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Constitutive equations for an elastic material with anisotropic rigid particles
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~Received 7 July 2000; published 12 April 2001!

In this paper we have derived constitutive equations for an elastic material with anisotropic rigid particles.
We have included a dependence on the Finger tensorB and the orientation tensorQ in the expression for the
free energy of the system. With this expression for the free energy we have derived an expression for the stress
tensor up to second order in both these variables. We have shown that the elastic modulus in this expression
depends onQ, and this dependence leads to aneffectiveelastic modulus that depends on the strain. We have
calculated the explicit form of the equation for the stress tensor for a deformation in thexy plane with a strain
equal to2g. For fully isotropic materials withQ50 this expression reduces to an equation containing only
odd powers ofg. The inclusion of a non-zero value for the orientation tensor leads to an additional set of terms
in the equation, all proportional toQxy ~thexy component of the tensorQ), and all proportional toevenpowers
of g. We have qualitatively compared these expressions with Fourier transform~FT! rheological measurements
of xanthan gels, at concentrations above and below the order-disorder transition. In FT rheometry an oscillatory
deformation is applied in the nonlinear regime, and the resulting stress response is analyzed in Fourier space.
In the 2% ~w/w! xanthan system~disordered state! only odd harmonics were found in the stress response,
whereas in the 4%~w/w! xanthan gel~ordered state! even harmonics could be detected. As predicted by our
theory, the intensity of these even harmonics first increased with increasingg, until a maximum value was
reached. Beyond this maximum the intensity decreased continuously with increasingg.

DOI: 10.1103/PhysRevE.63.051504 PACS number~s!: 82.70.Dd, 83.10.Gr, 82.70.Gg, 05.70.Ln
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I. INTRODUCTION

Many proteins and polysaccharides can self-assemble
form anisotropic colloidal particles, with a very long pers
tence length and high aspect ratio. For examp
b-lactoglobulin, a globular whey protein, can form rigid pa
ticles with a persistence length of 600 nm, when heated
10 h at 80 °C in an aqueous solution atp H 2 and an ionic
strength of 13 mM . @1# These particles have a diamet
equal to 2 nm, the diameter of a single globular molecu
Examples of polysaccharides that form long rigid partic
are xanthan@2–7#, cellulose @8#, and cellulose derivatives
like hydroxypropylcellulose@9#.

Depending on their concentration and the strength of
interactions between them, these rodlike particles can for
viscous solution, an elastic gel, or a liquid crystalline pha
For this reason they are often used as thickening or struc
ing agents in foods. In the absence of external fields~elec-
tromagnetic, shear, etc.! the solutions and gels are usual
isotropic from a macroscopic point of view, i.e., the orien
tion of the rodlike particles is completely random down
the scale of the individual particles. In contrast, liquid cry
talline phases are aligned on a scale much larger than
scale of the individual particles.

Due to the highly anisotropic nature of the particles, t
rheological behavior of these solutions, gels, and liquid cr
talline phases is very complex and highly nonlinear. T
behavior is the result of a change in the microstructure of
system caused by the applied deformation@10–12#. The an-
isotropic particles tend to align themselves with the direct
of deformation. This coupling between~rate of! deformation
and microstructure of the system is described very well
the microscopic level, for dilute, semidilute, and conce
1063-651X/2001/63~5!/051504~8!/$20.00 63 0515
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trated solutions of ideal rodlike particles@13#. Continuum
theories have focused mainly on the description of liqu
crystalline phases@14–19#.

Little work has been done to derive a rigorous continuu
theory based on nonequilibrium thermodynamics for
macroscopically isotropic solutions and gels. The shear
cosity of solutions containing anisotropic particles depen
strongly on the shear rateġ. However, classical nonequilib
rium thermodynamics, as presented, for example, by
Groot and Mazur@20#, does not allow such a dependenc
since the shear rate is not a state variable. The dependen
the shear rate is in general incorporated by~semi!empirical
closures, like, for example, the power-law model@21#. This
model assumes that the viscosity is proportional toġn, where
n is an exponent determined from experiments. Recen
Bedeaux and Rubi@22# developed a theory for the viscosit
of a solution of anisotropic particles, using the method
internal variables developed by Prigogine and Mazur@23#.
They incorporated the orientation of the particles as an in
nal variable in the expression for the free energy. As
internal variable they chose the orientation tensorQ, defined
by @19#

Q~r ,t !5z^nn&, ~1!

wheren(r ) is a unit vector associated with the particles, w
direction parallel to the long axis of the particles. The ang
lar bracketŝ •••& denote a local average, and

nn5nn2 1
3 I ~2!

is the traceless symmetric part ofnn. The factorz is the
order parameter, defined as
©2001 The American Physical Society04-1
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z[A3

2
~Q:Q!1/2. ~3!

