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Strong enhancement of noise-induced escape by nonadiabatic periodic
driving due to transient chaos
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We have found a mechanism by which a moderately weatadiabaticperiodic driving may significantly
facilitate noise-induced interwell transitions in anderdampednultiwell system. The mechanism is associ-
ated with the onset of homoclinic tanglen the noise-free system: if the ratio of the driving amplitu&léo
the dampingl’ exceeds a critical value-1, then the basins of attraction of the linear responses related to
different wells are mixed in a complex manner in some layer associated with the separatrix of the undriven
nondissipative system, and the minimal energy in such layer is lower than the top of the barrier. Thus the
energy to which the system needs to be activated by the noise, to be able to make a transition, is lower than the
top of the barrier.
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The influence of weakonadiabaticperiodic driving on (E(D)E())y=4TTa(t—t"), U(q)=—qg?2+q*A4.
noise-induced escape is a fundamental problem whose solu-
tion is far from completion, despite numerous studieg., Using the concept ofarge fluctuations(see, e.g., Refs.

Ref.[1-6]). It is also relevant to many applications, e.g., tOJ[11,12,5; the full variety of modifications of the concept is
the destruction of metastable states in devices based on JQsiewed in[13,14), one can show that the transition rate
sephson junction§l,4] or in mechanical electrometefg], between steady regimeqs(s%'z)(t) of the forced vibrations
and to directed diffusiof5,6]. around the minima of the potentidl(q) can be described by

Unlike most of the works on stochastic resonarisee . o
Refs.[8,9] for reviews and early works on directed diffusion an activation lamV=exp(-S,/T), where the activation en-

(e.g., Ref[10]), which relate tcadiabaticdriving (when the ~ €rgy S, is some functional minimized over the end state
escape rates are determined by the instantaneous value of ffa@y state in the phase space from which the noise-free sys-
driving force), the escape rate faronadiabaticdriving does tem can relax both intaq(sf)(t) and qg)(t)], over the end
not manage to follow changes of the driving force. If thet. ¢ d th tha(t) 1=l q@® e o>
temperature is not too small, the main effect of the driving ime t. and over the pathq(t) ]=[ds’—Se |-
was shown 3] to be an enhancement of the diffusion over 1
the energy, which increases only theefactorin the escape o - __— 1= 200 ¢
rate (stillgv>\//eakly: the correction }i/s tauadratic in the dri\F/)ing Sa= Mg s, 1> S= g j,mdtn (@.a.9.1),
amplitude, which is small But if the temperature is smaller )
than the driving amplitude, the effect of nonadiabatic driving of
was recently showfi] to be much stronger: the mechanism _ (1) . _2 (1,2)
in Ref.[5] was based on positive work by the force, pushing q(t——2) =0 (1), {d(te),Alte)}=Se—0s (1),
the system resonantly with the eigenoscillation at the reso-
nant energy, thus freeing the noise from this work in the
range of energies close to the resonant one, which lowers the
activation energy

However, the increase of the escape rate predicted in
Refs.[3,5] divergesas the dampind’ goes to zero. On the
one hand, this suggests that the system shouldirzker-
dampedin order for the increase to bmaximally possible.
On the other hand, neither of these theories can determine U
what are(i) the maximum increaséij) the proper conditions
for it, and (iii) the underlying mechanism. Thus it is ex-
tremely important to study the problem in the underdamped  —0:2f
limit, which is the major purpose of this paper.

