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Phase separation in a homogeneous shear flow: Morphology, growth laws, and dynamic scalin
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We numerically investigate the influence of a homogeneous shear flow on the spinodal decomposition of a
binary mixture by solving the Cahn-Hilliard equation in a two-dimensional geometry. Several aspects of this
much studied problem are clarified. Our numerical data show unambiguously that, in the shear flow, the
domains have on average an elliptic shape. The time evolution of the three parameters describing this ellipse
is obtained for a wide range of shear rates. For the lowest shear rates investigated, we find the growth laws for
the two principal axisR'(t);const,Ri(t);t, while the mean orientation of the domains with respect to the
flow is inversely proportional to the strain. This implies that when hydrodynamics is neglected, a shear flow
does not stop the domain growth process. We also investigate the possibility of dynamic scaling, and show that
only a nontrivial form of scaling holds, as predicted by a recent analytical approach to the case of a noncon-
served order parameter. We show that a simple physical argument may account for these results.
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I. INTRODUCTION

The study of phase ordering kinetics has a long hist
@1–3#. The canonical example is the coarsening process
lowing the quench of a binary mixtureA-B below its spin-
odal line. The properties of the resulting domain growth
rather well understood@1–3#. In the case whereA andB are
in equal concentrations, an isotropic bicontinuous struct
emerges, which is characterized by a typical length sc
L(t) growing as a power law of timet. Moreover, ast in-
creases, the structure evolves in a self-similar manner in
sense that its statistical properties are the same when spa
rescaled byL(t). Any functionC(r ,t) that depends on spac
and time is then a function of the reduced variableur u/L(t)
only: C(r ,t)[C„ur u/L(t)…. This property is termed ‘‘dy-
namic scaling’’@1–3#.

The study of the spinodal decomposition in a homo
neous shear flow is of fundamental and practical interest@4#,
but despite an enormous amount of experimental@5–11#, nu-
merical @12–23#, and analytical works@4,12,24–26#, the
problem is still not fully settled@26#. Early experiments
@5,6,11# and simulations@19,20,23# showed that isotropy is
lost, the morphology of the bicontinuous structure be
elongated along the flow direction. Hence a single len
scale cannot describe the full structure. There are thus
eral questions which naturally arise.~1! How to characterize
quantitatively the growing structure?~2! What is the time
dependence of the different length scales, as compared t
unsheared case?~3! Does the growth stop after some time
~4! Does a suitable generalization of the dynamic scal
property hold?

It is interesting to remark that in spite of the large numb
of works cited above, definite answers to all these quest
are still lacking. Several reasons make this problem n
trivial. First, the role of hydrodynamics is far from bein
understood. Simple physical arguments@4# show that it may
become preponderant at large times, predicting a satura
of the domains at a typical size. This assumption is resol
1063-651X/2001/63~5!/051503~10!/$20.00 63 0515
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neither at the experimental level~see, e.g., the opposite con
clusions of Refs.@7# and @11#! nor at the numerical level
where powerful algorithms are needed to deal with hydro
namics correctly. At present, this limits the numerical ana
sis to sizes too small to make any definite answers to qu
tions ~1!–~4! above, although much progress was ma
recently@13–16#.

Second, at the theoretical level, no analytical solution o
reasonable model of spinodal decomposition~even neglect-
ing hydrodynamics! is available. One then has to make som
predictions from the solution of solvable, but less realis
models, like theO(n) model in the large-n limit @24#, or
from the approximate solution in the case of a nonconser
order parameter@25#. A scaling argument, based on the h
pothesis that a generalization of dynamic scaling holds, w
developed in Ref.@12#.

Third, there are, to our knowledge, no numerical simu
tions ~neglecting hydrodynamics! validating these analytica
predictions. Moreover, the scaling hypothesis on which
analytical argument of Ref.@12# is based was only tested i
Ref. @9#, with negative results. Thus the validity of the pr
dicted growth laws may also be questioned. More crucia
up to now there has been no consensus concerning the
merically measured growth laws: we discuss this point in
more detailed way in Sec. VI.

