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Fluctuation pressure of a stack of membranes

M. Bachmann,* H. Kleinert,† and A. Pelster‡

Institut für Theoretische Physik, Freie Universita¨t Berlin, Arnimallee 14, 14195 Berlin, Germany
~Received 16 November 2000; published 26 April 2001!

We calculate the universal constants in Helfrich’s pressure law for a stack ofN membranes between walls
by strong-coupling theory. Using the close analogy between this system and a stack of strings, where the
universal constants are exactly known, we construct a smooth potential that keeps the membranes apart. The
strong-coupling limit of the perturbative treatment of the free energy yields pressure constants for an arbitrary
number of membranes, which are in very good agreement with values from Monte Carlo simulations.

DOI: 10.1103/PhysRevE.63.051709 PACS number~s!: 87.16.Dg, 05.40.2a
io-
a
n
rv
en
ns

s

e

te

th

ps
e
f t
s

be
-

e
f
t
th
th

o
ul

ble

al
,
rage
-

on

-

c-

-

th
I. INTRODUCTION

Membranes formed by lipid bilayers are important b
physical systems occurring as boundaries of organells
vesicles. In equilibrium with a reservoir of molecules, te
sion vanishes and the shape is governed by extrinsic cu
ture energyEC . If a stack of membranes is placed betwe
two parallel walls, violent thermal out-of-plane fluctuatio
of the membranes exert a pressurep upon the walls. The
pressure law was found by Helfrich@1# and reads forN
membranes

pN5
2N

N11
aN

~kBT!2

ka3
, ~1.1!

whereL5(N11)a is the distance between the walls andk
is the bending stiffness. The universal pressure constantaN
are not calculable exactly. For a single membrane,a1 was
roughly estimated by theoretical@1# and Monte Carlo meth-
ods @2–5#. The most precise theoretical result was obtain
by strong-coupling theory@6# yielding a1

th50.079 714 9,
which lies well within the error bounds of the latest Mon
Carlo estimatea1

MC50.079860.0003@5#.
For more than one membrane between the walls,

strong-coupling calculation of Ref.@6# must be modified in a
nontrivial way. We must find a different potential that kee
the membranes apart and whose strong-coupling limit
sures noninterpenetration. For this, we take advantage o
fact that membranes between walls have similar propertie
a stack of nearly parallel strings fluctuating in a plane
tween linelike walls@7,8#, in particular the same type of pres
sure law~1.1! with k substituted by the string tensions. The
characteristic universal constants of the latter system w
exactlycalculated in Refs.@5,7# from an analogy to a gas o
fermions in 111 dimensions@9–11#. We use these exac
values to determine a potential that, when applied to
stack of membranes, yields a perturbation expansion for
pressure constants for anarbitrary number of membranes t
be evaluated in the strong-coupling limit of complete rep
sion.

*Email address: mbach@physik.fu-berlin.de
†Email address: kleinert@physik.fu-berlin.de
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Our results are in excellent agreement with all availa
Monte Carlo estimates@3–5# for N51,3,5. By an extrapola-
tion to N→` we determine the pressure constanta` for
infinitely many membranes.

II. STACK OF STRINGS

We begin by studying the exactly solvable statistic
properties of a stack ofN almost parallel strings in a plane
which are not allowed to cross each other and whose ave
spacing at low temperature isa. The system is enclosed be
tween parallel linelike walls with a separationL as illustrated
in Fig. 1. In the Monge parametrization, the vertical positi
of a point of thenth string iszn5zn(x). Since the vertical
positions of thenth string are fluctuating around the low
temperature equilibrium position atna, it is useful to intro-
duce the displacement fields

wn~x![zn~x!2na. ~2.1!

The thermodynamic partition function is given by the fun
tional integral

Zs5 )
n51

N

)
x

F E
wn21(x)2a

wn11(x)1a dwn~x!

A2pkBT/s
G

3expH 2
s

2kBT (
n51

N E
2`

`

dx Fdwn~x!

dx G2J , ~2.2!

