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A numerical recipe is devised to extend the methodolphyChem. Phys112 8079(2000] to nonhard-

sphere nonuniform fluids where analytical expressions for the functional relationship of the bridge function as
a function of indirect correlation function do not exist, the numerical recipe is also based on the universality of
the free-energy density functional. As an example, the recipe is employed to calculate the density profile of a
colloidal suspension near a single charged hard wall and the hard-sphere Yukawa fluid near a single hard wall
and a single hard wall with an attractive tail, the agreement of the predictions of the theory with the simulation
data is good. The difference of the present methodology from that of the weighted density approximation is
discussed.
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[. INTRODUCTION of the uniform system, In most of the early studies, the ex-
pansion was truncated at the second order due to the lack of
Information about the structural properties of fluids in knowledge of the higher-order DCF’s of even the uniform
confined geometriegnonuniform fluids[1,2]) is important  bulk fluid, but recently some studies developed a higher-
for both applied and basic research due to their relevance terder expansion approximation by making use of approxi-
practical application, as well as their association with soménate higher-order DCFE12—-14. Another such version is
interesting phenomena such as selective adsorption frofhe so-called weighted density approximatidDA) and its

mixtures, solvation forces in fluids, etc. The most importantvariants(15—18, which are actually mappings of nonuni-
characteristic of nonuniform fluids is the nonuniform densityform Systems onto uniform counterparts and approximately

distribution near the interfacial region resulting from the in-'nCIUde contributions to the free-energy density functional

teraction between fluid particles and external field such as “J{Om all orders in density difference. In the WDA approach,

wall.” Usually, the theoretical approaches employed can be. Is the excess free energy or Its fungtlonal d(_erlvatﬂtm .
o ; . . . . irst-order DCH for the nonuniform fluids that is approxi-
divided into two categories, viz. the integral equation theory

. ) mated by that of the corresponding uniform fluid at a
[3] (IET) apd the d‘?”s't.y functional Fheo[‘ﬁ—G] (DF.T)’ IET smoothed average density that is actually a suitable weighted
for nonuniform fluids is computationally complicated be-

) , i . g average of the physical density of the system under consid-
cause the Ornstein-Zernike equation with the suitable closurgation. However. it should be noted that a completely new

relations such as the Percus-Ye_v(cB(Y), hypgrnetted chain  peET formalism [19,20 was proposed recently, which re-
(HNC), or rescaled mean spherical approximati®MSA)  gyjted from the use of the conception of the universality of
has to be solved for the particle-particle, as well as, wallthe free-energy density functional, but the method is now
particle correlation. Furthermore, IET cannot capture the in{imited only to the nonuniform hard-sphere system due to the
teresting phase transitions such as wetting phenomena. Tlgct that there exists the analytical expression only for the
DFT provides a suitable theoretical formalism for nonuni-hard-sphere bridge functional that is expressed as a func-
form fluids by expressing the nonuniform system grand potional of the indirect correlation functiom (ICF) of the cor-
tential as a function of single-particle density distributionresponding uniform system, so it is interesting to observe
[7,8], which, on minimization, yields the equilibrium density how this methodology evolves. Beyond the above three main
distribution and the free energy. Also an approximation ha®FT types, there also exist other DFT formalisms, especially
to be incurred for the unknown part of the free-energy denthe fundamental measure theory by Rosenf2ld22], which
sity functional, i.e., the excess free energy. In the classicabk based on geometrical considerations and specifies the ex-
DFT, three different versions of approximation for the non-cess free energy by reproducing the PY equation of state and
uniform system excess free energy or its functional derivasecond-order DCF of the hard-sphere fluid. A characteristic
tive were proposed. One such version is the functional peref the original WDA is that the weighted density and weight-
turbative expansion approximatiofp—11 (PEA) of the ing function are coupled togethg23], this entails iterative
excess free energy of the nonuniform system around the unealculation, thus, tremendous computer time is required. This
form system in powers of the density deviation between nonshortcoming becomes very obvious when the methods of
uniform density distribution and bulk density with the coef- WDA type are extended to the case of mixtures. Further-
ficients representing the direct correlation functiogB€F’'s)  more, the input parameters include the excess free-energy
per particle and the excess chemical potential or the first-
order DCF of the corresponding uniform system, but it is
*Email address: chixiayzsq@yahoo.com usually difficult to obtain these parameters for the nonhard-
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sphere system, for example, the hard-sphere Yukawa system{ (r:[ p(r)])
or the colloidal suspension system with the DLVO potential

