction of the input correlation.

An obvious difference between the integrate-and-fi
model and the HH model lies in the fact that the latter o
has an refractory period of about 12.2 msec@1#. We also add
refractory periods to the integrate-and-fire model for cal
lating related quantities and all results above remain true~see
next section!. In fact, from Fig. 2 we conclude that adding
refractory period to the IF model will even increase the d
crepancy between two models. According to the definition
SNR we know thatSNR5(^T&1R)/SD5SNR1R/SD , where
SNR is obtained after adding a refractory periodR, andSD is
the standard deviation of interspike intervals of the IF mod
Since SD is an increasing function of correlations, we s
that SNR will more sharply decrease than theSNR of the IF
model shown in Fig. 2, and results in even large differen
between two models.

Essentially it is impossible to have an analytical treatm
of the HH model. For confirmation of our results on the H
model, we also simulated the HH model inNEURON @20#
with synaptic inputs as a square wave of magnitude o
m Amp, duration 0.1 msec@1#. The results match approxi
mately with Fig. 1~b!. For both models, we have carried o
systematic simulations on a wide range of parameters ra
ing from p575,100,150,200 and 0<r 5q/p<1. The results
obtained qualitatively agree with the conclusions above.

We also simulate another simplified model, the FitzHug
Nagumo model which mimics the HH model, with correlat
2-4
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inputs. Figure 3 shows that all conclusions above for the
model are true for the FitzHugh-Nagumo model. T
FitzHugh-Nagumo model is described by

H dv5g@2v~v2a!~v21!2w#dt1d ī syn,

dw5d@v2bw#dt
~4.1!

with a50.2,b52.5,g5100,d50.25,a5b50.06 in ī syn and
all other parameters are the same as in the HH model.

All numerical simulations for the IF model are carried o
with synaptic inputs defined by Eq.~3.2! with a time step
0.01 and a Euler scheme@21#. For the HH model, an algo

FIG. 2. Signal to noise ratio (SNR) of efferent spike trains of the
IF model and HH model, comparing Fig. 1. Left figure correspon
to the case of 1/CV with fixing q510 in Fig. 1; right figure with
fixing q580.
05190
H

rithm for solving stiff equations fromNAG library is used
with step size 0.01. Further small time steps are used and
conclude no significant improvements are obtained. Wh
calculating mean firing rate andCV , 10 000 interspike inter-
vals are employed.

V. RESPONSE SURFACES

Neurons have traditionally been characterized by the
ture of their so-calledF-I curve, that is the relationship be
tween the rate of firingF, that they adopt in response to a
applied current and the level of the applied currentI, pro-
posed by Hodgkin. He classified membranes as typeI, if they
can show an arbitrarily low firing rate and long spike laten
in response to a continuous current; or type II, if they exhi
a narrow range of response firing rates~not close to zero!,
and virtually zero spike latency. The HH model is classifi
as type II. In a sense, the IF model can be classified as
I, since arbitrarily low firing rates are possible for just s
prathreshold currents. This is a useful categorization
many purposes. Yet frequently neurons are subject to in
regimes which cannot be approximated as a constant cur
as we consider here. Inputs often take a pulse form, and
numerous brain areas, e.g., the visual cortex and the h
thalamus, neurons fire apparently randomly. For a neu
model with stochastic inputs, theF-I curve only provides us
with limited information.

We thus propose a simple characterization of neuro
response to random synaptic input. This involves a graph
presentation of the first two moments, the mean and v
ance, of neuronal output as function of the first two mome
of total synaptic inputs, for a range of values of these in
moments. The usual approximations of a wide variety
stochastic input process are first constructed using the u
diffusion approximation@see Eq.~3.3!#. The measures o
mean and variability of output we use are conventional m
sures: overall firing rateF and CV . Hence when a neuron
model receives inputs ranging from exactly balanced inp

s

FIG. 3. CV vs q for the FitzHugh-Nagumo model with corre
lated inputsp5100,lE5l I5100 Hz.
2-5
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FIG. 4. Response surfaces o
the HH and IF model with corre-
lated inputsc50.00 ~a!, c50.01
~b!, c50.02 ~c!, c50.03 ~d!, c
50.04 ~e!. Top panel: left isF
2(m,s), right is CV-(m,s) for
the HH model; middle panel: left
is F2(m,s), right is CV-(m,s)
for the IF model without a refrac-
tory period; bottom panel: left is
F2(m,s), right is CV-(m,s) for
the IF model after adding a refrac
tory period of 12 msec, which is
approximately the refractory pe
riod of the HH model@1#.
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to purely excitatory inputs, its behavior could be fully unde
stood by simply looking up the trajectory on the surface.