The orientation tensor is a traceless symmetric tensor, e
to zero when the material is isotropic on the macrosco
scale. In the presence of an aligning field~electromagnetic,
shear, etc.! it will be nonzero. Bedeaux and Rubi showed th
the incorporation of the orientation tensor in the express
for the free energy of the system leads to an expression
the traceless symmetric part of the stress tensor given by@24#

s5h“v1 l Q̇, ~4!

where “v is the traceless symmetric part of the veloc
gradient, andh is the shear viscosity, a constant depend
only on temperature and the concentration and orientatio
the particles, but not on the shear rate. The termQ̇ denotes
the material time derivative ofQ @21#. The coefficientl has
the dimension of a viscosity and is related to the rotatio
mobility of the particles. Bedeaux and Rubi showed that
inclusion of the second term in Eq.~4! leads to an expressio
for the effectiveviscosity with a dependence on the she
rate.

For liquid crystalline materials this is a well establish
result@19#, @p. 219#. In simple shear flow of a shear-alignin
nematic phase, with strong anchoring, a boundary layer
velops close to the walls. Outside this boundary layer
particles are all aligned at a fixed angle with the direction
flow. Inside the layer the orientation of the particles chan
progressively, as the wall is approached. The thickness o
boundary layer depends on the shear rate, and this s
dependence leads to aneffectiveviscosity that depends o
the shear rate. This effective viscosity can be calculated
ing Ericksen’s law@25#.

In this paper we will extend the approach outlined
Bedeaux and Rubi to gels with anisotropic particles. We w
limit ourselves to purely elastic materials and neglect a
viscous dissipation in the system. The more complex cas
a nonlinear viscoelastic material will be treated in an upco
ing paper. The constitutive equations derived here are v
for systems that are isotropic or nearly isotropic in the
sence of shear, and valid for small deformations from
equilibrium state of the material. In Secs. II and III w
briefly describe the material behavior of simple materi
with internal structure and elastic materials without inter
structure. In Sec. IV we then combine these description
describe the behavior of an elastic material with inter
structure. We incorporate a dependence on the Finger te
B @26# and the orientation tensorQ in the expression for the
free energy. Using this expression we derive an equation
the stress tensor up to second order in both these varia
We show that the elastic modulus in this expression depe
on Q, and this dependence leads to aneffectiveelastic modu-
lus that depends on the strain.

We calculate the explicit form of the equation for th
stress tensor for a deformation in thexy plane with a strain
equal to2g. For fully isotropic materials withQ50 this
expression reduces to an equation containing only odd p
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ers ofg. We show that the inclusion of the orientation tens
as an internal variable leads to an additional set of term
the equation, all proportional toQxy ~the xy component of
the tensorQ), and all proportional toevenpowers ofg. In
Sec. V we qualitatively compare these expressions with F
rier transform ~FT! rheological measurements of xantha
gels, at concentrations above and below the order-diso
transition@27#. In FT rheometry an oscillatory deformation
applied in the nonlinear regime, and the resulting stress
sponse is analyzed in Fourier space@28,29#.

II. SIMPLE MATERIAL WITH INTERNAL STRUCTURE

For a simple material with internal structure the free e
ergy per unit massF̂ is given by

F̂[F̂~T,V̂,v f ,vs ,Q!, ~5!

whereT is the temperature,V̂ the volume per unit mass, an
v f and vs the mass fractions of fluid and particles. Th
absolute differential ofF̂ is given by

dF̂52ŜdT2PdV̂1~m f2ms!dv f1W:dQ, ~6!

whereŜ is the entropy per unit mass,P the thermodynamic
pressure, andm f andms the chemical potential per unit mas
of, respectively, the fluid and the particles. The second or
tensor fieldW is defined as

W[S ]F̂

]QD
T,V̂,v f ,vs

. ~7!

