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Constitutive equations for an elastic material with anisotropic rigid particles
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In this paper we have derived constitutive equations for an elastic material with anisotropic rigid particles.
We have included a dependence on the Finger teBsord the orientation tens@ in the expression for the
free energy of the system. With this expression for the free energy we have derived an expression for the stress
tensor up to second order in both these variables. We have shown that the elastic modulus in this expression
depends o), and this dependence leads toeffectiveelastic modulus that depends on the strain. We have
calculated the explicit form of the equation for the stress tensor for a deformation xy filane with a strain
equal to— . For fully isotropic materials witlQ =0 this expression reduces to an equation containing only
odd powers ofy. The inclusion of a non-zero value for the orientation tensor leads to an additional set of terms
in the equation, all proportional Q,, (thexy component of the tens®), and all proportional tevenpowers
of y. We have qualitatively compared these expressions with Fourier tranéfdpmheological measurements
of xanthan gels, at concentrations above and below the order-disorder transition. In FT rheometry an oscillatory
deformation is applied in the nonlinear regime, and the resulting stress response is analyzed in Fourier space.
In the 2% (w/w) xanthan systenfdisordered stajeonly odd harmonics were found in the stress response,
whereas in the 4%w/w) xanthan gelordered staeeven harmonics could be detected. As predicted by our
theory, the intensity of these even harmonics first increased with incregsiogtil a maximum value was
reached. Beyond this maximum the intensity decreased continuously with increasing
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I. INTRODUCTION trated solutions of ideal rodlike particlg43]. Continuum
theories have focused mainly on the description of liquid
Many proteins and polysaccharides can self-assemble armlystalline phasegl4—-19.
form anisotropic colloidal particles, with a very long persis-  Little work has been done to derive a rigorous continuum
tence length and high aspect ratio. For exampletheory based on nonequilibrium thermodynamics for the
B-|actog|obu|in, a g|0bu|ar Whey protein, can form r|g|d par- macroscopically isotropic solutions and QE|S. The shear vis-
ticles with a persistence length of 600 nm, when heated fog0sity of solutions containing anisotropic particles depends
10 h at 80°C in an aqueous solution@H 2 and an ionic  strongly on the shear rate. However, classical nonequilib-
strength of 13 nM. [1] These particles have a diameter rium thermodynamics, as presented, for example, by de
equal to 2 nm, the diameter of a single globular moleculeGroot and Mazuf20], does not allow such a dependence,
Examples of polysaccharides that form long rigid particlessince the shear rate is not a state variable. The dependence on
are xanthan2-7], cellulose[8], and cellulose derivatives the shear rate is in general incorporated(bgmjempirical
like hydroxypropylcellulosg9]. closures, like, for example, the power-law mog21]. This
Depending on their concentration and the strength of thenodel assumes that the viscosity is proportionaytowhere
interactions between them, these rodlike partiCleS can form A is an exponent determined from experiments_ Recenﬂy,
viscous solution, an elastic gel, or a liquid crystalline phasepedeaux and Rulji22] developed a theory for the viscosity
For this reason they are often used as thickening or structugf a solution of anisotropic particles, using the method of
ing agents in foods. In the absence of external fi¢ldsc-  internal variables developed by Prigogine and Ma28].
tromagnetic, shear, ejcthe solutions and gels are usually They incorporated the orientation of the particles as an inter-
isotropic from a macroscopic point of view, i.e., the orienta-na| variable in the expression for the free energy. As the

tion of the rodlike particles is completely random down tointernal variable they chose the orientation ter@pdefined
the scale of the individual particles. In contrast, liquid crys-py [19]

talline phases are aligned on a scale much larger than the o

scale of the individual particles. Q(r,t)= §<ﬁ>, (1
Due to the highly anisotropic nature of the particles, the

rheological behavior of these solutions, gels, and liquid cryswheren(r) is a unit vector associated with the particles, with

talline phases is very complex and highly nonlinear. Thisdirection parallel to the long axis of the particles. The angu-

behavior is the result of a change in the microstructure of théar brackets - - -) denote a local average, and

system caused by the applied deformafi@8—12. The an- _

isotropic particles tend to align themselves with the direction nn=nn— 3| 2

of deformation. This coupling betweérate of deformation

and microstructure of the system is described very well oris the traceless symmetric part oh. The factor{ is the

the microscopic level, for dilute, semidilute, and concen-order parameter, defined as
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3 ers of y. We show that the inclusion of the orientation tensor
(= E(Q:Q)l’z. (3)  as an internal variable leads to an additional set of terms in
the equation, all proportional tQ,, (the xy component of

