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Percolation and jamming in random sequential adsorption of linear segments on a square lattice

Grzegorz Kondrdt and Andrzej I?iealski’r
Institute of Theoretical Physics, University of Wroctaw, pl. M. Borna 9, 50-204 Wroctaw, Poland
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We present the results of a study of random sequential adsorption of linear segneeatie$ on sites of a
square lattice. We show that the percolation threshold is a nonmonotonic function of the length of the adsorbed
needle, showing a minimum for a certain length of the needles, while the jamming threshold decreases to a
constant with a power law. The ratio of the two thresholds is also nonmonotonic and it remains constant only
in a restricted range of the needles length. We determine the values of the correlation length exponent for
percolation, jamming, and their ratio.
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[. INTRODUCTION and jamming. They used two kinds of objects—linear seg-
ments of length 2 to 10 and square blocks. They have found
The problem of percolation is an old ofi] but still new  that the ratio of the two threshold concentratiegsandc; is
results appear and some unsolved questions ref@dirin  constantc,/c;~0.62, regardless of the length of the needle.
general site percolation is defined om-@imensional lattice In the present paper we extend the study of Vanderwalle
where each site can be either occupied with the probalaility et al. to larger lattices and longer objedise consider only
or empty with the probability +c. Neighboring occupied linear segmenis In particular we shall check the claim that
sites form a cluster. If it is so large that it reaches the twathec,/c; ratio does not depend on the length of the needles.
opposite edges of the lattice, e.g., top and bottom, the cluster
is said to be percolating. The lowest concentration of occu-

. . . . . . 1. MODEL
pied sites for which there is a percolatifmy spanningclus-
ter for an infinite lattice is called the percolation threshold We consider a square lattice of size<L. On the sites of
[2]. the lattice we put randomly linear segmeifiteedles of a

Another realization of the percolation problem is randomgiven lengtha, with the constraint that the needles cannot
sequential adsorptiofRSA), in which objects(point par- cross each other, although they may touch themselves. We
ticles, segments, rectangles, gtare put on randomly chosen used hard boundary conditions, i.e., the needles may touch
sites and the objects do not mop&. It is also possible to the edge of the lattice but they cannot stick out of it—each
consider RSA in a continuuifa]. needle must lay totally inside the lattice. Adopting open

Jamming is a problem related to RSA percolati@. boundary conditions does not affect the results.

Again objects are placed randomly on the lattice sites until a To achieve simulation efficiency, our algorithm of depo-
concentratiorc; is reached, where there is no room on thesition needles consists of two parts designed for two different
lattice for the next object. For pointlike particles=1, but  regimes. First when the current concentration of the needles
for spatially extended entities;<<1. Continuum models of is small, we chose randomly, from a uniform distribution, the
jamming also exis{3]. orientation(vertical or horizontal and position of the upper

The RSA models irreversible dissociatifs] and binding  left end of the needle to be inserted. If there is enough space
of large ligands to polymer chairi§]. Another area of ap- on the lattice, the needle is deposited, if not, we pass to the
plicability is the deposition of large molecules on solid sur-next try. After a certain number of adsorption trials we
faces, like proteind7] or macromolecules on biological switch to the other regime where the dense routine is applied.
membrane$8]. The isotropic-nematic transition in the hard A list of all empty sites and orientations still available is
rods such as polymers, has been studied first by FRjrgnd =~ made. From that list a site is randomly chosen. We determine
later, e.g., in Ref[10]. Spatial organization of needles into a the direction of the needle and check whether the needle can
well-organized nematic phase is however a different probbe put there. In any case the site is removed from the list.
lem, not considered here. General forms of percolation mod¥he process is continued untill the last item on the list. Such
els have a wide range of applications—from chemisorptionprganization saves time, since we avoid inserting needles
spatially disordered systems, porous materials, car parkingnto densely packed regions.
and ecology 3], to separating the good and bad people at the A cluster is defined as a group of sites linked by the
entrance to Hadefgl1]. For overview of percolation, jam- needles. If there is an uninterrupted path between the top and
ming, and related problems see R&]. the bottom of the lattice, the cluster is said to be percolating

