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Simulation of contact line dynamics in a two-dimensional capillary tube
by the lattice Boltzmann model
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During immiscible-fluid displacement, the contact angle between the interface and the wall of a tube, as well
as the velocityV of the contact line where a fluid interface intersects the wall of a tube, depends on the applied
capillary pressur@®,,. In this paper, the contact line dynamics of immiscible-fluid displacement is simulated
by using the lattice Boltzmann model in a two-dimensional capillary channel with an ideally smooth wall. The
V dependence of the contact angle is studied for two different wetting cases. Our simulational results are in
good agreement with those based on theoretical computations and with molecular dynamics simulations. In
particular, the power-law behavid?;,,~V* is found with an exponent very close to 1. The simulations
suggest that the lattice Boltzmann model may serve as an alternative reliable quantitative approach to study the
contact line dynamics, and also may be a promising tool for invesitgating some other immiscible displacement
related subjects.
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[. INTRODUCTION changes with capillary number in the interface shape and
the dynamic contact angle were found to be quantitatively
The displacement of fluid by another immiscible fluid in- consistent with those predicted based on the macroscopic
volves a variety of interesting subjects that are of great reltheory[5].
evance to a wide range of industrial processes like oil recov- Macroscopic theories are usually applied to systems with
ery and coating1]. Among others, the contact line dynamics relatively simple geometries. They generally encounter diffi-
has attracted much attention over the past few decadéd!lty when dealing with complex and changeable geom-
[2-16] since the pioneering work by Dusség]. The dy- e'trles. 'On the other hand, although. molepular dynamlc_:s
namic behavior of a contact line, where a liquid-liquid or simulations have the advantage of being faithful to the mi-

liquid-vapor interface intersects a solid wall, is governed byC_rOSCOpIC nature of the fluid, they are extremely computa-

; ; ; lly intensive. As an alternative numerical approach, the
the dynamics of the three phases, adding considerably to t ona .
difficulty of the analysis, as well as to the academic interest attice Boltzmanr(LB) method[17—2( has proved competi-

The motion of the interface, as well as the contact Iinefuve in studying various types of fluid-related systems. It is

formed by two immiscible fluids and a solid wall in a capil- ideally suited to inv.e.stigate phgnomena ona hydrodynqmic
. . . length scale. In addition, when incorporated with appropriate
lary tupe, was mvestlggted in many cases, §uch as Complebeoundary conditiongsee, e.g., Refd21,22), it provides a
or partial wetting of fluids to a solid wall, an ideally smooth promising numerical tool to deal with systems of complex
wall surface, or a heterogeneous wall surface. and flexible boundarief22]. In this paper, by studying the
Macroscopically, some theories based on classical hydrgyenavior of the dynamic contact angle in a simple geometry
dynamics were raised to reveal the dynamic behavior of th%uantitatively, we prove the LB method to be a reliable ap-
interface. CoX5] used the method of matching asymptotic proach for the dynamics of the interface, contact line, and
expansions to investigate the dynamics involved in thecontact angle during the immiscible-fluid displacement
movement of a contact line while the solid surface is ideallyprocedure in capillary tube. We expect to find many applica-
smooth. Shikhmurzagr] dealt with a general mathematical tions in studying such subjects effectively in more complex
model which describes the motion of an interface betweemgeometries.
immiscible viscous fluids along a smooth homogeneous solid The simulations are performed on a two-dimensidga)
surface in the case of small capillary and Reynolds numbershannel, as shown in Fig. 1, so that a contact line becomes a
Jansong4] considered the unsteady motion of a fluid-fluid contact point where the three phases intersect. Two kinds of
interface above and attached to a solid surface with onefuids are put in the 2D channel lattice, with a pressure drop
dimensional periodic roughness in the limit of small capil- between two open ends. Two cases of different wetting con-
lary number Ca. ditions are considered. One is an ideal condition in which
Microscopically, some authors used molecular dynamicghere is no interaction between the fluids and the wall, so that
simulations to study the dynamic behavor of the interfacehe static contact anglé,= 7/2. The other case mimics a
and the contact line in immiscible fluids system. Kopdikal. ~ kind of real experimental case, in which one fluid that has an
[8] observed a breakdown of the no-slip condition, consistenattractive interaction with the wall displaces an immiscible
with the theoretical predictions of Duss@®|, as well as a fluid that has a repulsive interaction with the wall. The latter
velocity-dependent advancing and receding contact anglesase has a static contact anglg< w/2. The relation curves
Simulations by Thompson and co-workd@10| also sup- of the contact angl® vs the average velocity of the contact
ported the breakdown of the no-slip condition. In particular,line are obtained for these two cases, respectively. The
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for i=5,...,8,