FIG. 1. Stack ofN strings with equilibrium spacinga between
two walls of distanceL. The magnifier shows the local displace
ment fieldwN(x) as the distance from the positionNa. The walls
are labeled by 0 andN11 and treated as nonfluctuating strings wi
w0(x)[wN11(x)[0.
©2001 The American Physical Society09-1
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wheres is the string tension,T is the temperature, andkB is
the Boltzmann factor. We are interested in the free ene
per unit length

f N
s [2

kBT

A
ln Zs, ~2.3!

with A5*2`
` dx. Since the strings may not pass through ea

other, the fluctuationswn(x) of thenth string are restricted to
the interval

wn~x!P$wn21~x!2a,wn11~x!1a%. ~2.4!

A. Free fermion model

The restriction~2.4! makes it difficult to solve the func
tional integral~2.2! explicitly. It is, however, possible to find
a solution using an alternative of the same systems as
11)-dimensional Fermi gas observed by de Gennes@9#. Us-
ing this analogy, Gompper and Kroll@5# determined the 1/a2

contribution toD f N
s relevant for the pressure law~1.1! as

D f N
s 5aN

s ~kBT!2

sa2
, ~2.5!

with the pressure constants

aN
s 5

p2

12

2N11

N11
. ~2.6!

For N→`, this constant has the finite limita`
s 5p2/6. The

analogy with fermions cannot be used to calculate the
energy of a stack of membranes, where only approxim
methods are available. We shall use a strong-coupling the
as in Ref.@6#. As a preparation, we apply this theory to th
exactly solvable system of a stack of strings.

B. Perturbative approach

The difficulty in solving the functional integral~2.2!
arises from the restriction~2.4! of the fluctuations by the
neighboring strings. To deal with this strong repulsion,
introduce into the action of the functional integral~2.2! a
smooth potential that keeps the strings apart in such a
that the integration interval for the fluctuations can be
tended town(x)P$2`,`%. At the end, we take a strong
coupling limit which ensures~2.4!. In Ref. @6#, such a
method was used to evaluate the pressure constant for
membrane between walls. The smooth potential for
analogous case of one string is V„w(x)…
5(2a m/p)2tan2@pw(x)/2a#, which describes the har
walls exactlyfor m→0. This potential is symmetric and pos
sesses a minimum atw(x)50. Thus its Taylor expansion
around this minimum is a series in even powers ofw(x).

In the case ofN strings, the minima of the repulsion po
tential should lie at the equilibrium positions of the string
The Taylor expansion of such a potential will also ha
terms with odd powers. Unlike the one-string system, wh
fluctuations are limited by fixed walls, the range of the d
placementswn(x) of the nth string in anN-string system
05170
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depends on the positionszn21(x) andzn11(x) of the neigh-
boring strings. Thus the potential will be taken as a sum

Veff „z0~x!,z1~x!, . . . ,zN~x!,zN11~x!…

5
s

2 (
n51

N11

Vm„¹̄nzn~x!…, ~2.7!

where ¹̄nzn(x) denotes the prepoint lattice gradientzn(x)
2zn21(x). This potential includes the interaction of the fir
and last strings with the walls as nonfluctuating strings
z050 andzN115(N11)a5L:

w0~x!5wN11~x!50. ~2.8!

In the limit m→0, the potentialVm„¹̄nzn(x)… should again
yield an infinitely strong repulsion of two neighborin
strings forzn(x) close tozn21(x). For zn(x).zn21(x), the
limiting potential should be zero. As a matter of choice, w
let the potential between two stringsVm„¹̄nzn(x)… be mini-
mal and zero at the positionszn

eq5na and zn21
eq 5a(n21):

dVm(a)/d ¹̄nzn(x)50 and Vm(zn
eq2zn21

eq )5Vm(a)50 ~see
Fig. 2!.

The Taylor expansion around the miminum is, in terms
the variables~2.1!,

Vm„¹̄nwn~x!…5
m2

2
@¹̄nwn~x!#21m2(

k51

`

ckg
k@¹̄nwn~x!#k12.

~2.9!

The parameterm governs the harmonic term, wherea
higher-order terms scale with the coupling constantg51/a,
which makes the coefficientsck dimensionless.