In a recently published papdi2] Vanderwalleetal. or spanning, and the concentration of occupied sites defines
studied the relation between the two transitions—percolatiohe percolation threshold,. The concentration at which no

more needles could be put on the lattice without violating the
constraint determines the jamming thresho]d
*Email address : gkon@ift.uni.wroc.pl We have considered lattices of sizes=-30, 100, 300,
TEmail address: apekal@ift.uni.wroc.pl 1000, 2500 and needles of lengéhk=1, . ..,2000. On the
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FIG. 2. Percolation threshold, vs needles’ lengtha. L

=2500, 100 runs(a) Short needlea=1, .. .,45; (b) long needles
a=1,...,2000.
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FIG. 1. Thresholds for percolatiory,, jammingc;, and their
ratio ¢, /c; vs needles’ lengtta. Lattice sizeL =2500. Averaged

over 100 samples. Theaxis is in arb. units in all figures.
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FIG. 3. Snapshot of a spatial distribution of needles at the per-
colation threshold fot. =100. (a) a=5, (b) a=20. They axes are

smallest lattices only smaller needles were located. Averag-

ing was done over 100 independent runs. We have checked
that averaging over 1000 runs did not reduce the émaan
standard deviation &) in a marked way.

Our main results of the simulations are presented in Fig.
1, where the percolation and jamming thresholds, as well as
their ratio, are plotted against the length of the needées (
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FIG. 4. Jamming threshole; vs needles’ lengtla on a log—log FIG. 6. Percolation to jamming thresholds rat@g/c; vs

plot. L=2500, 100 runsa=>5,...,45.

=1,...,45). These data are obtained for lattice size

needles’ lengtha. L=2500, 100 runsa=1, .. .,2000.

=2500. As convergence and error analysis sh¢sez be-
low) we can safely accept them as the asymptatie-(e) —¢C
values. 09 ¢ G
The percolation threshold foa=1, ... ,13 diminishes, o
then it begins to grow linearly with the slope 0.000 71. The 08 | - _
minimum valuec,,;,=0.463 is reached foa=13. As seen - -
in Fig. 2, theo increases with the size of the needles startince> |
from 0.001@=1) up to 0.0084=45). The increase of the <"
percolation threshold for longeris however quite clear. The < | | ________ I _______ S
appearance of this unexpected feature is connected with tt 06 ¢
condition that the needles may touch themselves but the -
cannot cross. In the simulations where the restriction ha 05 | T -
been lifted we observed no minimum but a monotonic de- L -
crease. In the model considered here the needles have t 0a - ‘ .
tendency to align in parallel not only with respect to the 10 100 L 1000 10000
edges of the lattice but also to themsely®se Fig. 3, hence (@
the needles form compact clusters. In the case of horizontall
oriented needles, in order to move, e.g., two steps down, tw 1 ,
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FIG. 5. Percolation to jamming thresholds rat@/c; vs FIG. 7. Convergence analysis of percolaticy, jamming
needles’ lengtha. L=2500, 100 runs. Logaritmic fit fora thresholdsc; , and their ratioc, /¢, vs lattice size.. 100 runs.(a)
=15,...,45. a=5, (bh) a=45.
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FIG. 9. Snapshot of a spatial distribution of needles at the jam-
~o ming threshold fol.=100. (a) a=5, (b) a=20. They axes are in
‘ arb. units.
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FIG. 8. Deviation analysisr vs lattice size_ for several values
of the needles’ lengthia) Percolation (b) jamming, and(c) perco-  The uncertainty of the exponent derived from the graph
lation to jamming ratio. analysis equals 0.02. Clearly this behavior differs essentially
from bare power law postulated in Ré#]:

needles of lengtla are needed. The longer are the needles

the higher is the percentage of occupied sites necessary for cj~a*°-2, (2
passing these two steps. The increasey4) is to a certain

degree compensated by vertically oriented needles, whicfyr the continuunoff-lattice) case of RSA of randomly ori-
however also form clusters, thus offering many equivaleninted and highly anisotropidength to widé rectangles.
ways for percolation. Further simulations for much longerTheira coincides with our length of needlasin the discrete
needles indicate continuous increasecin although at a case we did not observe the maximuncphta=2 reported
slower rate—see Fig.(B). The jamming thresholds obtained in Ref.[4]. The reason is that on the lattice the number of
from the simulations have much smaller error than that fopossible orientations of the needles is restrictesf2qwhere
percolation and even fax=45 it is below 0.002. Values of zis the coordination number of the lattjce@ contrast to the
c;, as a function ofa, decrease according to a power law continuum case. It is interesting that the asymptotic concen-
(very good fit for alla=5) approaching the asymptotic value tration for jamming(for a— ) is 0 off lattice and it remains
c}* =0.66+0.01 (see Fig. % finite in the discrete case.
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Another interesting quantity in our model is the ratio AJ~L‘1’V1, 1/v;=1.00=0.05,
cp/c; as a function ofa (see Fig. % It grows for a )
=1,...,3,then it stabilizes untilla=7 and then it grows A~L~Yr, 1v,=0.77+0.05. (4)

