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Generalized fundamental solutions for unsteady viscous flows
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A number of closed-form fundamental solutions for generalized unsteady Oseen and Stokes flows associated
with arbitrary time-dependent translational and rotational motions have been developed. These solutions are
decomposed into two parts corresponding to a longitudinal wave and a transversal wave. As examples of
application, the hydrodynamic forces acting on a sphere and on a circular cylinder translating in an unsteady
rotating flow field at low Reynolds numbers are calculated using the generalized fundamental solutions.
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[. INTRODUCTION cay of the drag on a body as steady state is approached for
finite Reynolds numbers has been addre$4&d-21. How-

In investigating flows at low Reynolds numbers, it hasever, the generalized fundamental solutions for an arbitrary,
long been customary to linearize the Navier-Stokes equationi€mporal domain still remain difficult to obtain. In this paper,
in order to obviate the prohibitively difficult problem of ob- We shall consider time-dependent linearized viscous flows,
taining complete, analytical solutions. Stokgs investi- taking both translational and rotational motions into account.
gated the case Of a para“e' ﬂOW past a Sphere and propos@d the WOI’k that fO”OWS, |t iS demonstrated that the del’iva-
the oldest known linearization. He acknowledged that, undetion of the net force on a body is made especially simple by
his linearization, it was impossible to find a solution for a €mploying generalized fundamental solutions to construct
two-dimensional viscous flow past a finite body, a conclu-€xact solutions. Although this paper is devoted to studying
sion now known as the “Stokes paradox.” Osefd] in-  drag forces on a sphere or a circular cylinder translating im-
cluded a translational inertia term in the Navier-Stokes equaPulsively from rest in a rotating viscous flow, these are re-
tions and gave an improvement of Stokes’s linearization. 9arded as two prototypes of a general class of problems. It is

A useful method for solving such linearized flows is the understood that the essential features of the formulation and
singularity method, in which the solution is expressed insolutions may readily be applied to other general cases.
terms of discrete or continuous distributions of fundamental The general unsteady equations for the combination of
singularities. The success of the method depends mainfifanslational and rotational motions are posed and the rel-
upon the choice of the correct type of fundamental Singu|ari.evant dimensionless parametel’s are identified in Sec. Il. The
ties and their spatial distributions. For inviscid flows, funda-9eneralized fundamental solutions to the unsteady equations
mental singularities such as sources, vortices, and dipoled€ presented in Sec. lll. As special cases, the fundamental
and their usage for complicated flow situations have beegolutions for the generalizednsteady Oseen and Stokes
thoroughly studied. For steady viscous flows, Chwang angduations, that is, the generalized unsteady Oseenlet and
Wu [3] introduced a set of fundamental solutions Ca||edst0keS|et, are derived and discussed in Sec. IV. With the
Stokesons, rotons, and stressons, which have been furth@Pove solutions, an expression for the hydrodynamic force
applied to a wide variety of flow problen{#—6]. For un- acting on a rigid sphere translating with unsteady start-up
steady viscous flows, Pozrikid[§] derived expressions for motion in a time-dependent flow field is obtained in Sec. V.
an oscillating Stokeslet and dipole to study the viscous osThe corresponding two-dimensional generalized fundamen-
cillatory flow past a spheroid. Price and TE8] gave a con- tal solutions are given in Sec. VI and the unsteady hydrody-
volution integral formulation for transient Oseenlets associfl@mic force on a circular cylinder is obtained in Sec. VII.
ated with a body maneuvering in a viscous fluid. FurtherFinally, conclusions are made in Sec. VIII.
references can be found to some special cases, such as a
Laplacian representation of an oscillating Stoke$&.0]
and a concise presentation for a purely translating Oseenlet

