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Transformation from Rogers-Young approximation to the density functional approach
for nonuniform fluids: Numerical recipe

Shiqi Zhou*
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A numerical recipe is devised to extend the methodology@J. Chem. Phys.112, 8079 ~2000!# to nonhard-
sphere nonuniform fluids where analytical expressions for the functional relationship of the bridge function as
a function of indirect correlation function do not exist, the numerical recipe is also based on the universality of
the free-energy density functional. As an example, the recipe is employed to calculate the density profile of a
colloidal suspension near a single charged hard wall and the hard-sphere Yukawa fluid near a single hard wall
and a single hard wall with an attractive tail, the agreement of the predictions of the theory with the simulation
data is good. The difference of the present methodology from that of the weighted density approximation is
discussed.
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I. INTRODUCTION

Information about the structural properties of fluids
confined geometries~nonuniform fluids@1,2#! is important
for both applied and basic research due to their relevanc
practical application, as well as their association with so
interesting phenomena such as selective adsorption f
mixtures, solvation forces in fluids, etc. The most importa
characteristic of nonuniform fluids is the nonuniform dens
distribution near the interfacial region resulting from the
teraction between fluid particles and external field such as
wall.’’ Usually, the theoretical approaches employed can
divided into two categories, viz. the integral equation the
@3# ~IET! and the density functional theory@4–6# ~DFT!, IET
for nonuniform fluids is computationally complicated b
cause the Ornstein-Zernike equation with the suitable clos
relations such as the Percus-Yevick~PY!, hypernetted chain
~HNC!, or rescaled mean spherical approximation~RMSA!
has to be solved for the particle-particle, as well as, w
particle correlation. Furthermore, IET cannot capture the
teresting phase transitions such as wetting phenomena.
DFT provides a suitable theoretical formalism for nonu
form fluids by expressing the nonuniform system grand
tential as a function of single-particle density distributi
@7,8#, which, on minimization, yields the equilibrium densi
distribution and the free energy. Also an approximation h
to be incurred for the unknown part of the free-energy d
sity functional, i.e., the excess free energy. In the class
DFT, three different versions of approximation for the no
uniform system excess free energy or its functional deri
tive were proposed. One such version is the functional p
turbative expansion approximation@9–11# ~PEA! of the
excess free energy of the nonuniform system around the
form system in powers of the density deviation between n
uniform density distribution and bulk density with the coe
ficients representing the direct correlation functions~DCF’s!
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of the uniform system, In most of the early studies, the
pansion was truncated at the second order due to the lac
knowledge of the higher-order DCF’s of even the unifor
bulk fluid, but recently some studies developed a high
order expansion approximation by making use of appro
mate higher-order DCFs@12–14#. Another such version is
the so-called weighted density approximation~WDA! and its
variants @15–18#, which are actually mappings of nonun
form systems onto uniform counterparts and approxima
include contributions to the free-energy density function
from all orders in density difference. In the WDA approac
it is the excess free energy or its functional derivative~the
first-order DCF! for the nonuniform fluids that is approxi
mated by that of the corresponding uniform fluid at
smoothed average density that is actually a suitable weig
average of the physical density of the system under con
eration. However, it should be noted that a completely n
DFT formalism @19,20# was proposed recently, which re
sulted from the use of the conception of the universality
the free-energy density functional, but the method is n
limited only to the nonuniform hard-sphere system due to
fact that there exists the analytical expression only for
hard-sphere bridge functional that is expressed as a fu
tional of the indirect correlation functiong ~ICF! of the cor-
responding uniform system, so it is interesting to obse
how this methodology evolves. Beyond the above three m
DFT types, there also exist other DFT formalisms, especi
the fundamental measure theory by Rosenfeld@21,22#, which
is based on geometrical considerations and specifies the
cess free energy by reproducing the PY equation of state
second-order DCF of the hard-sphere fluid. A characteri
of the original WDA is that the weighted density and weigh
ing function are coupled together@23#, this entails iterative
calculation, thus, tremendous computer time is required. T
shortcoming becomes very obvious when the methods
WDA type are extended to the case of mixtures. Furth
more, the input parameters include the excess free-en
per particle and the excess chemical potential or the fi
order DCF of the corresponding uniform system, but it
usually difficult to obtain these parameters for the nonha
©2001 The American Physical Society03-1
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SHIQI ZHOU PHYSICAL REVIEW E 63 051203
sphere system, for example, the hard-sphere Yukawa sys
or the colloidal suspension system with the DLVO poten
as the interparticle interaction potential. Regarding the P
it is usually not easy to obtain the accurate input paramet
i.e., the higher-order DCF’s of the corresponding unifo
system, thus, usually the PEA is less accurate than the
proaches of the WDA type. Within the framework of DF
the WDA and the PEA are also combined to attack the pr
lem of the long-range interaction potential system, for e
ample, the Lennard-Jonnes fluid@24,25#, the electrical
double-layer system@26,27# etc. The suggested methodolog
in Ref. @19# collects all of the orders beyond the second or
in the form of the bridge function and only requires t
second-order DCF and the bridge function of the unifo
system as inputs. These inputs can be easily obtained
the integral equation theory for the corresponding unifo
system, so the new methodology should be easy to use
various nonuniform fluids. A necessary condition specifi
in Ref. @19# for the methodology to be used is that the fun
tional form of the bridge functional must be the one th
expresses the bridge functional as a function of indirect c
relation functiong and theg is then substituted by a comb
nation of the Ornstein-Zernike equation for the uniform s
tem and the Percus identity Eq.~3!. But in most cases, the
bridge functional in the IET is usually not expressed a
function of the indirect correlation function analytically in
for example, the mean spherical approximation~MSA! @3#,
the Rogers-Young approximation~RY! @28# etc., thus, this
necessary condition limits the application of the method
ogy to the nonuniform hard-sphere fluid only. The necess
condition comes from the requirement that the theoret
prediction should not be dependent on the choice of the
gin of the coordinate system. To widen the applicability
the methodology, the present paper devises a numerical
cedure to carry out the condition computationally. As an
ample, the numerical procedure will be used to predict
density distribution profile of nonuniform colloidal suspe
sion and hard-sphere Yukawa fluid.