In this work, we numerically study the spinodal decom
position process in a shear flow by solving the Cahn-Hillia
equation in two dimensions. All hydrodynamic effects a
neglected. Although this involves a drastic reduction of t
experimental situation, it is necessary, in our opinion,
have a good understanding of this ‘‘simple’’ case befo
studying more realistic problems. Our algorithm is differe
but our study is technically comparable to the most rec
one @12#. However, we shall explore a wider range of she
rates, and this will lead us to a different interpretation of t
numerical data.

The paper is organized as follows. In Sec. II, we defi
the model and describe the numerical procedure to solv
©2001 The American Physical Society03-1
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LUDOVIC BERTHIER PHYSICAL REVIEW E 63 051503
Section III briefly recalls the results obtained when the sh
flow is absent. Section IV describes the morphology of
domains under shear and its time evolution. Section V
cuses on the problem of dynamic scaling. In Sec. VI,
compare our results with the relevant existing data in
literature, and give a simple physical argument to expl
them.

II. MODEL AND DETAILS OF THE SIMULATION

In this work we focus on the standard model for the sp
odal decomposition of binary mixtures, and numerica
solve the Cahn-Hilliard equation@1–4#

]f~r ,t !

]t
1v•“f~r ,t !5G¹2S dF@f#

df~r ,t ! D1h~r ,t !. ~1!

In this expression, the order parameterf(r ,t) is a scalar
quantity which can be linked to the concentrationcA (cB) of
the componentA ~B! of the mixture by the relationf[1
22cA52cB21. Equation~1! has the form of a continuity
equation, which implies that the order parameter is a c
served quantity. The free energyF@f# is of Ginzburg-
Landau type,

F@f#5E ddr Fj2

2
u“fu21

1

4
f42

1

2
f2G , ~2!

where the equilibrium correlation lengthj is introduced. The
noise termh is a random Gaussian variable, characterized
the two moments ^h(r ,t)&50 and ^h(r ,t)h(r 8,t8)&
522Td(t2t8)¹2d(r2r 8); T is the temperature of the the
mal bath. All the simulations will be carried out atT50,
since temperature is essentially irrelevant in this process@3#
~it is also known to delay the onset of the asymptotic regi
@27#!. The second term on the left-hand side of Eq.~1! results
from the advection of the order parameter by the veloc
field. The case of a homogeneously sheared system wi
investigated. The flow is taken to be in thex direction, and
the velocity field is thenv5gyex, which defines the shea
rateg. We shall concentrate on the case of a constant s
rate.

We want then to solve the following equation numerica
in two spatial dimensions:

]f

]t
52gy

]f

]x
2G¹2~j2¹2f2f31f!, ~3!

where both space and time dependences have been rem
for clarity. This is done by combining the numerical metho
of Refs.@28,29#. A new frame (x8,y8) is first defined by@28#
x8[x2S(t)y, y8[y, whereS(t)[*0

t dt8g is the strain. In
the case of a constant shear rate, it is simply given byS(t)
5gt. Further definingf(r ,t)[f̂(r 8,t), Eq. ~3! becomes
@28#

]f̂~r ,t !

]t
52¹̂2~¹̂2f̂2f̂31f̂ !, ~4!
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“̂5S ]

]x8
,

]

]y8
2S~ t !

]

]x8
D ,

¹̂25S ]

]x8
D 2

1S ]

]y8
2S~ t !

]

]x8
D 2

. ~5!