as the interparticle interaction potential. Regarding the PEA, _ ~(1) _ Qv |-

it is usually not easy to obtain the accurate input parameters, Co (pb)“Lf dra[p(r1) = pplCo” (I —r4/;pp)
i.e., the higher-order DCF'’s of the corresponding uniform «

system, thus, usually the PEA is less accurate than the ap- i E 1 ,f dr f dr f dr
proaches of the WDA type. Within the framework of DFT, n-3(n—1)" ! 2 -t

the WDA and the PEA are also combined to attack the prob-

n—-1
lem of the long-range interaction potential system, for ex- (n )
ample, the Lennard-Jonnes flui24,25, the electrical Xmﬂl Lo (Tm) = pp]Co (NP1, - - - Tn—1ipp), 2
double-layer systerf26,27] etc. The suggested methodology
in Ref.[19] collects all of the orders beyond the second ordelwherecgn)(r,rl, ... Fn—1:pp) is then order DCF of a uni-

in the form of the bridge function and only requires theform system of bulk density,. Even in a uniform system,
second-order DCF and the bridge function of the uniformthere is a nonuniform density profile around each molecule
system as inputs. These inputs can be easily obtained fromcated in origin given by29]
the integral equation theory for the corresponding uniform
system, so the new methodology should be easy to use for p(r)=ppg(r), (©)
various nonuniform fluids. A necessary condition specified . ) o )
in Ref.[19] for the methodology to be used is that the func_where g(r) is the_ radial _dlstrlbunon_ function of_ the bulk
tional form of the bridge functional must be the one thatfluid- Thus, for this special type of inhomogeneity, Eg)
expresses the bridge functional as a function of indirect cordcauires the following form
relation functiony and they is then substituted by a combi- CO(r:[ ppa(r)])
nation of the Ornstein-Zernike equation for the uniform sys- LPb
tem and the Percus identity E(B). But in most cases, the W @
bridge functional in the IET is usually not expressed as a =Co (Pb)"’f dri[ppg(r) = pplCo”(Ir=r4f;pp)
function of the indirect correlation function analytically in,
for example, the mean spherical approximatiMSA) [3], ZopiY
the Rogers-Young approximaticoiiRY) [28] etc., thus, this + mf drlJ drz---J drp_g

L. A . R n=3 .
necessary condition limits the application of the methodol-
ogy to the nonuniform hard-sphere fluid only. The necessary n-1
condition comes from the requirement that the theoretical X H h(rm)Cg”)(r,rl, e Th_1:Pb), (4)
prediction should not be dependent on the choice of the ori- m=1

gin of the coordinate system. To widen the applicability Ofwhereh(r)=g(r)—1 is the total correlation function of the

the methodology, the present paper devises a numerical P'BUlk fluid. The third term in the right-hand side of the above

cedure to carry out the condition computationally. As an ex- : : ; e
. : . equation represents the bridge functiof0], which is de-
ample, the numerical procedure will be used to predict the 9 P 9 L

i —h—c®@ j
density distribution profile of nonuniform colloidal suspen- _not_ed asB[y(r)_] n Ref._ [19], where_y h=Cg, Is the
sion and hard-sphere Yukawa fluid. indirect correlation function of the uniform system(r) is

chosen as the argument of the bridge function to delete the
dependence of the calculated density distribution profile on
the coordinate origin. Consequently, Ed) can be rewritten

II. DENSITY FUNCTIONAL APPROACH FOR THE as

NONUNIFORM FLUIDS

In the formalism of DFT, the density profile equation of a CO(r;[prg(r) ) =C (pp) + J dra pug(ri)— pyl
nonuniform single component fluid is