II. DENSITY FUNCTIONAL APPROACH FOR THE
NONUNIFORM FLUIDS

In the formalism of DFT, the density profile equation of
nonuniform single component fluid is

r~r !5rb exp$2bfext~r !1C~1!~r ;@r#!2C0
1~rb!%, ~1!

where wext(r ) is the external potential responsible for th
generation of the density distributionr(r ), b51/kT with k
the Boltzmann constant andT the absolute temperature an
rb is the bulk density. To calculate the density distributi
profile, the difference between the first-order DCF of t
nonuniform and uniform systemC(1)(r ;@r#) andC0

(1)(rb) is
needed. In the methodology from Ref.@19#, C(1)

„r ;@r(r )#…
was expanded around the uniform system of bulk densityrb
as follows:
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C~1!
„r ;@r~r !#)

5C0
~1!~rb!1E dr1@r~r1!2rb#C0

~2!~ ur2r1u;rb!

1 (
n53

}
1

~n21!
! E dr1E dr2 . . . E drn21

3 )
m51

n21

@r ~rm!2rb#C0
~n!~r ,r1 , . . . rn21 ;rb!, ~2!

whereC0
(n)(r ,r1 , . . . ,rn21 ;rb) is then order DCF of a uni-

form system of bulk densityrb . Even in a uniform system
there is a nonuniform density profile around each molec
located in origin given by@29#

r~r !5rbg~r !, ~3!

where g(r ) is the radial distribution function of the bulk
fluid. Thus, for this special type of inhomogeneity, Eq.~2!
acquires the following form

C~1!~r ;@rbg~r !# !

5C0
~1!~rb!1E dr1@rbg~r !2rb#C0

~2!~ ur2r1u;rb!

1 (
n53

} rb
~n21!

~n21!! E dr1E dr2 ...E drn21

3 )
m51

n21

h~rm!C0
~n!~r ,r1 , . . . rn21 ;rb!, ~4!

whereh(r )5g(r )21 is the total correlation function of the
bulk fluid. The third term in the right-hand side of the abo
equation represents the bridge functional@30#, which is de-
noted asB@g(r )# in Ref. @19#, where g5h2C0

(2) , is the
indirect correlation function of the uniform system.g(r ) is
chosen as the argument of the bridge function to delete
dependence of the calculated density distribution profile
the coordinate origin. Consequently, Eq.~4! can be rewritten
as

C~1!~r ;@rbg~r !# !5C0
~1!~rb!1E dr1@rbg~r1!2rb#

3C0
~2!~ ur2r1u ;rb!1B@g~r !#. ~5!