Applying the approach to the HH model and the IF mod
yields response surfaces as depicted in Fig. 4. Lines1 ~a!–~e!
are trajectories for efferent firing frequency andCV , whenm
goes from 0~exactly balanced input! to alENE ~purely ex-
citatory input! or equivalentlyr from 0 to 1. We could easily
tell the different response behavior of the two models. Lin

1All parameters are the same as in the previous section, see F
05190
-

l

s

~a!–~e! cross contours of theCV-(m,s) surface of the IF
model, but they are almost in parallel with contours of t
HH model. Comparison of~a!–~e! in Fig. 4 demonstrates the
huge changes in the noise component,s, as a result of intro-
ducing very low correlation. The increase is greatest cha
ing from c50 to c50.01, and, for the HH model, the con
sequent increase inF is biggest. At balance (m50), F
increases from 16 to 29 Hz, whereas for pure excitation
put, the change is from 34 to 43 Hz, a rather smaller
crease. Each subsequent equal sized increment in correl
induces lower increases inF ~e.g., to 37,41,44 Hz at balance!. 1.
2-6
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BEHAVIOR OF INTEGRATE-AND-FIRE AND HODGKIN- . . . PHYSICAL REVIEW E 63 051902
for two reasons: the increment ins is much lower at higher
correlations2 and the relationship betweenF and s has a
lower slope at higher values ofs. However, for different
values ofp anda, and therefore different starting points o
the m,s surface for independent inputs, the qualitative p
tern of correlation-induced increments inF might be very
different. For the IF model, positive correlation increasesF
but by a much smaller amount~by virtually zero for purely
excitatory input for the IF model!. The effect onCV is the
opposite to that for the HH model: it increases variabil
rather than reduces it, over much of the range. We h
applied the approach to analyze other interesting behav
of the models and will report it in a further publication.

VI. IF-FHN MODEL

In order to theoretically understand the results presen
in the previous sections, we consider the IF-FHN mod
which mimics the FHN model and is proposed in Ref.@10#,
with correlated inputs. First we briefly review the model.

The basic idea to derive the IF-FHN model is that
develop a systematic approach to approximating biophys
models by models of the integrate-and-fire type. The t
essential components of the leaky integrate-and-fire mo
are integration of incoming signals and leakage. Our
proach is then to determine terms which reflect these
components for a given biophysical model as exactly as p
sible. Devising methods for approximating biophysical mo
els by abstract models — which preserve the essential c
plexity of the biophysical mechanism yet are simultaneou
concise and transparent — is an important continuing tas
computational neuroscience. The advantages are obv
Biophysical models are usually difficult to understand, and
simulate at a network level, characteristics not shared,
example, by the conventional integrate-and-fire~IF! model.
A simplified expression might also provide us with a ne
tool to understand the frequently puzzling behavior of b
physical models, since the response of the conventio
leaky integrate-and-fire type model to stochastic input
more comprehensible. Although a rigorous analytical tre
ment is difficult, various approximations are available~see,
for example, Ref.@13#!.

As an application of the idea above, we consider
FitzHugh-Nagumo~FHN! model. We first define leakage co
efficient as precisely as possible in this more general cont
Consider a general model

H dv~ t !5 f ~v,w!dt,

dw~ t !5g~v,w!dt
~6.1!

in which v is membrane potential,w is a vector recovery
variable, generally representing activation and inactivat

2Remembering thats2(c)5a11ca2 where a1 ,a2 are positive
constants defined in Eq.~3.3!, we haves2(c1c1)2s2(c)5a2c1

which is independent ofc, but s(c1c1)2s(c)5Aa11(c1c1)a2

2Aa11ca2 which is a decreasing function ofc for fixed c1.0.
05190
-

e
rs

d
l,

al
o
el
-
o
s-
-

-
y
in
us.
o
r

-
al
s
t-

e

xt.

n

variables for the ion channels in the model. Our aim
achieving an integrate-and-fire reduction is to re express
model as

dv~ t !52L~v !~v2v rest!dt, ~6.2!

wherev rest is the resting potential andL(v) is the general-
ized leakage coefficient. In the extreme case, for the conv
tional leaky integrate and fire model, the model is extrem
simple

dv~ t !52L~v2v rest!dt, ~6.3!

where the leakage coefficientL51/g is a constant, indepen
dent of the values ofv. In general, it will only be possible to
express a model in the form of Eq.~6.2! approximately.