An example for a potential showing qualitatively the b
havior in Fig. 2 with a Taylor expansion of the type~2.9!
is Vm„¹̄nzn(x)…5 m2

„a/@¹̄nzn(x)#2 2 2 /¹̄nzn(x) 1 1/a…/2,
which vanishes everywhere for infinitesimalm, except at
¹̄nzn(x)50. The strong-coupling limit of the perturbativ
expansion of orderg2 presented in this paper cannot yiel

FIG. 2. PotentialVm„¹̄nzn(x)… of string-string interaction for

finite m and smallm as a function of¹̄nzn(x)5zn(x)2zn21(x).

The strings repel each other strongly for¹̄nzn(x)→0, while the

potential has a minimuim at the equilibrium separation¹̄nzn(x)
5a, and we choose to normalize it to zero at that point.
9-2
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FLUCTUATION PRESSURE OF A STACK OF MEMBRANES PHYSICAL REVIEW E63 051709
however, reasonable results for such an arbitrary choic
the potential. The calculation of higher-order perturbat
coefficients requires high numerical power, which wou
make this procedure of calculating the universal consta
inefficent.

Thus, we continue with the Taylor expansion~2.9!, and
the partition function~2.2! becomes

Zs5 lim
m→0

R D Nw~x! expH 2
s

2kBT (
n51

N11 E
2`

`

dx S Fdwn~x!

dx G2

1
1

2
m2@¹̄nwn~x!#2D J

3expH 2
s

2kBT
m2(

k51

`

ckg
k (

n51

N11 E
2`

`

dx @¹̄nwn~x!#k12J
~2.10!

with the integral measure

R D Nw~x!5 )
n51

N

)
x

F E
2`

` dwn~x!

A2pkBT/s
G . ~2.11!

The harmonic part of the partition function can be written

Zm
s 5 R D Nw~x! expH 2

1

2 (
n51

N11

(
n851

N11 E
2`

`

dxE
2`

`

dx8 wn~x!

3@Gnn8
s

~x,x8!#21wn8~x8!J ~2.12!

with the functional matrix

@Gnn8
s

~x,x8!#2152
s

kBT S d2

dx2
1

1

2
m2 ¹̄n¹nD d~x2x8!dnn8 .

~2.13!

Here ¹nwn(x)5wn11(x)2wn(x) denotes the postpoint lat
tice gradient in thez direction, and¹̄n¹n is the lattice ver-
sion of the Laplace operator@12#.

Let us now impose the vanishing of the fluctuations of
walls ~2.8!, corresponding to Dirichlet boundary condition
For a finite numberN of strings, the Kronecker symboldn n8
in Eq. ~2.13! has the Fourier representation

dnn85
2

N11 (
m51

N

sinnmna sinnmn8a ~2.14!

with wave numbersnm5pm/(N11)a. Thus the kernel
@Gn n8

s (x,x8)#21 may be written in Fourier space as
05170
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@Gnn8
s

~x,x8!#21

5
2

N11 (
m51

N

sinnmna sinnmn8a

3E
2`

` dk

2p
@Gm

s ~k!#21e2 ik(x2x8) ~2.15!

with the Fourier components

@Gm
s ~k!#215

s

kBT
@k212m2 sin2~nma/2!#. ~2.16!

Integrating overk in the spectral representation~2.15! leads
immediately to the correlation function in configuratio
space,

Gnn8
s

~x,x8!

5
1

A2~N11!

kBT

ms (
m51

N
sinnmnasinnmn8a

sin~nma/2!

3e2A2mux2x8usin(nma/2), ~2.17!

and to the harmonic partition function~2.12!,

Zm
s 5expH 2

1

2
Tr ln @Gs#21J 5e2A fN,m

s /kBT, ~2.18!

the exponent giving the free energy per length,

f N,m
s 5m

kBT

2

sin@pN/4~N11!#

sin@p/4~N11!#
, ~2.19!

which vanishes form50.
The full partition functionZs in Eq. ~2.10! is now calcu-

lated perturbatively. We introduce harmonic expectation v
ues

^•••&m
s 5@Zm

s #21 R D Nw~x! •••

3expH 2
1

2 (
n51

N11

(
n851

N11 E
2`

`

dxE
2`

`

dx8 wn~x!