Because the density functionalFex„r ;@r(r )#… „hence
C(1)$r ;@r(r )#%52bdFex$r ;@r(r )#%/dr(r )… is universal for
any systems involving only additive pair interactions and
independent of the external potential responsible for the
homogeneity, one can conclude thatC(1)$r ;@r(r )#% for a
general nonuniform system has the same form as Eq.~5!. Let
us recall thatr(r ) was replaced byrbg(r ) for the special
inhomogeneity that provided Eqs.~4! and~5!. It is then clear
that for a general nonuniform system,g(r ) in Eq. ~5! should
be replaced byr(r )/rb . Consequently, the following form
for C(1)$r ;@r(r )#% for a general nonuniform system is ob
tained:
3-2
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TRANSFORMATION FROM ROGERS-YOUNG . . . PHYSICAL REVIEW E63 051203
C~1!$r ;@r~r !#%5C0
~1!~rb!1E dr1@r~r1!2rb#

C0
~2!~ ur2r1u;rb!1B@g~r !#. ~6!

In Ref. @19#, g(r ) was substituted by the Ornstein-Zernik
~OZ! equation

h~r !5C0
~2!~r ;pb!1rbE dr1h~r1!C0

~2!~ ur2r1u;rb!. ~7!

Thus, one arrives at the following Eq.~8! for
C(1)$r ;@r(r )#% for a general nonuniform system

C~1!$r ;@r~r !#%

5C0
~1!~rb!1E dr1@r~r1!2rb#C0

~2!~ ur2r1u;rb!

1BF E dr1@r~r1!2rb#C0
~2!~ ur2r1u;rb!G . ~8!

In Ref. @19#, the PY and VM approximation for the hard
sphere bridge function were employed to calculate the d
sity distribution profile of nonuniform hard-sphere flui
good agreement with computer simulation data was
tained. For other fluids, there does not exist an analyt
expression for the bridge functionalB@g(r )#, so, to apply
the same methodology to these fluids, we devise the foll
ing numerical recipe.

To obtain the second order DCF, we solve numerica
the OZ equation~7! combined with the Rogers-Young~RY!
approximation. Now we apply the test particle method@29#,
i.e., choose a particle~called test particle! from the bulk and
make it located at the origin. The interaction potentialu(r )
between the test particle and other particle in the bulk
regarded as external potential, then, and the resulting de
distribution is related to the bulkg(r ) by Eq. ~3!. Substitut-
ing Eqs.~8! into Eq. ~1!, we obtain

r~r !5rb expH 2bu~r !1E dr1@r~r1!2rb#

3C0
~2!~ ur2r1u;rb!1BF E dr1@r~r1!2rb#

3C0
~2!~ ur2r1u;rb!G J . ~9!

A combination of Eqs.~3!, ~7!, ~9! leads to the following
equation

g~r !5exp$2bu~r !1g~r !1B@g#%. ~10!

Equation ~10! is actually the equation defining the bridg
function B in the IET, but in the present paper it is derive
out from the DFT framework combined with the test partic
method. From the numerical solution ofg(r ), g, and Eq.
~10!, we can obtain numerically the bridge function as
functional of g, that is, B@g#. The numerically obtained
05120
n-

-
al

-

y

s
ity

functional relationshipB@g# can then be inserted into Eq.~8!
to determine the universalC(1)$r ;@r(r )#% for arbitrary exter-
nal field.

Equations~1!, ~7!, ~8!, ~10! constitute the present DFT
formalism. The concrete calculation procedure for the d
sity distribution profile is as follows

~1! Solve the OZ equation combined with the RY a
proximation ~with specified bulk parameters! to obtain the
radial distribution functiong, the second-order DCFC0

(2) ,
and the IDFg.

~2! Equation~10! is used to obtain numerically the func
tional relationshipB@g#, then the obtained functional rela
tionship and the second-order DCFC0

(2) are employed in Eq.
~8!.