XCR(|r=ry|;pp)+B[¥(D]. (5

p(1)=ppeXp{ = Bhex(r) +CH(r;[p])—Ci(pp)}, (1)  Because the density functionaF.(r:[p(r)]) (hence
COIr:[p(Ny=—BFdr;[p(r) 1} p(r)) is universal for
any systems involving only additive pair interactions and is
where @q,(r) is the external potential responsible for the independent of the external potential responsible for the in-
generation of the density distributiqr(r), B=1/kT with k  homogeneity, one can conclude that"{r;[p(r)]} for a
the Boltzmann constant andthe absolute temperature and general nonuniform system has the same form ag®&gLet
pp is the bulk density. To calculate the density distributionus recall thatp(r) was replaced by,g(r) for the special
profile, the difference between the first-order DCF of theinhomogeneity that provided Eqggl) and(5). It is then clear
nonuniform and uniform syste@®(r;[p]) andCf)l’(pb) is  that for a general nonuniform systeqyr) in Eq. (5) should
needed. In the methodology from R¢19], CV(r;[p(r)]) be replaced by(r)/p,. Consequently, the following form
was expanded around the uniform system of bulk densjty for C{r;[p(r)]} for a general nonuniform system is ob-
as follows: tained:
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ST =CH )+ [ dralprs) o] ol —
CoIr=ralipp) +BI¥(D).  (®) =% \\
0104 ™
In Ref.[19], y(r) was substituted by the Ornstein-Zernike o
(OZ) equation -0.15
2 2 -0.20 o
N =CRr3pw) + oo | ArshrCE e =rlipn). @
Thus, one arrives at the following Eq.8) for -0.30
1 . i T T T T T T T T T T T T
CW{r;[p(r)]} for a general nonuniform system PP PP S R A
COfrp(n} '
FIG. 1. The curve ofB as a function ofy for hard-sphere
:cgl>(pb)+f dralp(ry)—pplCP(|r —r4l;pp) Yukawa fluids(ppo®=0.7 andT* =kgT/er=2.0,A=1.8).

functional relationshigB[ y] can then be inserted into E@®)
+ B[f drl[p(rl)_Pb]CE)Z)(“_rll;Pb)} (8)  to determine the univers@l™{r;[p(r)]} for arbitrary exter-
nal field.

In Ref.[19], the PY and VM approximation for the hard-  Equations(l), (7), (8), (10) constitute the present DFT
sphere bridge function were employed to calculate the derformalism. The concrete calculation procedure for the den-
sity distribution profile of nonuniform hard-sphere fluid, Sity distribution profile is as follows
good agreement with computer simulation data was ob-

tained. For other qui<_:is, there (_joes not exist an analytica{)roximation(with specified bulk parametgrso obtain the
expression for the bridge functlon_BI[y(r)], S0, 0 apply radial distribution functiong, the second-order DCE®
the same methodology to these fluids, we devise the follow- ' '

ing numerical recipe. and the IDF.7' . . .

To obtain the second order DCF, we solve numerically,. (2) Eque}t|on(;0) is used to obtain r!umerlcally the func-
the OZ equatior(7) combined with the Rogers-Your@Y) t!onal 'relatlonshlpB[y], then the og)tamed functlonql rela-
approximation. Now we apply the test particle mettiag], tionship and the second-order D(CJ% are employed in Eq.
i.e., choose a particlecalled test particlefrom the bulk and 8. ) ) ) )
make it located at the origin. The interaction potential) (3)_ quaﬂ_on(_l) IS Comb'”ed with Eq@ to calculate the
between the test particle and other particle in the bulk idensity distribution _proﬂle for the specified bulk parameters
regarded as external potential, then, and the resulting densi§/'d extérnal potential parameters.
distribution is related to the bulg(r) by Eqg. (3). Substitut-
ing Egs.(8) into Eqg. (1), we obtain

