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Fluctuation pressure of a stack of membranes
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We calculate the universal constants in Helfrich’s pressure law for a stadknoédmbranes between walls
by strong-coupling theory. Using the close analogy between this system and a stack of strings, where the
universal constants are exactly known, we construct a smooth potential that keeps the membranes apart. The
strong-coupling limit of the perturbative treatment of the free energy yields pressure constants for an arbitrary
number of membranes, which are in very good agreement with values from Monte Carlo simulations.

DOI: 10.1103/PhysReVvE.63.051709 PACS nunier87.16.Dg, 05.46-a

[. INTRODUCTION Our results are in excellent agreement with all available
Monte Carlo estimatel8—5] for N=1,3,5. By an extrapola-
Membranes formed by lipid bilayers are important bio-tion to N—o we determine the pressure constant for
physical systems occurring as boundaries of organells anifinitely many membranes.
vesicles. In equilibrium with a reservoir of molecules, ten-
sion vanishes and the shape is governed by extrinsic curva- l. STACK OF STRINGS

ture energyEc . If a stack of membranes is placed between e begin by studying the exactly solvable statistical
two parallel walls, violent thermal OUt'Of'plane fluctuations properties of a stack dfl almost para||e| Strings in a p|ane,
of the membranes exert a pressyraipon the walls. The \yhich are not allowed to cross each other and whose average
pressure law was found by Helfrichl] and reads foN  spacing at low temperature & The system is enclosed be-
membranes tween parallel linelike walls with a separatiaras illustrated
2 in Fig. 1. In the Monge parametrization, the vertical position
2N (kgT) , potaInet . ;
= ay , (1.2 of a point of thenth string isz,=2z,(x). Since the vertical
N+1 ka’ positions of thenth string are fluctuating around the low-
temperature equilibrium position af, it is useful to intro-
duce the displacement fields

whereL=(N+1)a is the distance between the walls axd
is the bending stiffness. The universal pressure constgpts
are not calculable exactly. For a single membramg was @n(X)=2z,(x)—na. (2.1
roughly estimated by theoreticfl] and Monte Carlo meth-

ods[2-5]. The most precise theoretical result was obtainecill—gr?atlr:ﬁ:emorg?'nam'c partition function is given by the func-
by strong-coupling theory[6] yielding «'=0.0797149, 9

which lies well within the error bounds of the latest Monte N eni10+a dep(X)
Carlo estimatex"'°=0.0798+ 0.0003[5]. ze=[1 11 f —
For more than one membrane between the walls, the n=1 "% | Jen-100-a y27kgT/or

strong-coupling calculation of Rdf6] must be modified in a den(X)

nontrivial way. We must find a different potential that keeps ><exp{ 2 J [ ©n } ] 2.2
the membranes apart and whose strong-coupling limit en- 2kBT n=1

sures noninterpenetration. For this, we take advantage of the =)
fact that membranes between walls have similar properties tc

a stack of nearly parallel strings fluctuating in a plane be-
tween linelike wall§7,8], in particular the same type of pres- N
sure law(1.1) with « substituted by the string tensien The
characteristic universal constants of the latter system were
exactlycalculated in Refg5,7] from an analogy to a gas of 3«
fermions in 1+1 dimensiong9-11]. We use these exact ,,
values to determine a potential that, when applied to the
stack of membranes, yields a perturbation expansion for the ¢
pressure constants for ambitrary number of membranesto , | 0
be evaluated in the strong-coupling limit of complete repul-
sion. “

FIG. 1. Stack ofN strings with equilibrium spacing between
two walls of distance.. The magnifier shows the local displace-

