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Precise simulation of criticality in asymmetric fluids
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Extensive grand canonical Monte Carlo simulations have been performed for the hard-core square-well fluid
with interaction rangeb=1.5¢0. The critical exponent for the correlation length has been estimated in an
unbiased fashion as=0.63+0.03 via finite-size extrapolations of the extrema of properties measured along
specially constructed, asymptotically critical loci that represent pseudosymmetry axes. The subsequent location
of the critical point achieves a precision of five parts if 1@ T, and about 0.3% for the critical densipy..

The effective exponentgs; and B, indicate Ising-type critical-point values to within 2% and 5.6%, respec-
tively, convincingly distinguishing the universality class from the “nearby” XY and0 (self-avoiding walk

classes. Simulations of the heat capa€ity(T,p) andd?p,/dT?, wherep,, is the vapor pressure beloW

suggest a negative but small Yang-Yang anomaly, i.e., a specific-heat-like divergence in the corresponding
chemical potential derivativedfu, /dT?) that requires a revision of the standard asymptotic scaling descrip-
tion of asymmetric fluids.
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I. INTRODUCTION Indeed, even with a scaling theory that recognizes
asymptotic symmetry, the origin of tHe|2# correction lies
Liquid-vapor and liquid-liquid phase separation and thein a deep lack of full symmetry in terms of the “obvious”
related critical behavior in real fluids isot describable by physical variable$l]: this manifests itself most directly in a
any direct “broken symmetry” of the sort that characterizesdivergenceasT— T.- of the second derivativedfu,, /dT?)
so many phase transitions in magnetic and other condensed ., (T), the chemical potential at which the vapor and
matter systems. This fact poses significant problems botliquid phases coexist. As Yang and Yaf®] pointed out in
experimentally and theoretically. At the most basic level,1964, such a divergence is forbidden by thetificial) sym-
locating the critical point of a fluid entails the determination metry of the standard lattice géwhich is isomorphic to an
of two separate parameters, say the critical temperalgre |sing-type ferromagngt The divergence of d?u,/dT?),
and the critical density., whereas in a ferromagnet or a which we term a Yang-Yang anomal{], is also absent in
superfluid onlyT, must be found since the “axis of symme- various related model fluids that possess a “hidden symme-
try,” on which the critical point resides, specified, e.g., by try” [3—5]. Nevertheless, as stressed by Yang and Y&ig
zero magnetic field or vanishing off-diagonal field, is bothand uncovered in recent analyses of the specific heats of
readily identified theoretically and easily realized experimenpropane and carbon dioxidé,6], real fluids need not and,
tally. Nevertheless, experimental observations of real fluid$ndeed, do not respect even the expected hidden symmetry.
do reveal a high degree akymptotic symmetrjMost nota-  Nor are there good reasons to suppose that more realistic
bly, if pjig(T) andp,,fT) denote the two sides of the coex- continuum models, such as the Lennard-Jones fluid or the

istence curve beneatfh., the ratio hard-core square-wel[HCSW) gas| 7], which we investigate
here, will exhibit an asymptotic hidden symmetry.
Ro=[pig(T)=pcl/lpc—pvad T)] (1.1 This situation is particularly pressing in the case of the

most basic model of an electrolyte or ionic fluid, namely, the
approaches unity rapidly a8—T.-. More explicitly, the restricted primitive mode(RPM) [8—13] where the coexist-
width of the coexistence curvp,y(T) — pya(T), vanishes as ence curve is knowr(by simulations[14—17) to be ex-
[t|? with 8=0.32;, where tremely asymmetric. At the same time, the nature of fluid
criticality in the RPM—whether of Ising type or classical
t=(T—T)/T, (1.2 (i.e., mean-field or van der Waa|srossover from one to the
other, or something new—is still open to serious question
while the diameter [8-13]. Indeed, a principal motivation for the present study
was to discover and test effective simulation techniques for
p(T)=3 [piig(T) + pyag T)] (1.3 more revealing and definitive investigations of the RPM
electrolyte[18].
approacheg, a5p¢|t|‘” where, in practiceys can hardly be In previous work{19] we studied three-dimensionsym-
distinguished from unity ang,/p. is numerically small. metriclattice gasesor Ising ferromagnejswith many neigh-
Theoretically, the consensus for many years was #hatl bor (i.e., intermediate rangenteractions usindimited com-
—a=0.89, but recent work[1] suggests, rather, that  putational resources. The aim, successfully achieved, was to
=2B=0.65; however, competing additive terms i{T) show that even without large-scale computing capabilities,
varying as|t|*~* and ast preclude convincing experimental the systematic employment of appropriate finite-size scaling
tests[1]. techniques could enable one to convincingly elucidate the
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universality classand detectrossover phenomenahus, in

a simple cubic lattice gas with up to 26 equivalent-neighbor,
i.e., equally strong, couplind49], the fundamental correla- 6
tion length exponentr could be determined ag=0.63
+0.02; that is close to the best estimates for Ising systems
(say v,s=0.6303-0.0010[20]) and is certainly adequate to
distinguish the behavior from the two most well-known
“nearby” potential candidates, namely, self-avoiding walks
(or n=0 systemps and XY spin models f=2) with vg,,
=0.58 and vyxy=0.67;, respectively[20]. The classical
(mean-field or van der Waalsalue vy=3 was unambigu-
ously excluded.

However, crossover behavior from Ising-type character to
classical forms, depending on the range of the interaction
Ry, could also be clearly identified by studying the tempera-
ture dependence of the effective exponefitg(T) for the 0
coexistence curve, angl(T) and y.4(T) for the susceptibil- 0
ity and/or compressibility divergencgl9, 21-23. The
finite-size rounded effective exponent data could be readily FiG. 1. Equal-height grand canonical density distributions for a
extrapolated to reveal Ising-type values at thermodynamigystem size ofL=120: (a) T*=1.18; (b) T*=1.20; (c) T*
criticality. Furthermore, the estimated critical temperatures=1.238; (d) T*=1.26. The value of the chemical potential that
agreed encouragingly well with values obtained in large<corresponds to equal heights was found by histogram reweighting.
scale computationg21-23. SinceT>TY(L) for case(d), the chemical potential was chosen to

Here we bring the techniques developedlf] to bear on yield an average density equal to the critical value.
the HCSW fluid with an interaction-to-hard-core diameter

ratio \=b/oc=1.5[7]. It is immediately evident, however, thermodynamic limitL— e, must spring from the true criti-

that the first and critical problem is to devise methods toCal oint (T, .p,) [27]. By introducing an adjustable param-
locate the critical density and to determine appropriate loci in point (Te.pe - By Int g ) P
the phase plane upon which to study the finite-size temperz{e-ter we find, indeed, an optimal locus that can be regarded as
ture dependence4] approximating an axis of pseudosymmetry of the sort that