with a prescribed constant velocitg1,12. Let us consider an unsteady flow with translational veloc-
The drag on a body in transient motion has been of Iongﬁy U* (t) and angular velocitf2* (t) past a stationary body.
standing interest. Sarjd3] obtained a long-time representa- The flow starts from rest, i.eU* (0)=0, Q*(0)=0. Let us
tion for the force on a sphere in response to an impulsively,gndimensionalize time by/UR,, distance byL/R,, ve-
started flow at a small but finite Reynolds number using th%city by U, pressure bypU?2, and U(t)=U*(t)/U, Q(t)
method of matched asymptotic expansions. Nakanishi, Kida. o* (t)L/UR,, whereL andU are the characteristic length
and Nakajimg 14] treated a two-dimensional version of the g4 speedR,= pUL/u is the Reynolds number, apcand x
problem. Lovalenti and Bradyl5,16 extended Sano’s result 56 the density and viscosity of the fluid. The unsteady flow

to a step change in the free-stream velocity using a reciprocgl governed by the dimensionless Navier-Stokes equations
theorem. Tanzosh and StofE/] studied the steady motion

of a rigid particle in a rotating viscous flow using an integral
equation approach. Insight into considering the long-time de- V-V=0 D

II. GOVERNING EQUATIONS
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oV du dQ By means of a Fourier transform in
—+V-VV=—-VP+V&V+ —+ —
ot dt  dt
B — ik-x
XX— QX (QXX)+2QXV+F(t,X), (2) [Pl f[“*p](t’x)e d,

whereV, P, F(t,x), andx denote the nondimensional veloc- Eq. (8) can be expressed as
ity vector, pressure, external body force strength, and posi-
tion vector measured in a Cartesian coordinate system k-T=0,
(e1,8,63) with the origin located at the instantaneous center o
of the body. We consider the disturbed fluid veloaityand u 2 ~ SN | i
the disturbed pressugein the fluid as the basic unknowns. Eﬂk FIU-KUHKX[(QXV) XU +iPk=Fa(1),
Thus, lettingV=u+U+ QX X, the linearized equationd) (9
and(2) become
wherei=/—1, k=|[k|, k is the vectorial wave number, and

V.u=0, (3  a tilde above a term denotes its Fourier transform. From
these equations, we find thatis given by

Ju
E+U~VU—VX[(Q><X)><U]=—Vp+V2u+ F(t,X).
4

We identify the first term on the left-hand side of EQ) as The inverse Fourier transformation gives
the unsteady inertial term, the second term as the convective

inertial term, and the third term as the Coriolis term. If S(t)F-x
U(t)=U, (a constantand (t) =0 for all t>0, Eq.(4) re- P=""72 13 r={x|. 11
duces to the well-known unsteady Oseen equdtiin

T)=—E|25(t)F-k. (10)

It is interesting to note that is independent of) andQ. The
a—u+U0~Vu= —Vp+V2u+F(t,x). (5) fundamgntal solut.i(_)n qf Eq®8) is givgn by the following
at expression as verified in the Appendix:

If Uy vanishes, Eq(5) further reduces to the well-known u=d; (®, (P; (a))), (12)
unsteady Stokes equatiph],
where
Ju
E=—Vp+V2u+F(t,x). (6) 1
a=-—F-(IV2=VV)f(t,\), (13
4
I1l. GENERALIZED FUNDAMENTAL SOLUTIONS
. . ) 1 |erf(N) 2
For a given body and prescribed motion, E(.and (4) ftN)=———= —~ (14
have a unique solution in a Euclidean temporal and spatial 2\t N
domain in terms of fundamental solution$t,x|ty,X,) and . )
D(t,X[to %), In these expressions, we define

t t
[u,p](t,x)= f [U,p](t,X|te,X0)F(to,Xo)dtedx.  (7) Y= fou(”dﬂ 0i()= Lﬂ(ﬂ'adf for 1=1,2,3,

(15
The fundamental solutionsi(t,x|ty,X) and p(t,x|ty,Xo)
with respect to the singular poifity,xo} satisfy Eqs(3) and S 7
(4) with F(t,x) replaced byFs(t—to) 5(x—X,), whereF is a 7=[®3 (P, (@ (X)) -y, A= PN (16)
constant force vector andl) is the Dirac delta function. In 2yt
\r/r:eevrzlt :If s?litifrgpxg{?: ?ens% ; Cﬁitéaihgogggjlgf'gzlsm?iof}tfnda @ and®; are orthogonal and linear operators, defined by
we shall focus on the fundamental solution due to a point
force located at the origin at=0. This fundamental solution
satisfies