As an example of systems possessing a barrier, we con-
sider the double-well Duffing oscillatdFig. 1):

. . : q
I(g,q,9,t)=&(t), I=q+2I'q+U’(q)—AcogQt),
(1) FIG. 1. Duffing potential(q) = — g%/2+q*/4.
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(1,2) (1.2) A
e (t)=0qy™ +mCOSQt), F<|Q—\/§|

If A=0, then all stategq,q} corresponding tay{l2)(t)
reduce to thestationary stable statesElvz of the undriven
system while thexit stateﬁgx, i.e.,§e minimizing S, reduces
to theunstablestationary statel at the top of the barriefthe
exit timetg,, i.€.,t, minimizing S, reduces tee). The path
[q(t)] yielding S, for the transition§1—> u, called the most
probable escape patlP(pep), is the time reversal of the

Nt
noise-free trajectorju—s;] (see, e.g., Ref§11,5):

Pured A=0)=[Q(1)], Q—2I'Q+U'(Q)=0,

)

Q(—2)=qf", Q(—=*)=0, Q(*)=dp, Q(*)=0,
The path[Q(t)] providesS,=AU=U,—U,, which obvi-
ously agrees with the classical reslf].

The presence of the periodic driving affe@g in three
different ways: (1) a shift of the exit energyE.,= E(§ex)
=q2,/2+U(gey) from E(U)=Uy; (2) a shift of the starting
energyEg;, i.e., energy of the starting sta&fg (belonging to
gy, from E(s;)=U,; and(3) a breakdown of the relation
S,=Ee<x— Esi. Correspondingly, we formally dividesS,
=S,— AU into three parts:

6S,= 689+ 5SSV + 68, SSEV=E,— Uy,

(4)

8SV=U,—Eg, 0S{'=S,—(Eex—Eqy.

Before considering these separately in iteff)s-(3) below,
we need to briefly review the relevant results of R&i.

In the asymptotic limitA— 0, the leading-order correction
to the Pypep (A=0)=[Q(t) ] is linear inA[5] (in particular,
this concerns“;St and§ex). As follows from the definition of
the Pypep[11,5], corrections taS,(A=0)=AU from a lin-
ear correction ofPypep are weaker than linear. Hence, to
calculate the leading-ordé@inear term in §S,, one may use

[Q(®)] [5]:
8S,~ 8SY)~ —|x|A, X:_f dte'Q(t). (5

If I'<1,Q, the most important contributions () are
provided by those bits dfQ(t)] which correspond to ener-
giesE=Q?/2+U(Q) close to theesonantenergiesE (1),
implicitly defined asnw(E,)=Q, where w(E) is the fre-
guency of eigenoscillation with enerdy andn is an integer.
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Ix]~xn

do(Ey)
dEy

/=

[here Qn(Ep), o(Ey) andI(Ey) are the amplitude of the
Nth overtone of the velocity, frequency and action for the
eigenoscillation at energlfy, respectively. It is taken into
account in Eq(6) that, alongQ(t), E~2I"w(E)I(E), while
w(E)~w(Ey)+dw(Ey)/dEN(E—Ey), andt=0 is defined
asE(t=0)=Ey.

The divergence of may give the impression that, &sis
decreased te- A2, the escape probability grows tel [16].
But, as we will see, this impression is wrong: E®) is
invalid for I'<A, and the contribution from the resonant
mechanism vanishes rather than growd'as0, while 6S,
is dominated bysS{®¥ at I'<A?.

(1) To evaluatesS{®¥ we note first thatsS\ is domi-
nated by the resonant mechanifbh, which, forI’<1, does
not involve §e [cf. Egs.(5) and (6), as well as item(3) be-
low]. Therefore 5S{*¥ can be derived from the minimization

of E(Se) overs,, independently o65S{” and 6S{*Y. So, to
leading order imA, §ex is the state which, among all possible
§e, has the minimal energl,,,:

2T w(Ep) | (En)t?

E|QN(EN)| fidtcos( N

3l 2emi| 9
|Qnl dE

SSI~E,—Up. (7)

For A—0, §ex belongs to the unstable periodic orbit near
the top of the barrief5]. SoU,— E,~A?%/[2(1+Q?)?] and
— 68 <— sV = A can be neglected.

