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Precise simulation of criticality in asymmetric fluids
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Extensive grand canonical Monte Carlo simulations have been performed for the hard-core square-well fluid
with interaction rangeb51.5s. The critical exponent for the correlation length has been estimated in an
unbiased fashion asn50.6360.03 via finite-size extrapolations of the extrema of properties measured along
specially constructed, asymptotically critical loci that represent pseudosymmetry axes. The subsequent location
of the critical point achieves a precision of five parts in 104 for Tc and about 0.3% for the critical densityrc .
The effective exponentsgeff

1 andbeff indicate Ising-type critical-point values to within 2% and 5.6%, respec-
tively, convincingly distinguishing the universality class from the ‘‘nearby’’ XY andn50 ~self-avoiding walk!
classes. Simulations of the heat capacityCV(T,r) andd2ps /dT2, whereps is the vapor pressure belowTc ,
suggest a negative but small Yang-Yang anomaly, i.e., a specific-heat-like divergence in the corresponding
chemical potential derivative (d2ms /dT2) that requires a revision of the standard asymptotic scaling descrip-
tion of asymmetric fluids.

DOI: 10.1103/PhysRevE.63.051507 PACS number~s!: 02.70.Rr, 05.70.Jk, 64.60.Fr, 64.70.Fx
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I. INTRODUCTION

Liquid-vapor and liquid-liquid phase separation and t
related critical behavior in real fluids isnot describable by
any direct ‘‘broken symmetry’’ of the sort that characteriz
so many phase transitions in magnetic and other conde
matter systems. This fact poses significant problems b
experimentally and theoretically. At the most basic lev
locating the critical point of a fluid entails the determinati
of two separate parameters, say the critical temperatureTc
and the critical densityrc , whereas in a ferromagnet or
superfluid onlyTc must be found since the ‘‘axis of symme
try,’’ on which the critical point resides, specified, e.g.,
zero magnetic field or vanishing off-diagonal field, is bo
readily identified theoretically and easily realized experim
tally. Nevertheless, experimental observations of real flu
do reveal a high degree ofasymptotic symmetry. Most nota-
bly, if r liq(T) andrvap(T) denote the two sides of the coe
istence curve beneathTc , the ratio

Rr[@r liq~T!2rc#/@rc2rvap~T!# ~1.1!

approaches unity rapidly asT→Tc2. More explicitly, the
width of the coexistence curve,r liq(T)2rvap(T), vanishes as
utub with b.0.326 , where

t5~T2Tc!/Tc , ~1.2!

while the diameter

r̄~T![ 1
2 @r liq~T!1rvap~T!# ~1.3!

approachesrc asrcutuc where, in practice,c can hardly be
distinguished from unity andrc /rc is numerically small.
Theoretically, the consensus for many years was thatc51
2a.0.891 , but recent work@1# suggests, rather, thatc
52b.0.65; however, competing additive terms inr̄(T)
varying asutu12a and ast preclude convincing experimenta
tests@1#.
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Indeed, even with a scaling theory that recogniz
asymptotic symmetry, the origin of theutu2b correction lies
in a deep lack of full symmetry in terms of the ‘‘obvious
physical variables@1#: this manifests itself most directly in a
divergenceasT→Tc2 of the second derivative (d2ms /dT2)
of ms(T), the chemical potential at which the vapor an
liquid phases coexist. As Yang and Yang@2# pointed out in
1964, such a divergence is forbidden by the~artificial! sym-
metry of the standard lattice gas~which is isomorphic to an
Ising-type ferromagnet!. The divergence of (d2ms /dT2),
which we term a Yang-Yang anomaly@1#, is also absent in
various related model fluids that possess a ‘‘hidden sym
try’’ @3–5#. Nevertheless, as stressed by Yang and Yang@2#
and uncovered in recent analyses of the specific heat
propane and carbon dioxide@1,6#, real fluids need not and
indeed, do not respect even the expected hidden symm
Nor are there good reasons to suppose that more rea
continuum models, such as the Lennard-Jones fluid or
hard-core square-well~HCSW! gas@7#, which we investigate
here, will exhibit an asymptotic hidden symmetry.

This situation is particularly pressing in the case of t
most basic model of an electrolyte or ionic fluid, namely, t
restricted primitive model~RPM! @8–13# where the coexist-
ence curve is known~by simulations@14–17#! to be ex-
tremely asymmetric. At the same time, the nature of flu
criticality in the RPM—whether of Ising type or classic
~i.e., mean-field or van der Waals!, crossover from one to the
other, or something new—is still open to serious quest
@8–13#. Indeed, a principal motivation for the present stu
was to discover and test effective simulation techniques
more revealing and definitive investigations of the RP
electrolyte@18#.

In previous work@19# we studied three-dimensionalsym-
metric lattice gases~or Ising ferromagnets! with many neigh-
bor ~i.e., intermediate range! interactions usinglimited com-
putational resources. The aim, successfully achieved, wa
show that even without large-scale computing capabiliti
the systematic employment of appropriate finite-size sca
techniques could enable one to convincingly elucidate
©2001 The American Physical Society07-1
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universality class, and detectcrossover phenomena. Thus, in
a simple cubic lattice gas with up to 26 equivalent-neighb
i.e., equally strong, couplings@19#, the fundamental correla
tion length exponentn could be determined asn50.63
60.02; that is close to the best estimates for Ising syste
~say n Is50.630360.0010@20#! and is certainly adequate t
distinguish the behavior from the two most well-know
‘‘nearby’’ potential candidates, namely, self-avoiding wal
~or n50 systems! and XY spin models (n52) with nsaw
.0.588 and nXY.0.676 , respectively@20#. The classical
~mean-field or van der Waals! valuenmf5

1
2 was unambigu-

ously excluded.
However, crossover behavior from Ising-type characte

classical forms, depending on the range of the interac
R0 , could also be clearly identified by studying the tempe
ture dependence of the effective exponentsbeff(T) for the
coexistence curve, andgeff

1 (T) andgeff
2 (T) for the susceptibil-

ity and/or compressibility divergence@19, 21–23#. The
finite-size rounded effective exponent data could be rea
extrapolated to reveal Ising-type values at thermodyna
criticality. Furthermore, the estimated critical temperatu
agreed encouragingly well with values obtained in larg
scale computations@21–23#.

Here we bring the techniques developed in@19# to bear on
the HCSW fluid with an interaction-to-hard-core diame
ratio l5b/s51.5 @7#. It is immediately evident, however
that the first and critical problem is to devise methods
locate the critical density and to determine appropriate loc
the phase plane upon which to study the finite-size temp
ture dependence@24#.

Now on theassumptionthat the asymptotic critical behav
ior is of Ising character, Bruce and Wilding~BW! @25, 26#
have developed a general method for estimatingTc and rc
using the histogram of density~and energy! fluctuations cal-
culated by simulation in a grand canonical ensemble of fin
dimensions,L3L3L ~in d53 dimensions!, with periodic
boundary conditions. We will, indeed, employ such simu
tions ~see, e.g.,@17#!. However, in the first place, we ar
anxious, with applications to the RPM in mind,not to pre-
suppose that criticality in the HCSW fluid is of Ising typ
second, even if it is~as we will actually establish with en
couraging precision! the BW techniquefurther assumesthe
absence of any Yang-Yang anomaly. More specifically,
their scaling formulation@25, 26# Bruce and Wilding donot
allow for any mixing of the pressurep into the asymptotic
linear scaling fields as is necessary to understand the ap
ance of the anomaly@1#. Since we would like to assess th
possible magnitude of a Yang-Yang anomaly in the HCS
fluid, presupposing its absence is obviously inappropri
Finally, we will, in fact, demonstrate that the biases intr
duced, inadvertently or otherwise, by the BW approach l
to a significant overestimate of the critical densityrc . ~And
one may well suspect the same is true in applications of
method to the RPM@15,17, 27#.!