VL —»i H | o— t! at the long-wavelength limit, the Navier-Stokes equations
ud ! with an equation of statp=c§p can be recovered from the
Contact Point ~ 1 | kinetic equation(1). Here cs= 1/\/3 is a constant sound
777777777 77777777 speed, and the parameterin Eq. (2) is usually chosen as
Wall 4/9 in the D2Q9 mode]20]. The fluid density and velocity
FIG. 1. The schematic diagram of the simulational framework. are defined by

8 8
curves agree excellently with the theoretical relations given _ , _ _
by Cox et al. [5], and can be superimposed onto a single P iZO fi. pu .21 fig- ©
curve by a certain transformation using a scale function
[13,14,23 with a single parametdf, implying the universal As usual, for immiscible-fluid displacement, we use the
scaling behavior of the contact angle vs the contact line veeolors blue and red to distinguish two immiscible fluid com-
locity. In particular, the power-law behavid?.,,~V* is  ponents. There are currently three LB methods developed for
found, with the exponent very close to 1, in good agree- the study of multiphase and/or multicomponent flow. They
ment with the results based on the macroscopic theory anare the recolor schenj@4], the potential moddI25,26, and
the molecular dynamics simulati¢s,9,10. the free energy approadR7,2§. In this paper we use the
This paper is organized as follows. In Sec. I, some basigotential model, partly as it is very convenient for consider-
ideas of the LB model are summarized, and a simulationaing the different wetting cases. The details of the potential
framework is introduced. Numerically experimental data argmodel theory for a two-component fluid are available in
analyzed, and results presented in Sec. Ill. A discussion oRefs.[25,26. The following is a brief description of the

our simulations is finally given in Sec. IV. entire algorithm based on Shan and co-workers model
[25,26].
It can be assumed that there exists an initjg(x,t) over
Il. MODEL AND THEORY the entire lattice at a timg where the subscriftis an index

Let us first recall some basic ideas of the one—componerﬂenOting afluid comppnent. The densiiy(x,t) and velogity
lattice Boltzmann methofR20]. The equation of evolution is uk(x,t) at.x are obtained fron; \(x,t) by the following
given by 2D nine velocities modéD2Q9 model 20]) equations:

F(x+ 08 44 8)—F.(x D) = — = [f(x ) FO(x.t p=2 fik
i(x+ de, )= fi(x,t) T[ (X, —=f7(x,1)], u

) PkUkZZ fix& .
i=0,1,...,8, (1) i

_ o ~ The equilibrium velocityu(®? is then given by
where g,=(0,0), e =[cog(i—21)/2]7, sin(i—21)/2]] for i

=1,2,3, and 4, an@& =[cog(2i—1)/4]w, sin(2i—1)/4]x] pku(keq):pku/ + 7 Fy, (5)
for i=5,6,7, and 8 are nine discretized velocities that a
particle can have. The distribution functidg(x,t) denotes whereF, is the total interparticle force acting on a compo-
the population for particles that move with a veloolyat a  nentk at a sitex,
site x and timet, fi(o)(x,t) is the corresponding equilibrium
distribution function andris the relaxation time. It has been , o
shown that if the equilibrium distribution function is chosen ~ FK(X¥) =~ ¢k(x)2 kE Gk (X, X") e (X ) (X" =X), (6)
to be[20] *
andu’ is a common average velocity given by the equation

2
O— r—" - u
fo ' =ap 3puu, u’=(2 Pl; k)/ 2 Pk). @
K Tk

k Tk

©) (1-a)p 1 1 , 1 The Green’s functiol®, ,,(x,x") satisfiesGy ,» =Gy ., and
fil=—g—+zr&-W+sp(e-u)"—gpuu ()= pe(¥)] is a function of the density,(x). It is
assumed tha# [ pr(X) 1= pk(x) for simplicity [25,26. Usu-

for i=1,...,4, (2 ally it is sufficient to involve only nearest-neighbor homoge-
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neous isotropic interactions, so th@t . (x,x’) can be re- flow for a certain time that is rather short relative to the
duced to the following symmetric matrix with constant entire simulational time duration. Measurement is done when

elements: the interface of the two fluids creeps near the center position
of the channel to reduce boundary effects.
0, |x—=x'|>c According to the analytical solution of Poiseuille flow in a
Gy = Ok |x—x'|<c. ®) plane channel driven by pressure difference, the pressure