Now on theassumptiorihat the asymptotic critical behav- arises in exactly SO'UF"‘?‘ quels WiFh an exp_Iicit or hidd(_an
ior is of Ising character, Bruce and Wildin@W) [25, 26 symmetry[3-5]. The finite-size scaling techniques used in

have developed a general method for estimafiggand p, [19] can now be employed effectively on the various asymp-

using the histogram of densitand energyfluctuations cal- togﬁ%”%hcgr:fsl LOS(;:;;E; %(5)1(: (;Tgm gr;:gkgg(s:e(lj“esnmate of
culated by simulation in a grand canonical ensemble of finite’ We’ also méntion here becauggof s oténtiél interest to
dimensions,L XL XL (in d=3 dimensiong with periodic ' P

boundary conditions. We will, indeed, employ such simula—é?jsfétjsd)éf()fa‘?;g;&ghgg ageags_pﬂzzg },ﬁgs'lt'eczgs,,f';t'gemic
tions (see, e.g.[17]). However, in the first place, we are P gas-p PIEts,

anxious, with applications to the RPM in mindot to pre- nuclt_a|,. etc., see, e.g[28—“3(]) a ;upelemgntary method of
suppose that criticality in the HCSW fluid is of Ising type; obtalr;mg Sequences of “canonical estlmates, S-lég(l‘)
second, even if it i¥as we will actually establish with en- @ndpc(L), which can also be extrapolated to aid in estimat-
couraging precisionthe BW techniquéurther assumeshe g the trueT andp. . Specifically, as described in Sec. I B,
absence of any Yang-Yang anomaly. More specifically, inon€ may exploit a caponlcal formulation in which the two
their scaling formulatiori25, 26 Bruce and Wilding dawot ~ Peaks of the density hls_tograr(? fORT, agproach, merge at
allow for any mixing of the pressurg into the asymptotic @ “finite-size critical point,” T¢(L) and p¢(L), and reduce
linear scaling fields as is necessary to understand the appe-asingle effectively Gaussian peak: see Fig. 1. Of course,
ance of the anomall]. Since we would like to assess the the behavior in the vicinity of T2, p2) is completely classical
possible magnitude of a Yang-Yang anomaly in the HCSWalthough whernL—<, the effective, close-to-parabolic co-
fluid, presupposing its absence is obviously inappropriateexistence curves, for example, approach the limiting Ising-
Finally, we will, in fact, demonstrate that the biases intro-type form: see Fig. )t
duced, inadvertently or otherwise, by the BW approach lead Armed with precise and, we believe, rather reliable esti-
to a significant overestimate of the critical dengity. (And ~ mates ofT; and p, one can go on to examine the effective
one may well suspect the same is true in applications of thexponentsy(T) and Bx(T) to check consistency with the
method to the RPM15,17, 27.) Ising universality class as indicated by the estimated value of
Following [19], therefore, but recognizing the intrinsic the correlation exponent, namelys=0.63*+0.03. This is less
asymmetry of criticality in the HCSW fluid, we have devised precise than could be obtained in the symmetric lattice gases
a range of unbiased methods for estimating the critical denf19]; but it is still adequate to discriminate against the self-
sity. These mainly rest on the calculation for finite< L avoiding-walk fi=0) or XY (n=2) values mentioned
X L systems of various loci in thel(p) plane which, in the above.

0.6
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Finally, in Sec. IV we discuss, following the analysis in #p ap 1 )
[1], the constant volume specific he@t,(T,p) and, using i v((f?N) )=XNN (2.6
appropriate expressions in terms of third-order moments of
the joint density and energy histograms, the derivative *p ou 1
(d?w,/dT?) involved in defining the Yang-Yang anomaly Fr iy v((é‘U)Z)EXUU, (2.7
as discussed above. Unfortunately, the data are not as
precise—the third-order histogram moments being, inevita- Py
. p ap au 1
bly, more noisy than the lower-order moments—nor as ex- ——=—=——==—=(N6U)=—x\y, (2.9
tensive in terms of accessible size range—limited Lto Jpdd 9o oz v

=150—as we would wish. Nevertheless, the presence of
negative, albeit rather weak Yang-Yang anom@lynilar to
that found in CQ [6]) does appear likely to be present in the
hard-core square-well fluid with relative interaction range

Yhere 5X=X—(X). The familiar isothermal compressibil-

ity, Kr=p 1(dpldp)t, is related toyyy via

xnn=KsTp?Ks. (2.9

=1.5. Some brief concluding remarks are presented in

Sec. V.

I. MODEL AND METHODOLOGIES

A. Moments and fluctuations in the grand ensemble

The hard-core square-wéHCSW) fluid has been studied
extensively[7] since it is arguably the simplest continuum
model that exhibits realistic gas-liquid phase separation an
criticality. The pair interaction potential between two par-
ticles (spheres of diametew) is infinite for distances
r <g, attractive of strengthe for o <r < \o, and zero

thereafter. In modeling systems characterized by short-range

forces, the parametex is typically taken to be 1.5. Upon

Higher-order susceptibilities will often be of interest in
the critical region. To that end it is felicitous to define a
generalized susceptibility as

xnkum=((SN) (sU)™)/V, (2.10
with the general Maxwell relations
d J J
XNkym= E(XNkflum) == %(XNkumfl)
=(—1)™ ("™ *plam oo™ .
(2.11

For studies in phase transitions and critical phenomena,

defining a reduced pressure and inverse temperature or cotemperature derivatives at fixed chemical potential are fre-

pling strength

P=p/ksgT, O=¢elkgT=1/T*, (2.1
and on absorbing the de Broglie thermal waveleng{T)
into the definition of the chemical potential through
w=ulkgT—3In(Alo), (2.2
the grand partition function at fixe@educed chemical po-
tential 7z, volumeV=L3, and couplingd, can be written as

E(7,0;L)=exppV)=TrlexpgaN—6U)], (2.3

where the trace represents summation over all particle num-

bersN and integration over all continuum states of configu-
rational energyJ.

The first derivatives of the grand potentipl give the
mean density and energy density via

(N
FRRVARL (2.4
m (U
v oW 2.5

where the notatiok-) will always imply an average over the
finite-size grand canonical distribution of states.

quently not the most informative quantities; one would rather
prefer—in  accordance with  typical experimental
observations—to follow a path of constant dengityFor a
functiong=g(%,0) one evidently has

) w

REIER

The derivative ¢u/d6), may be found by setting=p to
obtain @1/ d6) ,= xnu/xnn - FoOr reference below we record

the general result
p 4 m

|

For example, on setting=—(U)/V, and using Eqs(2.6)—
(2.11), one obtains the configurational part of the constant-
volume heat-capacity density, namely,

99
a0

I
a6

79

99
a0

az

(2.12

99
a0

99
a9

_XNU

_XNN

79

Fr (2.13

(2.19

The overall heat capacity at constant volu®§' is then
given by

éV:XUU_XI%IU/XNN-
C%kgV=32p+Cy/kgT*2. (2.15

B. Data analysis and phase coexistence

We analyze our raw simulation data using histogram re-

The second derivatives determine the usual responsseighting technique§31] that are now routinely applied to

functions (or susceptibilities, compressibilities, heat capaci-

ties, etc). Specifically we have

extracting the maximum amount of information from a mo-
lecular simulation. In the framework of the grand canonical
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ensemble, one performs a simulation at a thermodynamiEor a finite system analyticity is anticipated gag,{p) will
state characterized by a given value of the chemical poterexhibit van der Waals—type loops. Lgft, be the chemical
tial, say, iy and the inverse temperatuigoupling, 6, potential that satisfies a Maxwell-type construction angjet
=el/kgTo, and measures the joint histogra®g(N,U) of the  andp, be the corresponding saturated densities. In view of
fluctuating energyJ and number of particledl. The histo- Eqgs.(2.18 and(2.19 one sees that

gram P(N,U; 7, 0) of a different state &, ), not too far

away from (@g,6), may be obtained fromPy(N,U) I Pulp) o

through the simple reweighting formula nPN(pU) = — (Feani— Feany) + Fo(p1— Po)
P(N,U;z, 60) o I
W“EXQ(M—MO)N—M—%)U] (2.16 canl — Peany

