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Behavior of integrate-and-fire and Hodgkin-Huxley models with correlated inputs
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We assess, both numerically and theoretically, how positively correlated Poisson inputs affect the output of
the integrate-and-fire and Hodgkin-Huxley models. For the integrate-and-fire model the variability of efferent
spike trains is arnncreasingfunction of input correlation, and of the ratio between inhibitory and excitatory
inputs. Interestingly for the Hodgkin-Huxley model the variability of efferent spike trains deaeasing
function of input correlation, and for fixed input correlation it is almost independent of the ratio between
inhibitory and excitatory inputs. In terms of the signal to noise ratio of efferent spike trains the integrate-and-
fire model works better in an environment of asynchronous inputs, but the Hodgkin-Huxley model has an
advantage for more synchrono(®rrelatedl inputs. In conclusion the integrate-and-fire and Hodgkin-Huxley
models respond to correlated inputs in totally opposite ways.
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[. INTRODUCTION C, of efferent spike trains of the HH model: the correlation
in inputs reduces rather than increases @e of efferent
The two most commonly used single neuron models inspike trains. Furthermore, with fixed correlation, tGg of
theoretical neuroscience are the integrate-and-filfe) efferent spike trains is almost independent of the ratio be-
model, modeling neurons at an abstract level and théween inhibitory and excitatory inputs. Hence the IF and HH
Hodgkin-Huxley (HH) model describing the biophysical models operate in two quite different modes: increasing the
mechanisms of cells. Recently it is foupt-3] that in cer-  input correlation will decrease the signal to noise ratio of
tain parameter regions the coefficient of variatio@,( efferent spike trains in the IF model, whereas for the HH
= standard deviation/meganf efferent spike trains of the HH model an enhancement on the signal to noise ratio is at-
model is almost independent of the ratio between inhibitorytained. We thus conclude that the IF model works better in
and excitatory inputs. In other words, whether inhibitory in-an environment of asynchronous inputs, but the HH model
puts are blocked or not has no effect on thg. However has an advantage for more synchron¢esrrelated inputs.
most results up date on the IF and HH models are obtainedll the conclusions for the HH model are then repeated for
under the assumption that inputs are indepenfiedt, both  the FitzHugh-Nagum@FHN) model.
spatially and temporally. This assumption obviously contra- We then propose a simple approach called response sur-
dicts the physiological data which clearly show that nearbyface to graphically explore the different behavior between
neurons usually fire in a correlated wHy,6], and the ana- two models. The response surface method enables us to
tomical data which reveal that neurons with similar functionsgrasp the property of a neuron with stochastic inputs. We
group together and fire together. In fact “firing together, advocate that the approach could also be applied in experi-
coming together” is a basic principle in neuronal develop-ments.
ment[7]. Furthermore, data in Ref5] indicate that even a Finally we employ the IF-FHN moddl10] to show that
weak correlation within a population of neurons can have ahe differences between the IF model and the HH model
dramatic impact on the network behavior. The essential roleesult from the fact that the former model has a constant
played by the redundancy or correlation in perception haslecay rate, but the latter has a nonconstant decay rate. The
been appreciated early in the literaty&. Hence it is of IF-FHN model is obtained by extracting the leakage coeffi-
crucial importance to explore the impact of weakly corre-cient from the FHN model as exactly as possible. The leak-
lated inputs on the efferent spike trains of neuronal modelsage coefficient is a nonlinear function ®f in contrast to the
which certainly sheds new light on the coding problgh constant leakage coefficient in the conventional integrate-
For the IF model the output firing variability is an increas- and-fire model. The nonlinear leakage coefficient, taking a
ing function of input correlation: the larger the input corre- U-shape plotted against, reveals interesting properties of
lation is, the larger theCy of efferent spike trains. At the the FHN model. The further the membrane potential is below
same time, as reported in many papers, @ieof efferent its threshold, the stronger the leakage is and so the easier the
spike trains is an increasing function of the ratio betweermodel loses any memory of its recent history. Hence it is
inhibitory and excitatory inputs. It is natural to expect thatdifficult to depolarize the cell when the membrane potential
the behavior of the highly nonlinear HH model will be some-is far below the threshold. However when the membrane
what different from that of the IF model, which is a “linear” potential is near the threshold, the leakage gets smaller even-
modelper se It is, however, surprising to find that the cor- tually becoming negligible; then incoming depolarizing sig-
relation in input signals has a totalbppositeeffect on the nals can more easily induce the neuron to fire. In other
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words, the neuron maintains its memory of recent activatiori-or the simplicity of notation we assume that the correlation
in this range of membrane potential. coefficient between théth excitatory (inhibitory) synapse