Now we mimic the FHN model with leaky integrate-an
fire type model. First of all we see that the second differen
equation of the FHN model can be solved as

w~ t !5dE
0

t

v~s!exp@2bd~ t2s!#ds. ~6.4!

Substituting Eq.~6.4! into the first differential equation o
the FHN model we obtain

dv~ t !52g~v21!~v2a!vdt2dE
0

t

v~s!

3exp@2bd~ t2s!#ds1d ī syn~ t !. ~6.5!

Using our basic idea, to extract the leakage coefficient fr
the FHN model as exactly as possible, i.e., to rewrite t
differential equation in the form

dv~ t !52L~v !~v2v rest!dt, ~6.6!

we rewrite Eq.~6.5! as follows

dv~ t !52Fg~v21!~v2a!1dE
0

t

3exp@2bd~ t2s!#dsGv~ t !dt2dE
0

t

@v~s!

2v~ t !#exp@2bd~ t2s!#dsdt1d ī syn~ t !

52Fg~v21!~v2a!1
1

b
@12exp~2bdt !#Gv~ t !dt

2dE
0

t

@v~s!2v~ t !#exp@2bd~ t2s!#dsdt

1d ī syn~ t !. ~6.7!

Note that in the equation above the term

dE
0

t

@v~s!2v~ t !#exp@2bd~ t2s!#ds
2-7
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JIANFENG FENG AND PING ZHANG PHYSICAL REVIEW E63 051902
is a higher order term and which we could omit in the fi
order approximation. Equation~6.7! becomes

dv~ t !52Fg~v21!~v2a!1
1

b
@12exp~2bdt !#Gv~ t !dt

1d ī syn~ t !. ~6.8!

Let us define

L~v !5g~v21!~v2a!1
1

b
~6.9!

which gives us the leakage coefficient~approximated to the
first order! extracting from the FHN model.

Figure 5 depicts a typical case of the leakage coeffic
extracted from the FHN model. When the membrane pot
tial is between the resting potentialVrest;0 and the threshold
Vth;a~indicated by arrow!, the leakage coefficient is pos
tive. Hence the system will gradually lose its memory
recent activation. However,L(v) is very different fromL,
which is a constant and is independent of its membrane
tentials.L(v) is larger when the membrane potential is clo
to the resting potential, and vanishes when the membr
potential is close to the threshold. In other words, when
membrane potential is near resting potential, the model lo
its memory rapidly. Incoming signals accumulate less eff
tively to increase membrane potential. When membrane
tential is near to the threshold, however, the FHN mo
behaves more similar to a perfect integrate-and-fire mo
The FHN now has a very good ‘‘memory’’ and in a sen
‘‘waits’’ just below the threshold. As soon as some positi
signals arrive, the neuron fires. Therefore, below the thre

FIG. 5. L(v) and 100L55.0 vs the membrane potentials. B
tween the threshold and the resting potential~indicated by arrows!,
L(v) are positive, but the closer the membrane potential to
threshold, the weaker the leakage, in contrast to the conventi
integrate-and-fire model.
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old, the IF-FHN behaves as a combination of theleaky
integrate-and-fire model and theperfect integrate-and-fire
model.

Once the membrane potential is above the threshold, n
L(v) acts as an amplifier of incoming signal, rather than a
leakage. It will increase membrane potential until it arrives
its maximum value, designated asvh in this paper, and then
L(v) becomes positive again.

Now we are in the position to define the following dy
namics as the integrate-and-fire model with nonlinear le
age~IF-FHN! @10#:

H dv t52L~v !vdt1d ī syn~ t !,

v05v rest.
~6.10!