- =0. (2.20

without any need to perform an independent simulation a}n other words, the peaks of the grand canonical density

(2, 0). The properties of interest, such as those introduced irc1iistribution that corresponds to the canonical choice€xof
525'(2'4)_(2'1])’ can then be obtained by simple averaglng,:ﬁo’ must be of equal height. While agreement between the

various different ensembles is to be expected in the thermo-
dynamic limit, this is not the case for finitand small sys-

> X(N,U)P(N,U;%,6) tems.
<x>ﬁ’€:N’U ) (2.17) In Fig. 1 we plot typical equal-height QistribuFions for
2 P(N,U: %, 0) =120. Note that the temperature associated with cupje
U T must be very close to an effective, finite-size canonical criti-

] N cal pointTg(L) and likewise for the corresponding peak den-
Near and at a first-order phase transition, the grand casjty ,9(L). A better estimate of this finite-system critical
nonical density distribution attains a characteristic broadpoint may be obtained by extracting the free-energy density
double-peaked structure; the local minimum that Separat%merically[cf. Eq. (2.18] in the near-critical region and

the two peaks is generally attributed to the formation of i”'fitting the central region to a truncated Landau-type polyno-
terfaceq 32]. ForT<T., when the peaks are well separated, i) expansion, say

“the equal-weight criterion”[33] may be used to determine

the chemical potential, sayi,(6) of the phase transition. o J .

Specifically, for a given temperature, one calculates the area feadp,0)= Z Ai(0)p', (2.21

under each peak—which, in view of E@.3), is essentially =0

proportional to the pressure—and locates—in the framework . - S

of the histogram reweighting scheme—the value of thewherde%>4. lO_n using Eq(2.19, the critical point is simply

chemical potential for which the two areas are equal: thigoun y solving

identifies the phase boundafy, (6). T 9= 2T 1 Ip2=0 29
It should be noted, however, that an alternative definition Hroan Op= 0" Fean 0P = (2.2

of the phase boundary, fixed by an "equal height criterion” yhich represents the vanishing of the inverse compressibil-

[34], is also reasonable. As the name indicates, one identjy,

fies, say;io(6), as the particular value of the chemical po- ~ Far pelow the critical regionT<T.) when =y, , a

tential for which the underlying grand canonical density dis-grand canonical simulation encounters severe ergodicity

tribution has two peaks of equal height. In view of the problems owing to the large magnitude of the free-energy

connection between the canonical and the grand canonic@hrrier that separates the twmetastable phasegpeaks.

ensemble it can be shown readily that the equal-height conFhe multicanonical preweighting scheni&5] utilizes a

struction merely corresponds to canonical ensemble coexisfgeighting function that forces the system to perform a close-

ence[34]. To better appreciate this, consider the statisticalto-uniform random walk throughout the entire density range

mechanical form of the grand canonical distribution ofof interest; this greatly facilitates the otherwise infrequent

densities transitions between the two phases. However, an estimate of
the weighting function is necessary; but that can be obtained
pN(p)EE P(N,U; 7, 0) = exd —f_car(Pﬁ)V‘*‘TLN], recursively from a prior simulation at a higher temperature
U

and subsequent histogram reweighting at the state of interest,
(2.18 o, alternatively, by utilizing general scaling properties of the
— ) ) distribution functions. The physical density distribution is
where nowp=N/V and fc.{p,6) is the (canonical free-  ,pyained by dividing out the preweighting factors. We have

energy density. Note thdt,,can be obtained by performing employed this technique foF<0.95T(L).
a grand canonical simulation @t and measuring the histo-

gramPy(p). The canonical chemical potential and pressure

) C. Finite-si ling th
are thereby defined by niie-size scaling feory

o o Finite-size scalingFSS theory[36, 37] was devised to
Teca=(0f1dp)y and Pea= —feant Zcap- (2.19  describe the rounding and shifting effects that are invariably
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observed in finite systems. In the context of magnetic sys-

tems characterized by a strong ordering fieldnd a weak
“temperaturelike” fieldT, a propertyY(T,h) that exhibits a

power-law type of divergence along the phase boundary or

the symmetry axisi{=0) in the thermodynamic limit, e.g.,

Y(T,h=0)~|t| 7, t=(T-T)/T, (2.23
is expected to scale as
Y(T,h,L)~L®"Y(tLY" hLA7) (2.24)

in the limit of largeL. Herev andA = B+ vy are critical point

exponents for the class of systems in question ¥ni$ a
scaling function of universal form up to normalization of the
variables. The scaling forrt2.24) typically implies that(as-
sumingh=0 for simplicity) a diverging quantity will reach a
maximum value of height proportional t0“*. Moreover,

the location of the maximum, which may be regarded as an

effective critical point, sayT{"(L), should vary with the
system size as

T(L) = To(o0) ~ QYL (229

In the context of symmetric Ising or lattice-gas-type sys-
tems these finite-size scaling ideas have proven remarkab

successfu[38—43. One simply determines the peak posi-
tions of the second- and higher-order derivatives of the fre

plane, or the symmetry axi®i&0), for a series of increas-
ing values ofL and, assuming the correlation length expo-

nentwv is known beforehand, subsequently extrapolates to th

thermodynamic limit according to E¢2.25. On the other
hand, the absence of any known symmetry axes in real flui
models makes FSS theory difficult to apply;
the critical temperaturd ., the critical densityp,, and a
locus corresponding in some sense to the symmetry laxis
=0.

We have constructed and examined special loci
generally, defined by the inflection points of various
properties—that enable us to compensate in a reasonab
systematic way for the absence of any known symmetr
axes. A very natural choice is the line of inflection points of
the density vs the chemical potential isotherms, i®.,
=p(; 6). Note that the inflection point is found by maxi-

mizing

which, in other wordgsee Eq(2.11)], means that one must
solve the simple equation

ap

(9TL>H:XNN (2.29

Xnnn=0 (2.2

%

energy along the phase boundary in the field-temperaturg,

one must locate

PHYSICAL REVIEW E63 051507

LSNLINL N IR R R S B L

(©)

|||-|I|.|u

po’
1 1 1 l 1 1 1 I 1 1 1

0.4 0.5

0.1 0.2 0.3 0.6

FIG. 2. Effective symmetry loci in théT, p) plane as described

in the text. The solid circles represent our estimates for the coexist-
ing densities and the diameter. Curd@s represent theg,p) in-
flection locus(b) the (p,p) locus, andc) the y*¥ locus. Note that

or (a) and(c) only the curves that correspondltéo=5, 10.5, and

5 are shown. Fotb) the curves correspond from left to right to
L/o=5,6, 75,9, 10.5, 12, 13.5, and 15, respectively. The dashed
orizontal line indicates the critical temperaturg«). The arrow
the bottom indicates the estimate of the critical dengify).

cus must asymptotically approach the critical point al-
ough for finiteL it will, in general, only pass near the

8ritical point; see Fig. 2.