@ (b)=¢e(b-g)F(bXxe)sing+e X (bxeg)cosh;
for i=1,2,3 (17)
and the error function is given by

au

—4+U-Vu—VX[(QXX)Xu]=—Vp+V2u+Fst)5(x). 2 (¢

ot R
® erf(¢) _TJOe dr.
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The results obtained by Price and Ti8], who considered to infinity in Eq. (25). If we setA=r/2\t in Eq. (25), we
only a special case in which the direction f(t) is fixed obtain the unsteady Stokeslet kernel function

and parallel to that og; all the time, can be recovered from
the generalized fundamental soluti@i®?) by simply putting
®, =®; =1, an identity operator.

According to the theorem of splittinf22], the general
solution (12) may be decomposed into two distinct types of n L[l—erf(rlz\ﬁ)] (26)
wave, a longitudinal wave with irrotational velocity and a 2
transverse wave with uniform pressure and rotational veloc-

t
gs(t,r)=— Ferf(rlz\/f) + (22— "

ity ug, Where and the steady Stokeslet kernel function
u = -e)—(a_ Xe)sinf+ex(a Xe)cosd, (18 r
L=€(a € —(a xe) (a . xe) (18) 0e()= 5. 27

Ug=€(ar-e)—(agXe)sinf+ex (agxe)cosh, (19
The latter one is the same as the result of Chwang and Wu

L e vy - L evrrn. (0 13l
a=-—,-F (LA, ar=g4— (tN). (20
V. HYDRODYNAMIC FORCE ON A SPHERE
This decomposition is unique up to specified conditions at TRANSLATING IMPULSIVELY IN A
infinity. ROTATING VISCOUS FLOW

V. GENERALIZED UNSTEADY OSEENLET _ One of the most important objective_s of the pre_sent paper
' is to obtain the hydrodynamic force acting on a solid body as
AND STOKESLET a function of timet. Let us consider an unbounded unsteady
For a purely translating body, i.eQ(t)=0, Eq.(8) may  Oseen flow withU(t)=e,H(t) and €(t)=QeH(t) past a
be simplified to sphere of radiuR centered at the origin, whesg ande, are
two constant unit vectors artd(t) is Heaviside’s step func-

Jdu ) tion. The diameter R is used as the characteristic length;
V-u=0, —=+U-Vu=—Vp+Vu+Fs(t)sx), L=2R. Fort>0, the boundary conditions are then
21
@1 u=0 at r=R./2, (28

which is a generalized Oseen equation. The fundamental so-
lution for unsteady translational motions can be derived by u—e;+QexXx asr—oe. (29

setting 4(t) =0 in Eq.(12). Thus ]
The flow due to the presence of the sphere may be obtained

S(t)F-x in terms of an unsteady Oseenlet and an unsteady potential
2.3 - (220 doublet placed at the origin. Hence, the velocity is given by

1
-~ E.(1V2_ —
u= 47-rF (IVE=VV)f(t,N), p

To be consistent with the definition of the steady fundamen- —g + e, x x+ Jt[eo(af-eo)—(afxeo)sin(QT)Jreo
tal solution corresponding to infinite tinte we may define 0

the unsteady fundamental solutiap as X (ax &)cog Q) ]dr, (30)

uy(t,x)= f;U(T,X)dT, (23)  where

1 1
which corresponds to a Heaviside step change of the singular af=4—F~ (IV2=VV)f(7,\)+B-VV T
body force. Therefore &