Following @19#, therefore, but recognizing the intrins
asymmetry of criticality in the HCSW fluid, we have devise
a range of unbiased methods for estimating the critical d
sity. These mainly rest on the calculation for finiteL3L
3L systems of various loci in the (T,r) plane which, in the
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thermodynamic limit,L→`, must spring from the true criti-
cal point (Tc ,rc) @27#. By introducing an adjustable param
eter we find, indeed, an optimal locus that can be regarde
approximating an axis of pseudosymmetry of the sort t
arises in exactly soluble models with an explicit or hidd
symmetry@3–5#. The finite-size scaling techniques used
@19# can now be employed effectively on the various asym
totically critical loci—first to obtain an unbiased estimate
n and, thence, estimates ofTc andrc : see Sec. III.

We also mention here, because of its potential interes
the study of pseudo- or ‘‘near’’ phase transitions infinite
clusters of particles~such as gas-phase ‘‘droplets,’’ atom
nuclei, etc., see, e.g.,@28–30#! a supplementary method o
obtaining sequences of ‘‘canonical’’ estimates, sayTc

0(L)
andrc

0(L), which can also be extrapolated to aid in estim
ing the trueTc andrc . Specifically, as described in Sec. II B
one may exploit a canonical formulation in which the tw
peaks of the density histogram forT,Tc approach, merge a
a ‘‘finite-size critical point,’’ Tc

0(L) and rc
0(L), and reduce

to a single, effectively Gaussian peak: see Fig. 1. Of cour
the behavior in the vicinity of (Tc

0,rc
0) is completely classica

~although whenL→`, the effective, close-to-parabolic co
existence curves, for example, approach the limiting Isi
type form: see Fig. 7!.

Armed with precise and, we believe, rather reliable e
mates ofTc andrc one can go on to examine the effectiv
exponentsgeff

1 (T) and beff(T) to check consistency with the
Ising universality class as indicated by the estimated valu
the correlation exponent, namely,n50.6360.03. This is less
precise than could be obtained in the symmetric lattice ga
@19#; but it is still adequate to discriminate against the se
avoiding-walk (n50) or XY (n52) values mentioned
above.

FIG. 1. Equal-height grand canonical density distributions fo
system size ofL512s: ~a! T* 51.18; ~b! T* 51.20; ~c! T*
51.238; ~d! T* 51.26. The value of the chemical potential th
corresponds to equal heights was found by histogram reweigh
SinceT.Tc

0(L) for case~d!, the chemical potential was chosen
yield an average density equal to the critical value.
7-2
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PRECISE SIMULATION OF CRITICALITY IN . . . PHYSICAL REVIEW E63 051507
Finally, in Sec. IV we discuss, following the analysis
@1#, the constant volume specific heatCV(T,r) and, using
appropriate expressions in terms of third-order moments
the joint density and energy histograms, the derivat
(d2ms /dT2) involved in defining the Yang-Yang anoma
as discussed above. Unfortunately, the data are no
precise—the third-order histogram moments being, inev
bly, more noisy than the lower-order moments—nor as
tensive in terms of accessible size range—limited toL
&15s—as we would wish. Nevertheless, the presence o
negative, albeit rather weak Yang-Yang anomaly~similar to
that found in CO2 @6#! does appear likely to be present in th
hard-core square-well fluid with relative interaction rangel
51.5. Some brief concluding remarks are presented
Sec. V.

II. MODEL AND METHODOLOGIES

A. Moments and fluctuations in the grand ensemble

The hard-core square-well~HCSW! fluid has been studied
extensively@7# since it is arguably the simplest continuu
model that exhibits realistic gas-liquid phase separation
criticality. The pair interaction potential between two pa
ticles ~spheres of diameters! is infinite for distances
r <s, attractive of strength« for s , r < ls, and zero
thereafter. In modeling systems characterized by short-ra
forces, the parameterl is typically taken to be 1.5. Upon
defining a reduced pressure and inverse temperature or
pling strength

p̄5p/kBT, u5«/kBT51/T* , ~2.1!

and on absorbing the de Broglie thermal wavelengthL(T)
into the definition of the chemical potentialm through

m̃5m/kBT23 ln~L/s!, ~2.2!

the grand partition function at fixed~reduced! chemical po-
tential m̃, volumeV5L3, and couplingu, can be written as

J~m̃,u;L !5exp~ p̄V!5Tr@exp~m̃N2uU !#, ~2.3!

where the trace represents summation over all particle n
bersN and integration over all continuum states of config
rational energyU.

The first derivatives of the grand potentialp̄ give the
mean densityr and energy densityu via

] p̄

]m̃
5

^N&
V

5r, ~2.4!

] p̄

]u
52

^U&
V

52u, ~2.5!

where the notation̂•& will always imply an average over th
finite-size grand canonical distribution of states.

The second derivatives determine the usual respo
functions ~or susceptibilities, compressibilities, heat capa
ties, etc.!. Specifically we have
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]2p̄

]m̃2 5
]r

]m̃
5

1

V
^~dN!2&[xNN , ~2.6!

]2p̄

]u2 52
]u

]u
5

1

V
^~dU !2&[xUU , ~2.7!

]2p̄

]m̃]u
5

]r

]u
52

]u

]m̃
52

1

V
^dNdU&[2xNU , ~2.8!

where dX5X2^X&. The familiar isothermal compressibil
ity, KT5r21(]r/]p)T , is related toxNN via

xNN5kBTr2KT . ~2.9!

Higher-order susceptibilities will often be of interest
the critical region. To that end it is felicitous to define
generalized susceptibility as

xNkUm5^~dN!k~dU !m&/V, ~2.10!

with the general Maxwell relations

xNkUm5
]

]m̃
~xNk21Um!52

]

]u
~xNkUm21!

5~21!m ~]m1kp̄/]m̃k]um! .
~2.11!

For studies in phase transitions and critical phenome
temperature derivatives at fixed chemical potential are
quently not the most informative quantities; one would rath
prefer—in accordance with typical experiment
observations—to follow a path of constant densityr. For a
function g5g(m̃,u) one evidently has

S ]g

]u D
r

5S ]g

]m̃ D
u
S ]m̃

]u D
r

1S ]g

]u D
m̃

. ~2.12!

The derivative (]m̃/]u)r may be found by settingg5r to
obtain (]m̃/]u)r5xNU /xNN . For reference below we recor
the general result

S ]g

]u D
r

5
xNU

xNN
S ]g

]m̃ D
u

1S ]g

]u D
m̃

. ~2.13!

For example, on settingg52^U&/V, and using Eqs.~2.6!–
~2.11!, one obtains the configurational part of the consta
volume heat-capacity density, namely,

ČV5xUU2xNU
2 /xNN . ~2.14!

The overall heat capacity at constant volumeC V
tot is then

given by

C V
tot/kBV5 3

2 r1ČV /kBT* 2. ~2.15!