After transformation, Eq.~4! is formally identical to the
Cahn-Hilliard equation without shear, which is solved by t
implicit spectral algorithm developed in Ref.@29#. Space is
measured in units of the correlation lengthj ~also the inter-
face width! and time in units ofj2/G. This microscopic time
scale represents the typical time it takes to create a w
defined domain wall. Periodic boundary conditions are i
posed on the deformed frame. The single parameter of
simulation is then the shear rateg, which introduces a time
scaleg21. The choice of parameters for the discretizati
was discussed in Ref.@29#, and the valuesDt50.5, Dx
5Dy50.5 are used throughout the simulation. For ea
shear rate, the system size has been carefully checked
large enough so that the reported growth laws are unaffe
by the boundaries. Since the growth is strongly anisotropi
rectangular simulation box has been chosen with sizes u
Ly5512 andLx58192. The shear rates investigated in th
paper areg50.04, 0.02, 0.01, 0.005, 0.0025, and 0.0012
This corresponds to a time scaleg21 in the range@25,800#.
We wish to emphasize that the conditiong21@j2/G has to
be fulfilled, since we are interested in a scaling regime wh
well-defined domains coarsen. This remark will become i
portant for the interpretation of the numerical results. A
alternative solution would be to apply the shear flow after

FIG. 1. Snapshots of size 2563256 of the unsheared spinoda
decomposition at timest570, 381, and 3761~from left to right!.
Each color represents one phase of the mixture.

FIG. 2. Two-point correlation function@Eq. ~6!#, in the g50
case, at timet5100.
3-2
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PHASE SEPARATION IN A HOMOGENEOUS SHEAR . . . PHYSICAL REVIEW E 63 051503
initial transient, so that large domains will have alrea
grown. Such initial conditions are discussed at the end of
paper.

III. ZERO SHEAR CASE

Although theg50 case was extensively studied@1–3#,
we briefly consider this well-known situation with thre
aims. These results are presented to~i! validate our numeri-
cal procedure,~ii ! present the quantities of interest, an
above all,~iii ! make comparisons to the sheared case ea

The domain growth typically takes place as in Fig.
where an isotropic bicontinuous structure coarsens with ti
This coarsening process is well characterized by a two-p
correlation function defined by

C~r ,t ![
1

VE d2x^f~x,t !f~x1r ,t !&, ~6!

which is nothing but the Fourier transform of the structu
factor, experimentally measured through light scattering
periments. A typical two-point function is represented in F
2, which shows the isotropy of this surface. The avera
shape of the domains of Fig. 1 may be extracted from
plot by taking the intersection of this surface with a horizo
tal planez5const. This allows us to measure the time d
pendence of the length scaleRx(t) @respectivelyRy(t)# in a
direction x ~respectivelyy!. Both length scales are repre
sented in the inset of Fig. 3, and have the expected po
law behaviorRx.Ry}t1/3 @1–3#.

The dynamic scaling hypothesis is tested in the m
frame of Fig. 3, where the two-point function is circular
averaged and plotted as a function ofur u/L(t). This works
perfectly well. We are thus confident in our numerical set
and we shall now address the question of the influence of
shear flow on the spinodal decomposition.

FIG. 3. Main figure: Circularly averaged two-point correlatio
function of the rescaled variableur u/L(t) for different times in the
range@50,1000#. By construction, one hasC(L(t),t)50.2, and the
choice of 0.2 is indifferent. Inset: Growth laws in thex ~circles! and
y ~triangles! directions. The dashed line is a fit to a power lawt1/3.
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IV. ANISOTROPIC GROWTH OF THE DOMAINS
UNDER SHEAR

A. Basic observations

The time evolution of the domains when a shear flow
applied is followed in Fig 4. This evolution is the basic res
of all previous numerical works@12–23#, and shows that the
domain growth is essentially unaffected for timest&g21,
since the first snapshot is very similar to those in Fig. 1.
intermediate times, the domains begin to have an anisotr
shape: the average direction of the domains is clearly ap
ent. This direction rotates and becomes more aligned w
the flow when the strain increases. At large timest@g21,
domains are nearly aligned with the flow, and have
strongly anisotropic shape.