*Email address: mbach@physik.fu-berlin.de ment field pn(X) as the distance from the positidvia. The walls
"Email address: kleinert@physik.fu-berlin.de are labeled by 0 and + 1 and treated as nonfluctuating strings with
*Email address: pelster@physik.fu-berlin.de eo(X) =N+ 1(X)=0.
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whereo is the string tensionT is the temperature, and; is Vi (Vza(x))
the Boltzmann factor. We are interested in the free energy
per unit length

keT
S=— %m zs (2.3

with A= [ _dx. Since the strings may not pass through each forse v

other, the fluctuationg,(x) of thenth string are restricted to

the interval small s
®n(X) E{(,Dn_l(X)—a,(,Dn+1(X)+a}. (2.9 : - - - =
A. Free fermion model FIG. 2. PotentiaIVM(Vnzn(x)) of string-string interaction for

The restriction(2.4) makes it difficult to solve the func- finite 4 and smallu as a function ofV,z,(X) =z,(X) =z~ 1(X).
tional integral(2.2) explicitly. It is, however, possible to find The strings repel each other strongly f6rz,(x)—0, while the
a solution using an alternative of the same systems as a (dotential has a minimuim at the equilibrium separat®gz,(x)

+1)-dimensional Fermi gas observed by de Gerjf@ésUs-  =a, and we choose to normalize it to zero at that point.
ing this analogy, Gompper and Kr¢B] determined the &7
contribution toAfy relevant for the pressure la(.1) as depends on the positiorzg_;(x) andz,(x) of the neigh-
) boring strings. Thus the potential will be taken as a sum,
(kgT)
Afyman—— 29 Verr (20(X),21(0), - - - 2n(X), 230+ 1(X))
o N+1
with the pressure constants =5 zl V ,(V1z4(X)), 2.7
m 2N+1 -
INTIDNF1 (2.6 where V,z,(x) denotes the prepoint lattice gradien{(x)

—2,-1(X). This potential includes the interaction of the first
For N—oo, this constant has the finite limitS = 72/6. The and last strings with the walls as nonfluctuating strings at
analogy with fermions cannot be used to calculate the fredo=0 andzy,,;=(N+1)a=L:
energy of a stack of membranes, where only approximate

methods are available. We shall use a strong-coupling theory ¢o(X)=en+1(x)=0. 2.9
as in Ref.[6]. As a preparation, we apply this theory to the o ) — i
exactly solvable system of a stack of strings. In the limit .—0, the potentiaV,,(V,zy(x)) should again

yield an infinitely strong repulsion of two neighboring
strings forz,(x) close toz,_1(x). For z,(x)>z,_1(x), the
limiting potential should be zero. As a matter of choice, we
‘The difficulty in solving the functional integra(2.2) et the potential between two strinQ@(Vnzn(x)) be mini-
22'Sgehsbgr9r:g g?nrgesStq'(gl?jmeélég Otfh ttr;lesﬂsut(r:g:%mr):; Ik:)syo:]he emal and zero at the positiorg®=na andz?,=a(n—1):
i i ings. wi i ulsion, w = eq _e
introduce into the action of the functional integr@.2) a dV,(a)/d Vazo(x) =0 andV,(z3%-2311) =V, (2) =0 (see
smooth potential that keeps the strings apart in such a wa 9. 2. . o I
that the integration interval for the fluctuations can be ex- The Taylor expansion around the miminum is, in terms of
tended top,(Xx) e {—=,~}. At the end, we take a strong- the variabled2.1),
coupling limit which ensureg2.4). In Ref. [6], such a 5 o
method was used to evaluate the pressure constant for o%(vn%(x)): %[7n<pn(x)]2+,u22 g Vreon(X)]<2.
membrane between walls. The smooth potential for the k=1
analogous case of one string s V(e(X)) 2.9
=(2a ul7)*tarf[ we(x)/2a], which describes the hard
walls exactlyfor u— 0. This potential is symmetric and pos-
sesses a minimum ag(x)=0. Thus its Taylor expansion
i ihe case ol stings, the minima of the repuision po- AN example or a potentil showing qualatively the be-
tential should lie at the equilibrium positions of the strings.hav'orf Fig. 2 with a Taylor expansion of the tyj§2.9)
The Taylor expansion of such a potential will also haveiS V.(VnZa(X)) = ,uz(a/[Vnzn(x)]zl—.2./Vn.zn(x) + 1/a)/2,
terms with odd powers. Unlike the one-string system, wherévhich vanishes everywhere for infinitesimal, except at
fluctuations are limited by fixed walls, the range of the dis-V,z,(x)=0. The strong-coupling limit of the perturbative
placementsp,(x) of the nth string in anN-string system expansion of ordeg? presented in this paper cannot yield,