We will now expand the free energy in terms of powers
Q. Up to third order inQ the free energy is given by@19#

F̂~T,V̂,vs ,v f ,Q!

5F̂0~T,V̂,vs ,v f !1 1
2 a~T,V̂,vs ,v f !Q:Q

1 1
3 b~T,V̂,vs ,v f !tr~Q•Q•Q!1O~Q4!, ~8!

wherea and b are constants that depend only on tempe
ture, V̂, and the mass fractions of particles and fluid, but n
on Q. From Eqs.~7! and ~8! we find that the tensorW is
given by

W5a~T,V̂,vs ,v f !Q1b~T,V̂,vs ,v f !Q•Q1O~Q3!, ~9!

where the double overbar again denotes the symmetric tr
less part of a tensor.

III. ELASTIC MATERIAL WITHOUT INTERNAL
STRUCTURE

The free energy of an elastic material depends on the s
of deformation of the material. There are various measure
describe the state of deformation of a material. The simp
measures are the deformation gradientF and its inverseE
defined by@26#
4-2
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CONSTITUTIVE EQUATIONS FOR AN ELASTIC . . . PHYSICAL REVIEW E 63 051504
F[
]r

] r̄
, E[

] r̄

]r
, ~10!

where r̄ denotes the position of a material particle in t
reference configuration, andr is the position of that particle
in the current configuration. Based on these two tensors
can define the right Cauchy-Green tensorC and the Finger
tensorB as @26#

C[FT
•F, B[E•ET. ~11!

These tensors are symmetric positive definite, and reduc
the unit tensor when the deformation is a rigid body mot
~translation plus rotation!. For a purely elastic material with
out internal structure the free energy is assumed to be g
by

F̂[F̂~T,V̂,v f ,vs ,B!. ~12!

We could have chosen any of the other strain measures w
out loss of generality. The predictions of the model w
however, vary with the choice of strain measure. BothF and
E predict zero first and second normal stresses.C and B
predict nonzero normal stresses and based on experim
evidence appear to be more plausible choices for the s
measure@26#. From Eq.~12! we find that the absolute differ
ential of F̂ is given by

dF̂52ŜdT2PdV̂1~m f2ms!dv f1s :dB, ~13!

where the stresss is defined as

s[S ]F̂

]BD
T,V̂,v f ,vs

. ~14!

If we expandF̂ in terms ofB, we find up to second order in
B

F̂~T,V̂,vs ,v f ,B!

5F̂0~T,V̂,vs ,v f !1 1
2 G~T,V̂,vs ,v f !(4BB1O~B3!.

~15!

Note that there is no first order term in this expression. Af
differentiation with respect toB such a linear term would
give a contribution to the stress equal to a constant timeI ,
the three-dimensional unit tensor. This term will be nonz
even if the deformation is zero, and constitutes a resid
stress in the material. We will assume here that, in the
sence of external fields and in the absence of any inte
structure, all residual stresses in the material are zero. H
terms linear inB must be identical to zero in the expressi
for F̂. The symbol(4 denotes a fourfold contraction. Th
fourth order tensorG is given by

G~T,V̂,vs ,v f ![S ]2F̂

]B2D
T,V̂,vs ,v f

. ~16!
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We see thatG cannot depend directly onB. For an isotropic
medium we find that

G[2G~T,V̂,vs ,v f !Di jkl , ~17!

whereG is the scalar elastic modulus of the material, a
Di jkl is a fourth order symmetric traceless isotropic ten
given by @30#

Di jkl [
1
2 ~d ikd j l 1d i l d jk!2 1

3 d i j dkl . ~18!

Combining Eqs.~15!, ~17!, and~18! we find that for an elas-
tic material without internal structureF̂ reduces to

F̂~T,V̂,vs ,v f ,B!5F̂0~T,V̂,vs ,v f !1G~T,V̂,vs ,v f !B:B

2 1
3 G~T,V̂,vs ,v f !~ tr B!21O~B3!.

~19!

From Eqs.~14! and ~19! we find thats is given by

s52GB2 2
3 G~ tr B!I1O~B2!. ~20!