again. The plateau value of,/cj~0.62, the constant found

in Ref. [12]. The growth for longer needles (&@<45) Here v corresponds to the correlation length exporiéit

could be fitted by a logarithmic dependence é~Jc—cp| 7. (5)
Cp/cj~0.50+0.13 loga. (3)  These values are, within the error bars, the same foa all
=1,...,45 andagree with those found by Vanderwalle

Further simulations for longer needlésee Fig. 6 support et al.[12] Also Nakamurg 13] found vj=1.0+0.1 for RSA

our claim of monotonic increase ©},/c; over a wide range  of square blocks. It seems therefore that the exponeate

of a (even up toa=2000). We may conclude therefore that good candidates for universal quantities.

the universality claimed in Ref12] holds only in a rather Examples of spatial arrangements of shor+=6) and
restricted range dd e [3,7]. As a matter of fact, the value of |onger (@=20) needles on a lattice 18000 are shown in
cp/c; for a>7 shown in Table | of Refl12] is greater than  Figs. 3 (percolation and 9 (jamming. Analysis based on
those fora<7 but the authors attribute it to the finite-size examination of different runs shows some regularity in the
effects. This is however most probably just the beginning ofheedles distribution—we have found that the needles near
the growth ofc,/c; . the edges have the tendency to stick along the borders.

We analyzed the dependence of the obtained thresholdsonger needles, for obvious reasons, form clusters of parallel
on the lattice size. and needles’ length focusing on con- alignment, as was already observed in R&g].
vergence. It appeared that for the raéili. <1/3 the values
of ¢, andc; do not vary much with increasing (keepinga IV. CONCLUSIONS
constank—see Figs. #® and 7b). The error barghere o)
however decrease rapidly with while the difference of the
thresholds for different lattice sizes is much smaller than th
appropriate error. Thus it is safe to take the values of th
thresholds from the simulations withh =2500 as the
asymptotic(exac} ones.

The finite-size effects can clearly be seen in Fih)2
wherec,, is drawn againsa=1, . .. 2000 forL=2500. At
a=L/2 we can notice a sharp change in the slope of th
functioncp(a).

Consider now the dependencembf c,,c;,c,/c; on the
lattice size.o is analogous to the quantity defined in Ref.
[12] as the sharpness of the transitionpercolating to per-
colating or nonjammed to jammgdHere however the
power-law approach to the asymptotic valpé»)—p(L)
~L ™Y [cf. formula(3) in Ref.[12]] does not hold. We have
found (see Fig. 8 that theo for percolation Q,), jamming
(4;), and thec,/c; ratio (A,;) decrease with the lattice size ACKNOWLEDGMENTS
according to the power laws

We have performed extensive simulations of RSA using
linear segments of siza=1, . ..,45 onsquare lattice sites.
Se have found that the percolation threshold is a nonmono-
Sonic function ofa, having a minimum due to parallel orien-
tation of the needles, @= 13, while the jamming threshold
decreases to a nonzero constant veitas a power law. The
ratio of the two thresholds is nonmonotonic too—after initial

rowth it stabilizes for some values af and then it grows
ogarithmically. Whether the asymptotic value is equal to
one or less is an interesting question. To answer it unequivo-
cally is unfortunately beyond our computing power. The val-
ues of the correlation length exponent for percolation,
jamming thresholds, and the ratio of the two, do not depend
on the length of the needles and they are, within the error
bars, equal to those found elsewh¢i®,13 for deposition
of needles, rectangles, or squares.

The authors are grateful to M. Droz, J. O. Indekeu, Z.
Ap~L*1’”p, 1/v,=0.75-0.05, Koza, and N. Vandewalle for helpful comments.
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