In conclusion, two most widely used neuron models, theand thejth excitatory (inhibitory) synapse isc(i,j) = p(]|i
integrate-and-fire and the Hodgkin-Huxley models with cor-—j||), wherep is a nonincreasing function. A slight more
related inputs are considered. The irregularity of output spikgieneral model than the IF model defined above is the IF
trains of the integrate-and-fire model is an increasing funcmodel with reversal potentials defined by
tion of input correlations, but is a decreasing function for the
Hodgkin-Huxley model. A graphic approach, the response Zi— Viest —
surface method, is proposed to intuitively reveal the differ- dZ=- ¥ dt+dlsy(Ze1), 2.2
ences between the ouput activity of two models. Using the
IF-FHN model, we theoretically explore the underpining where
mechanisms of the models and conclude that an appropriate
form of nonlinear decay rate can account for the aforemen- — — P — d
tioned differences between the integrate-and-fire and the 'syn(ztvt)za(VE_Zt)El Ei(")*'b(vl_zt)z1 ().
Hodgkin-Huxley models. :

The paper is organized as follows. In Sec. Il the integrate; . —
and-fire model and the Hodgkin-Huxley model are intro- V£ @ndV, are the reversal pOten,t'aE'<Vre?‘<VE’ (Ve
duced. In Sec. Ill correlated synaptic inputs are defined. Sec Vres):P(Vi—Vres) are the magnitude of single EPSP and
tion IV is devoted to numerical results of the integrate-and/PSP WhenZ=V . Z; (membrane potentiplis now a
fire model, the Hodgkin-Huxley model, and the FitzHugh- birth-and-death process with boundanigsandV; . _
Nagumo model with correlated inputs. In Sec. V the We consider the classic HH model with correlated inputs
response surface approach is introduced and applied to tgdven by
integrate-and-fire model and the Hodgkin-Huxley model. Fi-
nally in Sec. VI, the IF-FHN model is briefly reviewgd0] CdV=—gnam’h(V-Vya)dt=gn*(V=-V)dt
and its behavior with correlated inputs is shown. In the — gL (V=V)dt+dlg V1), 2.3
present paper, we exclusively restrict ourselves to the models
with Poisson, positively correlated inputs and refer the readef are | (v 1) =1 e (V) =1V 1), E ion
to Ref.[11] for the negatively correlated input case. ande FeJa?éan’]e,tte)l’S Jé”e((? ir? thseyn(Hﬁt)modsgf a,rte) asigﬁgﬁs

Refs.[1,12)):
Il. THE INTEGRATE-AND-FIRE MODEL AND HODGKIN-
HUXLEY MODEL dn n,—n dm m,—m dh h.,—h

Suppose that a cell receives excitatory postsynaptic poten- dt Tn dt Tm dt Th
tials (EPSP% at p synapses and inhibitory postsynaptic po-
tentials (IPSP$ at ¢ inhibitory synapses. The activities an
among excitatory synapses and inhibitory synapses are cor-

an am ap

related but, for simplicity of notation only, are assumed to be n,=—o—  m,= . hy=—
independent between them. When the membrane pot&fytial ant By amt Bm ant By
is between the resting potentid).s;and the threshol® e,
it is given by 1 1 1
Th— y TTm— y Th= ’
1 o " ant Bn m At Bm n ant B
dvtz—;(Vt—vres,)dt+dlsyn(t), (2.9 with
where 1# is the decay rate and synaptic inputs 0.01(V+55) V+65
an= . Bn=0.125exp——|,
p q p( V+ 55) L 80
— exp — -
Isyn(t)=aizl Ei(t)—bjzl 15(0) 10
with E;(t),l;(t) as Poisson processes with rate and A, = 0.4V+40) ' n=4 exp{ ﬂ)
respectively,a>0,>0 being the magnitude of each EPSP exp( _V+40) 18
and IPSP. Onc¥, crossesV, from below a spike is gen- 10
erated and/; is reset toV e This model is termed as the IF
model. The interspike intervalSI) of efferent spikes is V+65 1
ah=0.07eX _T ) ﬂh: V+35
T=inf{t:Vi=Vine ex;{ 10" 1

and theCy, of interspike intervalgISls) is given by
The parameters used in EQR.3 are C=1,gy,=120gk

Cy= T2 —(T)2I(T). =360, =0.3V,=—77VyN,=50, andV = —54.4.
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I1l. SYNAPTIC INPUTS

1 _
_— . dvi=— —(vi— Vieddt+digy (1),
Here we use the usual approximation to approximate the ‘ 7( ¢ Viesd sl V)