These features are also clearly discernible in Fig. 5, wh

as a

FIG. 4. Snapshots of sizesLy5512 andLx52048 ~parts of a
51234096 system! for a shear rateg50.01, and strainsS(t)51, 5,
10, and 50~from top to bottom!. Each color represents one phase
the mixture.

FIG. 5. Two-point correlation function forg50.01 andS(t)
55. The surface is stretched in thex direction. Note, in particular,
that thex andy ranges are different in this figure.
3-3
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LUDOVIC BERTHIER PHYSICAL REVIEW E 63 051503
we plot the two-point correlation function for a strainS(t)
55 at g50.01. The surface is clearly stretched in the flo
direction ~compare with Fig. 2!. In particular, it becomes
impossible to perform a circular average as in the unshe
case: isotropy is lost.

The average shape of the domains is again recor
through the intersection of the two-point correlation functi
with a horizontal plane. For definiteness, we takez50.5, but
the value 0.5 is unimportant. It is found numerically that th
intersection is very well represented by an ellipse. Comp
ing the parameters of this ellipse then gives access to
typical length scales,Ri(t) ~large axis! and R'(t) ~small
axis!, and to the mean orientation of the domains,u(t) ~the
angle between the large axis and thex direction!. We present
the typical time evolution of the elliptic shape of the doma
in Fig. 6, where data are also fitted to an elliptic form in
very satisfactory way. These three quantities depend bot
the time t and on the shear rateg, and in the following
subsections we successively study the time evolution ofu(t)
and the length scalesRi(t) andR'(t).

Before performing this analysis, a remark has to be m
about the identification of the relevant length scales. It
quite clear from the above analysis that three parameters
needed to fully characterize the growing structure un
shear. This feature was already noted in experiments@5,6#. In
some of the previous numerical works, only two paramet
were studied, namely, length scales in thex andy directions.
Although these length scales should well represent the st
ture at long times, it is instead physically preferable to stu
the domain size in the directions defined by the angleu(t).
In Ref. @15#, the direction of the domains’ shape was r
corded, but there was no attempt at a quantitative analys
its behavior. We note, finally, that this quantitative analy
of the domain morphology in two dimensions natura
arises from the analytical work of Ref.@25#, in the case of a
nonconserved order parameter.

B. Mean orientation u„t…

The first effect of the shear flow is to give the domains
anisotropic shape, and hence to create a preferred directi

FIG. 6. Time evolution of the intersection of the two-point co
relation with a horizontal plane, for strainsS(t)55 ~squares!, 10
~circles!, and 20~triangles!, and a shear rateg50.01. The points are
the data, while the lines are fits to an elliptic shape. Note, in p
ticular, that thex andy ranges are different in this figure.
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the system. Physically, it can be expected that for a gi
shear rateg, the mean orientation of the domains is inverse
proportional to the strainS(t), as would be the case for
rigid rod advected by the shear flow:

u~ t !.
u0~g!

gt
. ~7!

This relation is tested in Fig. 7, whereu0(g) is used as an
adjustable parameter. This figure shows that relation~7! is
well satisfied in the whole range of shear rates investiga

The parameteru0 is found to be a slowly increasing func
tion of the shear rate. One findsu0(0.00125).0.975 and
u0(0.04).2.0. By definition, this angle corresponds to th
mean orientation of the domains when the strain is 1,u0
[u(t5g21), and its variation may be understood by th
following argument. For timest<g21, the domain growth is
mainly unaffected by the flow, and thus, the larger the sh
rate, the smaller the domains at timet;g21. Since large
domains are more easily deformed than small ones~because
of the surface tension!, it is expected that, at strainS(t);1,
large domains~small g) are more deformed than small one
~largeg). Hence, the smaller the shear rate, the smalleru0.