3@Gnn8
s

~x,x8!#21wn8~x8!J ~2.20!

in terms of which the correlation function is given by

Gnn8
s

~x,x8!5^wn~x!wn8~x8!&m
s . ~2.21!

The perturbation expansion contains the two-point corre
tion function of ¹̄nwn(x), which is given by

^¹̄nwn~x!¹̄n8wn8~x8!&m
s 5¹̄n¹̄n8 Gnn8

s
~x,x8!. ~2.22!
9-3
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We now expand the second exponential in Eq.~2.10! in pow-
ers of the coupling constantg. Harmonic expectation value
with odd powers of¹̄nwn(x) do not contribute, and the ex
pansion reads

Zs5 lim
m→0

Zm
s F12g2S s

2kBT
m2c2 (

n51

N11 E
2`

`

dx ^@¹̄nwn~x!#4&m
s

2
1

2!

s2

4kB
2T2

m4c1
2 (

n,n851

N11 E
2`

`

dxE
2`

`

dx8 ^@¹̄nwn~x!#3

3@¹̄n8wn8~x8!#3&m
s D 1•••G . ~2.23!

In the sequel, we restrict ourselves to the terms of sec
order ing51/a, which contribute directly to the pressure la
as in Eq.~2.5!. The higher powers diverge form→0, and in
Ref. @6# it was shown how to calculate from them a fini
strong-coupling limit. Here we shall ignore these terms
reasons to be explained shortly. Reexpressing the right-h
side of Eq.~2.23! as an exponential of a cumulant expansio
we obtain the free energy per length,

f N
s 5 lim

m→0
g2S s

2kBT
m2c2 (

n51

N11 E
2`

`

dx ^@¹̄nwn~x!#4&m,c
s

2
1

2!

s2

4kB
2T2

m4c1
2 (

n,n851

N11 E
2`

`

dxE
2`

`

dx8

3^@¹̄nwn~x!#3@¹̄n8wn8~x8!#3&m,c
s D 1•••. ~2.24!

We have used that the free energyf N,m
s of the harmonic
05170
d

r
nd
,

system~2.19! vanishes in the limitm→0. The first cumu-
lants are the expectations

^O1„¹̄wn1
~x1!…&m,c

s 5^O1„¹̄wn1
~x1!…&m

s ,

^O1„¹̄wn1
~x1!…O2„¹̄wn2

~x2!…&m,c
s

5^O1„¹̄wn1
~x1!…O2„¹̄wn2

~x2!…&m
s

2^O1„¹̄wn1
~x1!…&m

s ^O2„¹̄wn2
~x2!…&m

s ,

~2.25!

.

.

. ,

defined for any polynomial functionOi„¹̄wni
(xi)… of

¹̄wni
(xi). Following Wick’s rule, we expand the expecta

tions into products of two-point correlation functions~2.22!.
The different terms are displayed with the help of Feynm
diagrams, in which lines and vertices represent the corr
tion functions and interactions:

x1 ,n1 x2 ,n2 → ^¹̄n1
wn1

~x1!¹̄n2
wn2

~x2!&m
s ,

~2.26!

"→ (
n51

N11 E
2`

`

dx. ~2.27!

In what follows, we assume that the potential parametersck
with k>3 are chosen in such a way that they make all ter
of order g3 and higher vanish. Dividing the free energ
~2.24! by N, we obtain the following expression for the fre
energy per length and string, which can be compared w
Eq. ~2.5!:
e
e time-
s the
~2.28!

The calculation of the Feynman diagrams is straightforward using Eq.~2.17!. The evaluation is only complicated by th
Dirichlet boundary conditions, which destroy momentum conservation. This makes the numeric calculation quit
consuming for an increasing numberN of strings. As an explicit example, consider the sunset diagram, which require
evaluation of the multiple sum

~2.29!
9-4
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with the abbreviation

hn1n2

m 5sinnmn1a sinnmn2a2sinnmn1a sinnm~n221!a

2sinnm~n121!a sinnmn2a

1sinnm~n121!a sinnm~n221!a. ~2.30!