Some noteworthy features about thig,p) locus merit
special attention. In the standard-lattice gas it coincides with
the symmetry axist{=0) and the critical isochore—in other
words thep() functional form is antisymmetric about the
symmetry axis. This fact perhaps led Widom to formulate his

original scaling equation of state in terms(@f, p) variables

&44]. On the experimental front, the point was examined in

etail by Vicentini-Missonkt al. [45] for several simple flu-
Ids (such as CQ Ar, and Hé) and—although a real fluid
possesses no known symmetry lines—it was concluded that
the (u,p) relationship was nearly antisymmetric about the
critical isochore in the neighborhood of criticality.

Another natural choice of locus is the isothermal density-
pressure or §,p) line of inflection points. As before, one
finds for fixed temperature the value of chemical potential
that maximizes

to determine the value of the chemical potential associated

with the p(&) inflection point at a given fixed temperature
(or coupling 6). In the thermodynamic limit I{—o0) this

(&p) _1(8p) 1 2.28
], plam), pXNN '
by solving

X~ (Xinp)=0. (2.29
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In a similar vein, one can investigate the locus of maxima of T
the isothermal fluid compressibility

LI NN L L B ML S

_kBT 4
E_1(5,3) 1 ap) 1 (2.30 13 ¢ -
0 p (730 ;2 &ﬁ 6 EZXNN. . r 7

Finally, a more general K locus,” which incorporates all
the previous cases, can be defined by the maxima of the r
“modified susceptibility”

\
1.2 5 —
x"=xnn/p. (2.3)) I T
L 9 ° -
Then, as before, the corresponding value of the chemical g %
potential, 2(X)(T), is determined by solving i 3 3]
2 T % 5
xnnn— KOxan/p) =0 (2.32 . g S
$ 2 =5 3
at temperaturd. All the k loci are asymptotically critical in L ] %
the sense that they spring from the true critical point when S ] 9
L—oe. It transpires that introducing the parameitdnas the s % po’ ‘c’g,;
advantage of allowing one to approach the critical region ) PN PRI RPN (e - M IS PR I
from different directions: see Fig. 2. 0 01 02 03 04 05 06

Numerous further analogous possibilities might well be FIG. 3. Maximum heat-capacity lines in t&, p) plane. The

considered; for instance, one may deﬁn? additional IOC-l:urves [abelec{a) correspond to the maxima of the heat capacity
based on the constant-volume heat capacity, sedZty) densityCy, as defined in Eq(2.14). Curves(b) denote the maxima

and Fig. 3. An additional locus—the ‘“canonical locus,” f the h . & /o Al . o
~0 T)—may be defined by applying the equal-height Crite-o the heat capacity per particl€, /p. All system sizegL/o=5,
Pcar y y y 6,7.5,9,10.5, 12, 13.5, and l&re shown for botlta) and(b). The

rion: see the discussion associated with Fig. 1 in Sec. Il By rated densities and the diameter are represented by open circles:
Since finite system criticality is classical along this locus, they,e solid lines that emanate from the open circles are based on an
standard methods used for every classical equation of staj§ing-type fit: see text in Sec. Iil. The filled circles denote the finite-
(e.g., van der Waalsmay be used to locate BJ(L) and a  system[T,(L),p.(L)] locus that is obtained from the canonical
pg(L): see the solid dots in Fig. 3. Of course, each correfree-energy density—derived from grand canonical data—by fitting
sponding locusp®(T;L), not shown in Fig. 3, extends up- to a fourth degree polynomial and evaluating the critical point clas-

wards only toTS(L). sically for everyL.

The _task_of fini_te-size theory is now clear. In the_context 1 a(M4Ve 1] a(ME)Ys
of precise simulations, one measures thermodynamic proper- Yo=— == (2.34)
ties for a series of increasing system sizesver a range of \Y a0 g’ \% a0 '

temperatures along the previously defined “pseudosymme- ‘
try” axes, locates the appropriate peak positions, and extespectively. Here the subscriptstands for the locus under
trapolates to the limit. — according to Eq(2.25 to esti-  consideration, e.g., thelocus derived fromy . Following
mate the infinite-volume critical temperatufig,(). The  our previous wor19], we have also defined the Ising-type
various properties, say;, that we utilize constitute second- Susceptibilities
and higher-order derivatives of the grand potential and are
conveniently defined in terms pf. Q¢nsity-energy moments. )'(ZEY7=1[(M2)—<|M |>2]’ (2.35
Among the numerous possibilities, we have first consid- \
ered the constant-volume heat capacity= CV, defined by
Eqg. (2.14, as well as its constant-volume derivativé,
=(aévl(90)p, which is found using Eq(2.13. In accord
with studies in magnetic systeni$9], the heat capacity is +12AM2(M[)2—3(M2)2—6(|M|)*]. (2.36
found to have a maximum—thereby definimg(L)—below
the critical temperature, while its derivative has two localNote thaty,(T) exhibits two extremgon a locus?), say,
extrema aff, (L) and T, (L), respectively. Tg (L) andTg (L), respectively.
Additional estimators may be defined in terms of the be- Last but not least, estimators based on the so-called
havior of the derivatives of the order parametdr= 6N Binder parameter and varianit32, 38, 41, 43 can also be

%e=Ya=g [(M9~&(MIXIMP)

=N—(N). These yield the estimators considered. To that end we have opted to examine
1[a(IM]) 1[a(M2)12 g [(M% a [ (M?)
3= | v Yamg| 7|, (233 9= 2| 72| 10=70 e - (239
V| 96 vl a0 |, d0[(M%)7], 30| {IM[) ;
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Needless to say, there are many more combinations tha

one can construct such as, for instance, estimators based
dU=U—(U). However, as we will see below, the sgtfor
j=1,...,12,together with the canonical lodiabeled 0
will amply suffice for the present investigation. The infinite-
volume critical temperaturél;(«) is obtained from Eq.
(2.25 by extrapolating the peak position’ﬁﬁYJ)(L;g) say,

towards the thermodynamic limit. Once the critical tempera-

ture has been reliably established, bfdependent pseud-
ocritical density,p.(L,T¢();¢), may be calculated for the

locus ¢ under consideration and the process is repeated fo

the whole set of the loci. The infinite-system critical density

pc() is estimated by extrapolation of these various locus-

dependent density approximants towatdsc. The proce-
dure will be demonstrated explicitly in the next section.

Ill. THE CRITICAL REGION OF THE
SQUARE-WELL FLUID

PHYSICAL REVIEW E63 051507
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FIG. 4. Estimation of the inverse correlation length exponent
1/v for the HCSW fluid using the estimatosg, defined in Eq.
(3.1). The crosse$X) correspond to the pairY(lZ,Yg_)) whereas
the plusses+) derive from (Y1,,Y$ ). Both pairs were taken
along the [, p) inflection locus k=0). The arrows on the ordinate
indicate, from the highest downwards, estimates of fbf n=0
(self-avoiding walky n=1 (Ising), andn=2 (XY) systemg20].