On the other hand, if

442 costiwQ/2)

A>AC~,U,|F, 370

w= 8

(u~1 atQ~1, so thatA,~TI"), then ahomoclinic tangle
arises in thenoise-freesystem[17], leading, in the Poincare
section, to a complex mixing of the basins of attraction of
qg‘z) in a layer around the boundary between the basins of
attraction of the stable states of the undriven systei. 2).

To first order inA, E,, is the minimum energy in that part of
the basin of attraction ai{?) whereq<0, additionally mini-
mized over the angle of the Poincarection. It can be shown
(cf. Ref.[17]) that, to first order i, E,,<U, if and only if
condition (8) holds. If Eq.(8) holds andQ)~1, then U,
—En/A~1.

One can rather easily find,, numerically, merely inte-
grating the dissipative equatidd) in the absence of noise
(T=0) on a grid of initial states witlg<<0, and choosing
from them the state which has the minimal energy among all

Labeling with N the resonance which provides the largestthe states which provide a relaxation to the attracdr:

contribution to8S,, one obtaing5]

this energy approximates,, to first order inA.
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FIG. 2. StroboscopicQt=0,2m, 4, ...) Poincaresectiong—q of the noise-free T=0) system(1) for A=0.07, Q=1.7 whileT
decreaseda) I'=0.07,(b) I'=0.025, andc) I'=0.005. Attractors corresponding q@%z) are marked by dots, and label 1 and 2. Their basins
of attraction are shown by different shades of greyall black areas ifc) are basins of attraction of period-3 orBit¥he mixing of basins
is (a) absent,b) already present, an@) well developed.

Moreover, for A>A.~T', the numerical search fdE,,  no longer provide the interwell chaotic transpfdftg. 4(b)]:
can be additionally simplified significantly: the lower-energy due to this,U,— EET?d) drops abruptly. Peaks at the multiple
boundary of the layer then coincides with the lower-energyfrequencies correspond to higher-order resonances.
boundary of the corresponding chaotic layer of tieadissi- Similarly, asA grows,U,—E{"? undergoes large jumps
pative system(namely, of the chaotic layer which includes atA ~exp(—27n/Q), related to successive overlaps between
the state{q=qy, q=0}), while it can be shown that the the original layer and the layers associated with nonlinear
minimal energy in a Poincarsection of the chaotic layer, resonances. Note, however, that the largast namely,
ECY, is independent of the section angle; thEs,~E{'?.  Ajq/z)+1. is still typically quite small(unlessQ is only
The explicit formula forE? is not known[18], but the  slightly less than the eigenfrequency at the bottei®) and
chaotic layer is readily generated by computer, so Bfa?  the further growth ofU,—E&'? with A is approximately
can be very easily found numerically. Its detailed analysidinear. Thus, for most of the range<1, the quantity Uy,
will be presented elsewhere; here we present characteristie Eﬁ,?d))/A plays a role similar to the role df| in Eq. (5).
examples of the dependencef—E"? on the amplitude (2) The maximum deviation of energy on the attractor
and frequency of the driving force. The amplitude depen-g{}(t) from U is ~{A max(Q,\2)/(2—Q?)}?/2. Thus
dence is stairlik¢Fig. 3(a)], while the frequency dependence
has sharp peaK$ig. 3(b)]. Jumps in the former dependence 1
and peaks in the latter correspond to the overlap and separa- - 5S§ft)EEst— Uo<§(
tion between nonlinear resonances. Let us first demonstrate
this for the frequency dependence.

For very smallQ), the relevant chaotic layer relates only
to the separatrix of the undriven system, adg—E{"?
<A [19]. As Q grows, the resonant ener@y({)) sharply

lowers and, starting fron)=Q~2x/In(1/A), the lower . (1)
part of the chaotic layer relates to the lower part of tioa- UnlessQ is very close t0y2, Ap=1, 50 thatdS;™ may be

linear resonancdg 14—16 while the upper part of the layer neglectedl m(;_he rlf_;mge un:jjer §tuw,\il. . (1) :

still relates to the separatrix of thendriven system[both (3) To leading(linean order inA, the correctiondS;” in
parts are clearly resolved in the Poincaegtion: Fig. 4a)]. the presence of the layer may be described analogously to
Thus U, — EM® grow sharply, and reaches the first maxi- When in the absence of the layler. Eq. (5)],

mum for Q slightly larger than(2, while, as{) grows fur- ; _

ther, the layer related to the nonlinear resonance separates 58g)~—|}}|A, ;(:_f exdteim'Q(t), (11

from the layer around the original separatrix and, thus, can tst

2

ma V2", o

2-0?