It is useful to factor out the physical dimension of the d
gram. Any Feynman integralWs with l lines andv vertices
can be expressed in terms of a reduced dimensionless F
man integralWs,r as
ra
rs
r

-
-

nt
e

s

l
r

re

05170
-

yn-

Ws5AS kBT

s D l

m2( l 1v21) Ws,r . ~2.31!

This brings Eq.~2.28! to the form

D f N
s 5aN

s
kB

2T2

sa2
, ~2.32!
~2.33!
e
nts

y
r a

e-

-

onic

in
of
where the diagrams indicate the reduced Feynman integ
Their values are listed in Table I for different string numbe
N. Note that the 1/a2 contributions to the free energy pe
length and string in Eq.~2.28! are independent ofm since the
m prefactors are canceled by them dependence of the dia
grams. Thus the limitm→0 becomes trivial for these contri
butions.

With the knowledge of the exact values of the consta
aN

s from Eq.~2.6!, we are now in a position to determine th
potential parametersc1 andc2 from Eq. ~2.33! to obtain the
exact result from the two-loop expansion~2.33!. Comparing
Eqs.~2.33! and ~2.6! for N51 andN52, we obtain

c15
p

3
, c25

p2

6
. ~2.34!

Note that Eq.~2.33! consists of more equations than nece
sary to computec1 andc2. It turns out, however, that all of
them give the samec1 andc2, such that the same potentia
~2.9! can be used for anyN. This is the essential basis fo
applying this procedure to a stack of membranes.

We now justify the neglect of the higherg powers that
would in principle give a further contribution to the pressu

TABLE I. Reduced numeric valuesWs,r of the two-loop dia-
grams for the free energy for a stack ofN strings.
ls.

s

-

constantaN
s in the strong-coupling limit. We simply observ

that it is possible to choose the higher expansion coefficie
ck to make all highergn contributions vanish@14#.

III. STACK OF MEMBRANES

Having determined the parametersc1 andc2 of the Taylor
expansion~2.9! of the smooth potential applicable for an
number of strings, we shall now use the same potential fo
perturbative expansion in a stack ofN membranes displayed
in Fig. 3. The equilibrium spacing at low temperature b
tween the membranes is againa. Denoting the vectors in the
plane byx5(x,y), the vertical displacements of the mem
branes from the positionsna are wn(x), with Dirichlet
boundary conditions atz0 andzN11,

w0~x!5wN11~x!50. ~3.1!

For membranes without tension, the energy has the harm
approximation

EC,n5
k

2E d2x @]2wn~x!#2, ~3.2!

FIG. 3. Stack of self-avoiding fluid membranes fluctuating
the z direction between two walls. As for the previous stack
strings, the walls are treated as nonfluctuating membranes.
9-5
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wherek is the bending stiffness and]25]x
21]y

2 is the La-
placian in the plane parallel to the walls. By analogy with t
preceding section, the kernel of the harmonic stack n
reads

@Gn1n2
~x1 ,x2!#2152

k

kBT S @]x1

2 #21
1

2
m4¹̄n1

¹n1D
3d~x12x2!dn1n2

, ~3.3!

where we have used a mass parameterm4 instead ofm2, for
dimensional reasons. The partition function for the stack
membranes is then written up to orderg251/a2 by

Z5 lim
m→0

R D Nw~x! expH 2
1

2 (
n1 ,n251

N11 E d2x1

3E d2x2 wn1
~x1!@Gn1n2

~x1 ,x2!#21wn2
~x2!J

3F12g2S k

2kBT
m4c2 (

n51

N11 E d2x @¹̄wn~x!#4

2
k2

8kB
2T2

m8c1
2 (

n1 ,n251

N11 E d2x1E d2x2 @¹̄wn1
~x1!#3

3@¹̄wn2
~x2!#3D G , ~3.4!

with the same parametersc1 andc2 of the Taylor expansion
~2.9! as in the string system, determined in Eq.~2.34!. We
neglect terms of orderg3, which certainly contribute in the
strong-coupling limit, and which vanish only for the string
where the partition function~2.23! with the choice~2.34! for
the parametersc1 ,c2 is exact in second order. An evaluatio
of the neglected terms by variational perturbation theory
expected to give only a negligible contribution to our fin
result.