B. Perturbative approach

The parametery governs the harmonic term, whereas
higher-order terms scale with the coupling cons@gntl/a,
which makes the coefficients, dimensionless.
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however, reasonable results for such an arbitrary choice of [GS,(x,x")] !
the potential. The calculation of higher-order perturbative "
coefficients requires high numerical power, which would > N
make this procedure of calculating the universal constants N+1 E sinvynasinv,n’a
inefficent.
Thus, we continue with the Taylor expansi¢9), and < dk ' ,
the partition function(2.2) becomes Xf Z[Gﬁ,(k)]‘le"k(x‘x) (2.15

2

(X)

with the Fourier components

N+1
S_ | N
z _,ILlino i; DNop(x) exp{ KT nEl f H

[GS(K)] 1= [K2+ 2% S vpal2)]. (2,16
l _ kBT
+ EMZ[VHQDn(X)F) J

Integrating ovelk in the spectral representatid®.15 leads
p{ > N+1 ] immediately to the correlation function in configuration
X ex

_mMZE (o%s) E f dX[Va@n(x)]<2 space,
(2.10 G (x,x")

N . .
1 kgT sinyynasiny,,n’a

with the integral measure = = .
V2(N+1) po m=1  sin(vyal2)

N s P

) d(Pn(X) xXe~ V2u|x—x"|sin(ryal2) (2_17)

DNe(x)= —. (2.1 '
fﬁ e00=11 1 { SN e 7 R

and to the harmonic partition functid2.12),

The harmonic part of the partition function can be written as
Z5=exp — —TrIn [GS] 1} =e Afu/eT (2,18

N+l N+1

= fﬁ DNo(x) exp{ 5 nEl E f dxf dx’ @p(X) the exponent giving the free energy per length,
n’

o _ kgT si 7N/A(N+1)]
x[Gnn,(x,x')]l%,(x')] (2.12 N BT TSN AN+ 1)]

(2.19

which vanishes fopu=0.
The full partition functionZ® in Eq. (2.10 is now calcu-
lated perturbatively. We introduce harmonic expectation val-

with the functional matrix

ues
(G} (xx")]! —U 2+l 2y, v )5(x x')é,
, s = — —_— M nnl.
nn keT | gy 2 mszzsflﬁgpm «
(213 (- )u=lZ,] @(x)
N+l N+1
Here V¢, (X) = ¢n4+ 1(X) — ¢n(x) denotes the postpoint lat- Xexp{ 3 n21 > f dxf dx" @n(X)
~ n=1+9J~-

tice gradient in thez direction, andV,,V,, is the lattice ver-
sion of the Laplace operat¢t2].
Let us now impose the vanishing of the fluctuations of the X[Gfm,(x,x’)]‘l%,(x’)] (2.20
walls (2.8), corresponding to Dirichlet boundary conditions.
For a finite numbeN of strings, the Kronecker symba}, ,»

in Eq. (2.13 has the Fourier representation in terms of which the correlation function is given by
N G (XX ) =(@n(X) @nr (X)), - (2.21
Onnr = siny,nasinv,n’a 2.1 . . . .
TN A E Fm ¥m 219 The perturbation expansion contains the two-point correla-

tion function ofV,,¢,(X), which is given by

with wave numbersy,=mm/(N+1)a. Thus the kernel _ _ e )
[G; . (x,x")]~! may be written in Fourier space as (Vaen() Vo @n (X)) =V, Vo Go L (X,X). (2.2
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We now expand the second exponential in €410 in pow-  system(2.19 vanishes in the limitu—0. The first cumu-
ers of the coupling constagt Harmonic expectation values lants are the expectations