and may be neglected in comparison withSS{e? if

A<A,=8(1-0/\2)2, Q~1. (10)

{nd)
(Ub—Em J/A

FIG. 3. (@ U,—E" as a function ofA (note logarithmic scalesfor Q=1.7. (b) (U,—E{"?)/A as a function ofQ} for A=0.0001,
0.001, and 0.01solid, dashed, and dotted lines, respectiydﬂﬁ?d) is the minimal energy in the chaotic layer in the Poincseetion of the
nondissipativesystem(cf. Fig. 4).
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FIG. 4. The chaotic layeblack) which provides thénterwell chaotic transport in the nondissipative noise-free systemi {00.01.(a)
0=1.1, and(b) Q=1.2.

whereQ(t) is the time reversal of the noise-free relaxation —0S,~— 5sgex)~ub— Eﬁrﬂ‘d)va. (16)
from Se, t0 Sq={q(ts),q(ts)}. As in the absence of the

layer, the main mechanism contributing oat smalll” is a Thus, if A increasegwhile T'<1), — 5S, evolves as fol-

resonant one, So,th@ﬂ”‘XN as in Eq.(6). lows: for A<T, it grows in accordance with Ref5], i.e.,
Ll;,']t us first estimate thedraré%(lell)ifgt Whlckll the resor;%nt — 6S,~— 6S§1r)~|)(|A: for A~T, it saturates; foA=T, it

mechanism saturates an IS no longer valid. ; ;

The main contribution to the integral in E(ﬁg) comes grows again, due to the lowerirtg, [see Eqs(7) and(16)]

from the range oft during which the absolute value

of the argument of the cosine isw/2, ie., [t|=t,

= 7wl[4Q]dw(EyN)/dENTT(Ey) ]I~ Y2 In this range, the

energy along thePypep, E%52/2+ U(Q), increases from
En—AE,/2 to Ey+ AE,/2, where

0.15

-8
a

0.1}
AE,~2T w(Ey)! (Ep)2t,%\T. (12)

The “unperturbed” part of the activation energy associated
with a noise-induced increase of energy foE, is equal to
AE,. Thus the perturbative formulgEg. (11)] is valid as
long as the absolute value of the negative correction by the
resonant mechanism in the randge-t,,t], which is = . . . . . .
~|Qn(EN)[tA, is less thanAE,. Hence the range of the 0 002 004 006 008 01 012 014 0.16
validity of Eq. (11) is A

0.05f

A</.er, Mr:[w|/|QN|]E:EN' (13) 0.2+
Typically, u,=1. So, asl’ decreases, the growth of §S, -5 Sa (b)
due to the resonant mechanism saturatds-af. 0.15}
The next question is what i8S\ for I'<A? We have not
succeeded in a rigorous treatment of this problem, which is ~ p--ccocmmmmmmoo e
extremely difficult, but we suggest an intuitive argument in 0.1}

favor of a vanishing correction d$—0 (computer simula-
tions confirm this; see belowthe resonant mechanism af-
fects mainly the “resonant” energies, i.e., those in the band 0.05}
[En—AE,/2EN+AE,/2]; hence the absolute value of the
correction cannot significantly exceed the width of this band,