The orientation tensor is a traceless symmetric tensor, equgieect(a\;lsvoerQ)da?i?;tisgl p:%prgrt;?gilr]gse;ilpzvsiso:;7\’/\',“'2 Fou-
to zero when the material is isotropic on the macroscopic. =~ q Y b P

scale. In the presence of an aligning figidectromagnetic, fier transform (FT) rheological measurements of xanthan

shear, etg.it will be nonzero. Bedeaux and Rubi showed thatgels, at concentrations above and below the order-disorder

. . . . . - transition[27]. In FT rheometry an oscillatory deformation is
the incorporation of the orientation tensor in the expression lied in the nonlinear regime. and the resulting stress re-
for the free energy of the system leads to an expression fPP gime, 9

the traceless symmetric part of the stress tensor givé@4ly sponse is analyzed in Fourier spjes,2d.

= . Il. SIMPLE MATERIAL WITH INTERNAL STRUCTURE
o=nVv+I1Q, (4)

- For a simple material with internal structure the free en-
where Vv is the traceless symmetric part of the velocity ergy per unit mas§ is given by
gradient, andy is the shear viscosity, a constant depending o
only on temperature and the concentration and orientation of F=F(T,V,0;,04,Q), (5)

the particles, but not on the shear rate. The t€rdenotes ) R .

the material time derivative o [21]. The coefficient has ~ WhereT is the temperature/ the volume per unit mass, and
the dimension of a viscosity and is related to the rotational’s and ws the mass fractions of fluid and particles. The
mobility of the particles. Bedeaux and Rubi showed that theabsolute differential of is given by

inclusion of the second term in E@) leads to an expression R
for the effectiveviscosity with a dependence on the shear dF
rate.

For liquid crystalline materials this is a well establishedwhereS is the entropy per unit masB, the thermodynamic
result[19], [p. 219. In simple shear flow of a shear-aligning pressure, ang.; and u the chemical potential per unit mass
nematic phase, with strong anchoring, a boundary layer desf, respectively, the fluid and the particles. The second order
velops close to the walls. Outside this boundary layer theensor fieldW is defined as
particles are all aligned at a fixed angle with the direction of

—&dT—PdV+ (us— pe)dws+W:dQ,  (6)

flow. Inside the layer the orientation of the particles changes aF
progressively, as the wall is approached. The thickness of the W= @ . : @)
boundary layer depends on the shear rate, and this shear TV,op,05

dependence leads to a&ffectiveviscosity that depends on We will now expand the free energy in terms of powers of
the shear rate. This effective viscosity can be calculated usQ Up to third order inO the f A 9]
ing Ericksen’s law[25]. . Up to third order inQ the free energy is given bl

In this paper we will extend the approach outlined by

Bedeaux and Rubi to gels with anisotropic particles. We will F(T.V,05,01,Q)

limit ourselves to purely elastic materials and neglect any —EUT .V, g, 00+ La(T,V,0q,0:)Q:Q
viscous dissipation in the system. The more complex case of e U s
a nonlinear viscoelastic material will be treated in an upcom- +1B(TV,05,0)tr(Q-Q-Q)+0(Q%, (8

ing paper. The constitutive equations derived here are valid
for systems that are isotropic or nearly isotropic in the abwherea and 8 are constants that depend only on tempera-

sence of shear, and valid for small deformations from theyre /, and the mass fractions of particles and fluid, but not