with odd powers oﬁngon(x) do not contribute, and the ex-

pansion reads (01(V n, (x1)))3, = (01(V i, (X1)))5
N-+1 — = s
Z5= I|m Z;| 1-g? 7Kg T”‘ 022 f dX([Vaen() 145, <01(V(pn1(x_l))02(vgonz(f)»ﬂ'c
. =(01(V e, (x0))0x(V gy (x2)))5,
1 0_2 N+1 - » o - o
~ 51 4k2T2“4 znnE_l ~dx de' ([Vaen(X)]? —(01(V e, (x0)))5( 02V o (X))

(2.25
(2.23

X[€n"Pn’(X,)]3>i) +

In the sequel, we restrict ourselves to the terms of secon : : e _

order ing= 1/a, which contribute directly to the pressure law __ fefined for an)./ poly-/nomlal functionO; (V ¢y, (xi)) - of

as in Eq.(2.5). The higher powers diverge far—0, and in v @n (). Following Wick's rule, we expand the expecta-
Ref. [6] it was shown how to calculate from them a finite tions into products of two-point correlation functio(&22).
strong-coupling limit. Here we shall ignore these terms forThe different terms are displayed with the help of Feynman
reasons to be explained shortly. Reexpressing the right-hardlagrams, in which lines and vertices represent the correla-
side of Eq.(2.23 as an exponential of a cumulant expansion,tion functions and interactions:

we obtain the free energy per length,

X1,N1——Xz,N2 — <Vn1<Pn1(X1)Vn2§Dn2(X2)>Z ,

(2.26

N+1

_>2f dx. (2.27

N+1
fR=lim g2 (2k serien S, | ax(Tae019;

n—0

1 0_2 N+1
——putc? de dx’
T o0 4k2 2 lnn T,

In what follows, we assume that the potential paramatgrs
with k=3 are chosen in such a way that they make all terms
(2.29 of order g* and higher vanish. Dividing the free energy
(2.24 by N, we obtain the following expression for the free
energy per length and string, which can be compared with

We have used that the free enerfy, of the harmonic Eg.(2.5):

X[V () LV on (X)) 15)S

3op? 1
ai=tim {35 OO ~snamd (O + O-0 )} 228

The calculation of the Feynman diagrams is straightforward using(Z47). The evaluation is only complicated by the
Dirichlet boundary conditions, which destroy momentum conservation. This makes the numeric calculation quite time-
consuming for an increasing numbirof strings. As an explicit example, consider the sunset diagram, which requires the
evaluation of the multiple sum

N+1

k T m m m
@ = AT ud 2(N+1 Z Z h"llnzhnlzﬂzhnlsnz

ny,na=1 m13m2

1

% Sin(Vm, a/2) sin(Vm,a/2) sin(Vm,a/2) [sin(vm,a/2) + sin(vm,a/2) + sin(vm,a/2)) (229

051709-4



FLUCTUATION PRESSURE OF A STACK OF MEMBRANES PHYSICAL REVIEW &3 051709

with the abbreviation kgT

g

|
W5=A( ) (o= Dpysr, (2.31)

hnmlnzzsinvmnlasinvmnza—sinvmnlasinvm(nz—1)a
—sinvy,(n;—1)asiny,n,a

[ i This brings Eq(2.28) to the f

+sinvy(n—1)asinvy(n,—1)a. (2.30 is brings Eq(2.28 to the form

It is useful to factor out the physical dimension of the dia-

gram. Any Feynman integral® with | lines andv vertices 212

can be expressed in terms of a reduced dimensionless Feyn- AfiI:aSNB_, (2.32
man integraW*" as 2

