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Simulation of contact line dynamics in a two-dimensional capillary tube
by the lattice Boltzmann model
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Research Center for Theoretical Physics, Fudan University, Shanghai 200433, China

~Received 23 August 2000; published 17 April 2001!

During immiscible-fluid displacement, the contact angle between the interface and the wall of a tube, as well
as the velocityV of the contact line where a fluid interface intersects the wall of a tube, depends on the applied
capillary pressurePcap . In this paper, the contact line dynamics of immiscible-fluid displacement is simulated
by using the lattice Boltzmann model in a two-dimensional capillary channel with an ideally smooth wall. The
V dependence of the contact angle is studied for two different wetting cases. Our simulational results are in
good agreement with those based on theoretical computations and with molecular dynamics simulations. In
particular, the power-law behaviorPcap;Vx is found with an exponentx very close to 1. The simulations
suggest that the lattice Boltzmann model may serve as an alternative reliable quantitative approach to study the
contact line dynamics, and also may be a promising tool for invesitgating some other immiscible displacement
related subjects.

DOI: 10.1103/PhysRevE.63.051603 PACS number~s!: 68.05.2n, 47.11.1j, 68.08.2p
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I. INTRODUCTION

The displacement of fluid by another immiscible fluid i
volves a variety of interesting subjects that are of great
evance to a wide range of industrial processes like oil rec
ery and coating@1#. Among others, the contact line dynami
has attracted much attention over the past few deca
@2–16# since the pioneering work by Dussan@2#. The dy-
namic behavior of a contact line, where a liquid-liquid
liquid-vapor interface intersects a solid wall, is governed
the dynamics of the three phases, adding considerably to
difficulty of the analysis, as well as to the academic intere
The motion of the interface, as well as the contact l
formed by two immiscible fluids and a solid wall in a cap
lary tube, was investigated in many cases, such as com
or partial wetting of fluids to a solid wall, an ideally smoo
wall surface, or a heterogeneous wall surface.

Macroscopically, some theories based on classical hy
dynamics were raised to reveal the dynamic behavior of
interface. Cox@5# used the method of matching asympto
expansions to investigate the dynamics involved in
movement of a contact line while the solid surface is idea
smooth. Shikhmurzae@7# dealt with a general mathematic
model which describes the motion of an interface betw
immiscible viscous fluids along a smooth homogeneous s
surface in the case of small capillary and Reynolds numb
Jansons@4# considered the unsteady motion of a fluid-flu
interface above and attached to a solid surface with o
dimensional periodic roughness in the limit of small cap
lary number Ca.

Microscopically, some authors used molecular dynam
simulations to study the dynamic behavor of the interfa
and the contact line in immiscible fluids system. Kopliket al.
@8# observed a breakdown of the no-slip condition, consist
with the theoretical predictions of Dussan@2#, as well as a
velocity-dependent advancing and receding contact ang
Simulations by Thompson and co-workers@9,10# also sup-
ported the breakdown of the no-slip condition. In particul
1063-651X/2001/63~5!/051603~6!/$20.00 63 0516
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changes with capillary number in the interface shape
the dynamic contact angle were found to be quantitativ
consistent with those predicted based on the macrosc
theory @5#.

Macroscopic theories are usually applied to systems w
relatively simple geometries. They generally encounter di
culty when dealing with complex and changeable geo
etries. On the other hand, although molecular dynam
simulations have the advantage of being faithful to the m
croscopic nature of the fluid, they are extremely compu
tionally intensive. As an alternative numerical approach,
lattice Boltzmann~LB! method@17–20# has proved competi-
tive in studying various types of fluid-related systems. It
ideally suited to investigate phenomena on a hydrodyna
length scale. In addition, when incorporated with appropri
boundary conditions~see, e.g., Refs.@21,22#!, it provides a
promising numerical tool to deal with systems of compl
and flexible boundaries@22#. In this paper, by studying the
behavior of the dynamic contact angle in a simple geome
quantitatively, we prove the LB method to be a reliable a
proach for the dynamics of the interface, contact line, a
contact angle during the immiscible-fluid displaceme
procedure in capillary tube. We expect to find many appli
tions in studying such subjects effectively in more comp
geometries.