(1) Solve the OZ equation combined with the RY ap-

In the calculation performed for the specified bulk param-
eters, we can obtain many pointy versusBJ[ y]) of the
function B[ y], rearrange these points according to the nu-

p(1)=pp exp{ —BU(FHJ dry[p(ry)— pp] merical value ofy from small value to large value, then plot
these points into a figure, we can see that it is a smooth
curve. When the numerical value offdrq[p(ry)
xcgz)(|r—r1|;pb)+BU dri[p(ry)—pp] —pP1C@(Jr—r4|;p?) for the case of a nonuniform fluid
falls into the above numerical range ¢ffrom the IET for
2 _ the corresponding uniform fluid, we can use the three-point
XCo (Ir=ralspp)| |- 9 interpolation procedure to specify the functional relationship
B[ ], when beyond the above numerical rangeypive can
A combination of Eqs(3), (7), (9) leads to the following choose three points with appropriate separation at the two
equation ends of the above curve, respectively, then we can also use
the three-point interpolation procedure with those six points
g(r)=exp[— Bu(r)+ y(r)+B[y]}. (10) chosen to specify the part of functional relationsipy]
beyond the two ends of the above curve. As an example, we
Equation (10) is actually the equation defining the bridge plot the functional relationshi@B[y] corresponding to a
function B in the IET, but in the present paper it is derived hard-sphere Yukawa fluid with interaction potential repre-
out from the DFT framework combined with the test particlesented by Eq.(11) (p,0°=0.7, T* =kgT/ep=2.0, and
method. From the numerical solution gf{r), 7, and Eq. A=1.8) and obtained from the RY approximation in Fig. 1.
(10), we can obtain numerically the bridge function as a From Eq.(8), we know that the universal density func-
functional of y, that is, B[y]. The numerically obtained tionalC!) is related to the second order D@f—;z). Thus, for
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FIG. 2. Density profiles for hard-sphere Yukawa fluigigo™
=0.7 andT* =kgT/ex=2.0,A\=1.8) near a single wall. The curve FIG. 3. Density profiles for hard-sphere Yukawa fluids
1 is for a hard wall with an attractive tail with a ratig, /e =5, the  (ppo°=0.7 andT* =kgT/er=1.25\ =1.8) near a single hard wall
curve 2 is for a hard wall, the dots are the computer simulation datavith an attractive tail with a ratie\y/e=>5, the dots are the com-
(Ref.[33]) for the case of curve 2. puter simulation datéRef. [33]).

different specified bulk parameters, the functional relation-and the small ions and solvent are assumed to provide only a
ship B[ y] should be calculated, respectively. In the presencharged neutralizing dielectric continuum background of di-
paper, we use the RY approximation to obtain the input paglectric constants, the interaction potential between two
rameterC?) and B[ y], because the OZ equation combined charged macroparticles(r) is represented by the DLVO
with the RY approximation provides the best agreement witHootential and is given bj31,32

the computer simulation data for the radial distribution func- kx

tion g. To show the accuracy of the present numerical recipe, ulr)= r>o (x>1
we calculate the density distribution profile of the nonuni- pun=y X 7 )
form hard-sphere Yukawa fluid and colloidal suspension. (14)
For the hard-sphere Yukawa fluid, the interaction poten- = r<o (x<1),
tial is:
wherex=r/o with r representing the interparticle distance,
Bu(r)=—Beroexg —N(r—o)la]lr, >0 in the above equationy andk= ko are the Coulomb cou-
(17 pling strength and the inverse screening length, given, re-
=0, r<o, spectively, as
where the parametev represents the diameter of hard BZ2e?

Ko (15)

sphereer the depth of the fluid-fluid interaction potential, v= me ,

and\ the range parameter.
For the case of the hard-sphere Yukawa fluid near a hard
wall located atz=0, the external potential is:

Beex(2)=0, z>al2 o

(12) @ 2.5
=x, z<0/2,

For the case of the hard-sphere Yukawa fluid near a hard 4|
wall with an attractive tail located a=0, the external po-

tential is: 1.0 |
Beexl(2)=—Beyexd —N(z—ol2)lo], z>0/2 0317
(13) 0.0 L 4 T T T T T T
= z<ol2, 0 5 10 15 20 25 30 35

whereeg, is the depth of the fluid-external field interaction

potential. FIG. 4. Density profilesp(z)/py, vs z/o for a model colloidal
For the case of colloidal suspension, as has been mesuspensiorin= p,o>m/6=0.00042k=0.15, y=580) near a single

tioned, the large macroparticles in the colloidal suspensiogharged hard wall wittk,,= 200, the dots are the computer simu-

are modeled as highly charged hard spheres of dianaeter lation data(Ref. [34]).
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nature of how the higher-order terms are being approxi-