w32 CO -4 © 7+ 00 ")) ez

where the diagrams indicate the reduced Feynman integralsonstantay, in the strong-coupling limit. We simply observe
Their values are listed in Table | for different string numbersthat it is possible to choose the higher expansion coefficients
N. Note that the H? contributions to the free energy per ¢, to make all higheg" contributions vanisti14].
length and string in Eq2.28 are independent gi since the
u prefactors are canceled by the dependence of the dia-
grams. Thus the limii— 0 becomes trivial for these contri-
butions. Having determined the parametersandc, of the Taylor
With the knowledge of the exact values of the constantsxpansion(2.9) of the smooth potential applicable for any
ay, from Eq.(2.6), we are now in a position to determine the number of strings, we shall now use the same potential for a
potential parameters; andc, from Eq.(2.33 to obtain the perturbative expansion in a stack dfmembranes displayed
exact result from the two-loop expansi¢h33. Comparing in Fig. 3. The equilibrium spacing at low temperature be-

Ill. STACK OF MEMBRANES

Egs.(2.33 and(2.6) for N=1 andN=2, we obtain tween the membranes is aga@nDenoting the vectors in the
plane byx=(x,y), the vertical displacements of the mem-
™ w? branes from the positionma are ¢,(x), with Dirichlet
€G1=3. 2775 (239 poundary conditions at, andzy . 5,

Note that Eq.(2.33 consists of more equations than neces- ©o(X) = @n11(x)=0. (3.2
sary to compute,; andc,. It turns out, however, that all of
them give the same; andc,, such that the same potential For membranes without tension, the energy has the harmonic
(2.9 can be used for anil. This is the essential basis for approximation
applying this procedure to a stack of membranes.
We now justify the neglect of the higher powers that K
would in principle give a further contribution to the pressure Ec,n=§j d’x [ en(x) ]2, (3.2

TABLE |. Reduced numeric value®/" of the two-loop dia-
grams for the free energy for a stack Mfstrings.

N OO e’ o007

.S

1 12 0 0

2 1.288675 0.398717 0.089316

3 2.100656 0.832299 0.146447

4 2.915827 1.270787 0.184463

5 3.730993 1.709326 0.211325

6 4.545586 2.147034 0.231245 FIG. 3. Stack of self-avoiding fluid membranes fluctuating in
7 5.359574 2.583849 0.246583 the z direction between two walls. As for the previous stack of

strings, the walls are treated as nonfluctuating membranes.
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where k is the bending stiffness antf= 07 +a is the La- TABLE II. Numeric valueswW' of the reduced two-loop Feyn-

placian in the plane parallel to the walls. By analogy with theman integrals contributing to the pressure constants of a staik of
preceding section, the kernel of the harmonic stack nownembranes in Eq3.15.

reads
N o7 & OO

K
(G0 Xo)] ™= = (| L, P 51V, Vi,

1 1/32 0 0
X604 X2)5”1”2' @3 2 0.080542 0.022446 0.005582
where we have used a mass paramgteinstead ofu?, for 3 0.131291 0.046992 0.009153
dimensional reasons. The partition function for the stack o 4 0.182239 0.071866 0.011529
membranes is then written up to ordgi=1/a® by 3 0.233187 0.096762 0.013208
6 0.284099 0.121619 0.014453
N*l 7 0.334973 0.146428 0.015411
Z=lim 45 DNe(x) eXD{ > > | dx 8 0.385815 0.171195 0.016172
n=0 M=t 9 0.436630 0.195925 0.016789
10 0.487422 0.220624 0.017300
xf d?x, gonl(Xl)[Gnlnz(Xl,XZ)]_lcpnz(Xg)} 11 0.538197 0.245300 0.017730
12 0.588958 0.269954 0.018097
N+1 13 0.639706 0.294592 0.018414
1-g? T T,u CZE deX[V¢n(X)]4 14 0.690444 0.319215 0.018690
15 0.741174 0.343827 0.018933
K2 32%1 g2 jdz g()s
Tt e ) O %2l Vén, (0] — Ko(2Y4 =T8I mmal2) e X, — Xo|) ]
(3.6)
X[V‘P”Z(XZ)P) ' 34 For x;=X,=x andn;=n,=n, this reduces to
with the same parametecs andc, of the Taylor expansion 1 KT N sirtuona
(2.9 as in the string system, determined in E8.34). We G X, X)= ————— B —
neglect terms of ordeg®, which certainly contribute in the b V32AN+1)u?2 « m=1sin(vyal2)
strong-coupling limit, and which vanish only for the strings, (3.7