If we specifically include a dependence on trB in the expres-
sion for F̂ we get an additional term in this expression equ
to 1

2 K(tr B)2, with K(T,V̂,vs ,v f) the elastic compressibility
modulus, and the equation fors reduces to the familiar re
sult @31#

s52GB1~K2 2
3 G!~ tr B!I1O~B2!. ~21!

IV. ELASTIC MATERIAL WITH INTERNAL STRUCTURE

A. Material behavior

We will now combine the material descriptions presen
in the previous two sections to describe the material beha
of an elastic material with anisotropic particles. We will a
sume that the free energy of such a material is given by

F̂[F̂~T,V̂,v f ,vs ,B,Q!. ~22!

Using this expression we find that the absolute differentia
F̂ is given by

dF̂52ŜdT2PdV̂1~m f2ms!dv f1s :dB1W:Q. ~23!

If we now make a combined expansion ofF̂ in terms ofB
andQ we find up to second order inB andQ

F̂~T,V̂,vs ,v f ,B,Q!

5F̂0~T,V̂,vs ,v f !1 1
2 K~ tr B!21 1

2 G(4BB

1 1
2 LBQ(4~BQ1QB!1 1

2 aQ:Q1O~B3,Q3!, ~24!

whereLBQ is a fourth order tensor field defined by

LBQ~T,V̂,vs ,v f !5S ]2F̂

]B]QD
T,V̂,vs ,v f

. ~25!
4-3
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For a nearly isotropic material and small deformations
may assume thatG is still given by Eq.~17!, with one im-
portant modification: the scalar elastic modulusG now de-
pends onQ, and is given byG5G(T,V̂,vs ,v f ,Q). For
nearly isotropic materials and small deformationsLBQ is
given by

LBQ~T,V̂,vs ,v f !5LBQ~T,V̂,vs ,v f !Di jkl , ~26!

where LBQ is a scalar, andDi jkl is again the fourth orde
tensor field defined by Eq.~18!. For larger deformations
whenQ is no longer small,G andLBQ depend on the degre
of alignment, and Eq.~17! has to be replaced by

G5G1Di jkl 1G2~Qi j dkl1Qikd j l 1Qil d jk1Qjkd i l 1Qjl d ik

1Qkld i j !1G3~Qi j Qkl1QikQjl 1Qil Qjk!. ~27!

The material is then characterized by three scalar elastic
stants instead of one. A similar equation holds for the ten
LBQ . Here we will assume thatB and Q are sufficiently
small for Eqs.~17! and~26! to hold. Substituting these equa
tions in the expression forF̂, we find

F̂~T,V̂,vs ,v f ,B,Q!5F̂0~T,V̂,vs ,v f !1GB:B

1~ 1
2 K2 1

3 G!~ tr B!21LBQB:Q

1 1
2 aQ:Q1O~B3,Q3!. ~28!

Using Eqs.~7! and ~14! we find that for an elastic materia
with anisotropic particles the tensorss andW are given by
~up to first order inB andQ)

s52GB1~K2 2
3 G!~ tr B!I1LBQQ1O~Q2,B2!, ~29!

W5aQ1LBQB1O~B2,Q2!. ~30!

When comparing these equations to Eqs.~9! and ~21! in
Secs. II and III we see that in the expression for the str
tensor, apart form a linear dependence onB, we now also
have a linear dependence onQ. The converse holds for th
tensorW. Note also the similarities between Eq.~29! and the
expression for a viscous solution, given by Eq.~4!. Using the
expression forG given in Eq.~27! and settingLBQ to zero
would lead to a slightly more complicated expression for
stress tensor, which is basically the analog for elastic g
with anisotropic particles of Ericksen’s transversely isotro
fluid model for a flowing nematic@14#.

The inclusion of the linear dependence onQ in the ex-
pression for the stress leads to an effective elastic mod
that depends on the deformation. We will illustrate this fo
simple shear deformation in thexy plane by2g.

B. Simple shear with isotropy in z direction

For a simple shear deformation in thexy plane by2g, in
a system that is isotropic in thez direction, we find that the
xy component of the stress tensor is given by~Appendix B!

sxy52Gg1LBQQxy . ~31!
05150
e

n-
or

ss

e
ls
c

us

For the first and second normal stress differences we fin

sxx2syy52Gg21LBQ~Qxx2Qyy!, ~32!

syy2szz5LBQ~Qyy1
1
3 !. ~33!

