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Escape time in anomalous diffusive media
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We investigate the escape behavior of systems governed by the one-dimensional nonlinear diffusion equa-
tion &tp=z9x|:z9xUp:|+D6’)2(p", where the potential of the drift)(x), presents a double well ari2l, v are real
parameters. For systems close to the steady state, we obtain an analytical expression of the mean first-passage
time, yielding a generalization of Arrhenius law. Analytical predictions are in very good agreement with
numerical experiments performed through integration of the associated Ito-Langevin equatian# Epr
important anomalies are detected in comparison to the standard Brownian case. These results are compared to
those obtained numerically for initial conditions far from the steady state.
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[. INTRODUCTION rated regions in porous mediav€2) [8], gravitational
spreading of thin liquid films ¥=4) [9], heat transfer by
The old problem of surmounting a potential barrier, Marshak waves =7) [10], surface growth ¢=3) [11],
known as Kramers’ problem, is doubtlessly relevant in conspatial diffusion of biological populationsv&2) [12],
nection with many topics, in fields ranging from physics to plasma flows {<1) [13], etc. Explicitly, these processes are
finance. It is a key ingredient to understanding phase transiuled by an equation of the type known in the literature as
tions in complex systems, both in and far from thermal equithe porous media equatiofiL4],
librium. In particular, the quantity known as the escape time
(or mean first-passage tilm&om one stable state to another dp(X,1)= D(?f[p(x,t)]”, D
has found numerous applications in a variety of interesting
and novel problems. For example, it plays a key role in stowherex is a dimensionless coordinate representing a bond
chastic resonancgl] and in describing fluctuation-induced length, angle, or any other chemical or physical state vari-
transport such as occurs in kink motifi3] and ratchet$3]. able,t is the dimensionless time, andd>0. Rewriting the
Even the extent of chaos in Hamiltonian systems has beemnonlinear term ag,(Dvp” 1d.p), it becomes evident that
shown to have connections with this quanti#§]. A nice the restrictionD»>0 guarantees that the flux will be from
collection of these and other stochastically driven processasiore dense to less dense regions.
can be found in Ref.5]. Since the nonlinearity ip is known to lead to anomalous
However, all of the above examples have been formulatediffusion if v+ 1 [namely superdiffusion for<<1 and sub-
within a standard Brownian framework, for which diffusion diffusion for »>1 [15,16], as (x?(t))«t?**1)], important
properties are normal. In this paper, we look at the problenanomalies are also expected when crossing over a barrier is
of calculating the escape time for systems exhibiting anomainvolved. Precisely, we want to unveil here how escape prop-
lous diffusion of the correlated tyg@ contrast to Levy-type erties are altered when 1.
diffusion, which we do not discuss hgré\n understanding The paper is organized as follows. In Sec. Il, we present
of escape time properties in such systems could open th@e systems of interest and discuss some of their general
door for understanding new stochastically driven phenomfeatures. Because fluctuations are determineg(xyt) for
ena. To our knowledge, there has yet been little work dong,+ 1, the escape behavior will depend on the initial condi-
along these lines, although we are aware of some studiagn p(x,0). Therefore, we first consider systems in the vi-
relating the anomalous transport properties on a randomginity of the steady state, a condition that allows analytical
comb to the distribution of mean first-passage tirfgs treatment. Numerical and analytical results for this case are
The systems we are interested in are such that the diffysresented in Secs. Ill and IV, respectively. In Sec. V, we
sion is dependent on the density of partigiesesulting in a  study numerically the escape behavior of systems far from
diffusion coefficient that is proportional to a power{1)  the steady state, comparing the results with the previous
of p. Many physical systems are well-described by this clasgnes. Finally, Sec. VI contains concluding remarks.
of processes. Let us mention, among other examples, perco-
lation of gases through porous medig=2) [7], thin satu-

Il. THE SYSTEM
Let us consider a set of identical particles immersed in a
*Email address: eklenzi@cbpf.br thermal environment such as that described by the porous
TAuthor to whom correspondence should be addressed; email adnedia equation(1). Under the influence of an external
dress: celia@cbpf.br bistable potential (x), introduced in order to probe the es-
*Email address: lisa@sphinx.com cape behavior, the density of particles evolves following the
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nonlinear Fokker-Planck=P) equation: Vi ;16
X
ap(X,0) = U (X)p(x,1)]+ D[ p(x,1)]".  (2) 0.4 - .
This class of equations has been the object of diverse previ- 0.2_- J
ous studieg15-17. |
The stationary solution of Ed?2) is 0.0 -
psX)=[1=(v=1)BV() 11" iz, 3 10 T
where[ f], =maXxXf,0}, Z is a (positive normalization con- Ps(X) ] (b) v=2 e