briefly describe the material behavior of simple materialsyjyen py

with internal structure and elastic materials without internal

structure. In Sec. IV we then combine these descriptions tQy— ,(T ¥ +B(T.V 0.0+0(03 9
describe the behavior of an elastic material with internal a(TV,05,00)Q+ BTV, 05,0)Q-Q+0(Q%), (9

structure. We incorporate a dependence on the Finger tens@here the double overbar again denotes the symmetric trace-
B [26] and the orientation tens@ in the expression for the |ess part of a tensor.
free energy. Using this expression we derive an equation for
the stress tensor up to second order in both these variables.
We show that the elastic modulus in this expression depends
on Q, and this dependence leads toedfectiveelastic modu-
lus that depends on the strain. The free energy of an elastic material depends on the state
We calculate the explicit form of the equation for the of deformation of the material. There are various measures to
stress tensor for a deformation in thg plane with a strain  describe the state of deformation of a material. The simplest
equal to— . For fully isotropic materials withQ=0 this = measures are the deformation gradienand its inverseE
expression reduces to an equation containing only odd powdefined by{26]

[ll. ELASTIC MATERIAL WITHOUT INTERNAL
STRUCTURE
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ar ar We see thaG cannot depend directly d. For an isotropic
F=— E=—, (100  medium we find that
ar ar
G=2G(T,V,ws,w1)Ajjy , 17

wherer denotes the position of a material particle in the
reference configuration, andis the position of that particle whereG is the scalar elastic modulus of the material, and
in the current configuration. Based on these two tensors WA, is a fourth order symmetric traceless isotropic tensor
can define the right Cauchy-Green ten§band the Finger given by[30]
tensorB as[26]
Ajj=3(5i8) + 81 6jk) — 5 8ij O - (18)
C=F"-F, B=E-E" (11)
Combining Eqs(15), (17), and(18) we find that for an elas-
These tensors are symmetric positive definite, and reduce @ material without internal structuré reduces to
the unit tensor when the deformation is a rigid body motion
(translation plus rotation For a purely elastic material with-  £(T ¥, w., 0;,B)=F%T,V,ws, 07) + G(T,V, 0s,w)B:B
out internal structure the free energy is assumed to be given
by —3G(T,V,ws, ;) (tr B)2+ O(BS).

E=F(T.V, 01, 0¢.B). (12) (19)

We could have chosen any of the other strain measures with':—rom Egs.(14) and (19) we find thato is given by

out loss of generality. The predictions of the model will, o=2GB—2G(trB)I + O(B?). (20)
however, vary with the choice of strain measure. Bethnd

E predict zero first and second normal stressesand B If we specifically include a dependence oBtin the expres-
predict nonzero normal stresses and based on experimenighn, for £ we get an additional term in this expression equal
evidence appear to be more plausible choices for the strain 1

2 . > . . o
measurg¢26]. From Eq.(12) we find that the absolute differ- (0 2K(trB)~, with K(T’V’.ws’wf) the elastic compre;glblllty
modulus, and the equation fer reduces to the familiar re-

ential of F is given by sult[31]
dF=—SdT—-PdV+(ui—puo)dwi+o:dB, (13 o=2GB+(K—3G)(trB)I+ O(B?). (21)

where the strese is defined as
IV. ELASTIC MATERIAL WITH INTERNAL STRUCTURE

- : (14
B 0, 0g We will now combine the material descriptions presented

in the previous two sections to describe the material behavior
If we expandF in terms ofB, we find up to second order in of an elastic material with anisotropic particles. We will as-

_( aIA:) A. Material behavior
(]':
TV

B sume that the free energy of such a material is given by
IE(T,V,wS,wf,B) 'EEIE(T,\A/,(Uf,(x)S,B,Q). (22)
= |‘:0(-|-,\‘/,wS ,wp)+ %G(T,V,ws,wf)®4BB+ O(B%). Using this expression we find that the absolute differential of