drop P;— P, can be expressed as a sum of two parts,
Herec is the lattice spacingwe takec=1), andgy: is a
parameter that characterizes the strength of the interaction 12ulV
potential. In our simulations, we choosg =0.5 for the Pl_PZZPcap+T7 9
interaction between the two immiscible fluid components
and, for simplicity, we set the relaxation timg=1 for both
components. Too large a value @f,, may likely produce a

negative distribution function, resulting in a numerical insta- o
g g P, are measured, arfél.,, denotes the pressure drop arising

i?]lgt)t/ﬁ;vglesi?esdrr]szlé;?zlal:iir?g?"ﬁ;ésflt?é:ffﬁg\éfér:jggi?eu;- diSfrom the interface. The second term on the right hand side of
cussion of the choice of the values gf . and 7, can be Eq. (9) is the pressure drop caused by viscous dissipation. In

found in Ref.[29] a plane channel of width and at low velocity P, is di-
our simulations are carried out on a 10020 two- rectly related to the cosine of the contact anglby [13,14]

dimensional channel lattice, as shown schematically in Fig.

where b denotes the width of the plane channkljs the
length of a capillary tube between the places whHeyeand

1. Referring to Ref[16], we compare the size of the lattice pcapzzlcosg_ (10)

to that of the real experimental framework. If 20 lattice unit b

spacinggLUS’s) are equal to 1 mniKumar and co-workers ) i . . ) .
used Pyrex tubes of radii&=0.5 mm), one has the follow- In our simulation, the dimensionless interface velocity Ca

ing correspondence: one LUS is equal to 0.05 mm, and® €mployed to take the place of the contact line velowity

1 sec=2.97x 10° steps. As a result, our simulational frame- Where C& uV/y, with y being the interfacial tension of the

work does not relate to microscopic scéieolecular scale fluid |r_1terfa_ce, andu the mean viscosity of the two fIw_ds.
The pressure difference between two ends of the planéh® Viscosity for componerk is related to the relaxation

channel is denoted bgP=P,—P,, whereP, andP, are  tme by s =(27—1)/6, as measured in lattics units. The

pressures at the left and right ends, respectively. It is Su[jpterfaual te.nS|ony is obtained by another series of'S|muIa-

posed that the red fluid displaces the blue one from the lefiional experiments. We performed the LB simulation on a

hand endinlet) to the right-hand endoutlet. Bounce back 200X 200 plane lattice to do a series of bubble t¢3t with

boundary conditions are adopted on the upper and lowe? Series of varied radR. The interfacial tensiory was found

solid walls, in which the fluid particles simply bounce back- {0 be ¥=0.1723) for the present simulation parameters by

ward according to their directions before their collision with the Laplace lawPi, — P = y/R. o

the solid wall. The inlet-outlet pressure and velocity flow It can be imaged that, as the flow velocity increases, the

boundary conditions supposed by Zou and [36] are ap- interface is mcrementally deformed to Fhe right. _The contgct

plied on the two open ends of the plane channel. In order t§ngle varies continuously as the velocity of the interface in-

simulate the natural wetting conditions in a real experimentcréases from a macroscopic viewpoint. The deformed inter-

we lay a fixed layer of yellow fluid particles on the wall with face is therefore measured by the contact afajke referred

a certain constant density, and introduce two parameggys @S the apparent contact angjé4]

andg; , to control the interations between the wall blue com- )

ponent and wall red component, respectively. In the simula- 0:arcta+l_h } (11)

tion, the absolute values @, , andg, , are chosen to be h |’

identical for simplicity. One can choose different absolute

values forg,, andg, ,. However, the effect is essentially whereh=H/b, with H being the distance from the center

the same. It serves only to produce a different wetting case ifpoint of the interface to the contact point on the wall along

the context of the present work, provided that the values ofhe x direction(see Fig. 1

b,y @ndg, , are small as compared wit)) ,,, the magnitude Theoretically, Cox used the method of matching
for the repulsive interaction between the red and blue fluicRsymptotic expansions and the scaling function found by
components. Hoffman[23],

When the simulation begins, fluid particles on all lattice
sites are assumed to be blue. The inlet-outlet pressure- g(6)=g[ 0p(0)]+Calnk/ly), (12

velocity boundary conditions are therefore applied for blue

fluid. All blue fluid particles which are on the left side of a to predict the scaling behavior éfvs Ca[5]. As the slipping
certainx position, including the inlet, will be repainted red lengthls=14/Ca for Jansons’ picturg4], with |4 being the
after enough time steps have passed to make sure the flowughness of the wall, Eq12) becomes

over the entire lattice is stable. The procedure of repainting

may cause some unphysical transient states on the field of g(0)=09[ 6p(0)]+ Calnk/l4) +Caln Ca, (13
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wherek is a model-dependent parameter ah¢i0) is the static contact angle. The functig() is given by(see Ref[14])