Inverting the kernel~3.3! yields the correlation function

Gn1n2
~x1 ,x2!5

2

N11

kBT

k (
m51

N

sinnmn1a sinnmn2a

3E d2k

~2p!2

1

k412m4sin2~nma/2!
e2 ik(x12x2).

~3.5!

The explicit calculation of the Fourier integral leads to
difference of modified Bessel functionsK0(x) as in Ref.@6#:

Gn1n2
~x1 ,x2!5

i

A8p~N11!m2

kBT

k

3 (
m51

N
sinnmn1a sinnmn2a

sin~nma/2!

3@K0~21/4Aisin~nma/2!mux12x2u!
05170
w

f

s
l

2K0~21/4A2 isin~nma/2!mux12x2u!#.
~3.6!

For x15x2[x andn15n2[n, this reduces to

Gnn~x,x!5
1

A32~N11!m2

kBT

k (
m51

N
sin2nmna

sin~nma/2!
,

~3.7!

leading to the partition function of the harmonic system,

Zm5expH 2
1

2
Tr ln G21J

5expH 2m2
A

8

sin@pN/4~N11!#

sin@p/4~N11!# J , ~3.8!

where A5*d2x is the area of the projected plane of th
membranes. The free energy per areaf N,m5
2(kBT/A)ln Zm vanishes again form50.

As for the calculation of the free energy of the stack
strings, we introduce harmonic expectation values

^•••&m5@Zm#21 R D Nw~x! •••

3expH 2
1

2 (
n51

N11

(
n851

N11 E
2`

`

d2xE
2`

`

d2x8 wn~x!

3@Gnn8~x,x8!#21wn8~x8!J ~3.9!

TABLE II. Numeric valuesWr of the reduced two-loop Feyn
man integrals contributing to the pressure constants of a stackN
membranes in Eq.~3.15!.
9-6
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which appear in the perturbation expansion of Eq.~3.4!, the
cumulants yielding a perturbative expansion for the free
ergy per areaf N52(kBT/A)ln Z. The lines and vertices in
the Feynman diagrams now stand for

x1 ,n1 x2 ,n2 → ^¹̄n1
wn1

~x1!¹̄n2
wn2

~x2!&m ~3.10!
e
lly
he
o
re
fo
e
in

e
.
ta

05170
- "→ (
n51

N11 E d2x, ~3.11!

and the two-loop approximation to the free energy per a
and membrane in order 1/a2 reads
~3.12!
ls is
Going over to reduced Feynman integrals as in Eq.~2.31!,

W5AS kBT

k D l

m22(l 1v21) Wr , ~3.13!

wherev is the number of vertices andl the number of lines
of the diagram, we obtain

D f N5aN

kB
2T2

ka2
, ~3.14!
~3.15!

The pressure exerted by the membranes upon the wal
obtained by differentiating the free energyf N5ND f N with
respect to the distance of the wallsL5a(N11):

pN52N
]D f N

]L
5

2N

N11
aN

kB
2T2

ka3
. ~3.16!

The first and the last Feynman integrals in Eq.~3.15! are the
simplest:
~3.17!

~3.18!
ver
t be

t is
s-

er
m-

-
to
are

r
for
where we have used the abbreviationhn1n2

m defined in Eq.

~2.30!. The evaluation of the second diagram in Eq.~3.15! is
much more involved. The Fourier integrals can be done
actly, except for one, which must be treated numerica
This calculation is deferred to Appendix A. The values of t
three diagrams are listed in Table II for various numbers
membranes. With these numbers, the evaluation of the p
sure constants yields the results given in Table III. Except
N51 and N→`, no analytical values were found in th
literature. We also compare with pressure constants obta
by Monte Carlo simulations and find a good agreement@3,5#.
The values of the Monte Carlo simulations forN53,5,7
from Ref. @3# show an independence of the numberN of
membranes. This arises by the simulation technique, wh
the free energy of the central membrane was determined
contrast to that, we have calculated the pressure cons
x-
.

f
s-
r

ed

re
In
nt

from the free energy of the complete system averaged o
all membranes. Thus these Monte Carlo values canno
directly compared with ours.