(15) F is given by

Note that there is no first order term in this expression. After dF=—SdT—PdV+ (u;—us)dwi+ o:dB+W:Q. (23
differentiation with respect t@® such a linear term would R

give a contribution to the stress equal to a constant times If we now make a combined expansion fin terms of B
the three-dimensional unit tensor. This term will be nonzercandQ we find up to second order iB andQ

even if the deformation is zero, and constitutes a residual

stress in the material. We will assume here that, in the ab- F(T,V,w0s,w;,B,Q)

sence of external fields and in the absence of any internal fo oo . s

structure, all residual stresses in the material are zero. Hence =F (T.V,ws,w¢)+3K(trB)*+3;G0O"BB

terms linear inB must be identical to zero in the expression 1 4 1A 3 A3

. . +5Lg00%(BQ+QB)+5aQ:Q+0(B°,Q°), (29
for F. The symbol©* denotes a fourfold contraction. The 2mee ?
fourth order tenso is given by wherelLgq is a fourth order tensor field defined by

G(T,V ) 7’ (16) y 7
yWV,Wg,ws )= —2 =\| ——/—=<
s f aBZ S LBQ(TavywSwa) &BaQ P (25)
WV, 0g,® WV,0g,0¢
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For a nearly isotropic material and small deformations weFor the first and second normal stress differences we find

may assume thab is still given by Eq.(17), with one im-
portant modification: the scalar elastic modul@ashow de-
pends onQ, and is given bszG(T,V,ws,wf,Q). For
nearly isotropic materials and small deformationgg is
given by

LBQ(T,V,wS,wf)=LBQ(T,V,wS,wf)Aijk|, (26)

whereLgq is a scalar, andy;j,, is again the fourth order
tensor field defined by Eq18). For larger deformations,
whenQ is no longer smallG andL g depend on the degree
of alignment, and Eq(17) has to be replaced by

G=G14Ajji T G2(Qjj kit Qik 8ji + Qi1 S+ Qji bt + Qji i
+ Qi dij) + G3(Qjij Qi+ QikQji + Qi1 Qji) - (27)

Oxx™ Oyy™ ZGy2+ LBQ( Qxx_ ny): (32)

Oyy= 02z7— I-BQ( ny+ %) (33

We see that our model predicts nonzero first and second
normal stress differences that depend on the orientation of
the particles. We also see that the model predicts a positive
second normal stress difference. In a strain controlled experi-
ment we apply a strairy to the sample and measure the
resulting stress. From this we determine the effective elastic
moduli by simply dividing the stress by the strain. Applying
this procedure to our model, we find

The material is then characterized by three scalar elastic con-

stants instead of one. A similar equation holds for the tensor

Lgo. Here we will assume thaB and Q are sufficiently
small for Eqs(17) and(26) to hold. Substituting these equa-

tions in the expression fd¥, we find
F(T.V,0s,0¢,B,Q)=F%T,V,ws,w;) + GB:B
+(3K=3G)(trB)*+LgoB:Q
+7aQ:Q+0(B%Q%). (28)

Using Egs.(7) and (14) we find that for an elastic material
with anisotropic particles the tensossandW are given by
(up to first order inB and Q)

0=2GB+(K—3G)(trB)I +LgoQ+0(Q%B?), (29
W=aQ+LggB+0(B?Q?). (30

When comparing these equations to E(®. and (21) in

Secs. Il and Il we see that in the expression for the stres

tensor, apart form a linear dependenceBynwe now also
have a linear dependence @n The converse holds for the
tensoW. Note also the similarities between E89) and the
expression for a viscous solution, given by E4). Using the
expression foiG given in Eq.(27) and settingL g to zero

= ﬂ_ LBQQXy
Get= 2y —G+—2y , (34)
Tyy— O L —
G;Pfle XX . yy:G+ BQ(Qxx2 ny) , (35)
2y 2y
1
G\I’Z= Oyy™ Uzz: LBQ( ny+ §) . (36)

eff 2’y2 2’)/2

We see that all the effective elastic moduli depend jon
through the dependence on the orientation tensor. We also
see that the model predicts that f@# 0 the Lodge-Meissner

rule (Gers/Goi=1) [32,33 will no longer hold.