1 andB is the vectorial strength of the unsteady potential dou-
uy=-—F-(IV2=VV)g(t,r), (24)  blet. Obviously,u satisfies Eq(8) and the boundary condi-
am tion at infinity. Sincer=R¢/2 on the sphere anB, is as-
sumed small, we expara} for small values of and obtain

where
2 Fee| 1 G(t) x
t . = —_— . —_—— | —— —— —_—
g(t,r)=f f(r,\)dr. (25 e N T v T T
0
X r>—x%\ x| B-eg 3x?
By analogy to the ternBtokesletthe fundamental solution + 2778 /3 3 1- e
(24) may be called a generalizaghsteady OseenlefThe
steady Oseenlet can be obtained simply by letting tirge +0O(r Inr+Q), (31
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1.10,

1.06+

a
(@
A FIG. 1. Ratio of unsteady to steady drag co-
O efficient for a sphere versus time fox=0.
1,044
1021
1.00
wherex=x-¢e; and 8(F-e) 24 3 2
=——=—|14+—= + =R,y .
2e 4 t
G(t)= —— +erf —). (32 +O(ReINR+ Q). (35
Vat 2
. , The components of the angular veloc#}(t) in any direc-
Boundary conditior(28) requires that tion perpendicular t@, have no contribution to the drag. In
limiting cases, the formula agrees with the known results by
F-e=37RJ1+ & RG(1)][1+2 RV Q(6y )] Sano[13] and by Lovalenti and Bradyl5] for pure transla-
' © . e e ' tion (2=0) and by Childres§23] for steady motion {
+O(RgINR+Q), (33 —x). The evolution of the drag coefficielt, as a function

of time t is shown in Fig. 1 and compared with the steady

Oseen theory24],

B-&1= %R 1+ FRG(DI[1+ R\ Q(ep-€1)]
+O(R3INR+ Q). (34) 24 3

CDS=—(1+—R6), (36)

The drag comes only from the unsteady Oseenlet term, not

from the term corresponding to the potential doublet. As the

dimensionless drag coefficie@ is normalized with respect which was experimentally verified to be accurate up to ap-

to 3pU37R? instead ofpUZ(L/R,)?, proximatelyR,=5 [25-27.
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VI. TWO-DIMENSIONAL GENERALIZED VII. HYDRODYNAMIC FORCE ON A CIRCULAR
FUNDAMENTAL SOLUTIONS CYLINDER TRANSLATING IMPULSIVELY

. . . IN A ROTATING VISCOUS FLOW
The corresponding generalized fundamental solution for

the two-dimensional2D) problem is analogous to that for ~ We now consider an unsteady Oseen flow witlt)

the three-dimensional case, and only the difference is dis=¢eH(t) and€Q(t)=(e; past a circular cylinder of radiu’

cussed here for comparison. The generalized fundamentakntered at the origin, where the constant unit veetois

solution for the two-dimensional case is given by EtR)  perpendicular to the plane of the flow. The characteristic

with length is again defined as the diametd®. ZThe boundary
conditions are

1
a= —F-(IV?=VV)f5(\) (2D case.  (37) u=0 atr=Ry2, (45)

In this expression, the kernel functiép(\) does not depend U—e+0exx asr—x=. (46)

on timet explicitly and is a similarity function, The solution consists of the uniform flow, a 2D unsteady

fo(N)=2 NN+ Ey(\2)— A2+ 5, (39) oor?geiﬁnlet, and a 2D unsteady potential doublet located at the
where the similarity variablex is given by Eq.(16), y is ¢
Euler's constant, ané, is the exponential integral, u=e+0e3x x—f [(afpX e3)sin(Q27)+a;, cog O 7)]dT,
0
o e_T (47)
E1(§)=f dr.
¢ 7 where

The solution may also be split into a longitudinal wave and a 1 5

transverse wave given by Eq&l8)—(20) with f(t,\) re- =7 F-(IV°=VV)f;(A)+B-VVinr.

placed byf,(\). The pressure for unsteady translational and

rotational motion in an unbounded two-dimensional domaint js obvious thatu satisfies Eq(8) and the boundary condi-

is given by tion at infinity. Sincer =R./2 on the circular cylinder ani,
is small, we expand for small values of as