where the partition functiof2.23 with the choice(2.34) for
the parameters, ,c, is exact in second order. An evaluation leading to the partition function of the harmonic system,
of the neglected terms by variational perturbation theory is
expected to give only a negligible contribution to our final 1
result. Z,= expl’ —=TrinG ]
Inverting the kernel(3.3) yields the correlation function

5 kT LA S|r{77N/4(N+1)] 39
=e .
Gnyn,(X1,X2) = NT+1 = mz_ sinvyniasinvyn.a xp — 8 sifm/4(N+1)]
o2k 1 where A= [d?x is the area of the projected plane of the
f _ “ikkq=x)  membranes. The free energy per aredy ,=
(2m)% K*+ 2 usiré(vpal2) —(kgT/A)InZ,, vanishes again fop=0.
s for the calculation of the free energy of the stack o
(3.5 As for th lculati f the f f th k of

strings, we introduce harmonic expectation values
The explicit calculation of the Fourier integral leads to a
difference of modified Bessel functioig(x) as in Ref[6]:

(12,07 $ Do

G ( ) i kgT
X1 ,X5) = ————————— ——
nyn (X1, X2 > g NFL N+
8m(N+1 K ® o
\/—77( )/-L XGXF+ 2 2 2 dZXf dZX,an(X)
x% sinvyniasinvgn,a A o
m=1 sin(v,al2) .
X[Gpn (X, X)) ]~ (X") (3.9
X [Ko( 214\ i i vyal2) | X1 o) " ’
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which appear in the perturbation expansion of E34), the N+1

cumulants yielding a perturbative expansion for the free en- ¢ — E d?x, (3.11
ergy per ared = —(kgT/A)InZ. The lines and vertices in n=1

the Feynman diagrams now stand for

— — and the two-loop approximation to the free energy per area
X1, Xp,N2 = (Vi @n (X1) Vo, en,(%2)) (310 and membrane in order? reads

) 72 kut w2e2u® (1 1
Afy = limy {Im 0 -tz (569 +5 OO iz (3.12

21 r1 r1 -
w=5(;00 -5 -:0-0)
(3.19

The pressure exerted by the membranes upon the walls is
obtained by differentiating the free enerfly=NATfy with
respect to the distance of the wallssa(N+1):

Going over to reduced Feynman integrals as in @31,

keT)'
W:A(%) M—Z(H—v—l)wr' (313)

wherev is the number of vertices adhe number of lines
of the diagram, we obtain aAfy 2N K3T?

=—N = o .
Pn gL N+1N 3

(3.16

272
Afy= aNkB_T, (3.14 T_he first and the last Feynman integrals in E2j15 are the
Ka simplest:

. 1 N+1[ N pm 2
QC) = 32(N + 1) ; [Z sin(z/ma/fz);l ’ (3.17

m=1

, 1 N+1 N h™ pm2 pm3
OO =gy X 2 iyt e , (318
32(N +1)8 Sin(Vm, @/2) sin®(Vm,a/2) sin(vm, a/2)

ny,ne=1 "‘"}3’;‘3

where we have used the abbreviatib[ﬁlnz defined in Eq. from the free energy of the complete system averaged over