The simulations are performed on a two-dimensional~2D!
channel, as shown in Fig. 1, so that a contact line becom
contact point where the three phases intersect. Two kind
fluids are put in the 2D channel lattice, with a pressure d
between two open ends. Two cases of different wetting c
ditions are considered. One is an ideal condition in wh
there is no interaction between the fluids and the wall, so
the static contact angleu05p/2. The other case mimics
kind of real experimental case, in which one fluid that has
attractive interaction with the wall displaces an immiscib
fluid that has a repulsive interaction with the wall. The lat
case has a static contact angleu0,p/2. The relation curves
of the contact angleu vs the average velocity of the conta
line are obtained for these two cases, respectively.
©2001 The American Physical Society03-1
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curves agree excellently with the theoretical relations giv
by Cox et al. @5#, and can be superimposed onto a sin
curve by a certain transformation using a scale funct
@13,14,23# with a single parameterK, implying the universal
scaling behavior of the contact angle vs the contact line
locity. In particular, the power-law behaviorPcap;Vx is
found, with the exponentx very close to 1, in good agree
ment with the results based on the macroscopic theory
the molecular dynamics simulation@5,9,10#.

This paper is organized as follows. In Sec. II, some ba
ideas of the LB model are summarized, and a simulatio
framework is introduced. Numerically experimental data
analyzed, and results presented in Sec. III. A discussion
our simulations is finally given in Sec. IV.

II. MODEL AND THEORY

Let us first recall some basic ideas of the one-compon
lattice Boltzmann method@20#. The equation of evolution is
given by 2D nine velocities model~D2Q9 model@20#!

f i~x1dei ,t1d!2 f i~x,t !52
1

t
@ f i~x,t !2 f i

(0)~x,t !#,

i 50,1, . . . ,8, ~1!

where e05(0,0), ei5†cos@(i21)/2#p, sin@(i21)/2#p‡ for i
51, 2, 3, and 4, andei5†cos@(2i21)/4#p, sin@(2i21)/4#p‡

for i 55, 6, 7, and 8 are nine discretized velocities tha
particle can have. The distribution functionf i(x,t) denotes
the population for particles that move with a velocityei at a
site x and timet, f i

(0)(x,t) is the corresponding equilibrium
distribution function andt is the relaxation time. It has bee
shown that if the equilibrium distribution function is chose
to be @20#

f 0
(0)5ar2

2

3
ru"u,

f i
(0)5

~12a!r

5
1

1

3
r~ei•u!1

1

2
r~ei•u!22

1

6
ru"u

for i 51, . . . ,4, ~2!

FIG. 1. The schematic diagram of the simulational framewor
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at the long-wavelength limit, the Navier-Stokes equatio
with an equation of statep5cs

2r can be recovered from th
kinetic equation~1!. Here cs51/A3 is a constant sound
speed, and the parametera in Eq. ~2! is usually chosen as
4/9 in the D2Q9 model@20#. The fluid density and velocity
are defined by

r5(
i 50

8

f i , ru5(
i 51

8

f iei . ~3!

As usual, for immiscible-fluid displacement, we use t
colors blue and red to distinguish two immiscible fluid com
ponents. There are currently three LB methods developed
the study of multiphase and/or multicomponent flow. Th
are the recolor scheme@24#, the potential model@25,26#, and
the free energy approach@27,28#. In this paper we use the
potential model, partly as it is very convenient for consid
ing the different wetting cases. The details of the poten
model theory for a two-component fluid are available
Refs. @25,26#. The following is a brief description of the
entire algorithm based on Shan and co-workers mo
@25,26#.

It can be assumed that there exists an initialf i ,k(x,t) over
the entire lattice at a timet, where the subscriptk is an index
denoting a fluid component. The densityrk(x,t) and velocity
uk(x,t) at x are obtained fromf i ,k(x,t) by the following
equations:

rk5(
i

f i ,k ,

~4!

rkuk5(
i

f i ,kei .

The equilibrium velocityuk
(eq) is then given by

rkuk
(eq)5rku81tkFk , ~5!

whereFk is the total interparticle force acting on a comp
nentk at a sitex,

Fk~x!52ck~x!(
x8

(
k8

Gk,k8~x,x8!ck8~x8!~x82x!, ~6!

andu8 is a common average velocity given by the equati

u85S (
k

rkuk

tk
D Y S (

k

rk

tk
D . ~7!

The Green’s functionGk,k8(x,x8) satisfiesGk,k85Gk8,k , and
ck(x)5ck@rk(x)# is a function of the densityrk(x). It is
assumed thatck@rk(x)#5rk(x) for simplicity @25,26#. Usu-
ally it is sufficient to involve only nearest-neighbor homog
3-2
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SIMULATION OF CONTACT LINE DYNAMICS IN A TWO- . . . PHYSICAL REVIEW E 63 051603
neous isotropic interactions, so thatGk,k8(x,x8) can be re-
duced to the following symmetric matrix with consta
elements:

Gk,k85 H0, ux2x8u.c
gk,k8 , ux2x8u<c. ~8!