Table III contains also a valuea` for an infinite number
N→` of membranes in the stack. This pressure constan
obtained by the following extrapolation procedure. We a
sume that the pressure constants determined forN
512,13,14,15 are of higher accuracy than those for low
numbers of membranes. This assumption is justified by co
paring our values forN51,3,5 with the latest Monte Carlo
results@5#. For N51, the deviation is about 3.4%. Consid
ering N53, the deviation reduces to 1.8% and further
1.1% for five membranes. Since the pressure constants
approximated increasingly fast with an increasing numbeN
of membranes, we make the following exponential ansatz
determining the approach to infiniteN:
9-7
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TABLE III. Pressure constantsaN for different numbersN of membranes in the stack, calculated fro
Eq. ~3.15!, with the numerical values of the two-loop diagrams given in Table II. We compare with re
from Monte Carlo simulations and earlier analytic results.

N aN Monte Carlo results Earlier analytic values

1 p2/128'0.07711 0.060@2#, 0.07860.001@3#, 0.079860.0003@5#,
0.080@3#

p2/128 @4,6#, 0.079715@6#

2 0.08669
3 0.09134 0.09360.004@5#, 0.100260.0006@3#

4 0.09408
5 0.09590 0.0966@5#, 0.102260.0006@3#

6 0.09719
7 0.09815 0.100960.0007@3#

8 0.09890
9 0.09950
10 0.09999
11 0.10039
12 0.10074
13 0.10103
14 0.10129
15 0.10151
` 0.10409 0.074@13#, 0.10160.002@3#, 0.106@5# 3p2/128'0.23 @1#
d
es

-
s,

rlo

k of
el-
s.

each
tial
e

tack
v-
that

ted
ly-

sky

des
aN5a`@12h exp~2jN«!#. ~3.19!

The unknown four parameters in this equation are then
termined by solving the system of equations with the pr
sure constantsa12,a13,a14, anda15 listed in Table III. We
obtainh'1.1712,j'1.6417,«'0.3154, and thus the lim
iting pressure constant for an infinite stack of membrane

a`'0.1041. ~3.20!

This value is in very good agreement with the Monte Ca
result@5# ~see the last row of Table III!. It differs by a factor
close to9

4 from the initial result by Helfrich@1,15#.
05170
e-
-

IV. SUMMARY

We have calculated the pressure constants for a stac
different numbers of membranes between two walls in exc
lent agreement with results from Monte Carlo simulation
The requirement that the membranes cannot penetrate
other was accounted for by introducing a repulsive poten
and going to the strong-coupling limit of hard repulsion. W
have used the similarity of the membrane system to a s
of strings enclosed by linelike walls, which is exactly sol
able, to determine the potential parameters in such a way
the two-loop result is exact. This minimizes the neglec
terms in the variational perturbation expansion, when app
ing the same potential to membranes.
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APPENDIX: EVALUATION OF THE SUNSET DIAGRAM

The second diagram in Eq.~3.15! requires some simplification before the numerical calculation. We write the red
Feynman integral as

~A1!
9-8



with the integral
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Km1m2m3
5E d2x1d2x2E d2k1

~2p!2

d2k2

~2p!2

d2k3

~2p!2

e2 i (k11k21k3)(x12x2)

~k1
412sin2nm1

a!~k2
412sin2nm2

a!~k3
412sin2nm3

a!
. ~A2!
in

’s

f

u-
All integrals are easily calculated, except for one. If we
troduce abbreviations

Ml
252sin2nml

a, l 51,2,3, ~A3!

we find

Km1m2m3
5

A

2pE0

`

dk
k

k41M3
2

J~k,M1
2 ,M2

2! ~A4!

with

J~k,M1
2 ,M2

2!5E d2p

~2p!2

1

~p2k!41M1
2

1

p41M2
2

.