(2.30. The evaluation of the second diagram in Ej15 is a!l membranes. Thqs these Monte Carlo values cannot be
much more involved. The Fourier integrals can be done exdirectly compared with ours. o

actly, except for one, which must be treated numerically. Table 11l contains a_Iso a value., for_ an infinite number _
This calculation is deferred to Appendix A. The values of theN— of membranes in the stack. This pressure constant is
three diagrams are listed in Table Il for various numbers ofbtained by the following extrapolation procedure. We as-
membranes. With these numbers, the evaluation of the pre§Ume that the pressure constants determined Nor
sure constants yields the results given in Table IIl. Except for= 12,13,14,15 are of higher accuracy than those for lower
N=1 and N—c, no analytical values were found in the numbers of membranes. This assumption is justified by com-
literature. We also compare with pressure constants obtaing@Rring our values foN=1,3,5 with the latest Monte Carlo

by Monte Carlo simulations and find a good agreenfidr]. results[5]. For N=1, the deviation is about 3.4%. Consid-
The values of the Monte Carlo simulations ftw=3,5,7 ering N=3, the deviation reduces to 1.8% and further to
from Ref. [3] show an independence of the numbérof 1.1% for five membranes. Since the pressure constants are
membranes. This arises by the simulation technique, wherapproximated increasingly fast with an increasing nunitber
the free energy of the central membrane was determined. lof membranes, we make the following exponential ansatz for
contrast to that, we have calculated the pressure constadéetermining the approach to infinité
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TABLE lll. Pressure constantay for different numberdN of membranes in the stack, calculated from
Eq. (3.195, with the numerical values of the two-loop diagrams given in Table Il. We compare with results
from Monte Carlo simulations and earlier analytic results.

N an Monte Carlo results Earlier analytic values
1 7?/128~0.07711 0.0602], 0.078-0.001[3], 0.0798+0.0003[5], w2/128[4,6], 0.0797156]
0.080[3]

2 0.08669

3 0.09134 0.093 0.004[5], 0.1002+0.0006[3]

4 0.09408

5 0.09590 0.09665], 0.1022+0.0006[3]

6 0.09719

7 0.09815 0.10020.0007[3]

8 0.09890

9 0.09950

10 0.09999

11 0.10039

12 0.10074

13 0.10103

14 0.10129

15 0.10151

© 0.10409 0.07413], 0.101+ 0.002[3], 0.106[5] 37%/128~0.23[1]
= a.[1— 7exp(— EN)]. (3.19 IV. SUMMARY

We have calculated the pressure constants for a stack of
different numbers of membranes between two walls in excel-
lent agreement with results from Monte Carlo simulations.

The unknown four parameters in this equation are then defhe requirement that the membranes cannot penetrate each
termined by solving the system of equations with the presether was accounted for by introducing a repulsive potential
sure constantg,, 13,14, andays listed in Table lll. We  and going to the strong-coupling limit of hard repulsion. We
obtain n~1.1712,£~1.6417,e~0.3154, and thus the lim- have used the similarity of the membrane system to a stack
iting pressure constant for an infinite stack of membranes, of strings enclosed by linelike walls, which is exactly solv-
able, to determine the potential parameters in such a way that
the two-loop result is exact. This minimizes the neglected
terms in the variational perturbation expansion, when apply-
a.~0.1041. (3.20  ing the same potential to membranes.
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APPENDIX: EVALUATION OF THE SUNSET DIAGRAM

The second diagram in E@3.15 requires some simplification before the numerical calculation. We write the reduced
Feynman integral as

N+1 N
- S ST A AT AT D
@ - m h”llnz hnll‘ﬂzhnllngKmlmzm3
ny,me=1 m1m2:

my=1
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with the integral

d%k, d%k, d%ks

PHYSICAL REVIEW &3 051709

e—i(k1+ ko+kg) (X —Xo)