IF models with or without reversal potentials, or more ex- h
actly the synaptic inputs of the models. We do not check thd/"€"®
approximation accuracy since it has been done by many au-

p q p
thors[4,13. Tgd)=aX Net=b3, Nt+ayhe, BE(D)
The input now reads i=1 =1 i=1

q
(1)~ Nt + E
and similarly 8
| Since the summation of Brownian motions is again a Brown-
(D) ~Nt+ VN Bi(1), ian motion we can rewrite the equation above as
where BE(t) and B!(t) are standard Brownian motions. Tt = ut+ oB(1) (3.2
Therefore the IF model without reversal potentials can be d '
approximated by whereB(t) is a standard Brownian motion
p=aphg—bao\,
2_ 52 2 2 S 2 S 33
o“=a‘p\g+b g\ +a )\52 c(i,j)+b )\,E c(i,j).
1#] 1#]
|
The input variancer? is an increasing function af; ;. potentials. Nevertheless all results are qualitatively true for

Now we turn our attention to the IF model with reversal the models with inputs with reversal potentiéf®t shown,
potentials. Similar to what we have done for the IF modelsee Ref[2]).
without reversal potentials, we can rewrite down the model

in the following form: IV. NUMERICAL RESULTS

From the results above we conclude that correlated inputs
increase the variance of inputs and thus we expect an in-
crease ofC,, of efferent interspike intervals for the IF model
where [3,15]. For the HH model an analytical treatment is difficult

and we have to resort to numerical simulations. Here only
isyn(Zt,t)Z{aP[VE—Z(t)]NE—bQ[Z(t)—VJM}t re_sults of the case thgi(i,j)=c for i#j, for the models
without reversal potentials are presented. It has been reported
+o(z)B(t) in the literature that the correlation coefficient between cells
is around 0.1 in V5 of a rhesus monkeys vivo [5], and
and around 0.2 in human motor units of a variety of muscles

200N —a2(5 _\/ )2 205 _\/\2 [16].
o (2)=a%(z=Ve) Phet bz Vi) A\, Figure 1 shows numerical results of the IF model and HH

1 i
dz=—_ zdt+digz.0), (3.4

p model with ¢ between 0 and 0.1, amg=0,10; - -,100. We
+a%(z— V)2, ci.j) first look at the results for the IF modgFig. 1(@)]. When
1#] c=0, inputs without correlation, there are many numerical
q and theoretical investigationgsee, for example, Refs.
+b2(z,— V)N, D c(iyj). (3.5 [1—3,10,11,1] In line with the theoretical results above,
i#] the larger the input correlation is, the larger the outPyt

In particular we note that wher™>0.08 we haveC,,>0.5 for
There are other forms of the diffusion terms in E§.4) to any value ofg. In conclusion, with a fixe, Cy is an in-
approximate the original proce§s4]. For simplicity of no-  creasing function of the correlation and the number of inhibi-
tation we confine ourselves t0?(z,). tory inputs. However for the HH model the situation is to-

For the HH model we have analogous expressions fofally different [Fig. 1(b)]: for fixed correlation coefficients

correlated_inputs with or without re_versal potentials as in EqC,, is almost a constant, independent of the number of in-
(3.2), i.e.,ig(t) and Eq.(3.4), i.e.,ig,(v,t). In the sequel, hibitory inputs; for fixed number of inhibitory inputsy is a
we confine ourselves to the case of inputs without reversadecreasingunction of the input correlation. In other words,
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between the excitatory and inhibitory synapses is,Gheof
efferent spike trains is always greater than 0.5. For the HH
model when the input correlation is low, independent of the
inhibitory inputs, the outpu€,, is always greater than 0.5.
There is increasing evidence to support the assumption
that the brain might use different coding strategies when
dealing with tasks of different complexity. When a slow re-
action is required, the brain might use rate coding to process
information. When a fast reaction is needed the brain only
has enough time to take into account the first spike of active
synapses and so temporal coding seems more plausible. This
assumption naturally require that neurons operate in different
modes. Here we provide such an example of different opera-
tion modes, provided that both the IF and the HH mecha-
nisms are employed by cells in the brain. The IF model is

08 0 40 60 80 100 sensitive to its input correlation and so it would work in an
Number of inhibitory synapses environment of less correlated or asynchronous inputs. The
08 (B) HH model is more reliable when correlated or synchronized

' inputs are presented. Figure(2e Fig. 4 shows a case of
M signal to noise ratio of efferent spike trains, i.e., mean/

0.7 r 1 standard deviation or €4, . When input correlation is small
the Sy of the IF model is greater than that of the HH model,

0.6 . ] but when it is larger, th&y of the IF model is less than that

of the HH model.
Note that the above properties &g are true for all

o> 051 YooV parameter regions we consider@ge next sectionno mat-
ter if its Cy, is greater than 0.5 or not. Hence when we restrict
0.4 | ] ourselves to the parameter regions of irregular firing: for the

HH model with a fixed number of inhibitory inputs, tiSr
is anincreasingfunction of the input correlation; for the IF
model with a fixed number of inhibitory inputs, ti8g is a
decreasindgunction of the input correlation.