~A5!

Decomposing the integrand into partial fractions

J~k,M1
2 ,M2

2!52
1

4M1M2
E d2p

~2p!2 F 1

~p2k!21 iM 1

2
1

~p2k!22 iM 1
GF 1

p21 iM 2

2
1

p22 iM 2
G

52
1

4M1M2
@ I ~k,M1 ,M2!2I ~k,M1 ,2M2!

2I ~k,2M1 ,M2!1I ~k,2M1 ,2M2!#

~A6!

we are left with integrals of the type

I ~k,g1 ,g2!5E d2p

~2p!2

1

~p2k!21 ig1

1

p21 ig2

, ~A7!

whereg1,256M1,2 are real numbers. Employing Feynman
parametrization, these integrals become

I ~k,g1 ,g2!5
1

4pE0

1

dx
1

2x2k21x~k21 ig12 ig2!1 ig2

,

~A8!

taking the general form
05170
- E dx
1

ax21bx1c
5

2

AD
arctanz~x! ~A9!

with

D54ac2b2, z~x!5
b12ax

AD
,

a52k2, b5k21 i ~g12g2!, c5 ig2 . ~A10!

Sinceb is a complex number, Re arctanz is discontinuous, if
Rez changes sign anduIm zu.1. Thus the right-hand side o
Eq. ~A9! is discontinuous at a certain pointx0 within the
interval @0,1#. As will be seen subsequently,J(k,M1

2 ,M2
2)

from Eq. ~A5! must be real and thus all imaginary contrib
tions in the decomposed form~A6! cancel each other.

We determine the point of discontinuityx0 to obtain the
solution of the integral~A8! by investigating the zero of the
real part ofz(x). Decomposingz(x0) into real and imaginary
parts, we obtain

Rez~x!5uDu21/2Fk2~122x!cosS 1

2
arctan

ReD

Im D D
1~g12g2!sinS 1

2
arctan

ReD

Im D D G , ~A11!

Im z~x!5uDu21/2F ~g12g2!cosS 1

2
arctan

ReD

Im D D2k2

3~122x!sinS 1

2
arctan

ReD

Im D D G , ~A12!

where

ReD5~g12g2!22k4, Im D522k2~g11g2!.
~A13!

Thus, the zero of Rez(x) is found at

x05
1

2 H 11
g12g2

k2
tanF1

2
arctan

2k2~g11g2!

k42~g12g2!2G J .

~A14!
9-9
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From the bounds of integration in Eq.~A8!, it follows that we must include the discontinuities of Eq.~A9! for x0P@0,1#. This
occurs ifk,ug12g2u and signg1Þsigng2. Thus the solution of the integral~A8! reads

I ~k,g1 ,g2!5H S~k,g1 ,g2 ,x!ux50
x51 , sign g15signg2~~signg1Þsigng2`k>Aug12g2u!,

lim
«→0

@S~k,g1 ,g2 ,x!ux50
x5x02«

1S~k,g1 ,g2 ,x!ux5x01«
x51 #, signg1Þsigng2`k,Aug12g2u, ~A15!

whereS(k,g1 ,g2 ,x) is the explicit right-hand side of Eq.~A9!:

S~k,g1 ,g2 ,x!5
1

2pA~g12g2!22k422ik2~g11g2!
arctan

k2~122x!1 i ~g12g2!

A~g12g2!22k422ik2~g11g2!
. ~A16!

The functionI (k,g1 ,g2) possesses the properties

I ~k,g1 ,2g2!1I ~k,2g1 ,g2!52 ReI ~k,6g1 ,7g2!, ~A17!

I ~k,g1 ,g2!1I ~k,2g1 ,2g2!52 ReI ~k,6g1 ,6g2!. ~A18!

Inserting Eq.~A15! into Eq.~A6!, the remaining integral in Eq.~A4! together with the sums in expression~A1! for the sunset
diagram can be calculated numerically. The values are listed forN51, . . . ,15 in thethird column of Table II.
A
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