07 mated. The WDA accomplishes this through a lower-level,

3" 25 and more approximate, assumption on the form of the excess
N free energy or the first-order DCF of nonuniform fluid and
20+ only uses information fron€{?), the higher-order DCR&{"

(n=3) can be obtained by the functional derivative in the
WDA, but due to the approximation @182), the excess free
104 energy and the first-order DCF of uniform fluid, the error
. accumulation is resulted, so even g obtained in WDA
is only qualitatively correct, not to sa@{” (n=4). Con-
00 . . . . , . trary to the WDA, the present formulation is based on the
0 5 10 15 20 25 30 35 functional perturbative expansion, and the expansion is not
2/o truncated, all of the expansion terms are taken into account
with the help of the bridge function concept, so the present
formulation is exact mathematically, and it provides the pos-
sibility to include all of the expansion terms exactly, its ap-
2 ATB 2.2 roximation results from the approximation in the bridge
K?=——[p,Z€+3n,Z%€%], (16) ~ Proximati PProx _the bridg
€ function in the IET. There are two different main points of

. . . the present formulation from the WDA, the first one is that
wherepy, is the average bulk density of the macropatrticles of, P

chargeZe with e the electronic charge andl, the number the WDA is a phy5|ce}lly '”‘“'t.""? idea, we are willing to use
: . : the WDA, because its predictions are in good agreement
density of the ions of typer with chargeZ .e.

For the colloidal suspension in the field of a singIeWith the cor_nputer simula_ltion data, but presently, there does
charged wall situated irz=—0.50, the external field is not exist strict mathemgtlcal proof for the WDA, the' present
given by formalism is mathematically robust, furthermore, its strict

form embodies the physical content of universality. The sec-
Do l(2) =B 1K, exp( — kZ), (170  ond one is that the WDA is specified by the second-order

_ _ o ~ DCF C{ of the corresponding bulk fluid only, but the
whereK,, is the depth of the fluid-external field interaction y asent formulation is specified by both the radial distribu-

potential. ; : 2) .
The above bulk parameters and the external potential pap_on functiong and the second order DO:EE’ of the corre

. . . sponding bulk fluid, so more information is incorporated into
rameters are chosen to be in agreement with those resulth e present approach
in the correspond|r_19.5|mulat|on dafas,34. F|gures 2._5 The present formulation provides a numerical recipe to
show that the predictions from present numerical recipe arg.

. : . ) nslate the integral equation theory for uniform fluids to
in good agreement with the corresponding computer SImu""‘c'iensity functional theory for nonuniform fluids. It is a nu-
tion data. :

In all of the calculation in the present paper, the OZ equaemerlcal extension of the methodology suggested in Bl

tion is solved combined with the RY approximatif2g] in in the present recipe, it is not necessary for t_he_brldge func-
which tional to be expressed as a functional of the indirect correla-

tion function analytically, so it greatly extends the applica-
exd y(r)f(r)]-1 bility of the methodology suggested in R¢L9], all of the
) , (18 input parameters of the present recipe can be obtained from
numerically solving OZ equation, in fact, there are many
_a_ _ successful integral equation theories for various uniform flu-
f(r)=1-exp(~ar), (19 ids, only if the bridge functional of the integral equation

wherea is the adjustable parameter used to achieve thermgheory can be expressed numerically as a function of the

1.6 4

0.5

FIG. 5. The same as in Fig. 4, but wikh,=500.

g(r)=exd —Bu(r)]j 1+

dynamic consistency. indirect correlation function smoothly, then the integral
equation theory can be transformed into the density func-
IIl. DISCUSSION AND CONCLUDING REMARKS tional theory for nonuniform fluids to calculate the density

distribution profile. So, the present numerical version of the
The WDA version of the DFT, like the present approach,methodology suggested in Rdfl9] really builds a bridge
is also a summation of all terms in a perturbative expansiofirom the IET to DFT for many nonuniform fluids. The ap-
that is exact to second order and has approximate kernefdication of the present recipe to other nonuniform phenom-
(the higher-order DCHsat all higher orders by forcing the ena, especially the most challenging of the nonuniform prob-
WDA to reproduce the uniform fluid second-order DCF lems, for example, the freezing transition, will be reported in
C{? . The difference between the two approaches is in the forthcoming paper.
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