C. Higher order terms

The expressions foor and W derived in the preceding
section were linear iB andQ, and arg(quasjlinear models
(quasilinear sinc® contains terms proportional tg? in its
diagonal componenksTo investigate the non-linear behav-
ior of these materials we will investigate the higher order
gontributions to the stress tensor. We find that the tensisr
given up to second order i andQ by (Appendix A

0=2GB+(K—5G)(trB)l +LgoQ
+Lggg[B-B—(trB)B—(B:B)I + &(trB)?l]

would lead to a slightly more complicated expression for the ~ +7LggoQ- Q+LesgB- Q— sLged (trB)Q+(B:Q)I]

stress tensor, which is basically the analog for elastic gels
with anisotropic particles of Ericksen’s transversely isotropic

fluid model for a flowing nemati¢14].
The inclusion of the linear dependence @nin the ex-
pression for the stress leads to an effective elastic modul

+15LBoo(Q:Q)I +0O(Q°B), (37)

where the single overbar denotes the symmetric part of a
tensor. From Eq(9) we see that the tensd¥ is now given

that depends on the deformation. We will illustrate this for a

simple shear deformation in they plane by— .

B. Simple shear with isotropy in z direction

For a simple shear deformation in thg plane by— v, in
a system that is isotropic in thedirection, we find that the
Xy component of the stress tensor is given(Bppendix B

ny: ZG’y+ LBQQxy- (31)

W=(a—tLlaoorB)Q+ Q- Q+LgooQ B
+1Lgpo(B-B—L(trB)B). (39)

For a simple shear deformation in tkg plane by— v, in a
system that is isotropic in thedirection, we find from Eqgs.
(37) and(B3)—(B5) that thexy component of the stress ten-
sor is now given by
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Oxy= ggy+ (2G+Lgppt %LBBQ) v+ 2Lgppy® _should_ decrease with incregsir)g T.his _in contrast with the
intensity of the odd harmonics, which increases continuously
+3LgaoQuy 7% (39  with increasingy.
where
R V. FT RHEOMETRY EXPERIMENTS ON XANTHAN
aoy=(Legt 5Leeg) Quyt 5Loa(Q-Qyy-  (40) GELS

For a fully isotropic system without internal structu@e= 0, To test some of the predictions of our constitutive model

and this expression for the stress reduces to we have performed FT rheometry experiments on xanthan
gels above and below the order-disorder transitiif]. Xan-

oyy=(2G+Lggp) Y+ 2| geeY°. (41) than is an ultrahigh molecular weight anionic exopolysaccha-