O(t)F-x
N (39 Fe [tr) Be
u-e1~1——47T Ko 12" 7 (48)
The two-dimensional generalized unsteady Oseenlet may be
defined as where the special functiol ,(t; &) is defined, similar to the
Basset function or the modified Bessel function of the third
¢ .
ealt) = [ utrd, (4g KN
0 1 g n te*T*§2/4T
which yields Kn(t:)= 5(5) fo et ar 49
1 If we choose
Upo=7—F-(IV2=VV)gy(t,r), (41)
4 2
8 R
F.e].% . ’ Bel% . ’
t 1+2K(t/4;R/4) 41+ 2Ko(t/4;R/4) ]
gz(t,r)=f0fz(x)df- (42) (50)

~_the right-hand side of Eq48) vanishes at =R./2. As men-
Consequently, the 2D unsteady Stokeslet kernel function istjoned in Sec. V, the drag comes only from the unsteady

Oseenlet term. As the dimensionless drag coefficient is nor-

_ 2
Gos(t,r) =t[IN(r?/4t) + 1] +t(y—e ") malized with respect tpU3R instead ofpU3(L/R,), there-
2 2 fore
+ t+r E,(r?/4t) ' Int (43
—|E(r?/4t)— —Int,
41 4 _2(F-e) 167

Cp= ~ . (51)
R Re[ 1+ 2Ky (t/4;R /4

and the 2D steady Stokeslet kernel function is € el of 4]

This drag formula is independent 6I. It agrees with the

result of Nakanishi, Kida, and Nakajimjda4], but their ex-

pression is extremely complicated. The evolution of drag co-

2
gZSm(r)=—rZ[2ln(r/2)+ v—2]. (44)
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FIG. 2. Ratio of unsteady to steady drag co-
efficient for a circular cylinder versus time.

1.0

et o1

efficient Cp as a function of time is shown in Fig. 2 and lution of drag coefficients for a sphere and a circular cylin-

compared with the steady Lamb thed@g], der. Results are obtained for a rotating viscous flow past an
impulsively moving sphere and an impulsively moving cir-

167 cular cylinder. A suitable arrangement of these generalized

CDSI RJ1-2y-2In(RJ8)]’ (52 fundamental solutions may produce solutions for a general

unsteady flow past a body of arbitrary shape.
which was experimentally verified to be accurate up to ap-

roximatelyR.=1 [29].
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provide a comprehensive framework for the singularity ceNERALIZED EUNDAMENTAL SOLUTION OF EQS. (8
method in dealing with unsteady linearized motions, espe-

cially for flow associated with unsteady translational and ro- We shall now show that the fundamental solutidr®)
tational motions. It is demonstrated that these generalizedatisfies Eqs(8) by taking two steps, the first f&2=0 and
fundamental solutions can be used to calculate the time evdhe second foK)+ 0.
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Step 1: Q=0

For purely translational motion{(=0), f(t,\) defined
by Eq. (14) satisfies the heat conduction equatj@0]
Lf=0, (A1)

where t is the linear parabolic operator defined by

L= i +U.-V-V? A2
== . ) (A2)
Equations(8) can be rewritten as

V-u=0, tu=—-Vp+Fs(t)s(x). (A3)

Using Eq.(11) and®;" =1 (i=1,2,3), it can easily be veri-
fied thatu=a defined by Eq(13) is a particular and homo-
geneous solution of EqA3).

Step 2: Q#0
Step 1 states that

PHYSICAL REVIEW E 63 051201

oa
Vg a=0, ——+U-Vaa=—Vgp+Viat+Fa(t)a(q),
! (A4)
where
tg=t, q=@5 (P, (®; (X)), (A5)

and the subscript indicates operators with respect tp
Note that the linear and orthogonal operatd¥s have the
properties

oD . _ _ .
——=eX®;, (xXg)- VO =¢gXxXd; for i=1,2,3.
[

90
(AB)

By utilizing the orthogonality and linearity of operatods™
and making use of propertig®\4)—(A6), we find that all
terms in Egs(8) cancel each other whemis expressed in
the form of Eq.(12). This shows thati given by Eq.(12) is
the generalized fundamental solution of E(®.
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