An obvious difference between the integrate-and-fire
model and the HH model lies in the fact that the latter one
has an refractory period of about 12.2 m§gE We also add

FIG. 1. Cy vs correlation and). Data are obtained by simulating refractory periods to the integrate-and-fire model for calcu-
the IF model(a) and the HH modelb) with synaptic inputi (t). lating related quantities and all results above remain (sae
a=b=0.5 mV, \;=Ag=100 Hz, V=0 MV, V4 e=20 mV, y next section In fact, from Fig. 2 we conclude that adding a
=20.2 msec,p=100, q=0,1Q ...,100. For the reason of the refractory period to the IF model will even increase the dis-
choice of these parameters we refer the reader to[REf. crepancy between two models. According to the definition of

Syr We know thatSygr=((T) + R)/Sp=Syr+ R/Sp, where
for HH model the stronger the input correlation(equiva-  Syg is obtained after adding a refractory periBdandS; is
lent to a stronger input noigethe more regular the output. the standard deviation of interspike intervals of the IF model.

In recent years there has been much research devot&ince Sy is an increasing function of correlations, we see
to the problem that how to generate efferent spikes with dahat Syg will more sharply decrease than tiSgy of the IF
Cy between 0.5 and 1(see, for example, Refs. model shown in Fig. 2, and results in even large differences
[1-3,10,11,15,17,18 In particular it is pointed out in Ref. between two models.

[17], where only independent inputs=0 are considered, Essentially it is impossible to have an analytical treatment
that it is impossible for the IF model and some biophysicalof the HH model. For confirmation of our results on the HH
models to generate spikes witlCq between 0.5 and 1 if the model, we also simulated the HH model WEURON [20]
inputs are exclusively excitatory. This phenomenon is rewith synaptic inputs as a square wave of magnitude of 5
ferred to as “central limit effect” and widely cited in the w Amp, duration 0.1 msefl]. The results match approxi-
literature (see, for example, Ref19]). Many different ap- mately with Fig. 1b). For both models, we have carried out
proaches have been proposed to get around this problem. fystematic simulations on a wide range of parameters rang-
the present paper we clearly demonstrate that even with exng from p=75,100,150,200 and<9r =q/p=<1. The results
clusively excitatory inputs the IF model is capable of emit-obtained qualitatively agree with the conclusions above.
ting spike trains with &y, greater than 0.5. Under the con-  We also simulate another simplified model, the FitzHugh-
dition that ¢>0.08 [Fig. 1(a)], no matter what the ratio Nagumo model which mimics the HH model, with correlated

0 20 40 60 80 100
Number of inhibitory synapses
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25 C=0.10 ..... Py
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0.2 )K *EK *){ *ed
1.5 4 1 0 ) . L .
0 20 40 60 80 100
1 ) ) ) ) Number of inhibitory synapses
0 0.02 0.04 006 008 0.1 _ _
Correlation coefficient FIG. 3. Cy vs q for the FitzHugh-Nagumo model with corre-
®) lated inputsp=100A=\,;=100 Hz.
4 . T
. rithm for solving stiff equations fronNAG library is used
35 | x with step size 0.01. Further small time steps are used and we
) conclude no significant improvements are obtained. When
KX calculating mean firing rate ar@,,, 10 000 interspike inter-
3¢ Ko/ X 1 vals are employed.
g 25 ¢ 1 V. RESPONSE SURFACES
@ X
><'/ Neurons have traditionally been characterized by the na-
217 Hij model — T ture of their so-calledr-1 curve, that is the relationship be-
/ tween the rate of firing-, that they adopt in response to an
15V applied current and the level of the applied currgnpro-
posed by Hodgkin. He classified membranes as tygehey
(| can show an arbitrarily low firing rate and long spike latency
in response to a continuous current; or type Il, if they exhibit
a narrow range of response firing rat@®t close to zerp
0.5 and virtually zero spike latency. The HH model is classified