For a prefixedvalue vh ~defined before!, oncev crosses it
from below,v is then reset tov rest. Unlike the conventional
integrate-and-fire model, the IF-FHN increases tovh rather
thanVth , which is smaller thanvh .

We use the set of parameters as before. What is the
havior of the IF-FHN? In Fig. 6 we see thatCV is quite high
and is not sensitive to the number of inhibitory inputs, sim
lar to what we have observed for the FHN model itself@1#.
However, in Ref.@1# we were not able to elucidate th
mechanism which ensures the occurrence of the phen
enon. Based upon the numerical results on the IF-F
model, we conclude that the nonlinear leakage coeffici
contributes to the flatCV which is a typical feature of some
biophysical models and which is not captured by conv
tional integrate-and-fire models.

To further demonstrate the power of our approach,
consider the models with correlated inputs. The IF mode
essentially a linear model and so the larger is its input fl
tuation, the larger is its output variety. But biophysical mo
els such as the FHN and Hodgkin-Huxley models exh

e
al

FIG. 6. CV vs q and standard deviation of interspike intervals
mean interspike intervals of the IF-FHN model. With respect
varying q, CV ~calculated after adding a refractory period of 3
msec! is quite flat. Note that the standard deviation equals alm
equals the mean interspike interval.
2-8
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opposite behavior. This phenomenon is of particular inter
Biophysical models such as the FHN and the Hodgk
Huxley models improve their performance in an environm
of correlated inputs which is certainly of extremely possib
case in a neuronal assembly. The phenomenon is also
main motivation of our present approach in this sectionper
se: to find integrate-and-fire type models which are quali
tively in agreement with biophysical models. Suppose t
the correlation between synapses isc.0. Figure 7 clearly
shows now the contradictory between biophysical mod
and integrate-and-fire type model is resolved. Our simu
tions further confirm that the key difference between
FHN model and the conventional integrated-and-fire mo
lies in the fact that the former has a nonlinear leakage c
ficient. More specifically, let us look at theCV-(m,s) sur-
face of the IF-FHN model. First,CV is a decreasing function
of the input correlation coefficientc ~Fig. 7!, as in the HH
model ~Fig. 4!. Secondly, for inputs with a fixedC, whenr
varies from 0 to 1,CV changes, but only slightly. For ex
ample, whenc50.1, CV of the IF-FHN model is close to
0.1, almost independent ofr. This fact implies thatCV fol-
lows the contours of the response surface, as in the
model ~Fig. 4!.

From the data shown in Fig. 6 we might envisage t
Kramer’s formula can predict the model behavior, which h
been successfully applied to estimate the firing rate in cer
circumstances@22#. Kramer’s formula~a special case of the
large deviation theory, see Ref.@23#, and references therei
for details@24#! reads

^T̄&;
2p

AH9~vmin!uH9~vmax!u
exp@2~Hmax2Hmin!/s

2#,

~6.11!

FIG. 7. CV vs q of the IF-FHN model. With fixedq, CV is a
decreasing function of correlationc; in other words, the signal-to
noise ratio (SNR), SNR51/CV , is an increasing function ofc, p
5100. Compare with Fig. 3.
05190
t.
-
t

the

-
t

ls
-

e
l
f-

H

t
s
in

where T̄ is the first exit time from a potential well, an
Hmax,Hmin are the local maximum and local minimum of th
potential well~see below!.

FurthermoreT̄ is exponentially distributed~similar to the
interspike intervals in a Poisson process!, as the plot of stan-
dard deviation vs interspike intervals of Fig. 6 shows, i
standard deviation equals mean. If this is the case then
might conclude that the flatCV is simply due to perturbations
of a deterministic system, a simple, classic and clear pict
Denote

H̄~v !5E
0

v
uL~u!du5gS 1

4
v42~a11!

1

3
v31

1

2
av2D

1
1

2b
v2.

For the IF-FHN model we could write the potentialH of the
system in terms of two terms

H~v !5H̄1mv ~6.12!

and therefore

Hmax2Hmin5H̄~vmax!2H̄~vmin!1m~vmax2vmin!,

where vmax and vmin are the value at whichH attains the
local maximum and minimum. As we mentioned before f
the IF-FHN model, its behavior does not substantia
change if we set the threshold as a value inside@vmax,1#.