Here c is the lattice spacing~we takec51), andgk,k8 is a
parameter that characterizes the strength of the interac
potential. In our simulations, we choosegk,k850.5 for the
interaction between the two immiscible fluid compone
and, for simplicity, we set the relaxation timetk51 for both
components. Too large a value ofgk,k8 may likely produce a
negative distribution function, resulting in a numerical ins
bility, while a small value ofgk,k8 is not effective in produc-
ing the desired separation of the fluids. A more detailed d
cussion of the choice of the values ofgk,k8 and tk can be
found in Ref.@29#.

Our simulations are carried out on a 1000320 two-
dimensional channel lattice, as shown schematically in F
1. Referring to Ref.@16#, we compare the size of the lattic
to that of the real experimental framework. If 20 lattice u
spacings~LUS’s! are equal to 1 mm~Kumar and co-workers
used Pyrex tubes of radiusR50.5 mm), one has the follow
ing correspondence: one LUS is equal to 0.05 mm,
1 sec52.973105 steps. As a result, our simulational fram
work does not relate to microscopic scale~molecular scale!.

The pressure difference between two ends of the pl
channel is denoted byDP5P12P2, whereP1 and P2 are
pressures at the left and right ends, respectively. It is s
posed that the red fluid displaces the blue one from the
hand end~inlet! to the right-hand end~outlet!. Bounce back
boundary conditions are adopted on the upper and lo
solid walls, in which the fluid particles simply bounce bac
ward according to their directions before their collision w
the solid wall. The inlet-outlet pressure and velocity flo
boundary conditions supposed by Zou and He@30# are ap-
plied on the two open ends of the plane channel. In orde
simulate the natural wetting conditions in a real experime
we lay a fixed layer of yellow fluid particles on the wall wit
a certain constant density, and introduce two parametersgb,y
andgr ,y to control the interations between the wall blue co
ponent and wall red component, respectively. In the simu
tion, the absolute values ofgb,y and gr ,y are chosen to be
identical for simplicity. One can choose different absolu
values forgb,y and gr ,y . However, the effect is essentiall
the same. It serves only to produce a different wetting cas
the context of the present work, provided that the values
gb,y andgr ,y are small as compared withgr ,b , the magnitude
for the repulsive interaction between the red and blue fl
components.

When the simulation begins, fluid particles on all latti
sites are assumed to be blue. The inlet-outlet press
velocity boundary conditions are therefore applied for b
fluid. All blue fluid particles which are on the left side of
certainx position, including the inlet, will be repainted re
after enough time steps have passed to make sure the
over the entire lattice is stable. The procedure of repain
may cause some unphysical transient states on the fiel
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flow for a certain time that is rather short relative to t
entire simulational time duration. Measurement is done wh
the interface of the two fluids creeps near the center posi
of the channel to reduce boundary effects.

According to the analytical solution of Poiseuille flow in
plane channel driven by pressure difference, the pres
drop P12P2 can be expressed as a sum of two parts,

P12P25Pcap1
12mLV

b2
, ~9!

where b denotes the width of the plane channel,L is the
length of a capillary tube between the places whereP1 and
P2 are measured, andPcap denotes the pressure drop arisin
from the interface. The second term on the right hand side
Eq. ~9! is the pressure drop caused by viscous dissipation
a plane channel of widthb and at low velocity,Pcap is di-
rectly related to the cosine of the contact angleu by @13,14#

Pcap5
2g

b
cosu. ~10!

In our simulation, the dimensionless interface velocity
is employed to take the place of the contact line velocityV,
where Ca[mV/g, with g being the interfacial tension of th
fluid interface, andm the mean viscosity of the two fluids
The viscosity for componentk is related to the relaxation
time by mk5(2tk21)/6, as measured in lattics units. Th
interfacial tensiong is obtained by another series of simul
tional experiments. We performed the LB simulation on
2003200 plane lattice to do a series of bubble tests@31# with
a series of varied radiiR. The interfacial tensiong was found
to be g50.172~3! for the present simulation parameters
the Laplace lawPin2Pout5g/R.

It can be imaged that, as the flow velocity increases,
interface is incrementally deformed to the right. The cont
angle varies continuously as the velocity of the interface
creases from a macroscopic viewpoint. The deformed in
face is therefore measured by the contact angle~also referred
as the apparent contact angle! @14#

u5arctanF12h2

h G , ~11!

where h5H/b, with H being the distance from the cente
point of the interface to the contact point on the wall alo
the x direction ~see Fig. 1!.