stant, 3=2""1/(vD), and V(x)=U(x)—U,, with U, the
absolute minimum of the potential. In the limit—1, the
standard linear Fokker-Planck equation is obtained. In such a
case, the steady state characterized by the Boltzmann-Gibbs .
distribution pg(x) ~exp(—U(x)/D) is recovered. However, ?’8 T
for v#1, the stationary solutions of E() have the form of PN
the maximum Tsallis entropy probability distributiofigith Ps(x) ] (c) v=05
Tallis parameteq=2—v), as already discussed previously
[15—17], even in the absence of external dfift4,18. It is
worth recalling that phemonena such as fully developed tur-
bulence[19], the hadronic transverse moment distribution in .
high-energy scattering processe  — hadrong20], among 0.0 l
others, have been satisfactorily described in terms of distri- 2
butions similar to Eq(3) instead of the canonical stationary
one.

Steady-state solutions are illustrated in Fig. 1 for a quarti
potential. Note that a cutoff conditiofisallis cutoff, yield-
ing regions with null probability, arises in the>1 casd see
Fig. 1(b)]. For a quartl(_t potential, the cond_|t|0n> —3 must restricts the attainable space. Observelinthat asD decreases,
hold so Fhat the Soluthns can be normallzgd. Howgver, th articles become more confined until only the neighborhood of the
free-particle case requires>—1, so we restrict our discus- deepest valley is allowed. The horizontal lines(@ represent the

sion to this regime. - cutoff conditionV(x) = 1/8, which defines the allowed regions for
The nonlinearity in the diffusion term of E2) accounts ,—5 and the same values Bfas in(b). All quantities are dimen-
for the fact that the environment presents some kind of disgjgnjess.

order or long-range correlations in space-time leading to dif-

. . . _1 .
fusion anomalies. The expressign=2" */(vD) can be in-  onment such that it reacts to the collective density of states

terpreted as a generalized Einstein relation for this scenarigound it. We can think of the subdiffusive case as a kind of
Note that in disordered or correlated systems such as thosgraction” to the other particles: Particles tend to stay
discussed here, the standard Einstein relation is expected {§ ce to the other particles, fluctuating not far from them.

be recoveredn the absence of disordg21]. This corre-  conyersely, we can think of superdiffusive cases as a kind of
sponds to the case of=1 yielding the well-known result  roaction to the sparseness: If the particle is in a highly popu-
D=1/8. Also, as was shown ifi16], the time-dependent |5teq region, then it is in a sense confined by the other par-
form of these Einstein relations can be used to demonstraigyjes, and fluctuations are not so large, but as soon as it gets
the anomalous scaling properties of these nonlinear diffusiofhig |ess dense regions it does not experience this confine-
systems. For the free particle one obta{x$(t))<1/8(t)  ment and fluctuations can get very large.

OCZZ(t)th/(V+1).

The Ito-Langevin(IL) counterpart of Eq(2) reads[15]

0.5

FIG. 1. The cutoff condition(a) Dimensionless double-well po-
dentialV(x)=ax*+bx*+cx?+d, with a= 75,b=—5,c=§,d= 5.
The stationary distributiop(x) is shown forv=2 (b) and 0.5(c),
for different values oD as indicated in the figure. Far<1, the

full state space is covered with power-law tails. Bor 1, a cutoff

. 1. NUMERICAL RESULTS IN THE VICINITY
x=—2a,U(X)+ V|D| [ p(x,t) ]~V 25(1), (4) OF THE STEADY STATE

where (t) is a 5-correlated Gaussian noise with zero mean For numerical experiments we chose as a prototype of the
and variance 2. In the particular case=1, the standard double-well potential the quartic polynomia¥(x)=ax*
Langevin equation for constant noise is recovered. It is note+bx*+cx?*+d. The coefficients were chosen as in Fig. 1,
worthy that this is a phenomenological description, in whichfor which (x_,Xo,Xg) =(0,1,3), withx, , Xo, andxg corre-

the microscopic trajectories are determined by the macrosponding to the bottom of the left-hand well, the top of the
scopic quantityp when v#1. Physically, this represents a barrier, and the bottom of the right-hand well, respectively.
kind of statistical feedback. As with state-dependent noise, itVe studied the escape behavior close to the steady state.
is to be seen as the influence of the environment, which ighat is, once a population of a large number of particles has
otherwise not explicitly taken into account by the equationsalready attained the steady state described by3ga probe

of motion. As a particle evolves, it interacts with the envi- was injected ak, . Then its trajectory was obtained by solv-
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e R R R R R R D=0. In fact, forD=0 there is no diffusion, however for
1 finite D the particle is attracted towards the deepest valley at
x3 Xgr and becomes trapped within a typical time interval that is