C. Growth laws

We now turn to the time evolution of the two lengt
scalesR'(t) and Ri(t). These quantities are studied for
very broad range of shear rates fromg50.04 (g21525) to
g50.00125 (g215800). All our results are summarized i
Fig. 8, whereRi andR' are represented for each value of t
shear rate as functions of the strain. We obtain numeric
that the growth laws are well represented at large strains
the algebraic forms

Ri~ t !.Ri0~gt !a i, R'~ t !.R'0~gt !a', ~8!

which define the growth exponentsa i anda' . This was first
obtained in a simulation by Padilla and Toxvaerd@22# and
subsequently in similar systems in Refs.@9,12,18,25#.

In Fig. 8, we fit our data using forms~8!. These fits de-
serve some comments. The growth law forRi becomes a
nice straight line in a log-log plot at large strainsS(t)*10.

r-

FIG. 7. Mean orientation of the domains as a function of t
strainS(t)5gt. The straight line is 1/gt.
3-4
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FIG. 8. The two length scalesR'(t) andRi(t) are represented as functions of the strain. Each figure is labeled by the correspondin
rate. The symbols are the data, and the full lines are algebraic fits with the exponents indicated near each fit. For the strongest s
a horizontal dashed line has been added as a fit toa'50.
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Only the data points for such large strains are used to c
pute the exponenta i . Concerning the time behavior o
R'(t), two different fits were tested. First, a horizontal lin
corresponding toa'50 was compared to the data. Secon
following the available analytical results@12,24,25#, we also
tried to fit the data with the ansatz

a'5a i21. ~9!

Note that both fits are equivalent whena i51, which is
nearly the case for the two smallest shear rates. Several c
ments are in order.

~1! The algebraic fits are clearly a very good represen
tion of the data. Some logarithmic corrections that co
05150
-

,

m-

-
e

from an analytical study of theO(n) model and of the non-
conserved case may be present, but we do not expect t
able to determine them numerically.

~2! Although relation~9! reasonably accounts for the dat
the valuea'50 is also possible, and works well forall the
shear rates investigated. This means that it could be pos
to rescale all the curves forR'(t) by plotting R'(t)/R'0 as
a function of the strain for different shear rates, usingR'0 as
a fitting parameter. This parameter is found to be a decre
ing function of the shear rate, which means that the sma
the shear rate, the wider the domains. This rescaling is
formed in Fig. 9, and the data are indeed compatible w
this hypothesis. Let us add the remark thatR'(t) varies~at
most! by a factor 2 in all the simulations. This strongly su
3-5
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LUDOVIC BERTHIER PHYSICAL REVIEW E 63 051503
ports the hypothesis that there is in fact no growth in
perpendicular direction. Of course, once again, logarithm
corrections cannot be numerically dismissed.

~3! We do not see any evidence of the oscillations
ported in Refs.@12,18#. We do not have a clear explanatio
for this, but a hypothesis is that these oscillations are a pr
ymptotic artifact of the measure process itself. The definit
of the length scales used in Ref.@12# leads in some cases t
a ratio Rx(t)/Ry(t).10 for a strainS(t).1 @12#. For this
strain, the domains are still nearly circular; in our simu
tions, this ratio is never above the value 1.5. However,
argument is made weaker by the observation that Qiuet al.
@9# used the same measurement procedure as Corberiet al.
@12# at a lower shear rateg50.01, and did not observe an
oscillations.

~4! An important point is the fact that the exponents a
parently depend on the value of the shear rate. More
cisely, we find thata i decreases from a value ofa i.1.35 at
g50.04 to one ofa i.1.0 atg50.00125. This means tha
we are in fact measuringeffective exponents, and that the
true asymptotic behavior has not been reached in some o
cases studied here.

The problem is then to determine which exponent is
right one. As emphasized in Sec. I, well-defined interfa
exist only if g!1. This indicates that a ‘‘true’’ asymptotic
behavior is reached for the smallest shear rates investiga
and favors the valuea i51 found for g50.0025 and
0.00125. Together with the behavior ofa' and the observa
tion that the domains are wider at lower shear rates, we
led to the conclusion that the growth exponents are given

a i51, a'50. ~10!