We see that our model predicts nonzero first and sec
normal stress differences that depend on the orientation
the particles. We also see that the model predicts a pos
second normal stress difference. In a strain controlled exp
ment we apply a straing to the sample and measure th
resulting stress. From this we determine the effective ela
moduli by simply dividing the stress by the strain. Applyin
this procedure to our model, we find

Ge f f[
sxy

2g
5G1

LBQQxy

2g
, ~34!

Ge f f
C1[

sxx2syy

2g2
5G1

LBQ~Qxx2Qyy!

2g2
, ~35!

Ge f f
C2[

syy2szz

2g2
5

LBQ~Qyy1
1
3 !

2g2
. ~36!

We see that all the effective elastic moduli depend ong
through the dependence on the orientation tensor. We
see that the model predicts that forQ5” 0 the Lodge-Meissner
rule (Ge f f /Ge f f

C151) @32,33# will no longer hold.

C. Higher order terms

The expressions fors and W derived in the preceding
section were linear inB andQ, and are~quasi!linear models
~quasilinear sinceB contains terms proportional tog2 in its
diagonal components!. To investigate the non-linear behav
ior of these materials we will investigate the higher ord
contributions to the stress tensor. We find that the tensors is
given up to second order inB andQ by ~Appendix A!

s52GB1~K2 2
3 G!~ tr B!I1LBQQ

1LBBB@B•B2 1
3 ~ tr B!B2 1

6 ~B:B!I1 1
18 ~ tr B!2I #

1 1
2 LBQQQ•Q1LBBQB•Q2 1

6 LBBQ@~ tr B!Q1~B:Q!I #

1 1
12 LBQQ~Q:Q!I1O~Q3,B3!, ~37!

where the single overbar denotes the symmetric part o
tensor. From Eq.~9! we see that the tensorW is now given
by

W5~a2 1
6 LBQQ tr B!Q1bQ•Q1LBQQQ•B

1 1
2 LBBQ~B•B2 1

3 ~ tr B!B!. ~38!

For a simple shear deformation in thexy plane by2g, in a
system that is isotropic in thez direction, we find from Eqs.
~37! and~B3!–~B5! that thexy component of the stress ten
sor is now given by
4-4
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sxy5sxy
0 1~2G1LBBB1 1

6 LBBQ!g1 2
3 LBBBg3

1 1
3 LBBQQxyg

2, ~39!

where

sxy
0 [~LBQ1 1

2 LBBQ!Qxy1
1
2 LBQQ~Q•Q!xy . ~40!

For a fully isotropic system without internal structureQ50,
and this expression for the stress reduces to

sxy5~2G1LBBB!g1 2
3 LBBBg3. ~41!

We see that this expression contains only odd powers og.
Adding higher order terms inB in the expression forF̂
would result in additional terms proportional t
g5, g7, . . . . In anoscillatory deformation these odd pow
ers of g generate higher harmonics in the stress respo
These harmonics can be studied with Fourier transform
ometry@28,29#, where they appear in the frequency spectr
of the stress as multiples of the applied frequency. When
material behavior of a system is described by a constitu
equation containing only odd powers ofg, we should see
only odd multiples of the applied frequency in the spectru
However, in some FT experiments we sometimes also
small even harmonics in the frequency spectrum. The in
sity of these harmonics is in general much lower than
intensity of the odd harmonics. In our equation for the str
tensor we see that for elastic systems with anisotropic
ticles the incorporation of a dependence on bothB andQ in
the expression for the free energy results in a term prop
tional tog2Qxy in the expression for the stress tensor. High
order corrections to the equations would result in the ad
tion of ~among others! a term proportional toB•B•Q. The
xy component of this term is equal to

~B•B•Q!xy5
1
2 ~214g21g4!Qxy1

1
6 ~g312g!. ~42!

We see that the mixed terms containing bothB andQ gen-
erate terms in the equation for the stress tensor proporti
to g2Qxy , g4Qxy , . . . , i.e., all proportional toQxy and
even powers ofg. In a FT rheometry experiment these term
would generate even harmonics in the stress response.
model presented in this paper therefore predicts the oc
rence of small even harmonics in the stress response.