bounded from above. This effect can be understood keeping

: | ] in mind that fluctuations depend dh not only through the

0 —% At % /“w\ i V factor \[DJ but also by means of the density through a factor
1 W f '\\’ '. M ] that, forv<<1, becomes very large outside the neighborhood
il v=2, D=0.15 “‘\ ] of the absolute minimum where particles tend to concentrate

| asD—0. In other words, the deterministic case is not recov-
v=0.5, D=0.5 | ered whenD—0 since the effective diffusion coefficient
B Dp”~ ! does not vanish in that limit due to the singularity at
0 10 20 30 40 ¢ 50 p=0.
FIG. 2. Typical trajectoriex vs t for (»,D)=(0.5,0.5) (dark IV. ANALYTICAL CONSIDERATIONS

gray), (2,0.5) (black, and(2,0.15 (light gray).

Let us show that these results can be understood analyti-
ing, following the numerical scheme in R¢R22], the IL (4)  cally. For a system in the vicinity of the steady state, we can
for p(x,t)=ps(X), starting fromx(t=0)=x, . Typical tra-  consider the following approximation for E¢R):
jectories are displayed in Fig. 2. Fer>1, fluctuations are )
reduced and trajectories result confined to the region within dip(X,t)=a,[ U (X) p(X,t) ]+ D[ {ps(X)}*tp(x,1)].
the cutoff boundariegsee also Fig. (b)]; moreover, when 6)
the diffusion constanD is smaller than a critical valuB, o
(hereD.=0.17 for »=2), the state space becomes discon-Once the FP equation is linear, the problem of escape from a
nected and crossings become forbidden. Farl, the am- well can be treated directly, following the same lines as for
plitude of noise is enhanced in the regions of low density andl®Mogeneous processes characterized by time-independent
the entire space tends to be populated. drift and dn‘fuspn coefﬂments{Z:ﬂ. Basma}lly, an equation

We measured the mean first-passage time, i.e., the ave,err the probability that the .parjucle is still .W|th|n a given
age time intervalT(x, —x) that a particle aix, takes to interval of state space at timeis found using the corre-
reach for the first time a given staie>x, . In Fig. 3, we sponding backward Fokker-Planck equation and solved un-
present plots off (x)=T(x, —x) vs x. For =1 [Fig. 3], der appropriate .boundary con_ditions. In this way, one finds
plateaus become evidentBsapproache® ., indicating that  that the mean first-passage tifigx,—X), for X;<xy, is
most of the time is spent overcoming the barrier arougd ~ 91Ven by
On the other hand, for<1 [Fig. 3b)], the passage time is «
sen_sitive to the exact final state an_d there is not a well- T(X1—>X2)=|V|3f 2[1—(y—1),8V(y)]‘f|/(l’")dy
defined plateau, even in the smBllregime. Moreover, aB Xq
decreases, the curves collapse to a limiting one for states y
below xg, but grow faster z_ibova, diverging !n thellimit Xf [1_(V_1)BV(Z)];+L/(V—1)O|Z' (6)
D—0. The escape behavior seems to be discontinuous at —

400 whereu=1 if »>0 andu=1-2v if v<0. Expression6)

Tx) reproduces numerical experiments with excellent agreement,
300 5 as illustrated in Fig. 3.
200 In Fig. 4, we showT=T(xg)=T(x_—Xg) as a function

of 1/D (full lines), for different values ofv>0, as calculated
from Eq.(6). T represents a measure of the escape time from
the left- to the right-hand well, even in the<1 cases where
plateaus are not well defined. In the range 1, T diverges

at a valueD., defined by the cutoff prescription, below
which the right-hand well becomes inaccessible. In the O
<w<1 case,T saturates as I/ increases. The hyperdiffu-
sive regimev<0 (henceD<0), where spreading is faster
than ballistic, demonstrates the same general features dis-
cussed for the regionQv<1, but|D| must be considered

o ; S s 4 instead ofD. For any» and small 1D|, the escape time
X follows the power lawT ~ %4~ 1/|D|3(**3),
FIG. 3. T(x)=T(x_—X) vsx for different values oD indicated If x;=x_ andx,=Xg, then it is possible to find an ap-

in the figure andv=2 (a) and 0.5(b). Circles correspond to nu- Proximate expression for the escape tiTIﬁW.hen|D| (hence
merical experiment§mean value over 1000 realizatiorsnd full ~ 1/83) is sufficiently small, noting that the integrands in Eq.
lines to theoretical prediction given by E(). (6) present sharp peaks &§ andx, , respectively. In that
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T 0.5
100 p(x)
10? 4
] 0.0
§ 1.0
10' 4 px) ]
10° 102 10f 100 10" 102 1/D
FIG. 4. Escape tim&=T(xg) as a function of 1), for different
values ofv>0 indicated in the figure. Full lines are generated from