The analysis of dynamic scaling properties in the followi
section will reinforce this conclusion.

V. DYNAMIC SCALING

The last question we wish to address is the problem
dynamic scaling. We recall in Fig. 3~whereg50) that the

FIG. 9. Test of relation~8! for the small axis of the ellipse. The
full line represents the casea'50, whereas the dashed line is fo
a'51/3. The symbols are the same as in Fig. 7. The latter expo
is clearly inconsistent with the numerical measurements for all
shear rates.
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two-point correlation function has the property that it can
rescaled in the form of a single variable function

C~r ,t !5CS ur u
L~ t ! D . ~11!

This indicates thatL(t) is the only relevant length scale i
the asymptotic regime characterized byj!L(t). This behav-
ior is the basis for a scaling argument which, in the u
sheared case, allows an elegant derivation of the growth l
@30#.

In the shear flow, there are two relevant length scales,
the scaling@Eq. ~11!# can thus no longer be true. Two dif
ferent generalizations were suggested by analytical wo
The solution of theO(n) model predicts the scaling form
@24#

C~r ,t !5CS x

Rx~ t !
,

y

Ry~ t ! D , ~12!

whereRx andRy are typical sizes in the directionsx andy,
respectively. A different scaling is expected from the no
conserved order parameter case, namely@25#,

C~r ,t !5CS r i

Ri~ t !
,

r'

R'~ t ! D , ~13!

where the subscripts refer to the rotating frame descri
previously. Corberiet al. @12# used the form of Eq.~12! as a
starting point to generalize the argument of Bray@30# to the
sheared case. It is thus important to see if this scaling beh
ior is detected in the simulation. Let us note that the tilt an
u(t) is very small in the long time regime we are interest
in. Then, one might ask if the difference between the for
of Eqs. ~12! and ~13! proposed above is relevant. Since t
domains are very elongated in thex direction, then even with
a small angle there might be differences between the ‘‘p
allel’’ and x directions. Concerningy and ‘‘perpendicular’’
directions, the support of the correlation function in the
directions is very small, so that differences between the
are indeed not observable.

We now present our numerical results. In Fig. 10, for tw
different shear rates we show an attempt at a rescaling o
two-point function in thex direction. In each case, we con
sider a time window where a hypothetical scaling might ho
@i.e., the growth law reaches its algebraic asymptotic fo
S(t)*10#. We also chooseRx(t) in order to obtain the bes
collapse of the data. Clearly, the scaling@Eq. ~12!# does not
work in cases of either a high or a low shear rate.

In Fig. 11 we investigate the possibility that the seco
scaling form will hold in a direction defined by the tilt ang
u(t). Here there is a clear qualitative difference between
shear ratesg50.0025 and 0.04; the collapse of the data
excellent for the small shear rate, whereas there is a c
systematic evolution for the highest shear rate.

In our opinion, these results are a very good indicat
that the scaling form@Eq. ~12!# does not describe the
asymptotic behavior of the Cahn-Hilliard equation. Mor
over, they show that a self-similar asymptotic regime h

nt
e

3-6
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PHASE SEPARATION IN A HOMOGENEOUS SHEAR . . . PHYSICAL REVIEW E 63 051503
been reached for the lowest shear rates investigated, ch
terized by the scaling@Eq. ~13!# of the two-point function.

This is also confirmed by an inspection of the scali
properties in the parallel direction~which is equivalent to the
y direction!. In Fig. 12, we show the results for this directio
Once again, the collapse is very good for the low shear
g50.0025, whereas it is clearly not satisfying for a high
shear rateg50.04.

VI. DISCUSSION

In this paper we have investigated the ordering kinetics
a binary mixture quenched below its spinodal line in a h
mogeneous shear flow, through a numerical solution of
Cahn-Hilliard equation in two spatial dimensions.