When the deformation is small the material will be nea
isotropic, andQxy will be small. Terms likeg2Qxy and
g4Qxy then amount to small even-power corrections to
odd-power behavior of the stress response. This implies
the even harmonics will have a lower intensity than the o
harmonics. Wheng increases,Qxy will first increase as a
result of an increase of the alignment of the particles in
xy plane. After reaching a maximum valueQxy will start to
decrease with increasingg, since the particles will align
themselves more and more with the direction of the de
mation ~if the deformation is in thex direction,nx→1 and
ny→0 as g→`, and thereforeQxy→0 as g→`). So our
model predicts that the intensity of the even harmon
should first increase with increasingg, until a maximum in-
tensity is reached. Beyond this maximum the intens
05150
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should decrease with increasingg. This in contrast with the
intensity of the odd harmonics, which increases continuou
with increasingg.

V. FT RHEOMETRY EXPERIMENTS ON XANTHAN
GELS

To test some of the predictions of our constitutive mod
we have performed FT rheometry experiments on xant
gels above and below the order-disorder transition@27#. Xan-
than is an ultrahigh molecular weight anionic exopolysacc
ride. It has a backbone consisting ofb-1,4 linked glucose
units with an anionic trisaccharide linked to every seco
glucose unit@34#. The trisaccharide contains pyruvate a
acetate groups. Xanthan forms a double helix@2–5# with a
persistence length of 120 nm@6,7#. For high molecular
weight xanthan the contour length is larger than the per
tence length and the xanthan helix can be considered a s
flexible polymer@27#. Depending on ionic strength, temper
ture, and xanthan concentration, the semiflexible polym
can self-assemble and form small liquid crystalline domai
In an aqueous solution with 0.1M NaCl, and at a temperatur
of 25 °C an order-disorder transition occurs at about
~w/w! xanthan@27#. Below this critical concentration the sys
tem is fully isotropic; above the critical concentration th
system forms a solution of anisotropic crystalline particles
an isotropic continuous phase. At a concentration sligh
above 8% a second transition occurs, from a solution of
isotropic particles to a nematic phase.

Our experiments were performed with solutions of 2
~w/w! and 4%~w/w! xanthan in an aqueous solution wit
0.1M NaCl. The 2% solution is below the first order-disord
transition, and hence fully isotropic. For this case our the
predicts that we should not find any even harmonics in
Fourier spectrum of the stress response. The 4% solutio
above the order-disorder transition and hence contains an
tropic colloidal particles. The frequency spectrum shou
contain both even and odd harmonics. The theory furt
predicts that the intensity of the even harmonics should
lower than the intensity of the odd harmonics. In addition t
intensity of the even harmonics should first increase to
maximum asg increases, and beyond this maximum d
crease continuously with increasingg.

The xanthan used in our experiments was a commerci
purified product called Keltrol T~Batch CH008, Lot 68440!
obtained from Danby Chemie BV~Danby Chemie B.V.,
Leidsestraat 106-108, 1017 PG Amsterdam, the Neth
lands!. The experiments were performed on an ARES~Rheo-
metric Scientific! with parallel plate geometry. The diamete
of the plates was 38 mm, the gap width was 0.5 mm, and
applied frequency was 1 Hz. Strainsg were applied with
amplitudes of 0.1, 0.4, 0.7, 1.0, 1.5, 2.5, 5.0, and 10.0. T
elastic modulus was determined after an equilibration time
100 s. The stress signal was sent directly to a LT224 W
verunner 200 MHz digital oscilloscope~LeCroy!, with four
channels and fast Fourier transform~FFT! wave analyzer op-
tion. To obtain the FT spectrum of the stress respons
discrete complex half-sided magnitude fast Fourier transfo
was applied to the real data set.
4-5
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Figure 1 shows the elastic modulus of both solutions.
to an amplitude of about 0.4 the response of the materia
linear. Beyond this amplitude the response is nonlinear,
the value of the elastic modulus has dropped by almost
orders of magnitude when an amplitude of 10 is reached
Fig. 2 we see a spectrum of the stress response for the
~w/w! xanthan system at a strain amplitude of 1.0. Ap
from the odd harmonics at 1, 3, 5, 7, and 9 Hz, we also
smaller even harmonics at 2, 4, 6, and 8 Hz. These e
harmonics could not be detected in the 2%~w/w! xanthan
sample. Figure 3 shows the normalized intensities for
odd harmonics at 3, 5, and 7 Hz. The normalized intensit
defined byI n /I 1, were I n is the intensity of thenth har-
monic. We see that the normalized intensity of the odd h
monics increases continuously with increasing strain am