B. Data analysis and phase coexistence

We analyze our raw simulation data using histogram
weighting techniques@31# that are now routinely applied to
extracting the maximum amount of information from a m
lecular simulation. In the framework of the grand canonic
7-3
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ORKOULAS, FISHER, AND PANAGIOTOPOULOS PHYSICAL REVIEW E63 051507
ensemble, one performs a simulation at a thermodyna
state characterized by a given value of the chemical po
tial, say, m̃0 and the inverse temperature~coupling!, u0
5«/kBT0 , and measures the joint histogramP0(N,U) of the
fluctuating energyU and number of particlesN. The histo-
gram P(N,U;m̃,u) of a different state (m̃,u), not too far
away from (m̃0 ,u0), may be obtained fromP0(N,U)
through the simple reweighting formula

P~N,U;m̃,u!

P0~N,U !
}exp@~m̃2m̃0!N2~u2u0!U# ~2.16!

without any need to perform an independent simulation
(m̃,u). The properties of interest, such as those introduce
Eqs.~2.4!–~2.11!, can then be obtained by simple averagin
via

^X&m̃,u5

(
N,U

X~N,U !P~N,U;m̃,u!

(
N,U

P~N,U;m̃,u!

. ~2.17!

Near and at a first-order phase transition, the grand
nonical density distribution attains a characteristic bro
double-peaked structure; the local minimum that separ
the two peaks is generally attributed to the formation of
terfaces@32#. For T!Tc , when the peaks are well separate
‘‘the equal-weight criterion’’@33# may be used to determin
the chemical potential, say,m̃s(u) of the phase transition
Specifically, for a given temperature, one calculates the a
under each peak—which, in view of Eq.~2.3!, is essentially
proportional to the pressure—and locates—in the framew
of the histogram reweighting scheme—the value of
chemical potential for which the two areas are equal: t
identifies the phase boundarym̃s(u).

It should be noted, however, that an alternative definit
of the phase boundary, fixed by an ‘‘equal height criterio
@34#, is also reasonable. As the name indicates, one ide
fies, say,m̃s

0(u), as the particular value of the chemical p
tential for which the underlying grand canonical density d
tribution has two peaks of equal height. In view of th
connection between the canonical and the grand canon
ensemble it can be shown readily that the equal-height c
struction merely corresponds to canonical ensemble coe
ence@34#. To better appreciate this, consider the statistic
mechanical form of the grand canonical distribution
densities

PN~r![(
U

P~N,U;m̃,u! } exp@2 f̄ can~r,u!V1m̃N#,

~2.18!

where nowr5N/V and f̄ can(r,u) is the ~canonical! free-
energy density. Note thatf̄ can can be obtained by performin
a grand canonical simulation atm̃ and measuring the histo
gramPN(r). The canonical chemical potential and press
are thereby defined by

m̃can5~] f̄ /]r!u and p̄can52 f̄ can1m̃canr. ~2.19!
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For a finite system analyticity is anticipated andm̃can(r) will
exhibit van der Waals–type loops. Letm̃0 be the chemical
potential that satisfies a Maxwell-type construction and ler l
and rv be the corresponding saturated densities. In view
Eqs.~2.18! and ~2.19! one sees that

ln
PN~r l !

PN~rv!
52~ f̄ can,l2 f̄ can,v!1m̃0~r l2rv!

5 p̄can,l2 p̄can,v

50. ~2.20!

In other words, the peaks of the grand canonical den
distribution that corresponds to the canonical choice ofm̃
5m̃0 , must be of equal height. While agreement between
various different ensembles is to be expected in the ther
dynamic limit, this is not the case for finite~and small! sys-
tems.

In Fig. 1 we plot typical equal-height distributions forL
512s. Note that the temperature associated with curve~c!
must be very close to an effective, finite-size canonical cr
cal pointTc

0(L) and likewise for the corresponding peak de
sity rc

0(L). A better estimate of this finite-system critica
point may be obtained by extracting the free-energy den
numerically @cf. Eq. ~2.18!# in the near-critical region and
fitting the central region to a truncated Landau-type polyn
mial expansion, say,

f̄ can~r,u!5(
j 50

J

Aj~u!r j , ~2.21!

whereJ>4. On using Eq.~2.19!, the critical point is simply
found by solving

]m̃can/]r5]2m̃can/]r250, ~2.22!

which represents the vanishing of the inverse compress
ity.

Far below the critical region (T!Tc) when m.ms , a
grand canonical simulation encounters severe ergodi
problems owing to the large magnitude of the free-ene
barrier that separates the two~meta!stable phases~peaks!.
The multicanonical preweighting scheme@35# utilizes a
weighting function that forces the system to perform a clo
to-uniform random walk throughout the entire density ran
of interest; this greatly facilitates the otherwise infreque
transitions between the two phases. However, an estima
the weighting function is necessary; but that can be obtai
recursively from a prior simulation at a higher temperatu
and subsequent histogram reweighting at the state of inte
or, alternatively, by utilizing general scaling properties of t
distribution functions. The physical density distribution
obtained by dividing out the preweighting factors. We ha
employed this technique forT&0.95Tc

0(L).

C. Finite-size scaling theory

Finite-size scaling~FSS! theory @36, 37# was devised to
describe the rounding and shifting effects that are invaria
7-4
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PRECISE SIMULATION OF CRITICALITY IN . . . PHYSICAL REVIEW E63 051507
observed in finite systems. In the context of magnetic s
tems characterized by a strong ordering fieldh and a weak
‘‘temperaturelike’’ fieldT, a propertyY(T,h) that exhibits a
power-law type of divergence along the phase boundary
the symmetry axis (h50) in the thermodynamic limit, e.g.

Y~T,h50!;utu2v, t5~T2Tc!/Tc , ~2.23!

is expected to scale as

Y~T,h,L !'Lv/nỸ~ tL1/n,hLD/n! ~2.24!

in the limit of largeL. Heren andD5b1g are critical point
exponents for the class of systems in question andỸ is a
scaling function of universal form up to normalization of th
variables. The scaling form~2.24! typically implies that~as-
sumingh50 for simplicity! a diverging quantity will reach a
maximum value of height proportional toLv/n. Moreover,
the location of the maximum, which may be regarded as
effective critical point, say,Tc

(Y)(L), should vary with the
system size as

Tc
~Y!~L !2Tc~`!'Q~Y!L21/n. ~2.25!

In the context of symmetric Ising or lattice-gas-type sy
tems these finite-size scaling ideas have proven remark
successful@38–43#. One simply determines the peak pos
tions of the second- and higher-order derivatives of the f
energy along the phase boundary in the field-tempera
plane, or the symmetry axis (h50), for a series of increas
ing values ofL and, assuming the correlation length exp
nentn is known beforehand, subsequently extrapolates to
thermodynamic limit according to Eq.~2.25!. On the other
hand, the absence of any known symmetry axes in real fl
models makes FSS theory difficult to apply; one must loc
the critical temperatureTc , the critical densityrc , and a
locus corresponding in some sense to the symmetry axh
50.