0 0.02 0.04 0.06 0.08 0.1
Correlation coefficient

as type Il. In a sense, the IF model can be classified as type
I, since arbitrarily low firing rates are possible for just su-
FIG. 2. Signal to noise ratioc3yg) of efferent spike trains of the  prathreshold currents. This is a useful categorization for
IF model and HH model, comparing Fig. 1. Left figure correspondsmany purposes. Yet frequently neurons are subject to input
to the case of Ty with fixing q=10 in Fig. 1; right figure with  regimes which cannot be approximated as a constant current,
fixing q=80. as we consider here. Inputs often take a pulse form, and, in
numerous brain areas, e.g., the visual cortex and the hypo-
inputs. Figure 3 shows that all conclusions above for the HH:ha|amus, neurons fire apparenﬂy rand0m|y_ For a neuron
model are true for the FitzHugh-Nagumo model. Themgodel with stochastic inputs, tHe-l curve only provides us
FitzHugh-Nagumo model is described by with limited information.
We thus propose a simple characterization of neuronal
. response to random synaptic input. This involves a graphical
dv=9[-v(v—a)(v—1)—w]dt+dig, presentation of the first two moments, the mean and vari-
dw=[v — Aw]dt (4.1 ance, of neurona! output as function of the first two moments
of total synaptic inputs, for a range of values of these input
. moments. The usual approximations of a wide variety of
with =0.28=2.5,y=1006=0.25,a=b=0.06 inig,and  stochastic input process are first constructed using the usual
all other parameters are the same as in the HH model. diffusion approximation[see Eq.(3.3)]. The measures of
All numerical simulations for the IF model are carried out mean and variability of output we use are conventional mea-
with synaptic inputs defined by E@3.2) with a time step sures: overall firing raté& and C,,. Hence when a neuron
0.01 and a Euler schenjg1]. For the HH model, an algo- model receives inputs ranging from exactly balanced inputs
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FIG. 4. Response surfaces of
the HH and IF model with corre-
lated inputsc=0.00 (a), c=0.01
(b), ¢c=0.02 (c), c=0.03 (d), ¢
=0.04 (¢). Top panel: left isF
—(w,0), right is Cy-(u,0) for
the HH model; middle panel: left
is F—(u,0), right is Cy-(u«,0)
for the IF model without a refrac-
tory period; bottom panel: left is
F—(u,0), right is Cy-(u,o) for
the IF model after adding a refrac-
tory period of 12 msec, which is
approximately the refractory pe-
riod of the HH model1].

to purely excitatory inputs, its behavior could be fully under- (a)—(e) cross contours of th€,-(u,0) surface of the IF
stood by simply looking up the trajectory on the surface. model, but they are almost in parallel with contours of the
Applying the approach to the HH model and the IF modelHH model. Comparison dfa)—(€) in Fig. 4 demonstrates the
yields response surfaces as depicted in Fig. 4. Lit®s(€)  hyge changes in the noise componentas a result of intro-
are trajectories for efferent fmng frequency adg, whenu ducing very low correlation. The increase is greatest chang-
goes from O(exactly balanced inputo akeNe (purely €x- o from c=0 to c=0.01, and, for the HH model, the con-
citatory inpu} or equivalentlyr from 0 to 1. We could easily sequent increase ifF is biggest. At balance (=0), F
tell the different response behavior of the two models. Line§, reases from 16 to 29 Hz, whereas for pure excitation in-

put, the change is from 34 to 43 Hz, a rather smaller in-
crease. Each subsequent equal sized increment in correlation
IAll parameters are the same as in the previous section, see Fig. induces lower increases f(e.g., to 37,41,44 Hz at balance
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for two reasons: the increment inis much lower at higher variables for the ion channels in the model. Our aim in

correlationé and the relationship betwedh and o has a  achieving an integrate-and-fire reduction is to re express the
lower slope at higher values af. However, for different model as

values ofp anda, and therefore different starting points on

the u,o surface for independent inputs, the qualitative pat- do(t)=—L(v)(v—vesdt, (6.2

tern of correlation-induced increments hmight be very

different. For the IF model, positive correlation increafes Wherev g is the resting potential and(v) is the general-

but by a much smaller amoufivy virtually zero for purely ized leakage coefficient. In the extreme case, for the conven-
excitatory input for the IF modgl The effect onCy, is the ti_onal leaky integrate and fire model, the model is extremely
opposite to that for the HH model: it increases variability Simple

rather than reduces it, over much of the range. We have

applied the approach to analyze other interesting behaviors dv(t)=—L(v—vesdt, (6.3

of the models and will report it in a further publication. o ) )
where the leakage coefficieht=1/y is a constant, indepen-

dent of the values af.. In general, it will only be possible to
VI. IF-FHN MODEL express a model in the form of E(6.2) approximately.

In order to theoretically understand the results presenteg 'NOW we mimic the FHN model with leaky integrate-and-
in the previous sections, we consider the IF-FHN model!"® type model. First of all we see that the second differential
which mimics the FHN model and is proposed in Hap], ~ eduation of the FHN model can be solved as
with correlated inputs. First we briefly review the model. .