4
9(9)=f0 de[f(¢)] ",

(14
2 sing{g?(?—sirfe) + 2q[ ¢(m— @) ]+ (71— @) —sirf e}

q(@2—sirfe)[(7m— @) +sing cose]+ (¢ —sing cose)[ (m— ¢)2—sirte]’

fle)=

whereq= w,/r,. With the specified wetting condition, one wall and thus the static contact anglg= 7/2. The triangles
has 6y(0). By choosing a suitable parametir=In(k/ly), on the lower curve are those for the wetting case 2, in
one can next obtairg as the function of Ca based on which g, ,=—g,,=0.01 so thatd,<w/2. The two solid
Egs. (13) and (14). Although the value off,(0) will be  curves are the theoretical curves based on E@.and(14)
different in different wetting cases, the value Wf=In(k/ly)  with different 6,(0) and identicalK=In(k/l;)=21.8. Note
should remain the same for different wettings. The universathat, in the present casg~=1, and thusf(¢) in Eq. (14)
scaling law[Eq. (13)], with K independent of the wetting reduces to

condition, therefore provides a first check of the simulation

results. 2 sine

fle)= > : :
TE— @ —SiN@(Sing+ 7 Co0Se—2¢ COSyp)

lll. RESULTS ANALYSIS It is seen from Fig. 2 that the simulation results are in excel-

It is supposed that the red fluid displaces the blue onéent consistency with the theoretical predictions. The two
from left to right. The pressure on all the lattice sites on thesolid curves fit the simulation data well, with a single param-
right open end is set constant, while that on the inlet varies,

to achieve different values of Ca using the boundary condi- 07(0)=1.5708
tions suggested by Zou and Hi&0]. With the pressure dif- 10 slope=0.965(4) ]
ference between the inlet and outlet, the interface moves at a =
nearly constant velocity with slightly undulahtwhen the o
flow becomes steady. We then can measure the time average 8104
velocity of the interface at the center of the channel. Note ;
that the average velocity of the interface is equal to that of E3
the contact line when the flow becomes steady. Also in this féw‘i
region, h (the time average oh) is measured to obtain o
0 based on Eq.(11). Thus the relationd vs Ca is ob- .
tained. Figure 2 shows the relation éfvs log Ca for two 104, . . .
different wetting cases. The diamonds on the upper curve are 10 10 c 10° 10
simulational results for the wetting case 1, in which two a
fluids have the same vanishing interaction with the solid @)
168 . . . . 107 67(0)=1.5184
166] © Wetting Case 1,6”(0)=1.5708 o [slopes08410)
s v Wetting Case 2, 6?(0)=1.5184 =
o 164] k=218 Q4
g 1074
5 1624 3
m — _—
£ 5160, %
O =158 810
< 1 =
2 156 o
g
o 154 108 .
1521 10-5 10-4 . 10°3 102
1.50 . . . v a
5 ) 3 2
10 0%, 10 10 ()

FIG. 2. Apparent contact angle plotted as a function of Ca for  FIG. 3. P4, as a function of Ca for two wetting cases. Power
two different wetting cases§*)(0)==/2 and §?(0)<m/2. The  law 2y[cosé(0)—cos#(Ca)]/b~Ca is manifest in both case$a)
solid lines are the fits produced by using E¢E3) and (14), with ~ 6(0)=1.5708 andx=0.9654), (b) 6®(0)=1.5184 andx
K=21.8. =0.9419).
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Slope=0.97(1) ' 10 ° to 10 2, and that the corresponding valued¥aries in
a rather limited region. In Fig. 4 of Refl4], the largest
%10_4 value of # approachesr, which requires a self-consistent
o iteration procedure to obtaif(Ca) [14]. However, due to the
§ limited value range of the contact angtein the present
6‘-’\ simulation, there is no need to perform a self-consistent it-
=10 eration as in Refl14]. In fact, Eqs.(13) and(14) fit our data
é well enough, with a single value ¢f=21.8, and two differ-
« ent constant®")= /2 and )< /2.
109
5 04 03
10 R IV. DISCUSSION
FIG. 4. Power law 3[cosf(0)—cos#(Ca)]/b~ Ca obtained In this paper, we have focused on the velocity dependence