K =f d?x,d?x j . (A2)
MMM 5 2m? (2m)? (2m)? (Ki+ 2sirfey, @) (K3 + 2siP vy, ) (KE+ 2sif vy, @)
|
All integrals are easily calculated, except for one. If we in- 1 2
troduce abbreviations J dXTb-f— = \/_K arctanz(x) (A9)
ax X+c
M,2=25inzvmla, 1=1,2,3, (A3) with
we find ) b+ 2ax
A=4ac—b*, z(x)= ,
(X) 7
K Afoodk k J(k,M2,M2)  (A4)
mmom; = 5 __ 1 2 Vi, VI
TR 2mlo kM3 a=—k2, b=K:+i(y1=y2), C=iy,. (ALO)
with Sinceb is a complex number, Re arctars discontinuous, if
Rez changes sign andm z|>1. Thus the right-hand side of
d2p 1 1 Eqg. (A9) is discontinuous at a certain poirt within the

J(k,M2 M2)= .
(oML M2 f(ZW)Z (p—K)*+ M7 p*+M3
(A5)

Decomposing the integrand into partial fractions

1

J(k,M2 M%) =—
(M3, M2) (p—K)2+iM,

1 fdzp
AM M) (277)2
1
(p—k)?—iM

1 1
p2+iM2 pz_iMz

1
- — 4M1M2[|(k,Ml,Mz)_I(k,Ml,_Mz)

—1(k,=M1,Mp)+1(k,—~M1,—My)]
(A6)

we are left with integrals of the type

d’p 1
(2m)? (p—K)*+iy, pPP+iv,

2= | . (A7)

wherey, ,=* M, , are real numbers. Employing Feynman’s

parametrization, these integrals become

1
—XPK2 4+ X(K2 iy, —iy,) +iy,
(A8)

1 1
I(k171")’2)zﬂfo dx

taking the general form

interval [0,1]. As will be seen subsequently(k,M3,M?3)
from Eq. (A5) must be real and thus all imaginary contribu-
tions in the decomposed for(@6) cancel each other.

We determine the point of discontinuikg to obtain the
solution of the integralA8) by investigating the zero of the
real part ofz(x). Decomposing(X,) into real and imaginary
parts, we obtain

R =|A|"YqK?(1-2 : t Red
ez(x)= ( X)Cco 5 arc anImA
(1 ReA ALY
+(y1— v2)sin Earctanm , (A11)
| ALY B 1 . ReA 2
mz(x)=|A[" (y1~ y2)cog 5 arctan,
1-2x)si ! ed Al12
X (1—2x)sin Earctanm , (A12)

where

ReA=(y;—v,)?>—k* ImA=—2Kk*(y1+ y,).
(A13)

|

(A14)

Thus, the zero of RE(x) is found at

1 Y172 1 2k?(y1+ v2)
Xo==11+ tan = arctan————
7 k? 7 k4_(7’1_7’2)2
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From the bounds of integration in EGA8), it follows that we must include the discontinuities of E49) for x,e[0,1]. This
occurs ifk<|y;— v,| and signy, # signy,. Thus the solution of the integréh8) reads

S(K,y1,72. X525, sign y1=signy,\/(signy; # signy,Ak= /| y1— y2)),

HKey172) =) lim Sk, y1,72 0L+ S0y, 72 X[k o) sionys#signy, A<\ [y =], (ALY
e—0
whereS(k, y1,7v2,X) is the explicit right-hand side of EGA9):
1 k*(1=2X)+i(y1— 72)
S(K,y1,72,X) = . arctan . : (A16)
27\ (y1— ¥2)?—K* = 2ik*(y1+ 7,) V(y1= v2)2 = K*=2ik*(y1+ 7,)
The functionl (k,y,7,) possesses the properties
(K, y1, = v2) 1K, = y1,72) =2 Rel (K, £ y1,+ ¥2), (A7)
LK, v, v2) 1K, = y1,— v2) =2 Rel (K, = y1, £ 7). (A18)
Inserting Eq.(A15) into Eq.(A6), the remaining integral in EqA4) together with the sums in expressiohl) for the sunset
diagram can be calculated numerically. The values are listet fot, . . . ,15 in thethird column of Table II.
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