FIG. 2. ~a! Frequency spectrum of the stress response of a
~w/w! xanthan sample at a strain amplitude ofg51, and an applied
frequency of 1 Hz.~b! Magnification of~a!.

FIG. 1. Elastic modulusG as a function of strain amplitudeg
for the 2% ~w/w! xanthan sample~diamonds! and the 4%~w/w!
xanthan sample~squares!. The applied frequency was equal to 1 H
05150
p
is
d
o

In
%
t
e
n

e
is

r-
i-

tude. Figure 4 shows the normalized intensity for the ev
harmonics at 2, 4, and 6 Hz. For the harmonics at 4 and 6
we see that the normalized intensity first increases asg in-
creases, and reaches a maximum at strain amplitudes
tween 1.0 and 1.5. Beyond this value for the strain the int
sity decreases continuously for increasingg. This behavior is
even more obvious when the intensity of the even harmon
is normalized by dividing byI 2, the intensity of the first even
harmonic~Fig. 5!. The curve for the harmonic at 2 Hz in Fig
4 has a slightly different shape from those at 4 and 6 H
Apparently at a strain amplitude of 0.1 the second harmo
was already past its maximum value. The behavior of
even harmonics in Figs. 4 and 5 is exactly as predicted
our theory, and supports our assertion that the even harm
ics are the result of a change in the structure of the mate
because of the alignment of the anisotropic colloidal p
ticles in the system.

VI. CONCLUSIONS

In the previous sections we derived a constitutive eq
tion for the stress tensor of an elastic material with ani
tropic rigid particles. We derived this expression by inclu
ing a dependence on the Finger tensorB and the orientation
tensorQ in the expression for the free energy of the syste
The expression for the stress tensor is correct up to sec
order in both these variables. It is valid for systems that
the nondeformed state are~nearly! isotropic from a macro-

%

FIG. 3. Normalized intensities for the third~diamonds!, fifth
~squares!, and seventh~triangles! harmonics for a 4%~w/w! xan-
than sample as a function of strain amplitudeg.

FIG. 4. Normalized intensities for the second~diamonds!, fourth
~squares!, and sixth~triangles! harmonics for a 4%~w/w! xanthan
sample as a function of strain amplitudeg. All even harmonics
were normalized byI 1.
4-6
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scopic point of view, and valid for small deformations fro
equilibrium. We have shown that the elastic modulus in t
expression depends onQ, and this dependence leads to
effective elastic modulus that depends on the strain. We h
calculated the explicit form of the equation for a deformati
in thexy plane with a strain equal to2g. For fully isotropic
materials withQ50 this expression reduces to an equati
containing only odd powers ofg. The inclusion of a nonzero
value for the orientation tensor leads to an additional se
terms in the equation, all proportional toQxy ~the xy com-
ponent of the tensorQ), and all proportional to even power
of g. We have qualitatively compared these expressions w
Fourier transform rheological measurements of xanthan g
at concentrations above and below the order-disorder tra
tion. In the 2%~w/w! xanthan system~disordered state! only
odd harmonics were found in the stress response, where
the 4% ~w/w! xanthan gel~ordered state! even harmonics
could be detected. As predicted by our theory the intensit
these even harmonics first increased with increasingg, until
a maximum value was reached. Beyond this maximum
intensity decreased continuously with increasingg. These
experiments support our assertion that the even harmoni
the stress response are the result of a change in the stru
of the material because of the alignment of the anisotro
colloidal particles in the system.
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APPENDIX A: CALCULATION OF HIGHER ORDER
TERMS

If we expandF̂ up to third order inB andQ we find

FIG. 5. Normalized intensities for the fourth~diamonds! and
sixth ~squares! harmonics for a 4%~w/w! xanthan sample as
function of strain amplitudeg. These harmonics were normalize
by I 2.
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F̂~T,V̂,vs ,v f ,B,Q!