We have found that the bicontinuous coarsening struc
is well described by three parameters. Since the ave
shape of the domains is elliptic, it is sufficient to give t
lengths R'(t) and Ri(t) of the two principal axis of the
ellipse, and the orientation of the large axis with respec
the flow,u(t). We have measured the time evolution of the
three quantities, defined from the two-point correlation fun
tion, and all our results may be summarized by the follow
relations, which have been shown to hold in the asympt
regime of large times:

Ri~ t !.gt,

R'~ t !.const,

FIG. 10. Test of the dynamic scaling in thex direction for
g50.04 and 0.0025. In both cases, the collapse is not satisfac
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u~ t !.
1

gt
,

C~r ,t !.CS r i

Ri~ t !
,

r'

R'~ t ! D . ~14!

In particular, this asymptotic regime could not be reached
the largest shear rates we have investigated. Moreover,
attempts at detecting~in the casesg50.04 and 0.02! a cross-
over from a preasymptotic regime witha i.1 and a'.0
toward regime~14! were unsuccessful, because this wou
require too large a system sizeLx . These results also dem
onstrate that the domain growth does not stop under
shear flow, in the case where hydrodynamics is neglec
and answer then questions~1!–~4! of Sec. I.

We now compare our results with previous ones. It
interesting to note that, even though this simulation was
intended to be able to reproduce experiments since hydro
namics has been neglected, our results quantitatively re
duce the experiments of Chanet al. @6,11# on a mixture of
water and isobutyric acid, and those of Qiuet al. @21# on a
polymer blend of polystyrene and poly-~vinyl methyl ether!,
for the three quantities describing the morphology of t
domains. These experiments were probably done in a reg
where hydrodynamic effects are negligible, since other
periments by Hashimoto and co-workers@7# reported a satu-
ration of the domains to ag-dependent size. This stationar

ry.
FIG. 11. Test of the dynamic scaling in the ‘‘parallel’’ directio

for g50.04 and 0.0025. The collapse is very good for 0.0025 on
while there is a systematic evolution for 0.04.
3-7
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steady state has been termed a ‘‘string phase,’’ and was
observed by Hobbieet al. @8# in a strong shear rate regime

Our numerical findings can be compared with previo
works neglecting hydrodynamics, and our results for
growth laws are similar to those found by Qiuet al. @21# and
Corberi et al. @12#. Note that in this last reference@12#, the
growth laws were compatible with regime~14!, although
they are compared with the behaviorsRx(t);t4/3 andRy(t)
;t1/3. However, the authors admitted that the latter regi
was not reached within the numerical time window. Earl
simulations were not able to be very quantitati
@19,20,22,23#, although Padilla and Toxvaerd@22# suggested
that the anisotropic domain growth was well described
algebraic laws. This is, to our knowledge, the first time th
the elliptic average shape of the domains was systematic
investigated in a numerical experiment. Concerning the s
ing of the the two-point correlation function, Qiuet al. @21#
showed that form~12! is not appropriate, but they did no
investigate form~13!.

Analytically, the known results in the case of a conserv
order parameter are for theO(n) model, which was solved
with shear in the large-n limit @24# ~also see Ref.@18#!. The
second result stems from a scaling argument develope
Corberiet al. @12#. Both predict that the growth laws shou
beRx(t);t4/3 andRy(t);t1/3, with a scaling form forC(r ,t)
as in Eq.~12!. Our results do not corroborate these pred
tions. A reason for this may be that these results do not t
into account the elliptic shape of the domains, and we h

FIG. 12. Test of the dynamic scaling in the parallel~or equiva-
lently y) direction for g50.04 and 0.0025. The collapse is ve
good for the lowest shear rate.
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clearly demonstrated this could be a key point in understa
ing the scaling properties of the system. One might a
question the validity of a renormalization-group type arg
ment in the case where the exponenta' is zero, since, upon
space rescaling, domains become thinner and thinner.
cently @25#, an approximate solution of the case of a nonco
served order parameter was found, predicting the sca
@Eq. ~13!# in two spatial dimensions. However, extendin
this solution to the conserved case is certainly a very h
task, since in the unsheared case the conservation law
ready makes the calculations very involved@3#.