In accord with the approach explained above, we havehe values ¥=2 and 1 correspond to mean-field theory and the
performed grand canonical Monte Carlo simulations for thespherical modelrf=) [49], respectively. The parametky repre-

HCSW fluid for system sizet/o=5, 6, 7.5, 9, 10.5, 12,

sents a shift (=L +1y0) that is merely an aid to extrapolation

13.5, and 15. For a given temperature the chemical potential9]: see also Eq3.1).

was chosen—through histogram reweighting—so as to yield

an average density gf* =po°=0.3, a value close to the
previous best estimates of the critical denity46—48. For
low temperatures, a relatively few multicanonical simula-
tions [35] were carried out to facilitate transitions between
the low- and high-density phases. For higher temperature

erties and various values of the sHift The data appear to
extrapolate to the neighborhood of the expected Ising limit
v=0.63, [20] whenL— <, although the precision is not as
good as in the magnetic models[df]. By examining a set

of similar plots using other pairs of properti¥s andYy and

Sifferent loci, all displaying essentially similar behavior, we

additional simulations were performed at chemical potential$.qcjude
designed to sample densities somewhat below and somewhat

abovep.. The total length of each simulation was in the
range of 20—8& 10° trial configurations per unit volume
(a®), depending on the particular system sizender inves-

Vhcsw=0.63+0.03. (3.2

Although one might wish for higher precision, it is clear that
significantly longer and larger simulations would be needed

tigation. The data were stored in two-dimensional energyt, 4o mych better. Nevertheless, this estimate serves, as men-

density histograms with bins of siz&N=1 andAU=2n
—1 (n=1). The different loci explained in the preceding

tioned, to distinguish the HCSW fluid from self-avoiding
walks with »=0.5& and XY spin systems withy=0.67;

section were found through histogram reweighting. The[2()].
propertiesY; were measured along these lines as a function The next step involves the determination of the critical

of the reduced inverse temperatwend the corresponding
peak positiong);(L;{) were determined.
The exponent, governing the divergence of the correla-

temperature by extrapolating the peak positi&g3;(L)/e
=1/6;(L) to theL— e limit according to Eq(2.29. To this
end we will accept the central, Ising estimate 0.630 from

tion length¢, was found by the unbiased method described irhere on. In Fig. 5 we present this extrapolation on the chemi-
[19] and tested there for symmetric magnetic systems. Oneal potential-density inflection locus: we thence conclude

considers the peak positiorgg(L) and 6, (L) for a pair of
propertiesY; andY,, and forms the ratio

0,(L+8L)— O (L+ L) | L+140
6,(L)— 0,(L) SL

(3.2

yik=11

It is expected thay;— 1/v whenL—c. The small adjust-
able shift parametel, partially compensates for the inevi-
table corrections to leading-order scaling.

In Fig. 4 the behavior ofy;, along the fx,p) locus is
examined vs 1/ for the HCSW fluid for two pairs of prop-

T¥=KkgT.(L)/e=1.2179-0.0003, (3.3

which closely matches the precision achieved[19] for
magnetic systems. Examination on different loci leads to the
same estimate since the peak positions for a particular quan-
tity Y; prove rather insensitive to the particular choice of
locus (in the rangek=0 to 1).

As already mentioned, once the critical temperature has
been established, the critical density can be found most sim-
ply by recording the values @f.(L,T.(0);¢) for several loci
¢ and a sequence of system sitegxtrapolation to the limit
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FIG. 5. Critical temperature estimation for the HCSW fluid by  FIG. 6. Critical density estimation for the HCSW fluid by ex-
extrapolation to the.—« limit. A value of »=0.630 has been trapolation toL —. The highest line represenpéo)(L) obtained
assumed. The highest line correspond¥ {g. The second highest from the canonical coexistence locus Bi(). The remaining
line represents the canonical critical poii(L): see text and, in  cyrves correspond to differegt® loci evaluated at the estimate for
particular, Flg 3. From the third hlghest downwards the lines Cor-Tc(oo)' From the second h|ghest line downwards the associated
respond to propertie¥; for j=10, 2*), 7*), 9,6,5,4,3,1,7),  values ofk are 0,4, &, &, 1 1 L and?, respectively. The open
and 2%), respectively. All lines except the second highest havegircle denotes thdinfinite-volume estimate obtained in Ref7]
been obtained on théx(p) (or k=0) inflection locus. using the Bruce-Wilding approad25, 26].

of infinite system size can then be performed as illustrated idiscontinuously on crossing the phase saturation bound-
Fig. 6. It should be noted, however, that the exponent of thary; however, the finite-system heat capacity will inexorably
asymptotic approach is open to debate: see remarks in Seexhibit a rounded maximum or peak depending explicitly on
IV. We decided to extrapolate vsll/and thus obtain an L. In the same figure we also show the finité‘canonical”
estimate free of assumptions as to further exponent valuespexistence curves that follow from the equal-height proce-

We may note that separate sets of estimators, ﬁ%ﬂ-), dure explained in Sec. Il B. Evidently, these values all lie in
may be obtained from the individuélloci, since these dis- the (limiting) single-phase region. _
play well-defined extrema as a functionTifsee the plots in As in other case$7,17], reliable grand canonical results

Fig. 2 and, likewise, in Fig. 3. Behavior comparable to Fig. 6do not reach the close-to-critical region; thus no direct esti-
is observed but the data are not quite as precise and smodtf}hateafor the phase boundary is possible in the range 0.15
numerically as those obtained from the fixed isothéfm =po°=<0.45. In order to obtain some reasonable estimate or

=T.(«). Overall we conclude bound for the saturation temperatufig(p) say, in this “in-
ner region” where no direct values are available, we have
pr= po°=0.3067+0.0004. (3.4 attempted to extrapolate the canonical saturation tempera-

tures, T(p:L), and the heat-capacity maxima,

This estimate which, evidently, is based on a systematiG'gCV)(p;L), to the limit of infinite size. Note that these two
study of a range of approximants, is roughly an order ofgifferent estimators approach the thermodynamic limit from
magnitude more precise than that[@] based on the Bruce- opposite directions so that weighted averages converge more
Wlldlng methOd[ZS, 2@ see Flg 6. Furthermore, the earlier rap|d|y and p|ots vs 1/ are informative, a|th0ugh they ex-
estimate seems subject to distinct bias. hibit systematic curvature that is hard to extrapolate with full

Our grand canonical results for the CoeXiSting denSitie%onviction (except forpzpc when p|ots VS ]u]-/V become
for the HCSW fluid are shown as solid black circles in Fig. |ineay. Note, indeed, that fop# p. andlarge enoughvalues
7: see also Fig. 2 for the data at lower temperatures. Thgs | finite-size scaling theory indicates that the convergence
open circles that lie within the two-phase region correspondnould beexponentially fastn L. However, it is clear from
to maxima of the heat capacit§, (T,p;L), obtained along a Fig. 7 that such a regime is not accessible in our simulations:
line of fixed mean density, i.e., on an isochore. Note that forather, some crossover dependencelois realized forp
p# pc, the heat capacity in the thermodynamic limit jumps # p.. Despite these caveats, judicious extrapolation yields
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FIG. 8. Effective high-temperature susceptibility exponent,
ya(T), along the critical isochore for the HCSW fluid witk
=1.5 for sizes denoted:(+) L=5; (X) L=6; (A) L=7.5; ()