~3! Equation~1! is combined with Eq.~8! to calculate the
density distribution profile for the specified bulk paramete
and external potential parameters.

In the calculation performed for the specified bulk para
eters, we can obtain many points~g versusB@g#! of the
function B@g#, rearrange these points according to the n
merical value ofg from small value to large value, then plo
these points into a figure, we can see that it is a smo
curve. When the numerical value of*dr1@r(r1)
2rb#C0

(2)(ur2r1u;rb) for the case of a nonuniform fluid
falls into the above numerical range ofg from the IET for
the corresponding uniform fluid, we can use the three-po
interpolation procedure to specify the functional relations
B@g#, when beyond the above numerical range ofg, we can
choose three points with appropriate separation at the
ends of the above curve, respectively, then we can also
the three-point interpolation procedure with those six poi
chosen to specify the part of functional relationshipB@g#
beyond the two ends of the above curve. As an example,
plot the functional relationshipB@g# corresponding to a
hard-sphere Yukawa fluid with interaction potential rep
sented by Eq.~11! ~rbs350.7, T* 5kBT/«P52.0, and
l51.8! and obtained from the RY approximation in Fig. 1

From Eq. ~8!, we know that the universal density func
tionalC(1) is related to the second order DCFC0

(2) . Thus, for

FIG. 1. The curve ofB as a function ofg for hard-sphere
Yukawa fluids~rbs350.7 andT* 5kBT/«F52.0, l51.8!.
3-3
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SHIQI ZHOU PHYSICAL REVIEW E 63 051203
different specified bulk parameters, the functional relatio
ship B@g# should be calculated, respectively. In the pres
paper, we use the RY approximation to obtain the input
rameterC0

(2) andB@g#, because the OZ equation combin
with the RY approximation provides the best agreement w
the computer simulation data for the radial distribution fun
tion g. To show the accuracy of the present numerical rec
we calculate the density distribution profile of the nonu
form hard-sphere Yukawa fluid and colloidal suspension

For the hard-sphere Yukawa fluid, the interaction pot
tial is:

bu~r !52b«Fs exp@2l~r 2s!/s#/r , r .s
~11!

5}, r ,s,

where the parameters represents the diameter of ha
sphere,«F the depth of the fluid-fluid interaction potentia
andl the range parameter.

For the case of the hard-sphere Yukawa fluid near a h
wall located atz50, the external potential is:

bwext~z!50, z.s/2
~12!

5}, z,s/2,

For the case of the hard-sphere Yukawa fluid near a h
wall with an attractive tail located atz50, the external po-
tential is:

bwext~z!52b«w exp@2l~z2s/2!/s#, z.s/2
~13!

5}, z,s/2,

where«v is the depth of the fluid-external field interactio
potential.

For the case of colloidal suspension, as has been m
tioned, the large macroparticles in the colloidal suspens
are modeled as highly charged hard spheres of diamets

FIG. 2. Density profiles for hard-sphere Yukawa fluids~rbs3

50.7 andT* 5kBT/«F52.0,l51.8! near a single wall. The curve
1 is for a hard wall with an attractive tail with a ratio«W /«F55, the
curve 2 is for a hard wall, the dots are the computer simulation d
~Ref. @33#! for the case of curve 2.
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and the small ions and solvent are assumed to provide on
charged neutralizing dielectric continuum background of
electric constant«, the interaction potential between tw
charged macroparticlesu(r ) is represented by the DLVO
potential and is given by@31,32#

bu~r !5g
e2kx

x
r .s ~x.1!

~14!
5} r ,s ~x,1!,

wherex5r /s with r representing the interparticle distanc
in the above equation,g and k5ks are the Coulomb cou-
pling strength and the inverse screening length, given,
spectively, as

g5
bZ2e2

«s~11ks/2!2 eks, ~15!

ta

FIG. 3. Density profiles for hard-sphere Yukawa fluid
~rbs350.7 andT* 5kBT/«F51.25,l51.8! near a single hard wal
with an attractive tail with a ratio«W /«F55, the dots are the com
puter simulation data~Ref. @33#!.