. . ) ride. It has a backbone consisting 8f1,4 linked glucose
We see that this expression contains only odd powers. of units with an anionic trisaccharide linked to every second
Adding higher order terms iB in the expression folF glucose unit[34]. The trisaccharide contains pyruvate and
would result in additional terms proportional to acetate groups. Xanthan forms a double hglix5| with a
¥?, %', ....In anoscillatory deformation these odd pow- persistence length of 120 ni6,7]. For high molecular
ers of y generate higher harmonics in the stress responseveight xanthan the contour length is larger than the persis-
These harmonics can be studied with Fourier transform rhetence length and the xanthan helix can be considered a semi-
ometry[28,29, where they appear in the frequency spectrumflexible polymer27]. Depending on ionic strength, tempera-
of the stress as multiples of the applied frequency. When theure, and xanthan concentration, the semiflexible polymers
material behavior of a system is described by a constitutivean self-assemble and form small liquid crystalline domains.
equation containing only odd powers ¢f we should see In an aqueous solution with GV NaCl, and at a temperature
only odd multiples of the applied frequency in the spectrum.of 25°C an order-disorder transition occurs at about 3%
However, in some FT experiments we sometimes also se@v/w) xanthan27]. Below this critical concentration the sys-
small even harmonics in the frequency spectrum. The intertem is fully isotropic; above the critical concentration the
sity of these harmonics is in general much lower than thesystem forms a solution of anisotropic crystalline particles in
intensity of the odd harmonics. In our equation for the stressn isotropic continuous phase. At a concentration slightly
tensor we see that for elastic systems with anisotropic pamabove 8% a second transition occurs, from a solution of an-
ticles the incorporation of a dependence on BtAndQ in isotropic particles to a nematic phase.
the expression for the free energy results in a term propor- Our experiments were performed with solutions of 2%
tional to yZQXy in the expression for the stress tensor. Higher(w/w) and 4% (w/w) xanthan in an aqueous solution with
order corrections to the equations would result in the addi©.1M NaCl. The 2% solution is below the first order-disorder
tion of (among othersa term proportional t@B-B-Q. The  transition, and hence fully isotropic. For this case our theory
Xy component of this term is equal to predicts that we should not find any even harmonics in the
Fourier spectrum of the stress response. The 4% solution is
(B-B-Q)yxy=3(2+4y*+y")Qy,+5(¥*+2y). (420  above the order-disorder transition and hence contains aniso-
tropic colloidal particles. The frequency spectrum should
We see that the mixed terms containing bBtlandQ gen-  contain both even and odd harmonics. The theory further
erate terms in the equation for the stress tensor proportion@kredicts that the intensity of the even harmonics should be
to yzQxy, 74Qxy, ..., l.e,, all proportional toQ,, and lower than the intensity of the odd harmonics. In addition the
even powers of. In a FT rheometry experiment these termsintensity of the even harmonics should first increase to a
would generate even harmonics in the stress response. Thegaximum asy increases, and beyond this maximum de-
model presented in this paper therefore predicts the occuerease continuously with increasing
rence of small even harmonics in the stress response. The xanthan used in our experiments was a commercially
When the deformation is small the material will be nearly purified product called Keltrol TBatch CH008, Lot 68440
isotropic, andQ,, will be small. Terms Iike’yzQxy and  obtained from Danby Chemie BVYDanby Chemie B.V.,
'y4QXy then amount to small even-power corrections to thel_eidsestraat 106-108, 1017 PG Amsterdam, the Nether-
odd-power behavior of the stress response. This implies thaands. The experiments were performed on an ARRReo-
the even harmonics will have a lower intensity than the oddmetric Scientifi¢ with parallel plate geometry. The diameter
harmonics. Wheny increasesQ,, will first increase as a of the plates was 38 mm, the gap width was 0.5 mm, and the
result of an increase of the alignment of the particles in theapplied frequency was 1 Hz. Strains were applied with
Xy plane. After reaching a maximum val@g,, will startto  amplitudes of 0.1, 0.4, 0.7, 1.0, 1.5, 2.5, 5.0, and 10.0. The
decrease with increasing, since the particles will align elastic modulus was determined after an equilibration time of
themselves more and more with the direction of the defor100 s. The stress signal was sent directly to a LT224 Wa-
mation (if the deformation is in the direction,n,—1 and  verunner 200 MHz digital oscilloscopgeCroy), with four
n,—0 asy—«, and thereforeQ,,—0 asy—=). So our channels and fast Fourier transfo(FFT) wave analyzer op-
model predicts that the intensity of the even harmonicgion. To obtain the FT spectrum of the stress response a
should first increase with increasing until a maximum in-  discrete complex half-sided magnitude fast Fourier transform
tensity is reached. Beyond this maximum the intensitywas applied to the real data set.