FIG. 7. Coexisting densities for the HCSW fluid. The black L=9; (O) L=10.5; (®) L=12, all in units ofc. Note that for
circles represent direct grand canonical estimates. The position éftermediatel the finite-size-induced falloff ofye as T— T, has
the critical point is indicated by the cro$x). The solid line that been omitted for clarity. The horizontal arrows indicate the values
emanates from the solid circles is a simple Wegner-type fit: see Eq®f ¥ for then=0, 1, and 2 universality classg20]. The dotted lines
(3.5 and (3.6). The open circles in the two-phase region locatethat approach the=1 limit derive from series expansion data for
finite-L heat-capacity maxima along a locus of fixed density. Thelsing models with first =6), first-plus-secondq=18), and first-
open circles that lie above the solid circles and the Wegner-type fiplus-second-plus-third g(=26) equivalent-neighbor interactions:
represent the finité-canonical estimates: see Sec. Il B. The plussessee[19]. The horizontal line atys=1 represents the Curie-Weiss
(+) represent théfinite-L) canonical critical pointé'g(L), pS(L). or mean-field-theory result for the Ising model; this corresponds to
The solid lines connecting the canonical orthobaric densities witfl— .
their associated critical point represent classical van der Waals fits.

The error bars lying close to the Wegner fit indicate estimatedyer, thamno significance should be attached to the specific
bounpls for the saturation temperature for a given fixed orthobari¢, ,merical values of the five correction coefficients since,
density: see text. without doubt, higher-order corrections must be playing a
_ . non-negligible role in the wide range fitted. Furthermore,
the quite closely spaced upper and lower estimate$§5)  pecause the exponents appearing differ rather little in mag-
presented as error bars in Fig. 7. , nitude, the fitting uncertainties will be strongly correlated.

To supplement these results we have fitted the grandrpe fit(3.6) to the coexistence curve is shown in Fig. 7 as a
canonical coexistence dafsolid dots in Figs. 7 and)2o the  4iq [ine that connects the coexisting densitieslid circles
truncated Wegner-type expansicisee[1]) to the critical point. Judging by the close proximity of the fit
to the fixed-density estimates, we conclude that our extrapo-

— 3__ 2 1-a . . .
[p(T) —pclo=agglt|*F+a;_JtI'"“+ait, (3.5  |ations provide reasonably reliable values although much
) ) _ ) bigger sizes are needed to obtain higher resolution at near
where the diameter is defined in EG..3) and critical densities.
. , ) Given a reliable estimate of the critical point, one may
[pig(T) = puad T)10°=B[t|[1+by|t|’+byglt|*’]. (3.6  measure a miscellany of quantities that characterize the ap-

proach to criticality and elucidate possible crossover sce-
For the purpose of fitting we have adopted the Ising valuesaria: potentially the most revealing examples are the effec-
B=0.326,0=0.109, and¥=0.52[1, 20]. We find a good fit tive exponents. The effective high-temperature susceptibility
with B=1.2026,, which we believe represents a reasonableexponent, defined by
estimate of the true limiting amplitude, and,g
=-0.000%, a;_,=0.189, a;=-0.069%, b,=
—0.25%, andb,z=—0.08%. It must be emphasized, how-

Yer(0;0)=—(aIn xyn/dIN[t']), (3.7
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is the most readily obtainable quantity. Here we employ 05 prr—————T T T 0.5
=|T—T¢/T while ¢ is a critical locus asymptotically tangent - .
to the phase bounda,(T). The limiting value ofyz is - .
the exponenty that dictates the asymptotic power-law diver- - .
gence of the susceptibilityyy . The most obvious choice for - .
the locus¢ is the critical isochorgp=p., as invariably used 04 — 0.4
in experiments; other choices are, however, feasible. Follow-
ing Sec. Il A, one obtaingfor the critical isochorke

XNU  XNNU
Yer(0:p) = (0= 0)| Xnnn—z— — . (33
XNN XNN

where the various second- and third-order susceptibilities are
defined in Eq(2.10 and are evaluated for the values of the
chemical potentiale(T) that correspond te.. Our esti-
mates foryg(T) on the critical isochore are reproduced in o2k T e oo
Fig. 8. The full rounding effects are indicated only for some L T 4
of the system sizes considered to avoid cluttering the figure. 1
The uncertainty bars in Fig. 8 were computed by breaking ]
the full simulations into five to ten subsimulations. The val- i ir-1,|/T
ues of y;ﬁ are not as smooth as our previous estimates for g 4 ST S W T SRS TR SR H ST SR 0.1
symmetric Ising-type systemisl9]. Indeed, while for the 0 0.1 0.2 0.3
Ising lattice gases the simulations were performed along the ) )

FIG. 9. Effective coexistence curve exponefty(T), for the

knownsymmetry axis—whichinter alia, coincides with the HCSW fluid (solid circles derived as explained in the text. The

critical isochore—the uncertainties in determining the locus . . S
- . oo dotted lines and the arrows have the same meaning as in Fig. 8.
p=p. as well as the uncertainty ip. itself must be taken

into consideration for an asymmetric fluid model. Neverthe—Of the onset of finite-size rounding. Allowing. with reason-
less, on extrapolating the values shown in Fig. 8, we con- L 9- 9\
clude able prudence for the statistical and systematic errors, leads

us to conclude

=1.245+0.025, 3.9
YHCSW (3.9 0.304< Bycsw= 0.340. (3.1)

which distinguishes the HCSW fluid unmistakably from the

n=0 andn=1 universality classep49], with yeu~1.1% The confidence limits here are fully consistent with the pre-
and yyy=1.315, respectively[20], and comfortably encom- Viously quoted Ising valug=0.3Z% but barely exclude the
passes the Ising valug=1.23, [20]. self-avoiding-walk (=0) and XY(n=2) values, namely,

It is interesting to note from Fig. 8 that)(T) approaches 0.3%; and 0.34, respectlvelx[Zo], which, however, are
the limit y from belowasT— T.+. This behavior character- rather closely spaced. As fary, the approach to criticality
izes most real, simple fluids like GObut differs from the ~ corresponds to an equivalent-neighbor lattice gas with an
nearest-neighbor simple cubic lattice gas for which(T) is effective coordination number lying within the range 8 to

described by the dotted line labelge=6 in the figure. In- 16. ) ]

deed, in terms of the equivalent-neighbor lattice-gas results NOt€ that no sign of crossover from some mean-field-type
labeled by the coordination numbens=18 and 26[19] in  behavior is suggested by the variation of eithef(T) or
Fig. 8, the HCSW fluid forx=1.5 would appear to corre- Bei(T), but, of course, none is expected since the HCSW
spond roughly to a lattice gas with, sag=10 to 14 fluid with A =1.5 represents a short-range interaction poten-