We have constructed and examined special loc
generally, defined by the inflection points of vario
properties—that enable us to compensate in a reason
systematic way for the absence of any known symme
axes. A very natural choice is the line of inflection points
the density vs the chemical potential isotherms, i.e.,r
5r(m̃;u). Note that the inflection point is found by max
mizing

S ]r

]m̃ D
u

5xNN ~2.26!

which, in other words@see Eq.~2.11!#, means that one mus
solve the simple equation

xNNN50 ~2.27!

to determine the value of the chemical potential associa
with the r(m̃) inflection point at a given fixed temperatu
~or coupling u!. In the thermodynamic limit (L→`) this
05150
s-

or

n

-
ly

e
re

-
e

id
e

le,
y
f

d

locus must asymptotically approach the critical point
though for finite L it will, in general, only pass near th
critical point; see Fig. 2.

Some noteworthy features about this (m̃,r) locus merit
special attention. In the standard-lattice gas it coincides w
the symmetry axis (h50) and the critical isochore—in othe
words ther(m̃) functional form is antisymmetric about th
symmetry axis. This fact perhaps led Widom to formulate
original scaling equation of state in terms of~m, r! variables
@44#. On the experimental front, the point was examined
detail by Vicentini-Missoniet al. @45# for several simple flu-
ids ~such as CO2, Ar, and He4! and—although a real fluid
possesses no known symmetry lines—it was concluded
the ~m,r! relationship was nearly antisymmetric about t
critical isochore in the neighborhood of criticality.

Another natural choice of locus is the isothermal dens
pressure or (p̄,r) line of inflection points. As before, one
finds for fixed temperature the value of chemical poten
that maximizes

S ]r

] p̄D
u

5
1

r S ]r

]m̃ D
u

5
1

r
xNN ~2.28!

by solving

xNNN2~xNN
2 /r!50. ~2.29!

FIG. 2. Effective symmetry loci in the~T, r! plane as described
in the text. The solid circles represent our estimates for the coe
ing densities and the diameter. Curves~a! represent the (m̃,r) in-
flection locus,~b! the (p̄,r) locus, and~c! thex (1/4) locus. Note that
for ~a! and~c! only the curves that correspond toL/s55, 10.5, and
15 are shown. For~b! the curves correspond from left to right t
L/s55, 6, 7.5, 9, 10.5, 12, 13.5, and 15, respectively. The das
horizontal line indicates the critical temperatureTc(`). The arrow
at the bottom indicates the estimate of the critical densityrc(`).
7-5
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In a similar vein, one can investigate the locus of maxima
the isothermal fluid compressibility

K̄u5
1

r S ]r

] p̄D
u

5
1

r2 S ]r

]m̃ D
u

5
1

r2 xNN . ~2.30!

Finally, a more general ‘‘k locus,’’ which incorporates all
the previous cases, can be defined by the maxima of
‘‘modified susceptibility’’

x~k![xNN /rk. ~2.31!

Then, as before, the corresponding value of the chem
potential,m̃ (k)(T), is determined by solving

xNNN2k~xNN
2 /r!50 ~2.32!

at temperatureT. All the k loci are asymptotically critical in
the sense that they spring from the true critical point wh
L→`. It transpires that introducing the parameterk has the
advantage of allowing one to approach the critical reg
from different directions: see Fig. 2.

Numerous further analogous possibilities might well
considered; for instance, one may define additional l
based on the constant-volume heat capacity, see Eq.~2.14!
and Fig. 3. An additional locus—the ‘‘canonical locus
m̃can

0 (T)—may be defined by applying the equal-height cri
rion: see the discussion associated with Fig. 1 in Sec. I
Since finite system criticality is classical along this locus,
standard methods used for every classical equation of s
~e.g., van der Waals! may be used to locate aTc

0(L) and a
rc

0(L): see the solid dots in Fig. 3. Of course, each cor
sponding locus,r0(T;L), not shown in Fig. 3, extends up

wards only toTc
0(L).

The task of finite-size theory is now clear. In the conte
of precise simulations, one measures thermodynamic pro
ties for a series of increasing system sizesL, over a range of
temperatures along the previously defined ‘‘pseudosym
try’’ axes, locates the appropriate peak positions, and
trapolates to the limitL→` according to Eq.~2.25! to esti-
mate the infinite-volume critical temperatureTc(`). The
various properties, sayYj , that we utilize constitute second
and higher-order derivatives of the grand potential and
conveniently defined in terms of density-energy moment

Among the numerous possibilities, we have first cons
ered the constant-volume heat capacity,Y15ČV , defined by
Eq. ~2.14!, as well as its constant-volume derivative,Y2

5(]ČV /]u)r , which is found using Eq.~2.13!. In accord
with studies in magnetic systems@19#, the heat capacity is
found to have a maximum—thereby definingT1(L)—below
the critical temperature, while its derivative has two loc
extrema atT2

1(L) andT2
2(L), respectively.

Additional estimators may be defined in terms of the b
havior of the derivatives of the order parameterM5dN
5N2^N&. These yield the estimators

Y35
1

V F]^uM u&
]u G

z

, Y45
1

V F]^M2&1/2

]u G
z

, ~2.33!
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Y55
1

V F]^M4&1/4

]u G
z

, Y65
1

V F]^M6&1/6

]u G
z

, ~2.34!

respectively. Here the subscriptz stands for the locus unde
consideration, e.g., thek locus derived fromx (k). Following
our previous work@19#, we have also defined the Ising-typ
susceptibilities

x̌2[Y75
1

V
@^M2&2^uM u&2#, ~2.35!

x̌4[Y85
1

V
@^M4&24^uM u&^uM u3&

112̂ M2&^uM u&223^M2&226^uM u&4#. ~2.36!

Note thatx̌4(T) exhibits two extrema~on a locusz !, say,
T8

1(L) andT8
2(L), respectively.

Last but not least, estimators based on the so-ca
Binder parameter and variants@32, 38, 41, 43# can also be
considered. To that end we have opted to examine

Y95
]

]u F ^M4&

^M2&2G
z

, Y105
]

]u F ^M2&

^uM u&2G
z

, ~2.37!

FIG. 3. Maximum heat-capacity lines in the~T, r! plane. The
curves labeled~a! correspond to the maxima of the heat capac
densityČV as defined in Eq.~2.14!. Curves~b! denote the maxima

of the heat capacity per particle,ČV /r. All system sizes~L/s55,
6, 7.5, 9, 10.5, 12, 13.5, and 15! are shown for both~a! and~b!. The
saturated densities and the diameter are represented by open c
the solid lines that emanate from the open circles are based o
Ising-type fit: see text in Sec. III. The filled circles denote the fini
system@Tc(L),rc(L)# locus that is obtained from the canonic
free-energy density—derived from grand canonical data—by fitt
to a fourth degree polynomial and evaluating the critical point cl
sically for everyL.
7-6
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Y115
]

]u F ^M4&

^uM u&4G
z

, Y125
]

]u F ^M6&

^uM u&6G
z

. ~2.38!

Needless to say, there are many more combinations
one can construct such as, for instance, estimators base
dU5U2^U&. However, as we will see below, the setYj for
j 51, . . . ,12, together with the canonical loci~labeled 0!
will amply suffice for the present investigation. The infinit
volume critical temperatureTc(`) is obtained from Eq.
~2.25! by extrapolating the peak positions,Tc

(Yj )(L;z) say,
towards the thermodynamic limit. Once the critical tempe
ture has been reliably established, anL-dependent pseud
ocritical density,rc„L,Tc(`);z…, may be calculated for the
locus z under consideration and the process is repeated
the whole set of the loci. The infinite-system critical dens
rc(`) is estimated by extrapolation of these various loc
dependent density approximants towardsL5`. The proce-
dure will be demonstrated explicitly in the next section.