The basic idea to derive the IF-FHN model is that to W(t)zgf v(s)exf — BS(t—s)]ds. (6.4)
develop a systematic approach to approximating biophysical 0
models by models of the integrate-and-fire type. The two
essential components of the leaky integrate-and-fire moddbubstituting Eq.(6.4) into the first differential equation of
are integration of incoming signals and leakage. Our apthe FHN model we obtain
proach is then to determine terms which reflect these two
components for a given biophysical model as exactly as pos-
sible. Devising methods for approximating biophysical mod-
els by abstract models — which preserve the essential com- .
plexity of the biophysical mechanism yet are simultaneously xexgd —Bo(t—s)]ds+digt). (6.5
concise and transparent — is an important continuing task in
computational neuroscience. The advantages are obvioudsing our basic idea, to extract the leakage coefficient from
Biophysical models are usually difficult to understand, and tdhe FHN model as exactly as possible, i.e., to rewrite this
simulate at a network level, characteristics not shared, fodifferential equation in the form
example, by the conventional integrate-and-fife) model.

A simplified expression might also provide us with a new do(t)=—L(v)(v—vesdt, (6.6
tool to understand the frequently puzzling behavior of bio-

physical models, since the response of the conventionave rewrite Eq.(6.5 as follows

leaky integrate-and-fire type model to stochastic input is
more comprehensible. Although a rigorous analytical treat-
ment is difficult, various approximations are availakdee,

for example, Ref[13]).

As an application of the idea above, we consider the
FitzHugh-NagumdFHN) model. We first define leakage co-
efficient as precisely as possible in this more general context. .
Consider a general model —v(t)]exd —Bo(t—s)]dsdt+digt)

do(t)=—v(v—1)(v—a)vdt— 5fotv(s)

dv(t)=— t
0

y(v—l)(v—a)+5f

Xexg —B8(t—s)]ds|v(t)dt— 5j0t[v(s)

duv(t)="f(v,w)dt, - _
dw(t)=g(v,w)dt 6.1

yiv—1)(v—a)+ %[1—exq—ﬂé‘t)]}v(t)dt

- 6f0t[v(s)—v(t)]exp[—,B(S(t—s)]dsdt

in which v is membrane potentialy is a vector recovery
variable, generally representing activation and inactivation .
+digy(t). (6.7)

°Remembering that?(c)=a,+ca, where a;,a, are positive Note that in the equation above the term

constants defined in Eq3.3), we haves?(c+c;)— o?(C)=a,c; .
which is independent of, but o(c+c¢,)—o(c)=+a;+(c+cq)a, 5J v(s)—v(t)]exd — Bo(t—s)]ds
—+/a;+ca, which is a decreasing function affor fixed ¢,;>0. o[ lexd =4 ]
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30 \ T " — 1.2
25 + | /
20 L(v)

15 | \ |

06 p=80 ——

Cy

p=100 %~

04

Leakage coefficient

-10 + \ /' B 0.2

1o \V

-20 L .
-0.5 0 0.5 1 1.5
Membrane potential

0 20 40 60 80 100
Number of inhibitory synapses

FIG. 6. Cy vs g and standard deviation of interspike intervals vs
FIG. 5. L(v) and 100.=5.0 vs the membrane potentials. Be- mean interspike intervals of the IF-FHN model. With respect to
tween the threshold and the resting potertiiaflicated by arrows ~ varying g, Cy (calculated after adding a refractory period of 3.2
L(v) are positive, but the closer the membrane potential to thénsed is quite flat. Note that the standard deviation equals almost
threshold, the weaker the leakage, in contrast to the convention&duals the mean interspike interval.

integrate-and-fire model. o
old, the IF-FHN behaves as a combination of teaky

is a higher order term and which we could omit in the ﬁrstinteo?r?te-and-fire model and thgerfect integrate-and-fire
model.

order approximation. Equatiof.7) becomes o
Once the membrane potential is above the threshold, now

1 L(v) acts as an amplifier of incoming signal, rather than as a
dv(t)=—|y(v—1)(v—a)+ =[1—exp —B5t)]|v(t)dt leakage. It will increase membrane potential until it arrives at

B its maximum value, designated ag in this paper, and then
L(v) becomes positive again.

disyd®). 6.8 Now we are in the position to define the following dy-
. namics as the integrate-and-fire model with nonlinear leak-
Let us define age(IF-FHN) [10];
1 — e
Lw)=yw-1w-a)+5 6.9 o= —L(p)udts dig{t), (6.10