051504-5



SAGIS, RAMAEKERS, AND van der LINDEN PHYSICAL REVIEW B3 051504

1000 3 0.3
] >
L
100 3 02
) 3 _ )
= ]
] ] 0.1 1
10 g |
] . 0 e e a
1 R 0 2 4 6 8 10
0.1 1 10 Y
Y FIG. 3. Normalized intensities for the thir@liamonds, fifth

(squares and seventhitriangles harmonics for a 4%w/w) xan-

FIG. 1. Elastic modulus as a function of strain amplitude than sample as a function of strain amplitugle

for the 2% (w/w) xanthan samplédiamond$ and the 4%(w/w)

xanthan samplésquares The applied frequency was equal to 1 Hz. tude. Figure 4 shows the normalized intensity for the even

harmonics at 2, 4, and 6 Hz. For the harmonics at 4 and 6 Hz
Figure 1 shows the elastic modulus of both solutions. UnNe see that the normalized intensity first increases/ q%-

to an amplitude of about 0.4 the response of the material igreases, and reaches a maximum at strain amplitudes be-
linear. Beyond this amplitude the response is nonlinear, anflveen 1.0 and 1.5. Beyond this value for the strain the inten-
the value of the elastic modulus has dropped by almost twaity decreases continuously for increasingrhis behavior is
orders of magnitude when an amplitude of 10 is reached. IRyen more obvious when the intensity of the even harmonics
Fig. 2 we see a spectrum of the stress response for the 4% normalized by dividing by, the intensity of the first even
(w/w) xanthan system at a strain amplitude of 1.0. Apartharmonic(Fig. 5. The curve for the harmonic at 2 Hz in Fig.
from the odd harmonics at 1, 3, 5, 7, and 9 Hz, we also seg has a slightly different shape from those at 4 and 6 Hz.
smaller even harmonics at 2, 4, 6, and 8 Hz. These eveppparently at a strain amplitude of 0.1 the second harmonic
harmonics could not be detected in the 20¢w) xanthan \yas already past its maximum value. The behavior of the
sample. Figure 3 shows the normalized intensities for thewyen harmonics in Figs. 4 and 5 is exactly as predicted by
odd harmonics at 3, 5, and 7 Hz. The normalized intensity isur theory, and supports our assertion that the even harmon-
defined byl,/l;, werel, is the intensity of thenth har- ics are the result of a change in the structure of the material

monic. We see that the normalized intensity of the odd harpecause of the alignment of the anisotropic colloidal par-
monics increases continuously with increasing strain ampliticles in the system.

0.3 - (a) VI. CONCLUSIONS
= 02 1 In the previous sections we derived a constitutive equa-
= 7] tion for the stress tensor of an elastic material with aniso-

0.1 - tropic rigid particles. We derived this expression by includ-

. ing a dependence on the Finger tenBoand the orientation
0 —t— tensorQ in the expression for the free energy of the system.
0 2 4 6 8 10 The expression for the stress tensor is correct up to second
0 order in both these variables. It is valid for systems that in
o [Hz] the nondeformed state afeearly) isotropic from a macro-
0.02 7 0.05
] (b) ]
0.015 7 0.04
] 0.03 -
E 0.01 1 - ]
— . 0.02
0.005 1 J 0.01 1 |
0 M‘)'\M ! IAA LA ,hlk o AI 0 T T T T — T T T
0 2 4 6 8 10
0 5 10
v
o [Hz]

FIG. 4. Normalized intensities for the secofiamonds, fourth
FIG. 2. (a) Frequency spectrum of the stress response of a 4%squarel and sixth(triangleg harmonics for a 4%w/w) xanthan
(w/w) xanthan sample at a strain amplitudejof 1, and an applied sample as a function of strain amplitude All even harmonics
frequency of 1 Hz(b) Magnification of(a). were normalized by ;.
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041 B(T.V, w5, 01,B,Q)
03] ! =E%T,V,ws,w¢) + 3K (trB)2+ :GO*BB
- 02 . +1L5o@*(BQ+QB)+ L a0 BBB
0':) ] - + 1L poo®%(QBB+BQB+BBQ)
o 2 4 6 8 10 +5Leeo®@°(QQB+QBQ+BQQ)
Y +3aQ:Q+381t(Q-Q-Q)+0(B*Q%
(A1)