Figure 8 shows an application of Kramer’s formula to t
IF-FHN model with correlated inputs. When the input is u
correlatedc50.0, Kramer’s formula gives a rough estimat
with an obvious discrepancy between numerical results
theoretical estimate. Nevertheless when a small correlatio
added (c>0.005), i.e., the IF-FHN model receives a mo
random input, Kramer’s formula gives an excellent estima
As one might expect, the mean interspike interval and st
dard deviation exhibits a linear relationship.

VII. DISCUSSION

In summary, in Ref.@1# independent inputs to neurona
models are considered and it is reported that the IF mo
and the HH model behavedifferently. The present work car-
ries this a considerable stage further in that, when correla
inputs are considered, the IF and HH model behave in tot
oppositeways: theSNR of the IF model decreases with th
increase of the input correlation; while theSNR of the HH
model increases. The conclusions of the present work wo
be informative, in particular when we deal with netwo
models where inputs to each unit are bound to be correla
For a given neuron with stochastic inputs, the response
face provides us with a valuable way to understand its
havior. Finally, using the IF-FHN model, we pointed out th
one of the key difference between the IF model and the
2-9
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JIANFENG FENG AND PING ZHANG PHYSICAL REVIEW E63 051902
model is that the leakage coefficient is a constant for
former, but it depends on the membrane potential for
latter. The difference between the IF model and the IF-F
model might also provide a clue for the phenomenon
served in Ref.@25#.

Let us now discuss some related issues which we have
taken into account in the present paper.

We have only considered the case of so-called spati
correlated inputs. What would happen when temporal co
lations are also taken into account? Here we have to
distinguish two kinds of temporal correlations: the corre
tion between spikes of a single input spike train and
correlation due to the rising and decay time of input spik
~noninstantaneous inputs such as thea-synapse input@22#!.
For the former case, we could easily approximate inputs
the diffusion approximation, as in Sec. III. To understand
model behavior is then simply reduced to looking up t
response surface of the model. For the latter case, it is m
complicated. The diffusion approximation will not be valid

FIG. 8. A comparison between Kramer’s formula and numeri
simulations with parameters as specified in the context,p5100.
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the rising or decay time is long enough, which means th
instead of the Brownian motion, we have to resort to t
Ornstein-Uhlenbeck process to approximate the synaptic
put. A thorough consideration of the latter case is outside
scope of the present paper and we will report it in furth
publications.

In the present paper, we assume that there are correla
among excitatory synapses and inhibitory synapses, but
between them. It is also illuminating to consider the case t
~a! inhibitory inputs are totally independent or~b! inhibitory
inputs and excitatory inputs are correlated with a correlat
coefficient cE,I( i , j ). For the case~a!, s2 in Eq. ~3.3! be-
comes

s25a2plE1b2ql I1a2lE(
iÞ j

p

c~ i , j !. ~7.1!

Therefore in theCV-(m,s) surface~see Fig. 4!, all trajecto-
ries ~b!–~e! with c.0 andq.0 (q50 corresponds to the
points indicated by circle! have a shift towards the left. Fo
example, whenc50.04 andq5p the point indicated by the
rectangle of the trajectoryE is at pointA14.9 rather than 5.
In words, the model behavior is less affected by input cor
lations. For the case~b!, similarly we have

s25a2plE1b2ql I1a2lE(
iÞ j

p

c~ i , j !1b2l I(
iÞ j

q

c~ i , j !

22abAlEl I(
i 51

p

(
j 51

q

cE,I~ i , j ! ~7.2!

Depending on whether inhibitory and excitatory inputs a
positively or negatively correlated, the input variances2

could be either reduced or enhanced. Nevertheless, the m
behavior could be understood by a simple calculation ofm,s
and looking up the response surfaces.

For a ‘‘linear’’ model such as the IF model, we natural
expect that an increase in the input mean or variance res
in an increase in the output mean or variance. For so
nonlinear models such as the HH model and the IF-F
model, our results tell us that it is not always the case. In f
it is well known in the literature that the HH model can,
certain circumstances, increase its firing rate with an incre
of inhibitory inputs, the so-called post inhibitory reboun
@26#. Our results here reveal another interesting, similar
havior of the HH model: an increase in the input variabil
result in a decrease in the output variability.
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