III. THE CRITICAL REGION OF THE
SQUARE-WELL FLUID

In accord with the approach explained above, we h
performed grand canonical Monte Carlo simulations for
HCSW fluid for system sizesL/s55, 6, 7.5, 9, 10.5, 12
13.5, and 15. For a given temperature the chemical pote
was chosen—through histogram reweighting—so as to y
an average density ofr* 5rs3.0.3, a value close to the
previous best estimates of the critical density@7,46–48#. For
low temperatures, a relatively few multicanonical simu
tions @35# were carried out to facilitate transitions betwe
the low- and high-density phases. For higher temperatu
additional simulations were performed at chemical potent
designed to sample densities somewhat below and some
aboverc . The total length of each simulation was in th
range of 20– 803106 trial configurations per unit volume
(s3), depending on the particular system sizeL under inves-
tigation. The data were stored in two-dimensional ener
density histograms with bins of sizeDN51 and DU52n
21 (n>1). The different loci explained in the precedin
section were found through histogram reweighting. T
propertiesYj were measured along these lines as a func
of the reduced inverse temperatureu and the corresponding
peak positionsu j (L;z) were determined.

The exponentn, governing the divergence of the correl
tion lengthj, was found by the unbiased method described
@19# and tested there for symmetric magnetic systems. O
considers the peak positionsu j (L) and uk(L) for a pair of
propertiesYj andYk , and forms the ratio

yjk5F12
u j~L1dL !2uk~L1dL !

u j~L !2uk~L ! G L1 l 0s

dL
. ~3.1!

It is expected thatyjk→1/n whenL→`. The small adjust-
able shift parameterl 0 partially compensates for the inev
table corrections to leading-order scaling.

In Fig. 4 the behavior ofyjk along the (m̃,r) locus is
examined vs 1/L for the HCSW fluid for two pairs of prop-
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erties and various values of the shiftl 0 . The data appear to
extrapolate to the neighborhood of the expected Ising li
n.0.630 @20# whenL→`, although the precision is not a
good as in the magnetic models of@19#. By examining a set
of similar plots using other pairs of propertiesYj andYk and
different loci, all displaying essentially similar behavior, w
conclude

nHCSW50.6360.03. ~3.2!

Although one might wish for higher precision, it is clear th
significantly longer and larger simulations would be need
to do much better. Nevertheless, this estimate serves, as
tioned, to distinguish the HCSW fluid from self-avoidin
walks with n.0.588 and XY spin systems withn.0.676
@20#.

The next step involves the determination of the critic
temperature by extrapolating the peak positionskBTj (L)/«
51/u j (L) to theL→` limit according to Eq.~2.25!. To this
end we will accept the central, Ising estimaten50.630 from
here on. In Fig. 5 we present this extrapolation on the che
cal potential-density inflection locus: we thence conclude

Tc* [kBTc~L !/«51.217960.0003, ~3.3!

which closely matches the precision achieved in@19# for
magnetic systems. Examination on different loci leads to
same estimate since the peak positions for a particular q
tity Yj prove rather insensitive to the particular choice
locus ~in the rangek50 to 1!.

As already mentioned, once the critical temperature
been established, the critical density can be found most s
ply by recording the values ofrc„L,Tc(`);z… for several loci
z and a sequence of system sizesL. Extrapolation to the limit

FIG. 4. Estimation of the inverse correlation length expon
1/n for the HCSW fluid using the estimatorsyjk defined in Eq.
~3.1!. The crosses~3! correspond to the pair (Y12,Y8

(2)) whereas
the plusses~1! derive from (Y12,Y8

(2)). Both pairs were taken
along the (m̃,r) inflection locus (k50). The arrows on the ordinate
indicate, from the highest downwards, estimates of 1/n for n50
~self-avoiding walks!, n51 ~Ising!, andn52 ~XY ! systems@20#.
The values 1/n52 and 1 correspond to mean-field theory and t
spherical model (n5`) @49#, respectively. The parameterl 0 repre-
sents a shift (L⇒L1 l 0s) that is merely an aid to extrapolatio
@19#: see also Eq.~3.1!.
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of infinite system size can then be performed as illustrate
Fig. 6. It should be noted, however, that the exponent of
asymptotic approach is open to debate: see remarks in
IV. We decided to extrapolate vs 1/L and thus obtain an
estimate free of assumptions as to further exponent val
We may note that separate sets of estimators, say,rc

(k)(L),
may be obtained from the individualk loci, since these dis-
play well-defined extrema as a function ofT: see the plots in
Fig. 2 and, likewise, in Fig. 3. Behavior comparable to Fig
is observed but the data are not quite as precise and sm
numerically as those obtained from the fixed isothermT
5Tc(`). Overall we conclude

rc* [rcs
350.306760.0004. ~3.4!

This estimate which, evidently, is based on a system
study of a range of approximants, is roughly an order
magnitude more precise than that of@7# based on the Bruce
Wilding method@25, 26#: see Fig. 6. Furthermore, the earli
estimate seems subject to distinct bias.

Our grand canonical results for the coexisting densi
for the HCSW fluid are shown as solid black circles in F
7: see also Fig. 2 for the data at lower temperatures.
open circles that lie within the two-phase region correspo
to maxima of the heat capacity,ČV(T,r;L), obtained along a
line of fixed mean density, i.e., on an isochore. Note that
rÞrc , the heat capacity in the thermodynamic limit jum

FIG. 5. Critical temperature estimation for the HCSW fluid
extrapolation to theL→` limit. A value of n50.630 has been
assumed. The highest line corresponds toY12. The second highes
line represents the canonical critical pointsTc

0(L): see text and, in
particular, Fig. 3. From the third highest downwards the lines c
respond to propertiesYj for j 510, 2(1), 7(1), 9, 6, 5, 4, 3, 1, 7(2),
and 2(1), respectively. All lines except the second highest ha
been obtained on the (m̃,r) ~or k50! inflection locus.
05150
in
e
ec.

s.

oth

ic
f

s
.
e
d

r

discontinuously on crossing the phase~or saturation! bound-
ary; however, the finite-system heat capacity will inexorab
exhibit a rounded maximum or peak depending explicitly
L. In the same figure we also show the finite-L ‘‘canonical’’
coexistence curves that follow from the equal-height pro
dure explained in Sec. II B. Evidently, these values all lie
the ~limiting! single-phase region.