FIG. 5. Normalized intensities for the fourtfdiamond$ and
sixth (squares harmonics for a 4% w/w) xanthan sample as a
function of strain amplitudey. These harmonics were normalized Where ©° denotes a sixfold contraction, amggg, Leoo:
by I,. andLggq are sixth order tensor fields defined by

scopic point of view, and valid for small deformations from R Pl
equilibrium. We have shown that the elastic modulus in this LBBB(T,V,ws,wf)=<—3
expression depends d@, and this dependence leads to an JB
effective elastic modulus that depends on the strain. We have

calculated the explicit form of the equation for a deformation 3
in the xy plane with a strain equal te y. For fully isotropic Laoo(T.V, 0e,w¢) = J°F (A3)
materials withQ=0 this expression reduces to an equation BQQL T T T 9BaQ? '
containing only odd powers of. The inclusion of a nonzero

value for the orientation tensor leads to an additional set of

terms in the equation, all proportional @, (the xy com- .

ponent of the tensd®), and all proportional to even powers Leeo(T,V,0s,0¢) =
of y. We have qualitatively compared these expressions with

Fourier transform rheological measurements of xanthan gels,

at concentrations above and below the order-disorder transjs \ye again assume tha& andQ are sufficiently small, we

tion. In the 2%(w/w) xanthan systendisordered stajeonly  may assume that these tensors are given by
odd harmonics were found in the stress response, whereas in

the 4% (w/w) xanthan gel(ordered stateeven harmonics . .
could be detected. As predicted by our theory the intensity of Lege(T,V,0s,0¢) =Lggs(T,V, 05, 0¢) Ajjimn, (A5)
these even harmonics first increased with increasingntil

a maximum value was reached. Beyond this maximum the
intensity decreased continuously with increasipg These
experiments support our assertion that the even harmonics in
the stress response are the result of a change in the structure LBBQ(T,\A/,Q,S,wf): LBBQ(Tvv7vawf)Aijklmnv (A7)
of the material because of the alignment of the anisotropic

colloidal particles in the system.

) : (A2)
T,\A/,a)s en

T,\?,ws,wf

PF )
P .
&B ﬁQ T,\A/,ws,mf

(A4)

Leoo(T.V,0s,01) = Lago(T,V,0s,01) Ajjkimn, (AB)

where Lggg, Lgog, and Lggg are all scalar fields, and
Ajjimn is @ sixth order symmetric traceless isotropic tensor

field, given by
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APPENDIX A: CALCULATION OF HIGHER ORDER (A8)
TERMS .
R Substituting Eqs(A5) through(A8) in the expression foF
If we expandF up to third order inB andQ we find we find that

051504-7



SAGIS, RAMAEKERS, AND van der LINDEN

F(T.V,05,01,B,Q)
=F%T,V,ws,w) +GB:B
+(3K=3G)(trB)?+LgeB:Q
+2Lgggltr(B-B-B)— 3(trB)B:B+ 5(tr B)®]
+5Leodtr(Q-Q-B)+1r(Q-B-Q)+1tr(B-Q-Q)]
+tLgpdtr(B-B-Q)+1tr(B-Q-B)+1tr(Q-B-B)]
—5Leeo(trB)B:Q— $3Lpqq(trB)Q:Q+7aQ:Q
+3Btr(Q-Q-Q)+0(B*,Q%. (A9)
Using Eq.(14), we find Eq.(37).

APPENDIX B: SIMPLE SHEAR

For a simple shear deformation in thg plane by— vy in
a system that is isotropic in thedirection we find that the
tensorsB andQ are given by{19,26]

1-|—'y2 y 0
B= y 10 (B1)
0 0 1

PHYSICAL REVIEW B3 051504

Qxx Qxy
Q= Qyx Qyy O (B2)
0 0o -1
The terms in Eq(37) are given by
Y*+3y*+1 y*+2y 0O
B.B=| 7%+2y Y’+1 0 (B3)
0 0 1
Y*+4y°+3 y*+3y 0
(rB)B=| ¥*+3y  ¥*+3 0 |, (B4
0 0 y?+3
B-Q
(1+ 72)Qxx+ ¥Qxy 3(2+ 72)Qxy+ sy O
= %(24— 72)Qxy+ % Y YQXV+ ny 0
0 0 -3
(B5)
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