Theoretically, Cox used the method of matchin
asymptotic expansions and the scaling function found
Hoffman @23#,

g~u!5g@u0~0!#1Ca ln~k/ l s!, ~12!

to predict the scaling behavior ofu vs Ca@5#. As the slipping
length l s5 l d /Ca for Jansons’ picture@4#, with l d being the
roughness of the wall, Eq.~12! becomes

g~u!5g@u0~0!#1Ca ln~k/ l d!1Ca ln Ca, ~13!
3-3
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wherek is a model-dependent parameter andu0(0) is the static contact angle. The functiong(u) is given by~see Ref.@14#!

g~u!5E
0

u

dw@ f ~w!#21,

~14!

f ~w!5
2 sinw$q2~w22sin2w!12q@w~p2w!#1~p2w!22sin2w%

q~w22sin2w!@~p2w!1sinw cosw#1~w2sinw cosw!@~p2w!22sin2w#
,
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whereq5m2 /m1. With the specified wetting condition, on
has u0(0). By choosing a suitable parameterK5 ln(k/ld),
one can next obtainu as the function of Ca based o
Eqs. ~13! and ~14!. Although the value ofu0(0) will be
different in different wetting cases, the value ofK5 ln(k/ld)
should remain the same for different wettings. The univer
scaling law @Eq. ~13!#, with K independent of the wetting
condition, therefore provides a first check of the simulat
results.

III. RESULTS ANALYSIS

It is supposed that the red fluid displaces the blue
from left to right. The pressure on all the lattice sites on
right open end is set constant, while that on the inlet var
to achieve different values of Ca using the boundary con
tions suggested by Zou and He@30#. With the pressure dif-
ference between the inlet and outlet, the interface moves
nearly constant velocity with slightly undulanth when the
flow becomes steady. We then can measure the time ave
velocity of the interface at the center of the channel. N
that the average velocity of the interface is equal to tha
the contact line when the flow becomes steady. Also in
region, h̄ ~the time average ofh) is measured to obtain
u based on Eq.~11!. Thus the relationu vs Ca is ob-
tained. Figure 2 shows the relation ofu vs log Ca for two
different wetting cases. The diamonds on the upper curve
simulational results for the wetting case 1, in which tw
fluids have the same vanishing interaction with the so

FIG. 2. Apparent contact angle plotted as a function of Ca
two different wetting cases,u (1)(0)5p/2 and u (2)(0),p/2. The
solid lines are the fits produced by using Eqs.~13! and ~14!, with
K521.8.
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wall and thus the static contact angleu05p/2. The triangles
on the lower curve are those for the wetting case 2,
which gb,y52gr ,y50.01 so thatu0,p/2. The two solid
curves are the theoretical curves based on Eqs.~13! and~14!
with different u0(0) and identicalK5 ln(k/ld)521.8. Note
that, in the present case,q51, and thusf (w) in Eq. ~14!
reduces to

f ~w!5
2p sinw

pw2w22sinw~sinw1p cosw22w cosw!
.

It is seen from Fig. 2 that the simulation results are in exc
lent consistency with the theoretical predictions. The t
solid curves fit the simulation data well, with a single para

r FIG. 3. Pcap as a function of Ca for two wetting cases. Pow
law 2g@cosu(0)2cosu(Ca)#/b;Cax is manifest in both cases:~a!
u (1)(0)51.5708 and x50.965(4), ~b! u (2)(0)51.5184 and x
50.941(9).
3-4
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SIMULATION OF CONTACT LINE DYNAMICS IN A TWO- . . . PHYSICAL REVIEW E 63 051603
eter K521.8 for different wetting cases and different sta
contact angleu0, which implies that the two curves obey th
universal scaling behavior, although they have different v
ues ofu0(0). By asuitable transfer on the lower curve, tw
curves can be superimposed upon each other through a
form additive shift horizontally along the Ca axis~see, e.g.,
Ref. @14#!.

Referring to Eq.~10!, the relation betweenPcap and Ca
can be obtained by the relation of (2g/b)@cosu(0)2cosu#
vs Ca @14#. Figure 3 shows the scaling behavior
(2g/b)@cosu(0)2cosu#; Cax, with x very close to 1. The
exponent is found to bex50.965(4) for wetting case 1@Fig.
3~a!#, andx50.941(9) for wetting case 2@Fig. 3~b!#. Except
for a few data points for which the values for Ca fall close
1025, all data of these two wetting cases are excellently
early fit. These results agree with the theory thatx will be
exactly 1 if the wall surface is ideally smooth, i.e.,Pcap will
be linearly proportional toCa.