equivalent-neighbor couplings. tial. For larger values of this must change, but it would
The effective exponent that describes the shape of th&€em that the results to be anticipated could be read off fairly
coexistence curve may be defined by well from the previous extensive studies of long-range cross-
over in the lattice systen21-23.
Beit(6)=(dIN[Ap(T)]/dIn|t’]), (3.10 In our study of the lattice gasd49] we were able to

check behavior corresponding to the Ising universality class
where the width of the coexistence curve Ap(T)=pq further by examiningy«(T), for the susceptibility below .,
— pvap- Note that the associated orthobaric densitigg(T) and also by estimating the corresponding amplitude ratio
andp,,T), are shown as solid circles in Fig. 7 and, down toC*/C~ [19, 50. Unfortunately, the range of sizes and sta-
lower temperatures, in Fig. 2. The points plotted in Fig. Stistical precision available to us for the hard-core square-well
represent our estimates @ derived by numerical differ- fluid precludes these tests. However, we believe that the data
entiation of theAp(T) estimates on a |ti| plot. The data and analyses presented for the 1.5 model leave no serious
closest toT. (arising from theL=15¢ simulation show room for doubt that the Ising universality class describes this
signs of a sharp upturn which we believe is primarily a resultcontinuum model.
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IV. INVESTIGATION OF THE YANG-YANG ANOMALY 6 T LU B B I S A LI N N N A LA

L — | -
In 1964 Yang and Yand2] pointed out that the total R L=15

constant-volume heat capacigl' of a single-component -
fluid can be decomposed into two terms, one derived from5
the variation of the pressug the other from the chemical i
potential u: explicitly one has

CO'=VT(3%plaT?)y —NT(?ul 9T?)y, . (4.2 4 =

On the other hand, it is well established that on approaching [
the critical point—along, say, the critical isochore—the heat [
capacity exhibits a weak singularitg,'~ |t ~¢, with, accept-
ing the Ising valug1, 20], «=0.109+0.004. This implies K
thateitherthe pressure terror the chemical potential term in B
Eq. (4.1), or perhapdoth must diverge wheid —T.- along 2
the vapor pressure curve,(T) or, equivalently, along the -
phase boundaryu,(T). In the standard lattice gas, the B
chemical potential on the phase boundary is a simple, ana:

lytic function of the temperature. This is, indeed, also the 1 [~ 13.5 7]

case for the special asymmetric model fluids with a hidden | L=12
symmetry of{3-5]. In these systems, thereforel?p,, /d T?) L kgT € i
diverges likeCy/(T,p.) but (d2u,/dT?) remains bounded. o Lo v Lo v Lw v o Id vy Low o by
Early analyses of two-phase specific-heat data for wdter 0.9 1 1.1 1.2 1.3 1.4 1.5

51] seemed to support this scenario. However, the data were ) .
not sufficiently precise to draw reliable conclusions: see the FIG. 10. The reduced heat-capacity den&it(T) and the cor-
discussion if6]. responding pressure contributi@h(T) [defined in Eqs(2.14 and
On the other hand, recent analykis 6] of extensive two- (4.2)] calculated on the c_ritical_ isochore for the HCSW fluid. Note
phase specific-heat data for propaf&?] and a previous that some of the extenS|on§ into the one-phase region have been
study of CQ [53] demonstrated the contrary: the heat- funcated for reasons of clarity.
capacity singularity is, in facgharedbetween the two terms
on the right-hand side of Eq4.1). It was found[1, 6] that  scaling-field mixing introduces only a correction tejtjt ~*
when T—T.-, the second derivative of,(T), say u), into the diametefand elsewhene but, as mentioned, when
diverges to— for propane but to+x= for CO,. Regarding Pressure mixing occurs, the more singular tetii® also
the strength of this “Yang-YandY-Y) anomaly,” it was appears as, e.g., in E(.9 [1]. It seems likely, therefore,
concluded1, 6] that the chemical potential term is respon- that in the appropriate adaptation of the Bruce-Wilding
sible for about 56% of the total, singularity in propane fixed-point-distribution matching” procedure, some other
below T, . For the case of Cg the associated ratig, was  inverse powers ot will enter—quite possibly in a compet-
estimated, with lower precision, to be roughty0.35. Note  Ing manner. This is why, in Fig. 6, we adopted an agnostic
that the negative value implies that the pressure contributioRoint of view and simply plotted vs I/ Insofar as there is
actually diverges faster thady itself, by virtue of having a Ssome residual curvature in the plots—which is certainly hard
larger critical amplitude. to see—some other power or combination of powerd of
The consequences of the Yang-Yang anomaly for a scaFould be present. However, the use of a large number of
ing description of fluids have been discussefflins]. Owing  distinct approximating sequences allows one to extrapolate
to the appearance of the pressure—not previouslyvith (;onfidence even though the true asymptotic form may
expected—in the fluid scaling-field variables, the coexistencéemain obscure.
diameter(1.3) gains a dominanit|?# term. In the context of For our study of the Y-Y anomaly in the HCSW fluid, we
simulations, the mixed-field finite-size scaling theory ofhave employed a slightly different version of E@t.1)—
Bruce and Wilding[25, 26—currently the state of the art albeit with the same implications—namely, in terms of the
approach for asymmetric fluids—precludes the occurrence dfo. %, 6) variables
a Yang-Yang anomaly. This fact, indeed, provided one of the

motivations for the preseriunbiased finite-size investiga- #p P
tion. . _ V:(W —p(W) =Cp(8,p)+C,(0,p), (4.2
It is appropriate, conversely, to point out here that the P P

presence of a Y-Y anomaly in the HCSW or other model

fluid may significantly undermine the validity of the finite- . .

size extrapolations used in the Bruce-Wilding approach tavhere C,=(4°p/d6%), and C@:—P(ﬁzﬁlwz)p- Recall
estimate the critical density,. [25,26. In particular, in their that the heat-capacity densit¢y(6,p), is defined in Eq.
analog of Fig. 6, Bruce and Wilding specifiy a particular (2.14). The chemical potential term can be expressed readily,
inverse power of the sizerelated to the fact that pufg, T)  using Eq.(2.13, in the form
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FIG. 11. Estimation of the strengtR, of the Yang-Yang
anomaly for the HCSW fluid withh=b/o=1.5 via plots of
RI(T;B") [as defined in Eq4.4] vst'* with t' =1—(T./T). The
data pertain top=p. and T<T.. The dashed curves have been
derived from separate fits to selected simulation dat&{gT) and

ép(T): see text. Case&), (b), (c), and(d) correspond to “back-
ground shifts"BT=0, 0.4, 0.8, and 1.4, respectively.
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Finally, the pressure term may be found simply from Eq
(4.2 viaC,=Cy—C,. Note that owing to the complex ex-

2
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3
XNN
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sharply asT—T,.-. This behavior is strongly reminiscent of
the observations of CQwhere the pressure contribution ex-
ceeds that of the heat capacity only fof|=0.005. To esti-
mate the strengtlR,, of a possible Yang-Yang anomaly in
the HCSW fluid, we adopt the procedures developed to ana-
lyze propane and C{ 1,6] and so define the dimensionless
ratio

Cu(T.p;)—BT

RI(T)=—%
M( ) CV(TIPC)

(4.9

whereB' is a constant “background shift” introduced as an
aid to extrapolation td@-. Note, indeed, thaR(T) has the
same IimitRMEIimTHTCﬁL(T), irrespective of the particu-
lar value of the shifB".