As in other cases@7,17#, reliable grand canonical result
do not reach the close-to-critical region; thus no direct e
mate for the phase boundary is possible in the range 0
&rs3&0.45. In order to obtain some reasonable estimate
bound for the saturation temperature,Ts(r) say, in this ‘‘in-
ner region’’ where no direct values are available, we ha
attempted to extrapolate the canonical saturation temp
tures, Ts

~can!(r;L), and the heat-capacity maxima
Ts

(CV)(r;L), to the limit of infinite size. Note that these tw
different estimators approach the thermodynamic limit fro
opposite directions so that weighted averages converge m
rapidly and plots vs 1/L are informative, although they ex
hibit systematic curvature that is hard to extrapolate with f
conviction ~except forr.rc when plots vs 1/L1/n become
linear!. Note, indeed, that forrÞrc andlarge enoughvalues
of L, finite-size scaling theory indicates that the converge
should beexponentially fastin L. However, it is clear from
Fig. 7 that such a regime is not accessible in our simulatio
rather, some crossover dependence onL is realized forr
Þrc . Despite these caveats, judicious extrapolation yie

-

e

FIG. 6. Critical density estimation for the HCSW fluid by ex
trapolation toL→`. The highest line representsrc

(0)(L) obtained
from the canonical coexistence locus atTc(`). The remaining
curves correspond to differentx (k) loci evaluated at the estimate fo
Tc(`). From the second highest line downwards the associa
values ofk are 0, 1

40,
1
16,

1
10,

1
8,

1
6,

1
5, and 1

4, respectively. The open
circle denotes the~infinite-volume! estimate obtained in Ref.@7#
using the Bruce-Wilding approach@25, 26#.
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the quite closely spaced upper and lower estimates forTs(r)
presented as error bars in Fig. 7.

To supplement these results we have fitted the gra
canonical coexistence data~solid dots in Figs. 7 and 2! to the
truncated Wegner-type expansions~see@1#!

@ r̄~T!2rc#s
3.a2butu2b1a12autu12a1a1t, ~3.5!

where the diameter is defined in Eq.~1.3! and

@r liq~T!2rvap~T!#s3.Butub@11buutuu1b2butu2b#. ~3.6!

For the purpose of fitting we have adopted the Ising val
b50.326,a50.109, andu50.52@1, 20#. We find a good fit
with B51.20264 , which we believe represents a reasona
estimate of the true limiting amplitude, anda2b
520.00073 , a12a50.1897 , a1520.06914 , bu5
20.2576 , andb2b520.0852 . It must be emphasized, how

FIG. 7. Coexisting densities for the HCSW fluid. The bla
circles represent direct grand canonical estimates. The positio
the critical point is indicated by the cross~3!. The solid line that
emanates from the solid circles is a simple Wegner-type fit: see
~3.5! and ~3.6!. The open circles in the two-phase region loca
finite-L heat-capacity maxima along a locus of fixed density. T
open circles that lie above the solid circles and the Wegner-typ
represent the finite-L canonical estimates: see Sec. II B. The plus
~1! represent the~finite-L! canonical critical pointsTc

0(L), rc
0(L).

The solid lines connecting the canonical orthobaric densities w
their associated critical point represent classical van der Waals
The error bars lying close to the Wegner fit indicate estima
bounds for the saturation temperature for a given fixed orthob
density: see text.
05150
d-

s

e

ever, thatno significance should be attached to the spec
numerical values of the five correction coefficients sin
without doubt, higher-order corrections must be playing
non-negligible role in the wide range fitted. Furthermo
because the exponents appearing differ rather little in m
nitude, the fitting uncertainties will be strongly correlate
The fit ~3.6! to the coexistence curve is shown in Fig. 7 as
solid line that connects the coexisting densities~solid circles!
to the critical point. Judging by the close proximity of the
to the fixed-density estimates, we conclude that our extra
lations provide reasonably reliable values although mu
bigger sizes are needed to obtain higher resolution at n
critical densities.

Given a reliable estimate of the critical point, one m
measure a miscellany of quantities that characterize the
proach to criticality and elucidate possible crossover s
naria: potentially the most revealing examples are the ef
tive exponents. The effective high-temperature susceptib
exponent, defined by

geff
1 ~u;z!52~] ln xNN /] lnut8u!z , ~3.7!

of

s.

e
fit
s

h
ts.
d
ic

FIG. 8. Effective high-temperature susceptibility expone
geff

1 (T), along the critical isochore for the HCSW fluid withl
51.5 for sizes denoted:~1! L55; ~3! L56; ~n! L57.5; ~h!
L59; ~s! L510.5; ~d! L512, all in units ofs. Note that for
intermediateL the finite-size-induced falloff ofgeff

1 as T→Tc has
been omitted for clarity. The horizontal arrows indicate the valu
of g for then50, 1, and 2 universality classes@20#. The dotted lines
that approach then51 limit derive from series expansion data fo
Ising models with first (q56), first-plus-second (q518), and first-
plus-second-plus-third (q526) equivalent-neighbor interactions
see@19#. The horizontal line atgeff

1 51 represents the Curie-Weis
or mean-field-theory result for the Ising model; this corresponds
q→`.
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is the most readily obtainable quantity. Here we employt8
5uT2Tcu/T while z is a critical locus asymptotically tangen
to the phase boundarym̃s(T). The limiting value ofgeff

1 is
the exponentg that dictates the asymptotic power-law dive
gence of the susceptibilityxNN . The most obvious choice fo
the locusz is the critical isochorer5rc , as invariably used
in experiments; other choices are, however, feasible. Foll
ing Sec. II A, one obtains~for the critical isochore!

geff
1 ~u;rc!5~uc2u!S xNNN

xNU

xNN
2 2

xNNU

xNN
D , ~3.8!

where the various second- and third-order susceptibilities
defined in Eq.~2.10! and are evaluated for the values of t
chemical potentialm̃(T) that correspond torc . Our esti-
mates forgeff

1 (T) on the critical isochore are reproduced
Fig. 8. The full rounding effects are indicated only for som
of the system sizes considered to avoid cluttering the fig
The uncertainty bars in Fig. 8 were computed by break
the full simulations into five to ten subsimulations. The v
ues ofgeff

1 are not as smooth as our previous estimates
symmetric Ising-type systems@19#. Indeed, while for the
Ising lattice gases the simulations were performed along
knownsymmetry axis—which,inter alia, coincides with the
critical isochore—the uncertainties in determining the loc
r5rc as well as the uncertainty inrc itself must be taken
into consideration for an asymmetric fluid model. Neverth
less, on extrapolating the values shown in Fig. 8, we c
clude

gHCSW51.24560.025, ~3.9!

which distinguishes the HCSW fluid unmistakably from t
n50 and n51 universality classes@49#, with gsaw.1.159
andgXY.1.316 , respectively@20#, and comfortably encom
passes the Ising valueg51.239 @20#.

It is interesting to note from Fig. 8 thatgeff
1 (T) approaches

the limit g from belowasT→Tc1. This behavior character
izes most real, simple fluids like CO2, but differs from the
nearest-neighbor simple cubic lattice gas for whichgeff

1 (T) is
described by the dotted line labeledq56 in the figure. In-
deed, in terms of the equivalent-neighbor lattice-gas res
labeled by the coordination numbersq518 and 26@19# in
Fig. 8, the HCSW fluid forl51.5 would appear to corre
spond roughly to a lattice gas with, say,q510 to 14
equivalent-neighbor couplings.

The effective exponent that describes the shape of
coexistence curve may be defined by

beff~u!5„d ln@Dr~T!#/d lnut8u…, ~3.10!

where the width of the coexistence curve isDr(T)5r liq
2rvap. Note that the associated orthobaric densities,r liq(T)
andrvap(T), are shown as solid circles in Fig. 7 and, down
lower temperatures, in Fig. 2. The points plotted in Fig
represent our estimates ofbeff derived by numerical differ-
entiation of theDr(T) estimates on a lnut8u plot. The data
closest toTc ~arising from theL515s simulation! show
signs of a sharp upturn which we believe is primarily a res
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of the onset of finite-size rounding. Allowing, with reaso
able prudence for the statistical and systematic errors, le
us to conclude

0.304< bHCSW< 0.340. ~3.11!