When Ca is small, some data points in Fig. 3 seems
above the linear-fit line. The discretization effect of the l
tice manifests itself here. The current model is for an idea
smooth wall. However, in the LB method, the position of t
interface is usually determined by an interpolation of t
densities of neighbor sites. So, when Ca is small enough
discretization of the lattice may affect the simulation li
some type of periodic heterogeneity on the wall surface.
cause the lattice unit spacing in our simulations is on a m
roscopic scale, such a likeness is believed to correspon
the smooth periodic heterogeneity on the wall surface.

If the lattice is refined, the discretizing effect may be r
duced, and the exponentx turns out to be closer to unity
This is confirmed by some simulations for both wetting ca
on a refined lattice. The result for wetting case 1 on a lat
of 2000340 is presented as an example in Fig. 4. The sl
0.97~1! of the linear fit is clearly greater than that based o
1000320 lattice suggesting that the exponentx may ap-
proach unity if the discretizing effect is eliminated in the L
simulation.

It should be noted that present simulations produce
dimensionless velocity Ca of the interface in a range fr

FIG. 4. Power law 2g@cosu(0)2cosu(Ca)#/b; Cax obtained
on a 2000340 lattice withu~0!51.5708 andx50.97(1). Notethat
the value ofx is greater than in Fig. 3, suggesting thatx will be
closer to unity and the discretization effect will decrease if
underlying lattice is refined.
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1025 to 1022, and that the corresponding value ofu varies in
a rather limited region. In Fig. 4 of Ref.@14#, the largest
value of u approachesp, which requires a self-consisten
iteration procedure to obtainu~Ca! @14#. However, due to the
limited value range of the contact angleu in the present
simulation, there is no need to perform a self-consistent
eration as in Ref.@14#. In fact, Eqs.~13! and~14! fit our data
well enough, with a single value ofK521.8, and two differ-
ent constantsu0

(1)5p/2 andu0
(2),p/2.

IV. DISCUSSION

In this paper, we have focused on the velocity depende
of the cosine of the contact angleu in a 2D capillary tube
with homogeneous wall surface. Macroscopic theory@5# and
molecular dynamic simulations@9,10# both indicated a
power law scaling behavior with the exponentx51 for a
partially wetting fluid on this kind of wall surface. Our simu
lation results agree excellently with their conclusions. T
linear fits in Figs. 3 and 4 show thatx verges on 1 for ideally
smooth boundaries. It is believed thatx will be smaller than
1 if some kind of heterogeneity, such as periodic roughne
is introduced into the wall in simulations. In fact, some da
of low Ca in Fig. 3 suggest evidence for this belief.

Several authors considered theoretically and experim
tally how heterogeneity on wall a surface affects the pow
law scaling behavior of cosu vs Ca. Theoretical models pro
duced a range of values for the power law exponentx.
Joanny and Robbins considered the case of a contact
moving past periodic heterogeneities at a constant veloc
and obtained a result ofx52/3 for smooth defects on a wa
surface @12#. For the case of discontinuous defects th
found x51, just as in the case of an ideally smooth w
surface. Raphael and de Gennes independently derivex
52/3 for smooth defects such as dilute concentrations@6#.
Functional renormalization group calculations by Ertas¸ and
Kardar yieldedx59/7 from an expansion around the me
field solution for discontinuous defects@15#. Sheng and Zhou
predicted 0,x<0.5 by considering a capillary wave dissip
tion mechanism@13,14#. Experiments also reported a varie
of exponents. The experiment of Stokeset al., with a
glycerol-menthanol solution and mineral oil, found thatx
50.40(5) @11#. Capillary rise experiments showedx50.5
for a glyecrol-water solution with alkanes as well as for
glycerol-water solution with silicone oils@32#. Kumar et al.
found x50.20(3) for water-alkane interfaces@16#.

Our simulations suggest that the LB model may be a
liable numerical technique for studying immiscible-fluid di
placement related subjects, such as the dynamics of the
terface, the contact line, and the contact angle. In particu
when incorporated with appropriate boundary conditions,
LB model may serve as an effective numerical tool to stu
such subjects for systems with complex geometry, where
macroscopic theory may encounter some difficulty and
molecular dynamics approach may turn out to be too co
putationally intensive. Further investigation would be of i
terest in an attempt to clarify the somewhat conflicting
sults regarding the value of the power law exponentx in the
3-5
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case when some kinds of heterogeneity are introduced
the wall surface. We are currently in the process of this
vestigation. Some qualitative results on a sinusoidal t
have in fact been obtained, and will be published elsewh
@33#.
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