FIG. 4. Density profilesr(z)/rb vs z/s for a model colloidal
suspension~h5rbs3p/650.00042k50.15,g5580! near a single
charged hard wall withKw5200, the dots are the computer sim
lation data~Ref. @34#!.
3-4
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TRANSFORMATION FROM ROGERS-YOUNG . . . PHYSICAL REVIEW E63 051203
k25
4pb

«
@rbZe21(naZa

2e2#, ~16!

whererb is the average bulk density of the macroparticles
chargeZe with e the electronic charge andna the number
density of the ions of typea with chargeZae.

For the colloidal suspension in the field of a sing
charged wall situated inz520.5s, the external field is
given by

Fext~z!5b21Kw exp~2kZ!, ~17!

whereKw is the depth of the fluid-external field interactio
potential.

The above bulk parameters and the external potential
rameters are chosen to be in agreement with those resu
in the corresponding simulation data@33,34#. Figures 2–5
show that the predictions from present numerical recipe
in good agreement with the corresponding computer sim
tion data.

In all of the calculation in the present paper, the OZ eq
tion is solved combined with the RY approximation@28# in
which

g~r !5exp@2bu~r !#H 11
exp@g~r ! f ~r !#21

f ~r ! J , ~18!

f ~r !512exp~2ar !, ~19!

wherea is the adjustable parameter used to achieve ther
dynamic consistency.

III. DISCUSSION AND CONCLUDING REMARKS

The WDA version of the DFT, like the present approac
is also a summation of all terms in a perturbative expans
that is exact to second order and has approximate ker
~the higher-order DCFs! at all higher orders by forcing the
WDA to reproduce the uniform fluid second-order DC
C0

(2) . The difference between the two approaches is in

FIG. 5. The same as in Fig. 4, but withKw5500.
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nature of how the higher-order terms are being appro
mated. The WDA accomplishes this through a lower-lev
and more approximate, assumption on the form of the exc
free energy or the first-order DCF of nonuniform fluid an
only uses information fromC0

(2) , the higher-order DCFsC0
(n)

(n>3) can be obtained by the functional derivative in t
WDA, but due to the approximation ofC0

(2), the excess free
energy and the first-order DCF of uniform fluid, the err
accumulation is resulted, so even theC0

(3) obtained in WDA
is only qualitatively correct, not to sayC0

(n) (n>4). Con-
trary to the WDA, the present formulation is based on t
functional perturbative expansion, and the expansion is
truncated, all of the expansion terms are taken into acco
with the help of the bridge function concept, so the pres
formulation is exact mathematically, and it provides the p
sibility to include all of the expansion terms exactly, its a
proximation results from the approximation in the brid
function in the IET. There are two different main points
the present formulation from the WDA, the first one is th
the WDA is a physically intuitive idea, we are willing to us
the WDA, because its predictions are in good agreem
with the computer simulation data, but presently, there d
not exist strict mathematical proof for the WDA, the prese
formalism is mathematically robust, furthermore, its str
form embodies the physical content of universality. The s
ond one is that the WDA is specified by the second-or
DCF C0

(2) of the corresponding bulk fluid only, but th
present formulation is specified by both the radial distrib
tion functiong and the second order DCFC0

(2) of the corre-
sponding bulk fluid, so more information is incorporated in
the present approach.

The present formulation provides a numerical recipe
translate the integral equation theory for uniform fluids
density functional theory for nonuniform fluids. It is a nu
merical extension of the methodology suggested in Ref.@19#,
in the present recipe, it is not necessary for the bridge fu
tional to be expressed as a functional of the indirect corre
tion function analytically, so it greatly extends the applic
bility of the methodology suggested in Ref.@19#, all of the
input parameters of the present recipe can be obtained f
numerically solving OZ equation, in fact, there are ma
successful integral equation theories for various uniform
ids, only if the bridge functional of the integral equatio
theory can be expressed numerically as a function of
indirect correlation function smoothly, then the integr
equation theory can be transformed into the density fu
tional theory for nonuniform fluids to calculate the dens
distribution profile. So, the present numerical version of
methodology suggested in Ref.@19# really builds a bridge
from the IET to DFT for many nonuniform fluids. The ap
plication of the present recipe to other nonuniform pheno
ena, especially the most challenging of the nonuniform pr
lems, for example, the freezing transition, will be reported
a forthcoming paper.
3-5
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