on a 200040 lattice with#(0)=1.5708 andk=0.971). Notethat O the cosine of the contact angiein a 2D capillary tube
the value ofx is greater than in Fig. 3, suggesting thawill be ~ With homogeneous wall surface. Macroscopic theéiyand
closer to unity and the discretization effect will decrease if themMolecular dynamic simulation$9,10] both indicated a
underlying lattice is refined. power law scaling behavior with the exponent1 for a
partially wetting fluid on this kind of wall surface. Our simu-
eterK=21.8 for different wetting cases and different staticlation results agree excellently with their conclusions. The
contact angled,, which implies that the two curves obey the linear fits in Figs. 3 and 4 show thatverges on 1 for ideally
universal scaling behavior, although they have different valsmooth boundaries. It is believed thawill be smaller than
ues ofy(0). By asuitable transfer on the lower curve, two 1 if some kind of heterogeneity, such as periodic roughness,
curves can be superimposed upon each other through a un$ introduced into the wall in simulations. In fact, some data
form additive shift horizontally along the Ca axisee, e.g., of low Ca in Fig. 3 suggest evidence for this belief.
Ref.[14]). Several authors considered theoretically and experimen-
Referring to Eq.(10), the relation betweeR ., and Ca tally how heterogeneity on wall a surface affects the power
can be obtained by the relation of ¢fb)[cos§(0)—cosd] law scaling behavior of cogvs Ca. Theoretical models pro-
vs Ca [14]. Figure 3 shows the scaling behavior of duced a range of values for the power law exponent
(2y/b)[ cosf(0)—cosd]~ Ca, with x very close to 1. The Joanny and Robbins considered the case of a contact line
exponent is found to be=0.965(4) for wetting case [Fig. = moving past periodic heterogeneities at a constant velocity,
3(a)], andx=0.941(9) for wetting case [Fig. 3b)]. Except and obtained a result of=2/3 for smooth defects on a wall
for a few data points for which the values for Ca fall close tosurface[12]. For the case of discontinuous defects they
10°°, all data of these two wetting cases are excellently linfound x=1, just as in the case of an ideally smooth wall
early fit. These results agree with the theory tkatill be  surface. Raphael and de Gennes independently desived
exactly 1 if the wall surface is ideally smooth, i.8,,, will =2/3 for smooth defects such as dilute concentratidis
be linearly proportional t&Ca. Functional renormalization group calculations by Eréasl
When Ca is small, some data points in Fig. 3 seems g&ardar yieldedx=9/7 from an expansion around the mean
above the linear-fit line. The discretization effect of the lat-field solution for discontinuous defedts5]. Sheng and Zhou
tice manifests itself here. The current model is for an ideallypredicted 6<x=0.5 by considering a capillary wave dissipa-
smooth wall. However, in the LB method, the position of thetion mechanisni13,14. Experiments also reported a variety
interface is usually determined by an interpolation of theof exponents. The experiment of Stokesal, with a
densities of neighbor sites. So, when Ca is small enough, thg!lycerol-menthanol solution and mineral oil, found that
discretization of the lattice may affect the simulation like =0.40(5) [11]. Capillary rise experiments showed=0.5
some type of periodic heterogeneity on the wall surface. Befor a glyecrol-water solution with alkanes as well as for a
cause the lattice unit spacing in our simulations is on a macglycerol-water solution with silicone 0ilg32]. Kumar et al.
roscopic scale, such a likeness is believed to correspond found x=0.20(3) for water-alkane interfacg6].
the smooth periodic heterogeneity on the wall surface. Our simulations suggest that the LB model may be a re-
If the lattice is refined, the discretizing effect may be re-liable nhumerical technique for studying immiscible-fluid dis-
duced, and the exponertturns out to be closer to unity. placement related subjects, such as the dynamics of the in-
This is confirmed by some simulations for both wetting casegerface, the contact line, and the contact angle. In particular,
on a refined lattice. The result for wetting case 1 on a latticavhen incorporated with appropriate boundary conditions, the
of 2000%x40 is presented as an example in Fig. 4. The slopé&B model may serve as an effective numerical tool to study
0.971) of the linear fit is clearly greater than that based on asuch subjects for systems with complex geometry, where the
1000x20 lattice suggesting that the exponentmay ap- macroscopic theory may encounter some difficulty and the
proach unity if the discretizing effect is eliminated in the LB molecular dynamics approach may turn out to be too com-
simulation. putationally intensive. Further investigation would be of in-
It should be noted that present simulations produce théerest in an attempt to clarify the somewhat conflicting re-
dimensionless velocity Ca of the interface in a range fromsults regarding the value of the power law exponeit the
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