The confidence limits here are fully consistent with the p
viously quoted Ising valueb50.326 but barely exclude the
self-avoiding-walk (n50) and XY(n52) values, namely,
0.302 and 0.347 , respectively @20#, which, however, are
rather closely spaced. As forgeff

1 , the approach to criticality
corresponds to an equivalent-neighbor lattice gas with
effective coordination number lying within the rangeq58 to
16.

Note that no sign of crossover from some mean-field-ty
behavior is suggested by the variation of eithergeff

1 (T) or
beff(T), but, of course, none is expected since the HCS
fluid with l51.5 represents a short-range interaction pot
tial. For larger values ofl this must change, but it would
seem that the results to be anticipated could be read off fa
well from the previous extensive studies of long-range cro
over in the lattice systems@21–23#.

In our study of the lattice gases@19# we were able to
check behavior corresponding to the Ising universality cl
further by examininggeff

2 (T), for the susceptibility belowTc ,
and also by estimating the corresponding amplitude ra
C1/C2 @19, 50#. Unfortunately, the range of sizes and st
tistical precision available to us for the hard-core square-w
fluid precludes these tests. However, we believe that the
and analyses presented for thel51.5 model leave no seriou
room for doubt that the Ising universality class describes
continuum model.

FIG. 9. Effective coexistence curve exponent,beff(T), for the
HCSW fluid ~solid circles! derived as explained in the text. Th
dotted lines and the arrows have the same meaning as in Fig.
7-10
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IV. INVESTIGATION OF THE YANG-YANG ANOMALY

In 1964 Yang and Yang@2# pointed out that the tota
constant-volume heat capacityC V

tot of a single-componen
fluid can be decomposed into two terms, one derived fr
the variation of the pressurep, the other from the chemica
potentialm: explicitly one has

C V
tot5VT~]2p/]T2!V 2NT~]2m/]T2!V . ~4.1!

On the other hand, it is well established that on approach
the critical point—along, say, the critical isochore—the h
capacity exhibits a weak singularity,C V

tot;utu2a, with, accept-
ing the Ising value@1, 20#, a50.10960.004. This implies
thateither the pressure termor the chemical potential term in
Eq. ~4.1!, or perhapsboth, must diverge whenT→Tc2 along
the vapor pressure curveps(T) or, equivalently, along the
phase boundaryms(T). In the standard lattice gas, th
chemical potential on the phase boundary is a simple, a
lytic function of the temperature. This is, indeed, also t
case for the special asymmetric model fluids with a hidd
symmetry of@3–5#. In these systems, therefore, (d2ps /dT2)
diverges likeCV(T,rc) but (d2ms /dT2) remains bounded
Early analyses of two-phase specific-heat data for water@45,
51# seemed to support this scenario. However, the data w
not sufficiently precise to draw reliable conclusions: see
discussion in@6#.

On the other hand, recent analysis@1, 6# of extensive two-
phase specific-heat data for propane@52# and a previous
study of CO2 @53# demonstrated the contrary: the hea
capacity singularity is, in fact,sharedbetween the two terms
on the right-hand side of Eq.~4.1!. It was found@1, 6# that
when T→Tc2, the second derivative ofms(T), say ms9 ,
diverges to2` for propane but to1` for CO2. Regarding
the strength of this ‘‘Yang-Yang~Y-Y ! anomaly,’’ it was
concluded@1, 6# that the chemical potential term is respo
sible for about 56% of the totalCV singularity in propane
below Tc . For the case of CO2, the associated ratioRm was
estimated, with lower precision, to be roughly20.35. Note
that the negative value implies that the pressure contribu
actually diverges faster thanCV itself, by virtue of having a
larger critical amplitude.

The consequences of the Yang-Yang anomaly for a s
ing description of fluids have been discussed in@1, 5#. Owing
to the appearance of the pressure—not previou
expected—in the fluid scaling-field variables, the coexiste
diameter~1.3! gains a dominantutu2b term. In the context of
simulations, the mixed-field finite-size scaling theory
Bruce and Wilding@25, 26#—currently the state of the ar
approach for asymmetric fluids—precludes the occurrenc
a Yang-Yang anomaly. This fact, indeed, provided one of
motivations for the present~unbiased! finite-size investiga-
tion.

It is appropriate, conversely, to point out here that
presence of a Y-Y anomaly in the HCSW or other mod
fluid may significantly undermine the validity of the finite
size extrapolations used in the Bruce-Wilding approach
estimate the critical densityrc @25,26#. In particular, in their
analog of Fig. 6, Bruce and Wilding specifiy a particul
inverse power of the sizeL related to the fact that pure~m, T!
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scaling-field mixing introduces only a correction termutu12a

into the diameter~and elsewhere!; but, as mentioned, when
pressure mixing occurs, the more singular termutu2b also
appears as, e.g., in Eq.~3.5! @1#. It seems likely, therefore
that in the appropriate adaptation of the Bruce-Wildi
‘‘fixed-point-distribution matching’’ procedure, some othe
inverse powers ofL will enter—quite possibly in a compet
ing manner. This is why, in Fig. 6, we adopted an agnos
point of view and simply plotted vs 1/L. Insofar as there is
some residual curvature in the plots—which is certainly h
to see—some other power or combination of powers oL
could be present. However, the use of a large numbe
distinct approximating sequences allows one to extrapo
with confidence even though the true asymptotic form m
remain obscure.

For our study of the Y-Y anomaly in the HCSW fluid, w
have employed a slightly different version of Eq.~4.1!—
albeit with the same implications—namely, in terms of t
( p̄,m̃,u) variables

ČV5S ]2p̄

]u2D
r

2rS ]2m̃

]u2 D
r

[Čp~u,r!1Čm~u,r!, ~4.2!

where Čp5(]2p̄/]u2)r and Čm52r(]2m̃/]u2)r . Recall
that the heat-capacity density,ČV(u,r), is defined in Eq.
~2.14!. The chemical potential term can be expressed read
using Eq.~2.13!, in the form

FIG. 10. The reduced heat-capacity densityČV(T) and the cor-

responding pressure contributionČp(T) @defined in Eqs.~2.14! and
~4.2!# calculated on the critical isochore for the HCSW fluid. No
that some of the extensions into the one-phase region have
truncated for reasons of clarity.
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S ]2m̃

]u2 D
r

52
xNUxNNU

xNN
2 2

xNU
2 xNNN

xNN
3 2

xNUU

xNN
. ~4.3!

Finally, the pressure term may be found simply from E
~4.2! via Čp5ČV2Čm . Note that owing to the complex ex
pression forČm in Eq. ~4.3! and the inextricable presence
almost cancelling third-order moments, a sufficiently delic
finite-scaling analysis might well lie beyond current comp
tational resources. In addition, one must remember tha
weak utu2a singularity is always accompanied by relative
strong analytic terms—usually known as ‘‘background
This typically bedevils the unambiguous elucidation of t
singularity. Last but not least, the overall amplitude of t
asymptotic utu2a term in Čm may itself be small for the
HCSW fluid since the strength of Y-Y anomalies seems to
related to the asymmetry of the constituent molecules:
@1# and @6#.