5F̂0~T,V̂,vs ,v f !1 1
2 K~ tr B!21 1

2 G(4BB

1 1
2 LBQ(4~BQ1QB!1 1

3 LBBB(6BBB

1 1
6 LBQQ(6~QBB1BQB1BBQ!

1 1
6 LBBQ(6~QQB1QBQ1BQQ!

1 1
2 aQ:Q1 1

3 b tr~Q•Q•Q!1O~B4,Q4!

~A1!

where(6 denotes a sixfold contraction, andLBBB , LBQQ ,
andLBBQ are sixth order tensor fields defined by

LBBB~T,V̂,vs ,v f !5S ]3F̂

]B3D
T,V̂,vs ,v f

, ~A2!

LBQQ~T,V̂,vs ,v f !5S ]3F̂

]B]Q2D
T,V̂,vs ,v f

, ~A3!

LBBQ~T,V̂,vs ,v f !5S ]3F̂

]B2]Q
D

T,V̂,vs ,v f

. ~A4!

If we again assume thatB andQ are sufficiently small, we
may assume that these tensors are given by

LBBB~T,V̂,vs ,v f !5LBBB~T,V̂,vs ,v f !Di jklmn , ~A5!

LBQQ~T,V̂,vs ,v f !5LBQQ~T,V̂,vs ,v f !Di jklmn , ~A6!

LBBQ~T,V̂,vs ,v f !5LBBQ~T,V̂,vs ,v f !Di jklmn , ~A7!

where LBBB , LBQQ , and LBBQ are all scalar fields, and
Di jklmn is a sixth order symmetric traceless isotropic ten
field, given by

Di jklmn[ 1
4 ~ 2

9 d i j dkldmn2
1
3 d i j dkndml2

1
3 d i j dkmdnl

2 1
3 d ikd j l dmn1

1
2 d ikd jndml1

1
2 d ikd jmd ln

2 1
3 d i l dk jdmn1

1
2 d i l dkmd jn1 1

2 d i l dknd jm

2 1
3 d imdkld jn1 1

2 d imdk jd ln1 1
2 d imdknd l j

2 1
3 d indkldm j1

1
2 d indkmd l j 1

1
2 d indk jd lm!.

~A8!

Substituting Eqs.~A5! through~A8! in the expression forF̂
we find that
4-7
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F̂~T,V̂,vs ,v f ,B,Q!

5F̂0~T,V̂,vs ,v f !1GB:B

1~ 1
2 K2 1

3 G!~ tr B!21LBQB:Q

1 1
3 LBBB@ tr~B•B•B!2 1

2 ~ tr B!B:B1 1
18 ~ tr B!3#

1 1
6 LBQQ@ tr~Q•Q•B!1tr~Q•B•Q!1tr~B•Q•Q!#

1 1
6 LBBQ@ tr~B•B•Q!1tr~B•Q•B!1tr~Q•B•B!#

2 1
6 LBBQ~ tr B!B:Q2 1

12 LBQQ~ tr B!Q:Q1 1
2 aQ:Q

1 1
3 btr~Q•Q•Q!1O~B4,Q4!. ~A9!

Using Eq.~14!, we find Eq.~37!.

APPENDIX B: SIMPLE SHEAR

For a simple shear deformation in thexy plane by2g in
a system that is isotropic in thez direction we find that the
tensorsB andQ are given by@19,26#

B5S 11g2 g 0

g 1 0

0 0 1
D , ~B1!
G

o

-

s
s

05150
Q5S Qxx Qxy 0

Qyx Qyy 0

0 0 2 1
3

D . ~B2!

The terms in Eq.~37! are given by

B•B5S g413g211 g312g 0

g312g g211 0

0 0 1
D , ~B3!

~ tr B!B5S g414g213 g313g 0

g313g g213 0

0 0 g213
D , ~B4!

B•Q

5S ~11g2!Qxx1gQxy
1
2 ~21g2!Qxy1

1
6 g 0

1
2 ~21g2!Qxy1

1
6 g gQxy1Qyy 0

0 0 2 1
3

D .

~B5!
-

n-

es-
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