% 7 8 12 16 20
roo 12
— 6SN=AE,«\T — 0, T=A. (14) r

) o ) o FIG. 5. — S, as function of(a) A (for I'=0.025), or(b) I "*?
Comparing the contributions considered in itef@s-(3), Wwe  (for A=0.07):Q0=1.7 in both cases. Stars are computer simulations

conclude that, provided of Eq. (1), using Eq.(17); dotted lines are theory for 8S{", based
on the resonant mechanidi| [see Eq(5)]; solid lines are theory,
JT<A<8(1-0/\2)2 1, (15  based on the layer mechanigiqg. (7)], for U,—E,,. The dashed

line in (b) showsU,—E{"? , which is our theoretical nondissipative

the layer mechanisndominates insS; : asymptote both for- §S, and for the solid lindsee Eq(16)].
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Note that, if I>A> \/f,A[Q,mH, then the growth is ap- damping[5]. The theory[5] predicts that the activation en-
proximately linearcf. Figs. 3a) and 3a)]. ergies for the escape to the adjacent well from the left and
If, fixing A<1, we decreasé&’, then — S, evolves as from the right are typically differenfso that the fluxes to the

follows: for I'>A, it is given by Eq.(5), typically growing left and to the right differ exponentially strongjymoreover,
«'"Y2if I'<1; for T ~A, it saturates at-AE, /A, while  this difference grows<I' "2 asT"—0. However, as follows
reaching the asymptotic limfEq. (16)] for '<AZ2. Thus, in  from the results of the present paper, this growth saturates at
the asymptotic limitA— 0, the function— §S,(I") possesses TI'~A (i.e., long before the correctiof§] to the activation
a maximum ¢<\/A) atI'~A. At the same time, i\ is mod-  energy becomes comparable to the potential barrier, which
erately small, then the maximume(A) is reached al’—0  occurs af’ ~A?) and then vanishes, since a layer with mixed
[cf. Fig. Sb)]. basins (transient chagsis formed; as soon as the system
To test our theoretical predictions, we numerically simu-reaches any point of this layer it may then be transported to
lated Eq.(1), and measured the transition fl=J(A,T)  the well from the left and to the well from the right, with
from q{P(t) to q(t) (at small temperaturgsin order probabilities of the same ordg20].
to reduce as much as possible the influence of the prefactor Finally, we put our work into the context of studies of the
P in the determination of S, [note that J(A,T) interplay between chaos and noisé Ref.[17]). Most such
=P(A,T)exp(—S,(A)/T)], we simulated Eq(1) for two  works studied the effect of noise on transport properties
slightly different temperatures and measured the flux botwithin a chaotic attractor or layer or web. In R§22], the
for a givenA and forA=0; an activation energy was then dependence on noise intensity for noise-induced interattrac-
calculated as tor hoppings in some multiattractor map with transient chaos
was studied in simulations. But neither of these works stud-

LY JIATY) ied how transient chao@rising due to periodic drivingaf-
™ T,-T, n (AT, ' fects the noise-induced escape.
In conclusion, we have found the range Iofwhere the
A T)=I(A,T)/IA=0T), 17) Qecrease of_the lifetime by.the nonadiabatic periqdic _driving
is at a maximum: depending on parameters, it is eifher
T,<AU, |T1—T2|~Tf/AU. —0 orI'~A. In the former case, we providecuantitative

theory for the maximum decrease of the activation energy
Figure 5 shows that the crossover between the “reso{~A) while, in the latter case, we estimate it qualitatively
nant” and “layer” mechanisms insS,(A), 8S,(I'"*?) oc- (~VA). The underlying mechanisms afi¢ transient chaos
curs in good agreement with the theoretical predictions, antéf I'—0, and(ii) a resonantsaturatetl mechanisn{5] if I
that Eq.(16) is well satisfied. Moreover, for the given pa- ~A.
rameters, the layer mechanism becomes dominant even be-
fore the layer approaches its nondissipative limit. The work was supported by INTASrant Nos. 97-574
Let us briefly discuss the application of our results to theand 00 YSF 4126 We are grateful to M. |. Dykman for
problem of directed diffusion in periodic potentials at low useful discussions.
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