Eqg. (6). Dashed lines correspond to the I@vapproximation given
by Eqg.(7). Symbols correspond to the initial condition where all the
particles(at least 100pare injected at the same timexat. Dotted FIG. 5. Time evolution of the density of particles obtained by
Ilne_s are guides for symbols. Inset: Det@Emilog of the lowD numerical integration of Eq(2) with p(x,0)=a(x) for (»,D)
region fory=<1. =(4.0,2.5)(a) and(0.5,0.2 (b). The profiles correspond to timés

) . indicated in the figure.
case, the integrals can be evaluated by a saddle-point ap-

proximation extending the integration limits to the whole injected all at the same time & . This instance requires

space. Following this procedure, we arrive at simultaneous integration of the FP equation, in order to fol-
low the evolution of p(x,t) starting from p(x,0)= &(x
v 12(1—v . . A .
T 2w 2[y| [1-(v=D)BV(xp)| MW= —X,), together with integration of the IL equatidd), start-
VoLwo [+ r\ 1=(v=1)BV(x) ' ing from x(t=0)=x, =0. Now, the parameter must lie in

(7)  the regionv>0 due to the divergence in E®). An implicit
finite-difference scheme with centered space differences was
wherew, andwg are the frequencies at the bottom of the leftemployed for numerical integration of the nonlinear FP
well and at the top of the barrier, respectively. Expres$®n equation24]. The time evolution of the density is illustrated
is a generalization of the Arrhenius law, which, as expectedin Fig. 5.

is recovered in the limitv—1. In fact, in that limit, T The escape timd as a function of I» (symbolg ob-
=(2m/JwLwo)exp@V/D), where AV=V(xp)—V(X.) is tained for different values of was included in Fig. 4. Let us
the barrier height. compare this case to the precedent steady one. For suffi-

For comparison, the approximation given by E@) is  ciently largeD, T is not sensitively dependent on the initial
also exhibited in Fig. 4dashed lines The approximation is  distribution and Eq(6) fits well to the numerical results for
good for large 1D|, as expected. It works better fer>1.  any »>0, following the power lawT~ 1/D¥*3) derived
Let us comment on the main features revealed by this exabove. On the other hand, for sm&l| crossing times be-
pression. Whemn>1, it foresees the divergence dft finite  come closer to those of the standard casel for any v.

D. In fact, D, is obtained from 18.=(v—1)V(xo). When  This can be understood as follows. Ror 1, passage times
v<1, saturation off for large 1/D| is also predictedunless are smaller than those given by E@) since, as the distri-
V(x.)=0] since B is an unbounded increasing function of bution evolves, there is an initial passage even between re-
1/|D|. If V(x.)=0, then Eq(7) indicates thaf diverges for gions disconnected at the steady s{a®e Fig. 5a)]. How-
vanishing|D|. In particular, if 0<v<1, T~ g+ D/2A="1  ever, our results suggest that the divergence tdr a finite
~1/DY1") and the deterministic limit is achieved. In the critical D, close toD., still occurs. On the other hand, in the
limit »—1, the exponential growth of with 1/D is always rangev<1, crossing times are larger than those given by Eq.

recovered. (6) since now the density of particles is initially unfavorable
for surmounting the barridisee Fig. ®b)]. Saturation is not
V. NUMERICAL RESULTS FAR FROM observed and the escape time increases wihdgparently

THE STEADY STATE following a power law. It is worth noting that, as derived

) o above, a power law with exponent 1£¥) is the one ex-
The problem in the vicinity of the steady state actually pected if the average effective potential felt by crossing par-

corresponds to a linear one with a state-dependent diffusioficles has the absolute minimum |t, which is consistent
coefficient. However, it allows an analytical treatment thatwith the observed density evolutigeee Fig. &)].

can be kept in mind as a reference when studying more gen-

eral cases. In order to test hqw the previous results compare VI. EINAL REMARKS

to those of a more general situation, we also performed nu-

merical studies of the escape properties far from the steady Summarizing, we have obtained the escape time for sys-
state. Particularly, we studied the case in which particles areems exhibiting anomalous diffusion due to a stochastic non-
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linear dependency on the density. For steady-state condi- These results give hints of what should be expected in
tions, we obtain an analytical expression for the mean firstmore general cases. For systems far from the steady S$tate,
passage time whose predictions are in excellent agreemegtows with 1D apparently following a power law in the
with numerical resultgFig. 3. This analytical expression superdiffusive cases whil€ diverges at finiteD in the sub-
yields a generalization of Arrhenius law. A behavior quite diffusive ones.

different from that of the standard Brownian case 1 is

depicted. Under close t_o stationary C(_)ndlt_lons, two regimes ACKNOWLEDGMENTS

are detected: In the regian<1 (superdiffusion, the escape
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