Vo= Urest:

which gives us the leakage coefficigiafpproximated to the For a prefixedvalue vy, (defined beforg oncev crosses it
first ordep extracting from the FHN model. from below,v is then reset t@ .. Unlike the conventional
Figure 5 depicts a typical case of the leakage coefficienintegrate-and-fire model, the IF-FHN increases torather
extracted from the FHN model. When the membrane potenthanVy,, which is smaller thaw,,.
tial is between the resting potentM)..~—0 and the threshold We use the set of parameters as before. What is the be-
Vi~ a(indicated by arrow the leakage coefficient is posi- havior of the IF-FHN? In Fig. 6 we see th@t, is quite high
tive. Hence the system will gradually lose its memory ofand is not sensitive to the number of inhibitory inputs, simi-
recent activation. Howevet,(v) is very different fromL, lar to what we have observed for the FHN model it$&lf
which is a constant and is independent of its membrane pddowever, in Ref.[1] we were not able to elucidate the
tentials.L(v) is larger when the membrane potential is closemechanism which ensures the occurrence of the phenom-
to the resting potential, and vanishes when the membranenon. Based upon the numerical results on the IF-FHN
potential is close to the threshold. In other words, when thenodel, we conclude that the nonlinear leakage coefficient
membrane potential is near resting potential, the model losexontributes to the fla€,, which is a typical feature of some
its memory rapidly. Incoming signals accumulate less effechiophysical models and which is not captured by conven-
tively to increase membrane potential. When membrane pdional integrate-and-fire models.
tential is near to the threshold, however, the FHN model To further demonstrate the power of our approach, we
behaves more similar to a perfect integrate-and-fire modekonsider the models with correlated inputs. The IF model is
The FHN now has a very good “memory” and in a senseessentially a linear model and so the larger is its input fluc-
“waits” just below the threshold. As soon as some positivetuation, the larger is its output variety. But biophysical mod-
signals arrive, the neuron fires. Therefore, below the threskels such as the FHN and Hodgkin-Huxley models exhibit
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1

‘ ' ' ‘ I where T is the first exit time from a potential well, and
H max:Hmin @re the local maximum and local minimum of the
potential well(see below.
087 ] FurthermoreT is exponentially distributedsimilar to the
interspike intervals in a Poisson processs the plot of stan-
dard deviation vs interspike intervals of Fig. 6 shows, i.e.
061 Xxxxxx standard deviation equals mean. If this is the case then we
3 e might conclude that the fl& is simply due to perturbations
- of a deterministic system, a simple, classic and clear picture.
0.4+  c=0.00 —— :
Co005 e Denote
€=0.10 -
Hi f "uL(u)d L A (et 1 L st I
02 | ] (v)= Ou (uwydu=ry 4v (a )30 Zav
1 2
+ —v-.
O I L 1 1
0 20 40 60 80 100 2B

Number of inhibitory synapses .
For the IF-FHN model we could write the potenttdlof the

FIG. 7. Cy vs g of the IF-FHN model. With fixedy, Cy is a  system in terms of two terms
decreasing function of correlation) in other words, the signal-to-
noise ratio Syr), Syr=1/Cy, is an increasing function of, p
=100. Compare with Fig. 3. H(v)=ﬁ+ Qv (6.12

opposite behavior. This phenomenon is of particular interestgnd therefore

Biophysical models such as the FHN and the Hodgkin-

Huxley models improve their performance in an environment

of correlated inputs which is certainly of extremely possible H max— Hmin= ﬁ(vmax) _ﬁ(vmin)"_ﬂ(vmax_vmin)v
case in a neuronal assembly. The phenomenon is also the

main ”f‘o“‘(a“"” of our pr.esent approach in .th's secpen .. whereva and vy, are the value at whicld attains the

se to find integrate-and-fire type models which are qualita-|5.,| maximum and minimum. As we mentioned before for
tively in agreement with biophysical models. Suppose thai,e |F.FHN model, its behavior does not substantially
the correlation between synapsescis0. Figure 7 clearly change if we set the threshold as a value in§igde,,1].

shows now the contradictory between biophysical models Figure 8 shows an application of Kramer’s formula to the
and integrate-and-fire type model is resolved. Our simulatF-FHN model with correlated inputs. When the input is un-
tions further confirm that the key difference between thecorrelatedc=0.0, Kramer’s formula gives a rough estimate,
FHN model and the conventional integrated-and-fire modelyith an obvious discrepancy between numerical results and
lies in the fact that the former has a nonlinear leakage coeftheoretical estimate. Nevertheless when a small correlation is
ficient. More specifically, let us look at th@y-(u,0) sur-  added €=0.005), i.e., the IF-FHN model receives a more
face of the IF-FHN model. FirsCy, is a decreasing function random input, Kramer’s formula gives an excellent estimate.
of the input correlation coefficient (Fig. 7), as in the HH  As one might expect, the mean interspike interval and stan-