In Fig. 11 we plot the functiOIFRL vst’* for a selected set
of data away from the rounding regions beldw (see Fig.
10) and for four different values oB'. It is important to

realize thatR!,(T) should approach its asymptotic vallie-
earlyin terms oft’ (except for one special choice Bf for
which the approach may bmore rapid) [1,6]. The dashed
lines in Fig. 11 represent the results of fitséQ(T,pc) and
ép(T, pc), respectively, based on the form

C(T)=A|t'|"%(1+ay|t'|’) + Bo+Bat, (4.5
which allows for a correction-to-scaling term with exponent
#=0.52 (as accepted in Sec. I[20]) and for two back-
ground terms. The quality of our data do not, in fact, allow
sensible fits with more than three terms. Accordingly, we
display in Fig. 11, first, the consequences of setBpg-0 in

Eq. (4.5 (for both Cy and C,) which yieldsR,=—0.145
(i.e., the lower set of fijsand then of setting,=0 which
leads to the upper set of fits witR,=—0.009. Excluding
the two and four selected data points closesT taloes not
change these fits qualitatively. The average of the two fits to

Cy and ép, which we prefer since tha, term dominates

.over theB, term for smallt, yieldsR,=—0.071.

The undesirable scatter of the dataRjj(T) in Fig. 11 is

pression foréﬂ in Eq. (4.3 and the inextricable presence of evidently due to the increasing_difficglty_of obtaining accu-
almost cancelling third-order moments, a sufficiently delicatd@t€ estimates of thermodynamic derivatives that entail com-
finite-scaling analysis might well lie beyond current compu-b'”at'°”§ of higher-order moments, as in £4.3). Despite
tational resources. In addition, one must remember that f¢ deficiencies, a trend towards a slightly negative
weak [t| ¢ singularity is always accompanied by relatively asymptotic limit seems clearly visible. Overall we thus con-
strong analytic terms—usually known as “background.” clude
This typically bedevils the unambiguous elucidation of the
singularity. Last but not least, the overall amplitude of the

asymptotic|t|~* term in CM may itself be small for the h bstantial taintv. which d t exclude th
HCSW fluid since the strength of Y-Y anomalies seems to be € substantial uncertainty, which does not exciude the pos-

related to the asymmetry of the constituent molecules: se%ib”ity R,=0 (aIFhough we are inclined to be]ieve a small
[1] and[6] negative valug is an indication of the confidence level

RICSW=—0.08+0.12. (4.6)

= > e achieved. To obtain better estimates and to fully reveal the
We have calculate@y andC,, along the critical isochore, <ot of the Yang-Yang anomaly, one will need to investi-
gate much larger system sizeshan those accessed here and
longer runs will also be necessary to reduce the statistical

p=p. for sizesL/o=5 to 15: see Fig. 1054]. Over the
accessible size range it is evident tltfa,;(T;pC) is always

smaller tharCy(T,p.); but it appears to rise somewhat more uncertainties. The invention of more efficient sampling algo-
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rithms, such as those developed for magnetic sysfébisis  and, we believe, reliability. Significantly, previous finite-size
badly needed for asymmetric fluids. That task, however, rescaling methods of some sophisticatiérwhich, however,

mains elusive. presuppose Ising-type criticalify25, 26) are found to pro-
vide inaccurate estimates pf .
V. CONCLUSIONS It would, indeed, be useful for “practical” applications to

have some more reliable approaches to the estimatidrn, of

In the simulation studies reported here we have addressegq , that call for less computational effort than we have
the issue of how best to estimate the critical parameters angyested. Future work may uncover such methods; but it
in particular, how to elucidate the universality class of gasyyoy|q seem that the underlying scaling theory would have to
liquid criticality in continuum models oasymmetricfluids recognize that when there is no evident “gas-liquid symme-
with no known or existing trugor hidden axes of symme- » present in the system, the asymptotic linear scaling
try. Specifically, we have considered the hard-core squarje|ds are more complex than lattice-gas-based models reveal
well model with moderate-range interaction %b/o 7 g). Specifically, thepressure as well as the chemical
=1.5): this model is only “weakly asymmetric,” comparing potential and the temperature, must mix into the linear scal-
reasonably well with real fluids like argon and €®ut an ing fields[1].
important aim of our work has been to devise and test unbi- “This feature arises because of the presence, in general, of
ased approaches for application to the fundamental “rez yang-yang anomaly in real fluids and nonsymmetric mod-
_stncted primitive moglel”(RPM) el_ectrolyte which, indeed, els[1, 2, 6]: explicitly, if u,(T) is the chemical potential on
is strqngly asym_metnclargely by virtue of the low value of ¢ phase boundary beloW,, then @2x,/dT?) diverges
its critical density: such studies of the RPM are currently("ke the specific hea€,) whenT—T,-. We have endeav-
underway[18]). _ o . ored to estimate the relative strend®), of such a Yang-

The first computational problem that arises is to estimate/ang anomaly in the hard-core square-well flidith A
convincingly the location of the critical point including, most _ 1.5). Analysis of our data suggests a small negative value

crucially, the critical density.. (Typically, the determina- g ~ —0.08(comparable to CQ[1]) but with significant un-

tion of p. presents a significant difficulty even when inter- cerainties. To do better for this model will require the study
preting precise data on real fluids: see, d@).) To this end,

i ) =% of larger sizes and longer simulations: that will probably be
we have developed methods of selecting various loci, primageasiple only with improved algorithmidike those available
rily lying in the singlephase regiombove T, which as the o |attice models[55]). Nevertheless, the study of other
system sizel. becomes infinite, must asymptotically ap- mogels, such as the RPM, etc., may prove more definitive in
proach the true, limiting critical point. Those loci which, by ;g respect.

their behavior in thelp, T) plane, most directlyand most In summary, although we believe we have made progress,
rapidly asL is increaseflapproach the critical point, may beé g|cigating in a precise way the critical behavior of intrinsi-
treated as “effective symmetry axes,” analogous 1o the axeg,|ly  asymmetric systems still presents significant
known exactly in simplélsing-mode} lattice gasegl19]. Us-  cpajlenges—not only computationally, but experimentally

ing these loci, one may apply the unbiased techniques dgyg theoretically also—and might provide yet further sur-
vised for lattice models if19] to estimate, in the first place, prises.

the basic critical exponent This exponent provides both an
initial indication of critical universality class and a firm basis
for subsequent employment of finite-size scaling techniques.
We believe this approach should be applicable in other cases The interest of Professor Mikhail A. Anisimov and Pro-
where precise and accurate simulation results are desired. fessor Jan V. Sengers has been appreciated. The support of

Given an estimate for and well-behaved, asymptotically the National Science Foundatidthrough Grant No. CHE
critical loci, determination off . by studying arange of dif- 99-81772 to M.E.Fand of the Department of Energy, Office
ferent estimator$19] yields a precise value. That, in turn, of Basic Energy Scienceghrough Grant No. DE-FGO02-
enables one to make refined estimatep 06f high precision 98ER14858 to A.Z.B.is gratefully acknowledged.
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