We have calculatedČV andČp along the critical isochore
r5rc for sizesL/s55 to 15: see Fig. 10@54#. Over the
accessible size range it is evident thatČp(T;rc) is always
smaller thanČV(T,rc); but it appears to rise somewhat mo

FIG. 11. Estimation of the strengthRm of the Yang-Yang
anomaly for the HCSW fluid withl5b/s51.5 via plots of

Řm
† (T;B†) @as defined in Eq.~4.4!# vs t8a with t8512(Tc /T). The

data pertain tor5rc and T,Tc . The dashed curves have bee

derived from separate fits to selected simulation data forČV(T) and

Čp(T): see text. Cases~a!, ~b!, ~c!, and ~d! correspond to ‘‘back-
ground shifts’’B†50, 0.4, 0.8, and 1.4, respectively.
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sharply asT→Tc2. This behavior is strongly reminiscent o
the observations of CO2, where the pressure contribution e
ceeds that of the heat capacity only forut8u&0.005. To esti-
mate the strengthRm of a possible Yang-Yang anomaly i
the HCSW fluid, we adopt the procedures developed to a
lyze propane and CO2 @1,6# and so define the dimensionles
ratio

Řm
† ~T![

Čm~T,rc!2B†

ČV~T,rc!
, ~4.4!

whereB† is a constant ‘‘background shift’’ introduced as a
aid to extrapolation toTc2. Note, indeed, thatŘm

† (T) has the

same limitRm[ limT→Tc2Řm
† (T), irrespective of the particu-

lar value of the shiftB†.
In Fig. 11 we plot the functionŘm

† vs t8a for a selected se
of data away from the rounding regions belowTc ~see Fig.
10! and for four different values ofB†. It is important to
realize thatŘm

† (T) should approach its asymptotic valuelin-
early in terms oft8a ~except for one special choice ofB† for
which the approach may bemore rapid! @1,6#. The dashed
lines in Fig. 11 represent the results of fits toČV(T,rc) and
Čp(T,rc), respectively, based on the form

Č~T!5Aut8u2a~11auut8uu!1B01B1t, ~4.5!

which allows for a correction-to-scaling term with expone
u50.52 ~as accepted in Sec. III@20#! and for two back-
ground terms. The quality of our data do not, in fact, allo
sensible fits with more than three terms. Accordingly,
display in Fig. 11, first, the consequences of settingB150 in
Eq. ~4.5! ~for both ČV and Čp! which yieldsRm.20.145
~i.e., the lower set of fits! and then of settingau50 which
leads to the upper set of fits withRm.20.009. Excluding
the two and four selected data points closest toTc does not
change these fits qualitatively. The average of the two fits
ČV and Čp , which we prefer since theau term dominates
over theB1 term for smallt, yieldsRm.20.071.

The undesirable scatter of the data forŘm
† (T) in Fig. 11 is

evidently due to the increasing difficulty of obtaining acc
rate estimates of thermodynamic derivatives that entail co
binations of higher-order moments, as in Eq.~4.3!. Despite
the deficiencies, a trend towards a slightly negat
asymptotic limit seems clearly visible. Overall we thus co
clude

Rm
HCSW520.0860.12. ~4.6!

The substantial uncertainty, which does not exclude the p
sibility Rm50 ~although we are inclined to believe a sma
negative value!, is an indication of the confidence leve
achieved. To obtain better estimates and to fully reveal
onset of the Yang-Yang anomaly, one will need to inves
gate much larger system sizesL than those accessed here a
longer runs will also be necessary to reduce the statist
uncertainties. The invention of more efficient sampling alg
7-12
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rithms, such as those developed for magnetic systems@55#, is
badly needed for asymmetric fluids. That task, however,
mains elusive.

V. CONCLUSIONS

In the simulation studies reported here we have addre
the issue of how best to estimate the critical parameters
in particular, how to elucidate the universality class of g
liquid criticality in continuum models ofasymmetricfluids
with no known or existing true~or hidden! axes of symme-
try. Specifically, we have considered the hard-core squ
well model with moderate-range interactions (l5b/s
51.5): this model is only ‘‘weakly asymmetric,’’ comparin
reasonably well with real fluids like argon and CO2: but an
important aim of our work has been to devise and test un
ased approaches for application to the fundamental ‘
stricted primitive model’’~RPM! electrolyte which, indeed
is strongly asymmetric~largely by virtue of the low value of
its critical density: such studies of the RPM are curren
underway@18#!.

The first computational problem that arises is to estim
convincingly the location of the critical point including, mo
crucially, the critical densityrc . ~Typically, the determina-
tion of rc presents a significant difficulty even when inte
preting precise data on real fluids: see, e.g.,@6#.! To this end,
we have developed methods of selecting various loci, prim
rily lying in the single-phase regionabove Tc , which as the
system sizeL becomes infinite, must asymptotically a
proach the true, limiting critical point. Those loci which, b
their behavior in the~r, T! plane, most directly~and most
rapidly asL is increased! approach the critical point, may b
treated as ‘‘effective symmetry axes,’’ analogous to the a
known exactly in simple~Ising-model! lattice gases@19#. Us-
ing these loci, one may apply the unbiased techniques
vised for lattice models in@19# to estimate, in the first place
the basic critical exponentn. This exponent provides both a
initial indication of critical universality class and a firm bas
for subsequent employment of finite-size scaling techniqu
We believe this approach should be applicable in other ca
where precise and accurate simulation results are desire

Given an estimate forn and well-behaved, asymptoticall
critical loci, determination ofTc by studying arangeof dif-
ferent estimators@19# yields a precise value. That, in turn
enables one to make refined estimates ofrc of high precision
em
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and, we believe, reliability. Significantly, previous finite-siz
scaling methods of some sophistication~which, however,
presuppose Ising-type criticality@25, 26#! are found to pro-
vide inaccurate estimates ofrc .

It would, indeed, be useful for ‘‘practical’’ applications t
have some more reliable approaches to the estimation oTc
and rc that call for less computational effort than we ha
invested. Future work may uncover such methods; bu
would seem that the underlying scaling theory would have
recognize that when there is no evident ‘‘gas-liquid symm
try’’ present in the system, the asymptotic linear scali
fields are more complex than lattice-gas-based models re
@1, 6#. Specifically, thepressure, as well as the chemica
potential and the temperature, must mix into the linear sc
ing fields @1#.

This feature arises because of the presence, in genera
a Yang-Yang anomaly in real fluids and nonsymmetric mo
els @1, 2, 6#: explicitly, if ms(T) is the chemical potential on
the phase boundary belowTc , then (d2ms /dT2) diverges
~like the specific heatCV! whenT→Tc2. We have endeav-
ored to estimate the relative strengthRm of such a Yang-
Yang anomaly in the hard-core square-well fluid~with l
51.5!. Analysis of our data suggests a small negative va
Rm.20.08~comparable to CO2 @1#! but with significant un-
certainties. To do better for this model will require the stu
of larger sizes and longer simulations: that will probably
feasible only with improved algorithms~like those available
for lattice models@55#!. Nevertheless, the study of othe
models, such as the RPM, etc., may prove more definitive
this respect.

In summary, although we believe we have made progr
elucidating in a precise way the critical behavior of intrins
cally asymmetric systems still presents significa
challenges—not only computationally, but experimenta
and theoretically also—and might provide yet further s
prises.
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@21# E. Luijten, H. W. J. Blöte, and K. Binder, Phys. Rev. E54,

4626 ~1996!.
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