model (Fig. 4). Secondly, for inputs with a fixe€, whenr  dard deviation exhibits a linear relationship.
varies from 0 to 1,C,, changes, but only slightly. For ex-
ample, whenc=0.1, Cy, of the IF-FHN model is close to
0.1, almost independent of This fact implies thaC,, fol-
lows the contours of the response surface, as in the HH In summary, in Ref[1] independent inputs to neuronal
model (Fig. 4). models are considered and it is reported that the IF model
From the data shown in Fig. 6 we might envisage thatand the HH model behawdifferently The present work car-
Kramer’s formula can predict the model behavior, which hagies this a considerable stage further in that, when correlated
been successfully applied to estimate the firing rate in certaiinputs are considered, the IF and HH model behave in totally
circumstance$22]. Kramer’s formula(a special case of the oppositeways: theSyr of the IF model decreases with the
large deviation theory, see R¢R23], and references therein increase of the input correlation; while tt8 of the HH
for details[24]) reads model increases. The conclusions of the present work would
be informative, in particular when we deal with network
models where inputs to each unit are bound to be correlated.

VII. DISCUSSION

- o For a given neuron with stochastic inputs, the response sur-
(T)~ exfd 2(Hmax— Hmin)/ 2], face provides us with a valuable way to understand its be-
\/H"(vmin)|H"(Umax)| havior. Finally, using the IF-FHN model, we pointed out that

(6.11 one of the key difference between the IF model and the HH
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" A . the rising or decay time is long enough, which means that,
instead of the Brownian motion, we have to resort to the
2000, siuieten T Ornstein-Uhlenbeck process to approximate the synaptic in-
60 I C=0.00%, smuiaton % 1 put. A thorough consideration of the latter case is outside the
=000 simiaton % " scope of the present paper and we will report it in further
50 010 smumen o S+ publications.
g . In the present paper, we assume that there are correlations
E ol f among excitatory synapses and inhibitory synapses, but not
% i beMeen them. Itis also iIIumin'ating to considef thg case that
£ . i _(a) inhibitory inputs are totally independent @) inhibitory
§ N inputs and excitatory inputs are correlated with a correlation
= + coefficientcE!(i,j). For the casda), o2 in Eq. (3.3 be-
op 1 comes
,,,,,, RVRR R
I — K xR |
R i o 22 e R 1] 0_2: a2p)\E+ qu)\I + az)\EE C(l ,j ) (71)
% 20 40 60 8 100 1]
Number of inhibitory synapses

(B

70

Therefore in theCy-(u«,o) surface(see Fig. 4, all trajecto-
ries (b)—(e) with c>0 andq>0 (q=0 corresponds to the
points indicated by circlehave a shift towards the left. For
example, whert=0.04 andq=p the point indicated by the
rectangle of the trajectorf is at point+/14.9 rather than 5.

In words, the model behavior is less affected by input corre-
lations. For the casfb), similarly we have

Standard deviation

p q
o?=a?phe+b2g\,+a2\g Y, c(i,j)+b2\, > c(i,j)
=3 B3

p q
_Zab\/)\E)\liZ:l 12‘1 c®l(i,j) (7.2

0 A ingume D O Depending on whether inhibitory and excitatory inputs are
positively or negatively correlated, the input varianeé
FIG. 8. A comparison between Kramer’s formula and numericalcould be either reduced or enhanced. Nevertheless, the model
simulations with parameters as specified in the context100. behavior could be understood by a simple calculatiop @f
and looking up the response surfaces.

€ For a “linear” model such as the IF model, we naturally

former, but it depends on the membrane potential for the,, et that an increase in the input mean or variance resuits
latter. Thg difference bgtween the IF model and the IF-FHN, "an increase in the output mean or variance. For some
model might also provide a clue for the phenomenon oby,qjinear models such as the HH model and the IF-FHN
served in Ref[2_5]. . . model, our results tell us that it is not always the case. In fact
Let us now discuss some related issues which we have NQlis well known in the literature that the HH model can, in

taken into account in the present paper. certain circumstances, increase its firing rate with an increase

W? h"’(‘jv? only (\‘,/(\Z)/ESidel’eC:dtf;le case 0:] so-called slpatiall)éf inhibitory inputs, the so-called post inhibitory rebound
correlated inputs. What would happen when temporal corréroq) - o results here reveal another interesting, similar be-

I(;a_nqns ".irﬁ alsok'galéen ;nto acconlmt? Hler_e we r;]ave to fl'r avior of the HH model: an increase in the input variability
istinguish two kinds of temporal correlations: the correla-res it in a decrease in the output variability.

tion between spikes of a single input spike train and the
correlation due to the rising and decay time of input spikes

(noninstantaneous inputs such as theynapse inpuf22]). ACKNOWLEDGMENTS
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