We are then faced with the problem of having numeri
results that cannot be understood within an existing ana
cal framework. We now give a simple physical argume
leading to Eqs.~14!, inspired by the original argument give
by Huse@31# to describe the zero-shear case. The spino
decomposition under a shear flow results basically from t
competing effects.

~i! The advection of the order parameter, which becom
efficient for timest*g21, deforms the nearly circular do
mains existing at timet;g21. It is very easy to compute
that, with advection only, a circular domain is deformed in
an elliptic shape with principal axes scaling at large strain
R'(t);(gt)21 and Ri(t);gt, with a tilt angle u(t)
;(gt)21.

~ii ! The domain growth arises because of the existenc
a gradient of the chemical potentialm[dF/df. This force
gives rise to currents which make an interface of curvaturR
move with a velocitydR/dt}1/R2. This interface motion
results, in the absence of shear, to a coarsening of the do
structure@31#. Here we modify this argument by taking int
account the fact that the structure is no longer isotrop
While the domain growth does not affect the tilt angleu(t),
it leads to two different interface velocities, namel
dRi /dt;21/R'

2 anddR' /dt;11/Ri
2 .

With the strong assumption that a balance can be m
between these two effects, this leads to the following eq
tions for the the three parameters of the ellipse:

dR'~ t !

dt
52

1

gt2
1

1

Ri~ t !2
, ~15!

dRi~ t !

dt
51g2

1

R'~ t !2
, ~16!

u~ t !5
1

gt
, ~17!

which indeed imply Eqs.~14!. Although simple and heuris
tic, this argument in fact captures the essence of the co
ening process under a shear flow. It should correctly desc
the domain growth when the domains are quite large. Oth
wise, the notion of interface velocity is meaningless. Ho
ever, it is quite clear that subtleties, such as logarithmic c
rections that exist in more involved computations@25#, will
not be captured by such a naive argument.

Let us note that when it is applied to the nonconserv
case, this argument leads to the growth lawsR';const and
3-8
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Ri;t, at leading order. This not so far from the resultsR'

;(ln t)21/4 andRi;t(ln t)1/4 found in Ref.@25#.
The second point we want to note is that these equat

may be used to understand the following experiment.
mentioned above the possibility of applying the shear flow
a certain time after the quench, in order to have large circ
domains as initial conditions. From Eqs.~15!–~17!, we ex-
pect the following behavior. For a relatively small stra
since the domains are quite large, the second term on
right-hand side of Eq.~15! is negligible, andR' first de-

FIG. 13. Time evolution of the two length scales as a function
the strain when the system is first allowed to grow without sh
during a timet5400, and then submitted to a shear flow withg
50.04. As a visual guide we have added a horizontal dashed
and the data forRi(t) for a direct quench in the shear flow~lowest
Ri curve!.
.

y

ys
.

F

05150
ns
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he

creases. Thus the second term on the right-hand side of E
~16! becomes important and the growth ofRi is slower than
for a direct quench in the flow. This initial behavior is qua
tatively different from the previous case, and after this u
usual transient the growth becomes similar to the grow
studied previously. This predicted behavior agrees satis
torily with the corresponding numerical experiment, as c
be seen in Fig. 13. Note, in particular, that the slope of
curve Ri(t) is minimum whenR'(t) reaches its smalles
value, as can also be deduced from Eq.~16!.

In conclusion, we hope this work has clarified seve
issues concerning spinodal decomposition in a shear flow
would be very interesting to perform the same measurem
in three dimensions, since the analytical approach of R
@25# shows that dynamic scaling properties might be diff
ent in two and three dimensions. Of course, the next~big!
problem is to have a better understanding of the effect
hydrodynamics on the phase separation in a shear flow.
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